
HAL Id: hal-01071491
https://hal.science/hal-01071491v1

Submitted on 5 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automorphisms of surfaces: Kummer rigidity and
measure of maximal entropy

Serge Cantat, Christophe Dupont

To cite this version:
Serge Cantat, Christophe Dupont. Automorphisms of surfaces: Kummer rigidity and measure of
maximal entropy. Journal of the European Mathematical Society, 2020, 22 (4), pp.1289-1351.
�10.4171/JEMS/946�. �hal-01071491�

https://hal.science/hal-01071491v1
https://hal.archives-ouvertes.fr


AUTOMORPHISMS OF SURFACES:

KUMMER RIGIDITY AND MEASURE OF MAXIMAL ENTROPY

SERGE CANTAT AND CHRISTOPHE DUPONT

ABSTRACT. We classify complex projective surfaces with an automorphism
of positive entropy for which the unique invariant measure of maximal en-
tropy is absolutely continuous with respect to Lebesgue measure.

RÉSUMÉ. Nous classons les surfaces complexes projectives munies d’un
automorphisme dont l’unique mesure d’entropie maximale est absolument
continue par rapport à la mesure de Lebesgue.
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1. INTRODUCTION

1.1. Automorphisms and absolutely continuous measures. Let X be a com-
plex projective surface and Aut(X) be the group of holomorphic diffeomor-
phisms of X . By Gromov-Yomdin theorem, the topological entropy htop( f )
of every f ∈ Aut(X) is equal to the logarithm of the spectral radius λ f of the
linear endomorphism

f ∗ : H2(X ;Z)→ H2(X ;Z)

Date: 2013/2014.
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DYNAMICS ON COMPLEX SURFACES 2

(here H2(X ;Z) is the second cohomology group of X). Thus, f has positive
entropy if, and only if there is an eigenvalue λ ∈ C of f ∗ with |λ|> 1. In fact
such an eigenvalue is unique if it exists, and is equal to the spectral radius λ f .
The number λ f is called the dynamical degree of f . As a root of the char-
acteristic polynomial of f ∗ : H2(X ;Z)→ H2(X ;Z), it is an algebraic integer;
more precisely, λ f is equal to 1, to a reciprocal quadratic integer, or to a Salem
number (see [21]).

When the entropy is positive, there is a natural f -invariant probability mea-
sure µ f on X which satisfies the following properties (see [7, 18]):

• µ f is the unique f -invariant probability measure with maximal en-
tropy;

• if µn denotes the average on the set of isolated fixed points of f n, then
µn converges towards µ f as n goes to +∞.

Thus µ f encodes the most interesting features of the dynamics of f . In the
sequel we shall call µ f the measure of maximal entropy of f .

The main goal of this paper is to study the regularity properties of this
measure. By ergodicity, µ f is either singular or absolutely continuous with
respect to Lebesgue measure. By definition, it is singular if there exists a
Borel subset A of X satisfying µ f (A) = 1 and vol(A) = 0 (the volume is taken
with respect to any smooth volume form on X); it is absolutely continuous if
µ f (B) = 0 for every Borel subset B ⊂ X such that vol(B) = 0.

Classical examples of pairs (X , f ) for which µ f is absolutely continuous are
described in Section 1.2 below. The first examples are linear Anosov auto-
morphisms of complex tori; one derives new examples from these linear au-
tomorphisms by performing equivariant quotients under a finite group action
and by blowing up periodic orbits. Our main theorem, stated in Section 1.3,
establishes that these are the only possibilities. This result answers a question
raised by Curtis T. McMullen and by the first author.

This theorem allows to exhibit automorphisms of complex projective sur-
faces for which µ f is singular (see §1.4). All previously known examples were
constructed on rational surfaces whereas here, we focus on K3 surfaces. A
complex projective surface X is a K3 surface if it is simply connected and if it
supports a holomorphic 2-form ΩX that does not vanish. Such a form is unique
up to multiplication by a non-zero complex number; thus, if one imposes the
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constraint ∫
X

ΩX ∧ΩX = 1,

the volume form volX := ΩX ∧ΩX is uniquely determined by the complex
structure of X ; in particular, this volume form is Aut(X)-invariant. A byprod-
uct of our main theorem is a characterization of the pairs (X , f ) for which
µ f = volX ; this occurs if and only if µ f is absolutely continuous.

Example 1.1. A good example to keep in mind is the family of (smooth)
surfaces of degree (2,2,2) in P

1
C ×P

1
C ×P

1
C. Such a surface X comes with

three double covers X → P
1
C ×P

1
C, hence with three holomorphic involutions

σ1, σ2, and σ3. The composition f = σ1 ◦σ2 ◦σ3 is an automorphism of X
of positive entropy. The measure µ f is singular for a generic choice of X but
coincides with volX for specific choices.

1.2. Examples with absolutely continuous maximal entropy measure.

1.2.1. Abelian surfaces. Let A be a complex abelian surface and let volA de-
note the Lebesgue (i.e. Haar) measure on A, normalized by volA(A)= 1. Every
f ∈ Aut(A) preserves volA, and the measure of maximal entropy µ f is equal to
volA when λ f > 1.

Complex abelian surfaces with automorphisms of positive entropy have
been classified in [40]. The simplest example is obtained as follows. Start
with an elliptic curve E = C/Λ0 and consider the product A = E ×E. The
group GL2(Z) acts on C2 linearly, preserving the lattice Λ = Λ0 ×Λ0 ; thus,
it acts also on the quotient A = C2/Λ. This gives rise to a morphism M 7→ fM

from GL2(Z) to Aut(A). The spectral radius of ( fM)∗ on H2(A;Z) is equal to
the square of the spectral radius of M. In particular, λ f > 1 as soon as the trace
of M satisfies |tr(M)|> 2.

1.2.2. Classical Kummer surfaces. Consider the complex abelian surface A =

E ×E as in Section 1.2.1. The center of GL2(Z) is generated by the involution
η =−Id; it acts on A by

η(x,y) = (−x,−y).

The quotient A/η is a singular surface. Its singularities are sixteen ordinary
double points; they can be resolved by a simple blow-up, each singular point
giving rise to a smooth rational curve with self-intersection −2. Denote by X
this minimal regular model of A/η. Since GL2(Z) commutes to η, one gets an
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injective morphism M 7→ gM from PGL2(Z) to Aut(X). The topological en-
tropy of gM (on X) is equal to the topological entropy of fM (on A). The holo-
morphic 2-form ΩA = dx∧ dy is η-invariant and determines a non-vanishing
holomorphic 2-form ΩX on X . The volume form ΩX ∧ΩX is invariant under
each automorphism gM, and the associated probability measure coincides with
the measure of maximal entropy µgM when htop(gM) > 0. Hence, again, one
gets examples of automorphisms for which the measure of maximal entropy
is absolutely continuous. The surface X is a Kummer surface and provides a
famous example of K3 surface (see [3]).

Remark 1.2. Kummer surfaces A/η with A a complex torus and η(x,y) =
(−x,−y) form a dense subset of the moduli space of K3 surfaces (see [3]).
Moreover, there are explicit families (Xt , ft)t∈D of automorphisms of K3 sur-
faces such that (X0, f0) is such a Kummer example, but Xt stops to be a Kum-
mer surface for t 6= 0 (see [20], Section 8.2).

1.2.3. Rational quotients. Consider the complex abelian surface A = E ×E
of Section 1.2.1 given by the lattice Λ0 = Z[τ] with τ2 = −1 or τ3 = 1 (and
τ 6= 1). The group GL2(Z[τ]) acts on A and its center contains

ητ(x,y) = (τx,τy).

The quotient space X0 = A/ητ is singular and rational. Resolving the singu-
larities, one gets examples of smooth rational surfaces X with automorphisms
of positive entropy. The image of the Lebesgue measure on A provides a prob-
ability measure on X which is smooth on a Zariski open subset of X but has
“poles” along the exceptional divisor of the projection π : X → X0. Neverthe-
less, this measure is absolutely continuous with respect to Lebesgue measure
(see [20]).

1.3. Main theorem. The examples of Section 1.2 lead to the following defi-
nition (see also [19, 26, 64]).

Definition 1.3. Let X be a complex projective surface and let f ∈Aut(X). The
pair (X , f ) is a Kummer example if there exist

• a birational morphism π : X → X0 onto an orbifold X0,
• a finite orbifold cover ε : Y → X0 by a complex torus Y ,
• an automorphism f0 of X0 and an automorphism f̂ of Y such that

f0 ◦π = π◦ f and f0 ◦ ε = ε◦ f̂ .
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If (X , f ) is a Kummer example with λ f > 1, then µ f is absolutely continu-
ous with respect to Lebesgue measure (it is real analytic with integrable poles
along a finite set of algebraic curves).

Main Theorem. Let X be a complex projective surface and f be an automor-
phism of X with positive entropy. Let µ f be the measure of maximal entropy
of f . If µ f is absolutely continuous with respect to Lebesgue measure, then
(X , f ) is a Kummer example.

This answers a question raised by the first author in his thesis [17] and
solves Conjecture 3.31 of Curtis T. McMullen in [53]. Moreover, the surfaces
X which can occur are specified by the following easy theorem (see [22, 23]).

Classification Theorem. Let X be a complex projective surface and f be
an automorphism of X of positive entropy. Assume that (X , f ) is a Kummer
example.

(1) X is an abelian surface, a K3 surface, or a rational surface.
(2) If X is a K3 surface, it is a classical Kummer surface, i.e. the quo-

tient of an abelian surface A by the involution σ(x,y) = (−x,−y); in
particular, the Picard number of X is not less than 17.

(3) If X is rational, then λ f is contained in Q(ζl) where ζl is a primitive
root of unity of order l = 3, 4, or 5.

In particular, X is not an Enriques surface, i.e. a quotient of K3 surface by
a fixed point free holomorphic involution.

Remark 1.4 (see [10, 11, 52, 63]). An analogous result holds for holomorphic
endomorphisms g of the projective space P

k
C of topological degree > 1. In

this case, there is also an invariant probability measure µg that describes the
repartition of periodic points and is the unique measure of maximal entropy,
and if µg is absolutely continuous with respect to Lebesgue measure, then g
is a Lattès example: it lifts to an endomorphism of an abelian variety via an
equivariant ramified cover. This is due to Zdunik for k = 1 and to Berteloot,
Loeb and the second author for k ≥ 2.

Remark 1.5 (see [19]). There are examples of non injective rational transfor-
mations h : X 99K X of K3 surfaces such that

• the topological entropy of h is positive,
• h preserves a unique measure of maximal entropy µh,



DYNAMICS ON COMPLEX SURFACES 6

• µh coincides with the canonical volume form volX = ΩX ∧ΩX on the
K3 surface X ,

but h is not topologically conjugate to a Kummer example. In particular the
Kummer and Lattès rigidities do not extend to non injective rational mappings.

1.4. Applications.

1.4.1. Lyapunov exponents and Hausdorff dimension. The first consequence
relies on theorems of Ledrappier, Ruelle and Young.

Corollary 1.6. Let X be a complex projective surface and f be an automor-
phism of X with positive entropy logλ f . Let λs < λu denote the negative and
positive Lyapunov exponents of the measure µ f . The following properties are
equivalent

(1) µ f is absolutely continuous with respect to Lebesgue measure;
(2) λs =−1

2 logλ f and λu =
1
2 logλ f ;

(3) for µ f -almost every x ∈ X,

lim
r→0

logµ f (Bx(r))

logr
= 4;

(4) (X , f ) is a Kummer example.

If X is a K3 surface or, more generally, if there is an f -invariant volume
form on X , the Lyapunov exponents of µ f are opposite (λu = −λs), and one
can replace the second item by either one of the two equalities.

1.4.2. K3 and Enriques surfaces. Recall that the Néron-Severi group NS(X)

of a complex projective surface X is the subgroup of the second homology
group H2(X ;Z) generated by the homology classes of algebraic curves on X .
The rank of this abelian group is the Picard number ρ(X). When ρ(X) is
equal to 1, the entropy of every automorphism f of X vanishes (see [20, 21]);
thus, the first interesting case is ρ(X) = 2.

Corollary 1.7. Let X be a complex projective K3 surface with Picard num-
ber 2. Assume that the intersection form does not represent 0 and −2 on
NS(X). Then

(1) Aut(X) contains an infinite cyclic subgroup of index at most 2;
(2) if f ∈ Aut(X) has infinite order its entropy is positive and its measure

of maximal entropy µ f is singular with respect to Lebesgue measure.
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Examples of such K3 surfaces with an infinite group of automorphisms are
described in [59, 25].

An Enriques surface Z is the quotient of a K3 surface by a fixed point free
involution. If π : X → Z is such a quotient, the canonical volume form volX
of X determines a smooth Aut(Z)-invariant volume form volZ on Z. Thus,
Enriques surfaces have a natural invariant volume form that is uniquely deter-
mined by the complex structure.

Corollary 1.8. If f is an automorphism of an Enriques surface with positive
entropy, then µ f is singular with respect to Lebesgue measure.

Let now Z be a general Enriques surface. Up to finite index, the group
Aut(Z) is isomorphic to the group of isometries of the lattice U⊕ (−E8)

(see [4, 29]), so that it contains automorphisms with positive topological en-
tropy. Thus, Corollary 1.8 implies that general Enriques surfaces have au-
tomorphisms for which the measure of maximal entropy is singular; on the
other hand, the volume form volZ provides the only probability measure that
is invariant under the action of Aut(Z) ([16]).

1.4.3. Dynamical degrees and rational surfaces. For the next statement, re-
call that the dynamical degree λ f is an algebraic integer (see Section 1.1).

Corollary 1.9. Let X be a complex projective surface and f be an automor-
phism of X with positive entropy. If the degree of λ f (as an algebraic integer)
is larger than or equal to 5 then the measure of maximal entropy µ f is singular
with respect to Lebesgue measure.

This can be applied to the examples constructed by Bedford and Kim (see
[5, 6]) and McMullen (see [54]). They exhibit families of automorphisms of
rational surfaces fm : Xm → Xm for which the degree of the algebraic number
λ fm increases with m. Thus Corollary 1.9 shows that µ fm is singular with re-
spect to Lebesgue measure when m is large enough. This may also be applied
to a family of examples constructed by Blanc. (See Sections 8.3.1 and 8.3.2
for more details)

1.5. Related problems.

1.5.1. Geodesic flows. A similar question of entropy rigidity concerns the ge-
odesic flow (θt)t∈R on a negatively curved riemannian manifold (M,g). Neg-
ative curvature implies that this flow is Anosov with a unique invariant proba-
bility measure ν of maximal entropy (i.e. with metric entropy h(θ1,ν) equal to
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the topological entropy htop(θ1)). The flow preserves also the Liouville mea-
sure λg, and the Entropy conjecture predicts that νg is absolutely continuous
with respect to λg if and only if the riemannian manifold (M,g) is locally sym-
metric. This is proved by Katok for surfaces (see [45]). We refer to [50] for
a nice survey on this type of problem and to [37, 8] for its relationship to the
rigidity properties of Anosov flows with smooth stable and unstable foliations.

1.5.2. Random walks. Another related question concerns the regularity of har-
monic measures. Consider the fundamental group Γg of an orientable, closed
surface of genus g ≥ 2, and identify the boundary ∂Γg to the unit circle S1. Let
νS be a probability measure on Γg with finite support S, such that S generates
Γg. The measure νS determines a random walk on Γg. Given a starting point x
in Γg and a subset A of the boundary ∂Γg, the harmonic measure ωx(A) is the
probability that a random path which starts at x converges to a point of A when
time goes to +∞. It is conjectured that ωx is singular with respect to Lebesgue
measure on ∂Γg = S

1. We refer to [44, 12] for an introduction to this topic and
references; see also [14] for a recent example.

1.6. Organization of the paper. Fix a complex projective surface X and an
automorphism f of X with positive entropy. Section 2 is devoted to classical
facts concerning the dynamics of f . In particular, we explain that µ f is the
product of two closed positive currents T+

f and T−
f , that the generic stable

and unstable manifolds of f are parametrized by holomorphic entire curves ξ :
C → X , and that T+

f and T−
f are respectively obtained by integration on these

stable and unstable manifolds. Assume, now that µ f is absolutely continuous
with respect to Lebesgue measure.

1.6.1. Renormalization along the invariant manifolds. We first show that

(1) the absolute continuity of µ f can be transferred to the currents T+
f

and T−
f ;

(2) if ξ : C → X parametrizes (bijectively) the stable manifold of a µ f -
generic point, then ξ∗T−

f = a i

2dz∧dz̄ for some constant a > 0.

These two steps occupy sections 3 to 5. The proof of Property (1) builds on the
local product structure of µ f and on the weak laminarity properties of T±

f . The
proof of (2) relies on a renormalization argument (along µ f -generic orbits).

Remark 1.10. The renormalization techniques already appear in the proof
of Lattès rigidity for endomorphisms of projective spaces P

k
C (see [52] and
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[10]). Our context is actually closer to the conformal case k = 1 since the
renormalization is done along the stable and unstable manifolds. In the case
of endomorphisms of Pk

C, the unstable manifolds cover open subsets of Pk
C;

here, the stable and unstable manifolds have co-dimension 1, and we have to
overcome important new difficulties.

1.6.2. Normal families of entire curves. We combine Zalcman’s reparametri-
zation lemma, Hodge index theorem, and a result of Dinh and Sibony to derive
a compactness property, in the sense of Montel, for the entire parametrizations
of stable and unstable manifolds. This crucial step is detailed in Section 6.

1.6.3. Laminations, foliations, and conclusion. Thanks to the previous step,
we prove that the stable (resp. unstable) manifolds of f are organized in a
(singular) lamination by holomorphic curves. Then, an argument of Ghys can
be coupled to Hartogs phenomenon to show that this lamination extends to an
f -invariant, singular, holomorphic foliation of X .

Remark 1.11. Thus, at this stage of the proof, the starting hypothesis on µ f

has been upgraded in a regularity property for T+
f and T−

f (these currents are
smooth, and correspond to transverse invariant measures for two holomor-
phic foliations). For endomorphisms of Pk

C, this fact follows directly from the
renormalization argument and pluripotential theory (see Lemma 3 in [10]).

To conclude, we refer to a previous theorem of the first author and Favre
concerning symmetries of foliated surfaces. These steps are done in Section 6
and Section 7

1.6.4. Consequences and appendices. Section 8 contains the proofs of the
main corollaries and consequences. In the appendices, we state several the-
orems of Dinh, Sibony, and Moncet, and prove those which are not easily
accessible.

1.7. Acknowledgements. We thank to Eric Bedford, Romain Dujardin, Sé-
bastien Gouëzel, Anatole Katok, Misha Lyubich, François Maucourant, and
Nessim Sibony for useful discussions related to this article.

2. INVARIANT CURRENTS AND PERIODIC CURVES

In this section, we collect general results concerning the dynamics of auto-
morphisms of compact Kähler surfaces X . We refer to [21], and the references
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therein, for a complete exposition. (the proofs of a few technical complements
are given in the appendix, § 9)

2.1. Cohomology groups. Let X be a compact Kähler surface. Let Hk(X ;R)

and Hk(X ;C) denote the real and complex de Rham cohomology groups of X .
If η is a closed differential form (or a closed current, see below), its cohomol-
ogy class is denoted by [η].

For 0 ≤ p, q ≤ 2, let H p,q(X ;C) denote the subspace of H p+q(X ;C) of all
classes represented by closed (p,q)-forms, and let hp,q(X) be its dimension.
Hodge theory implies that

Hk(X ;C) =
⊕

p+q=k

H p,q(X).

Complex conjugation exchanges H p,q(X ;C) and Hq,p(X ;C); thus, H1,1(X ;C)

inherits a real structure, with real part

H1,1(X ;R) := H1,1(X ;C)∩H2(X ;R).

The intersection form is an integral quadratic form on H2(X ;Z). It satisfies

∀u,v ∈ H1,1(X ;R) , 〈u|v〉 :=
∫

X
ũ∧ ṽ,

where ũ and ṽ are closed 2-forms on X representing u and v. By Hodge
index theorem 〈·|·〉 is non-degenerate and of signature (1,h1,1(X)− 1) on
H1,1(X ;R). This endows H1,1(X ;R) with the structure of a Minkowski space.

The subset of H1,1(X ;R) consisting of classes of Kähler forms is called
the Kähler cone of X . By definition, the closure of the Kähler cone is the nef

cone. These cones intersect only one of the two connected components of {u∈
H1,1(X ;R) , 〈u|u〉= 1}. We denote by H(X) this connected component. With
the distance given by cosh(dist(u,v)) = 〈u|v〉, this is a model of the hyperbolic
space of dimension h1,1(X)−1.

2.2. Action on cohomology groups (see [21], §2). Every f ∈Aut(X) induces
a linear invertible mapping f ∗ on H1,1(X ;R) which is an isometry for the
intersection product. Since the Kähler cone is f ∗-invariant, so is H(X). Let λ f

denote the spectral radius of f ∗ : H1,1(X ;R)→ H1,1(X ;R).

• λ f coincides with the spectral radius of f ∗ acting on the full cohomol-
ogy space ⊕4

k=0Hk(X ;C).
• The topological entropy of f is equal to logλ f .
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• When λ f > 1 the eigenvalues of f ∗ on H1,1(X ;R) (resp. on H2(X ;R))
are precisely λ f , λ−1

f (which are both simple), and complex numbers of

modulus 1. The eigenlines corresponding to λ f and λ−1
f are isotropic,

and they intersect the nef cone.

From the third item, we can fix a nef eigenvector θ+f (resp. θ−f ) for the

eigenvalue λ f (resp. λ−1
f ). Let Π f be the subspace generated by θ+f and θ−f ,

and let Π⊥
f be its orthogonal complement in H1,1(X ;R). The intersection form

has signature (1,1) on Π f and is negative definite on Π⊥
f .

2.3. Contraction of periodic curves. If C ⊂ X is a complex curve, one de-
notes by [C] ∈ H2(X ;Z) the dual of the homology class of C for the natural
pairing between H2(X ;Z) and H2(X ;Z). We call it the cohomology class of
C, this is an element of H1,1(X ;R). If C is periodic, then [C] is fixed by a non
trivial iterate of f ∗ and belongs to Π⊥

f .

Proposition 2.1 (see [21], §4.1). Let f be an automorphism of a compact
Kähler surface X with positive entropy. There exists a (singular) surface X0, a
birational morphism π : X → X0 and an automorphism f0 of X0 such that

(1) π◦ f = f0 ◦π.
(2) A curve C ⊂ X is contracted by π if and only if [C] ∈ Π⊥

f . In particular
π contracts the periodic curves of f .

(3) If C is a connected periodic curve, then the genus of C is 0 or 1.

Indeed, the intersection form being negative definite on Π⊥
f , Grauert-Mumford

criterium allows to contract all irreducible curves C with [C] ∈ Π⊥
f , and only

those curves. This yields the desired morphism π. Property (3) is more diffi-
cult to establish, and is due to Castelnuovo for irreducible curves and to Diller,
Jackson, and Sommese for the general case (see § 9.1).

Remark 2.2. The surface X0 is projective (see § 9.1) but it may be singular;
for instance, if f : X → X is a Kummer example on a K3 or rational surface,
then X0 is automatically singular. We shall make use of basic notions from
complex analysis and pluri-potential theory on complex analytic spaces. For
this, we refer to the first chapter of [30] and chapter 14 in [28].

Remark 2.3. The class θ+f +θ−f ∈H1,1(X ;R) has positive self intersection and
is in the nef cone. After contraction of all periodic curves by the morphism
π0 : X → X0, there is no curve E with 〈(π0)∗θ+f +(π0)∗θ−f |[E]〉 = 0. Hence,

(π0)∗(θ
+
f +θ−f ) is a Kähler class on X0 (see § 9.1).
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2.4. Invariant currents and continuous potentials. We refer to [41, Chapter
3] for an account concerning currents on complex manifolds.

Let T be a closed positive current on X . It is locally equal to ddcu where
u is a plurisubharmonic function. By definition u is a local potential of T ,
it is unique up to addition of a pluriharmonic function. Every closed positive
current T has a cohomology class [T ] in H1,1(X ,R). For instance, if C ⊂ X is
a complex curve and TC is the current of integration on C, then [TC] = [C].

If f ∈ Aut(X) then one can define f ∗T by duality: the value of f ∗T on a
(1,1)-form ω is equal to the value of T on ( f−1)∗ω. If u is a local potential
for T , then u◦ f is a local potential for f ∗T .

Theorem 2.4 (see [32, 55, 21]). Let f be an automorphism of a compact Käh-
ler surface X with positive entropy logλ f . There exists a unique closed positive
current T+

f of bidegree (1,1) on X such that [T+
f ] coincides with the nef class

θ+f . Its local potentials are Hölder continuous. It satisfies f ∗T+
f = λ f T+

f .

Similarly, there exists a unique closed positive current T−
f of bidegree (1,1)

satisfying f ∗T−
f = λ−1

f T−
f .

Remark 2.5. In a recent preprint [33], Dinh and Sibony strengthen Theo-
rem 2.4 by showing that T+

f (resp. T−
f ) is the unique ddc-closed positive

current whose cohomology class is [T+
f ] (resp. [T−

f ]).

Remark 2.6. When contracting the periodic curves, as in Proposition 2.1, one
may get a singular surface X0. Theorem 9.8 shows that the image of T±

f by
π : X → X0 is a closed positive current on X0 with continuous potentials, even
around the singularities.

Let C be a Riemann surface and θ : C → X be a non-constant holomorphic
mapping. The pull-back θ∗(T+

f ) is locally defined as ddc(u+ ◦θ) where u+ is
a local potential; by definition, this measure (resp. its image on θ(C)) is called
the slice of T+

f by θ. The same definition applies for θ∗(T−
f ).

2.5. Definition and properties of µ f . In what follows, we can (and do) fix
the following data: a Kähler form κ on X and eigenvectors θ+f and θ−f with

respect to the eigenvalues λ f and λ−1
f for the endomorphism f ∗ of H1,1(X ;R)

such that

〈θ+f |θ
−
f 〉= 1, 〈θ+f |[κ]〉= 〈θ−f |[κ]〉= 1. (2.1)
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Then, consider the currents T±
f provided by Theorem 2.4. The wedge product

T+
f ∧T−

f is locally defined as the ddc-derivative of u+ddcu−, where u+ and
u− are local potentials for T+ and T−. We define

µ f := T+
f ∧T−

f .

This is an f -invariant probability measure on X . The dynamics of f with re-
spect to µ f is ergodic and mixing; moreover, µ f is the unique f -invariant mea-
sure with maximal entropy, and it describes the equidistribution of periodic
points (see Section 1.1 and [21]).

3. PARAMETRIZATIONS OF STABLE MANIFOLDS

In this section we see how Pesin theory provides parametrizations of the
stable and unstable manifolds of the automorphism f by entire holomorphic
curves, with a control of their derivatives. We provide the details of the proof
of this classical fact, because the control of the derivative will be used system-
atically in our forthcoming renormalization argument, and this control is hard
to localize in the literature. We refer to [43] for a similar and more general
statement in arbitrary dimension.

3.1. Oseledets theorem and Lyapunov exponents (see [61, 46] and [7, 21]).
As before let X be a complex projective surface and f be an automorphism of
X with positive entropy logλ f . Let T±

f be the invariant currents introduced in
Section 2.4. The normalization chosen in Section 2.5, Equation (2.1) implies
that T+

f and T−
f have mass 1 with respect to the Kähler form κ, and that µ f =

T+
f ∧T−

f is an f -invariant probability measure on X .
Since µ f has positive entropy and is ergodic, it has one negative and one

positive Lyapunov exponents; we denote them by λs and λu, with λs < 0 < λu

(each of these exponents has multiplicity 2 if one views f as a diffeomorphism
of the 4-dimensional manifold X).

In what follows, ε always denotes a positive real number that satisfies ε ≪

min(|λs|,λu). The set Λ will be a Borel subset of X of total µ f -measure; its
precise definition depends on ε and may change from one paragraph to another.
By construction, we can (and do) assume that Λ is invariant: indeed, Λ can
always be replaced by ∩n∈Z f n(Λ). A measurable function α : Λ →]0,1] is
ε-tempered if it satisfies e−εα(x)≤ α( f (x))≤ eεα(x) for every x ∈ Λ.

We use the same notation ‖ · ‖ for the standard hermitian norm on C2 and
for the hermitian norm on the tangent bundle T X induced by the Kähler form



DYNAMICS ON COMPLEX SURFACES 14

κ. The distance on X is denoted distX ; Bx(r) is the ball of radius r centered
at x.

Theorem 3.1 (Oseledets-Pesin). Let X be a complex projective surface and
let f be an automorphism of X with positive entropy.

There exist an f -invariant Borel subset Λ ⊂ X with µ f (Λ) = 1, two ε-
tempered functions q : Λ →]0,1], β : Λ →]0,1], and a family of holomorphic
mappings (Ψx)x∈Λ satisfying the following properties.

(1) Ψx is defined on the bidisk D(q(x))×D(q(x)), takes values in X, maps
the origin to the point x, and is a diffeomorphism onto its image.

(2) β(x) ‖ z1 − z2 ‖≤ distX(Ψx(z1),Ψx(z2)) ≤‖ z1 − z2 ‖ for all pairs of
points z1, and z2 in the bidisk.

(3) The local diffeomorphism fx := Ψ−1
f (x) ◦ f ◦Ψx is well defined near the

origin in D(q(x))×D(q(x)), and the matrix of D0 fx is diagonal with
coefficients a(x) and b(x) that satisfy

|a(x)| ∈ eλu · [e−ε,eε], |b(x)| ∈ eλs · [e−ε,eε].

Moreover fx is ε-close to the linear mapping D0 fx in the C 1 topology.

The global stable manifold of a point x is the set W s(x) of points x′ such that
the distance between f n(x) and f n(x′) goes to 0 as n goes to +∞. The local sta-

ble manifold W s,loc(x) is the connected component of W s(x)∩Ψx(D(q(x))×
D(q(x))) that contains x.

In D(q(x))×D(q(x)), the inverse image by Ψx of the local stable manifold
is a vertical graph; in other words, it can be parametrized by a holomorphic
map

γx : D(q(x))→ D(q(x))×D(q(x)), z 7→ (gx(z),z),

where gx is holomorphic and satisfies gx(0) = 0, g′x(0) = 0, and Lipgx ≤ 1.
We have W s(x) = ∪n≥0 f−n(W s,loc( f n(x)).

Notation 3.2. For x in Λ, we set σx :=Ψx◦γx. This is a holomorphic parametriza-
tion of the local stable manifold W s,loc(x). By construction,

• β(x)≤‖ σ′
x(0) ‖≤ 1,

• f (W s,loc(x))⊂W s,loc( f (x)) and W s,loc(x)⊂ Bx(1),
• limn→+∞ distX( f n(x), f n(y)) = 0 for every y ∈W s,loc(x).

We denote by Fx : D(q(x))→ D(q( f (x))) the mapping that satisfies

f ◦σx = σ f (x) ◦Fx,
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and by Mx : D(q(x))→ D(q( f (x))) the linear mapping given by

Mx(z) := mx · z, with mx := F ′
x(0).

By construction, |mx| ∈ eλs · [e−ε,eε] (note that mx is equal to the complex
number b(x) of Theorem 3.1).

3.2. Parametrization of stable manifolds.

3.2.1. Linearization along local stable manifolds. The following proposition
provides a linearization of f along the stable manifolds. We keep the same
notations as in the previous paragraph; in particular, ε > 0 is fixed and Λ is
given by Theorem 3.1.

Proposition 3.3. Let f be an automorphism of a complex projective surface
X with positive entropy. If ε is small enough, there exist a real number c :=
c(ε,λs) ∈]0,1] and holomorphic injective functions (ηx)x∈Λ, such that

(1) ηx is defined on D(cq(x)), with values in D(q(x)), and it satisfies
ηx(0) = 0 and η′

x(0) = 1;
(2) f ◦ (σx ◦ηx) = (σ f (x) ◦η f (x))◦Mx on D(cq(x)).

Proof. We split the proof into four steps.

• Preliminary choices.– Choose ε > 0 such that λs +6ε < 0. Thus, the series

s(ε) := ∑
m≥0

em(λs+6ε)

converges. Then, decrease ε so that

s(ε)e2ε(eε −1)≤ 1/2, and eλs(eε −1)≤ 1,

and set c := 1
24eλs(eε −1). Then apply Theorem 3.1 and define

s := s(ε) , q′(x) := 12cq(x) and Q(x) := 2e−λs+2εq(x)−1.

• Contraction properties of Fx.– For x in Λ, denote the Taylor expansion
of Fx(z) by Mx(z) +∑p≥2 ap(x)zp. Since Fx maps D(q(x)) into D(q( f (x)),
Cauchy formula yelds |ap(x)| ≤ q( f (x))/q(x)p ; hence

∀z ∈ D(q(x)/2), |Fx(z)−Mx(z)| ≤ 2
q( f (x))

q(x)2 |z|2 ≤ 2
eε

q(x)
|z|2. (3.1)

Here, and in what follows, we use that q is ε-tempered, i.e. q( f (x)) ∈ q(x) ·
[e−ε,eε]. Thus, the definition of q′(x) implies that

∀z ∈ D(q′(x)), |Fx(z)| ≤ |Mx(z)|+ |Fx(z)−Mx(z)| ≤ eλs+2ε|z|. (3.2)
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In particular, we obtain the inclusions

Fx(D(q
′(x)))⊂ D(eλs+2εq′(x))⊂ D(q′( f (x))).

•The functions η̃x.– From the previous inclusion, we can define (for all x in
Λ, z in D(q′(x)), and m ≥ 0)

η̃m,x(z) := M−1
x ◦ · · ·M−1

f m−1(x)
◦Ff m−1(x) ◦ · · · ◦Fx(z),

with the convention η̃0,x := IdD(q′(x)). These functions satisfy η̃m, f (x) ◦Fx =

Mx ◦ η̃m,x on D(q′(x)). Let us show by induction that

∀z ∈ D(q′(x)), |η̃m+1,x(z)− η̃m,x(z)| ≤ em(λs+6ε)|z|2Q(x). (3.3)

The case m = 0 is deduced from (3.1); indeed |η̃1,x(z)− η̃0,x(z)| is equal to

|M−1
x ◦Fx(z)− z|= m−1

x |Fx(z)−Mx(z)| ≤ 2
e−λs+2ε

q(x)
|z|2 = |z|2Q(x).

Now assume that (3.3) is satisfied for some m ≥ 0. In particular

∀w ∈ D(q′( f (x))), |η̃m+1, f (x)(w)− η̃m, f (x)(w)| ≤ em(λs+6ε)|w|2Q( f (x)).

For z ∈ D(q′(x)), we know that Fx(z) ∈ D(q′(x)), hence we can replace w by
Fx(z) to obtain

|η̃m+1, f (x)(Fx(z))− η̃m, f (x)(Fx(z))| ≤ em(λs+6ε)|Fx(z)|
2Q( f (x)).

Multiplying by |m−1
x | we obtain

∀z ∈ D(q′(x)), |η̃m+2,x(z)− η̃m+1,x(z)| ≤ em(λs+6ε)|m−1
x ||Fx(z)|

2Q( f (x)).

Using (3.2) the right hand side is less than or equal to

em(λs+6ε)e−λs+εe2(λs+2ε)|z|2eεQ(x) = e(m+1)(λs+6ε)|z|2Q(x),

which establishes (3.3) for m+1 as desired.
Since η̃0,x(z) = z we can write

∀x ∈ Λ, ∀z ∈ D(q′(x)), η̃n,x(z) = z+
n−1

∑
m=0

(η̃m+1,x − η̃m,x)(z),

and Equation (3.3) implies that η̃n,x converges locally uniformly on D(q′(x))
to a function η̃x satisfying

η̃′
x(0) = 1, |(η̃x − Id)(z)| ≤ s|z|2Q(x), and η̃ f (x) ◦Fx = Mx ◦ η̃x.



DYNAMICS ON COMPLEX SURFACES 17

• Conclusion.– We now invert η̃x and η̃ f (x). First let us verify that Lip(η̃x −

Id)≤ 1/2. For that purpose, apply Cauchy’s formula

(η̃x − Id)′(z) =
1

2iπ

∫
C

(η̃x − Id)(a)
(a− z)2 da

where C is the circle of radius q′(x) and z is taken in the disk D(q′(x)/2); the
previous estimate |(η̃x − Id)(z)| ≤ s|z|2Q(x) and the definitions of q′(x) and
Q(x) yield

|(η̃x − Id)′(z)| ≤ sQ(x)q′(x)≤ 1/2,

for all points x ∈ Λ, and z ∈ D(q′(x)/2); this implies Lip(η̃x − Id) ≤ 1/2 on
D(q′(x)/2) as desired.

We deduce
1
2
|z1 − z2| ≤ |η̃x(z1)− η̃x(z2)| ≤

3
2
|z1 − z2|. (3.4)

for all points z1 and z2 in D(q′(x)/2). It follows that η̃x can be inverted on the
disk D(q′(x)/4), and we define

ηx := (η̃x)
−1 : D(q′(x)/4)→ D(q′(x)/2).

This function satisfies

∀z1, z2 ∈ D(q′(x)/4),
2
3
|z1 − z2| ≤ |ηx(z1)−ηx(z2)| ≤ 2|z1 − z2|. (3.5)

Compose each term of the equality η̃ f (x) ◦Fx = Mx ◦ η̃x on the right by ηx;
one obtains η̃ f (x)◦Fx◦ηx =Mx on D(q′(x)/4). Now, Equations (3.2) and (3.4)
lead to

|η̃ f (x) ◦Fx ◦ηx| ≤ q′( f (x))/4

on D(q′(x)/12). Composition on the left by η f (x) gives Fx ◦ηx = η f (x) ◦Mx

on D(q′(x)/12) =D(cq(x)). To complete the proof, it suffices to compose the
latter expression on the left by σ f (x); the relation σ f (x) ◦Fx = f ◦σx provides
f ◦ (σx ◦ηx) = (σ f (x) ◦η f (x))◦Mx on D(cq(x))) as desired. �

3.2.2. Local and global stable manifolds. Definition 3.2 and Proposition 3.3
allow to introduce the following definition.

Notation 3.4. For every x ∈ Λ, define ξ
s,loc
x : D(cq(x))→W s,loc(x) by

ξs,loc
x := σx ◦ηx.

By construction, ξ
s,loc
x is holomorphic, injective and satisfies

• ξ
s,loc
x (0) = x and β(x)≤ |(ξs,loc

x )′(0)| ≤ 1;
• 2β(x)/3 ≤ |(ξs,loc

x )′| ≤ 2 on D(cq(x));
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• f ◦ξ
s,loc
x = ξ

s,loc
f (x) ◦Mx on D(cq(x)).

The global stable manifold satisfies

W s(x) = ∪n≥0 f−n (W s,loc( f n(x))).

Thus, by construction, W s(x) is a simply connected Riemann surface.

Proposition 3.5. For every x ∈ Λ, the Riemann surface W s(x) is biholomor-
phic to C. Moreover, there exists a biholomorphism ξs

x : C →W s(x) such that

• ξs
x(0) = x,

• ξs
x = ξ

s,loc
x on D(cq(x)),

• f ◦ξs
x = ξs

f (x) ◦Mx on C.

Proof. Set Mm
x := M f m−1(x) ◦ . . . ◦Mx : C → C for every m ≥ 1, and observe

that |Mm
x (z)| ∈ emλs · [e−mε,emε] · |z|. Then, define

∀z ∈ C, ξs
x(z) := f−m(z) ◦ξ

s,loc
f m(z)(x)

◦Mm(z)
x (z),

where m(z) is a large positive integer, so that Mm(z)
x (z)∈D(cq( f m(z)(x))); such

an integer exists because the function q is ε-tempered. One easily verifies that
(i) the definition of ξs

x does not depend on m(z) and (ii) f ◦ξs
x = ξs

f (x) ◦Mx on

C by analytic continuation. The map ξs
x : C →W s(x) is a biholomorphism by

the definition of W s(x) and the fact that f has empty critical set. �

Remark 3.6. The definition of the biholomorphism ξs
x : C → W s(x) depends

on the local parametrizations (ξs,loc
x )x∈Λ, hence on Pesin’s theory. In particular,

the derivative (ξs
x)

′(0) depends measurably on x.
Two biholomorphisms C → W s(x) differ by an affine automorphism z 7→

az+ b where (a,b) ∈ C∗×C. Thus, (i) the stable manifold W s(x) inherits a
natural affine structure and (ii) every biholomorphism C → W s(x) sending 0
to x is equal to ξs

x modulo composition with a homothety z 7→ az.

Remark 3.7. The fact that the stable manifolds are isomorphic to C is well
known. Let us summarize the proof given in [7, section 2.6]. First, remark
that the stable manifolds are Riemann surfaces which are homeomorphic to
R2; thus, W s(x) is conformally equivalent to the unit disk D or the affine line
C. By ergodicity of µ f , one can assume that almost all stable manifolds have
the same conformal type. If they were disks, f would induce isometries from
W s(x) to W s( f (x)) with respect to the Poincaré metric, because conformal
automorphisms of the unit disk are isometries; this would contradict the fact
that f is a contraction along the stable manifolds.
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3.3. Ahlfors-Nevanlinna currents and stable manifolds. From Proposition 3.5,
the stable manifolds of f are parametrized by entire curves ξs

x : C → W s(x).
We associate Ahlfors currents to them: these closed positive currents coincide
with T+

f .

3.3.1. Ahlfors-Nevanlinna currents. Let M be a complex space, let κ be a
kähler form on M, and let ξ : C → M be a non-constant entire curve. Let
A(r;ξ) be the area of ξ(Dr), defined as the integral of ξ∗κ on Dr, and let
T (r;ξ) be the logarithmic average

T (r;ξ) :=
∫ r

s=0
A(s;ξ)

ds

s
.

The family of Ahlfors-Nevalinna currents N(r;ξ) is then defined by

N(r;ξ) : α 7→
1

T (r;ξ)

∫ r

s=0
{ξ(Ds)}(α)

ds

s

where {ξ(Ds)} is the current of integration on ξ(Ds) (counting multiplicities).

Lemma 3.8 (Ahlfors, see [15]). There exist sequences (ri)i∈N tending to +∞

such that N(ri;ξ) converges to a closed positive current on X.

By definition, these closed currents are the Ahlfors-Nevanlinna currents

determined by ξ. Every such current A has a cohomology class [A] in H1,1(X ,R)

(see § 2.4).

Proposition 3.9 (see [15]). Let X be a compact Kähler surface and ξ : C → X
be a non-constant entire curve. Let A be an Ahlfors current determined by ξ.

(1) If ξ(C) is contained in a curve E, then the genus of E is equal to 0 or
1 and A is equal to Area(E)−1{E}.

(2) If the area A(r;ξ) is bounded by a constant which does not depend on
r, then ξ(C) is contained in a compact curve E ⊂ X.

If ξ(C) is not contained in a compact curve, then

(3) 〈[A]|[C]〉 ≥ 0 for every curve C ⊂ X;
(4) [A] is in the nef cone of X and [A] · [A]≥ 0.

Remark 3.10. In Section 3.3.3 and Section 9.3, we shall also study the Ahlfors

currents, defined as closed positive limits of

1
A(r;ξ)

{ξ(Dr}.

Such closed currents exist, but Properties (3) and (4) may a priori fail for them.
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3.3.2. Stable and unstable Ahlfors currents. By the following theorem, the
Ahlfors currents associated to the stable manifolds of f are equal to T+

f ; to
state it, recall that Λ is the set of full µ f -measure introduced in Theorem 3.1.

Theorem 3.11 (see [21]). Let f be an automorphism of a compact Kähler
surface X with positive entropy. Let x be a point of Λ, and ξs

x : C → X be a
parametrization of the stable manifold W s(x). If ξs

x(C) is not contained in a
(compact) periodic curve, then all Ahlfors-Nevanlinna currents associated to
ξs

x coincide with T+
f .

For ξs
x one can take the parametrization of Proposition 3.5. A similar result

holds for unstable manifolds and the current T−
f .

Remark 3.12. In [33], Dinh and Sibony prove the following strengthening of
Theorem 3.11: if ξ : C → X is an entire curve such that

• ξ(C) is not contained in an algebraic periodic curve of f , and

• the family of entire curves f n ◦ξ, n ≥ 1, is locally equicontinuous (i.e.

is a normal family of entire curves),

then all Ahlfors-Nevanlinna currents of ξ coincide with T+
f . We shall not need

this version of Theorem 3.11.

3.3.3. Dinh-Sibony theorem. The following result is proved for complex man-
ifolds in [31]. The proof extends to the case of compact complex spaces. To
state it, recall that a Brody curve is a non-constant entire holomorphic curve
ξ : C → M whose velocity ‖ ξ′(z) ‖ is uniformly bounded.

Theorem 3.13 (Dinh-Sibony, [32]). Let M be a compact complex analytic
space. Let T be a closed positive current of bidegree (1,1) on M which is
locally defined by continuous potentials. Let ξ : C → M be a Brody curve
such that ξ∗(T ) = 0. Then, there is an Ahlfors current S determined by ξ that
satisfies T ∧S = 0.

Remark 3.14. Note that ξ∗T and T ∧ S are well defined because T has con-
tinuous potentials: locally, ξ∗T is the positive measure defined by ddc(u◦ ξ),
where u is a local potential for T ; similarly, T ∧ S is locally defined as the
current ddc(u ·S).

The following corollary is a crucial ingredient in the proof of Theorem 6.4;
it is proved in Section 9.4, together with a corollary concerning Fatou sets of
automorphisms of complex projective surfaces.
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Corollary 3.15. Let X be a complex projective surface and let f be an auto-
morphism of X with positive entropy. Let π : X → X0 be the contraction of the
periodic curves of f . Then,

(1) the Ahlfors currents Aν of every non-constant entire curve ν : C → X0

satisfy ∫
X

Aν ∧π∗(T
+
f +T−

f ) > 0;

(this product is well defined because π∗T+
f and π∗T−

f have continuous
potentials on X0)

(2) there is no non-constant entire curve ξ : C → X0 with ξ∗(π∗(T
+
f +

T−
f )) = 0.

4. PRODUCT STRUCTURE AND ABSOLUTE CONTINUITY

The currents T±
f have a common geometric property, called weak laminar-

ity. To describe this property, we relate it to the dynamical notion of Pesin
boxes, and explain that the measure µ f has a product structure in these boxes.
These properties lead to the proof of Proposition 4.4: it says that all slices of
T−

f and T+
f by Riemann surfaces give rise to absolutely continuous measures;

in other words, one can transfer the regularity assumption on µ f to a (rather
weak) regularity property of T+

f and T−
f .

We refer to [7, 18, 35], as well as [21], for proofs of the results used in this
section.

4.1. Laminations and quasi-conformal homeomorphisms.

4.1.1. Quasi-conformal homeomorphisms (see [1]). Let h : U → V be an ori-
entation preserving homeomorphism between two Riemann surfaces. One
says that h is K-quasi-conformal if h is absolutely continuous on lines and

|∂zh| ≤
K −1
K +1

|∂zh|

almost everywhere, see [1, Chapter II]. A 1-quasi-conformal mapping is con-
formal, hence holomorphic.

Lemma 4.1 (see [1],Chapter II, Theorem 3). If h is a quasi-conformal homeo-
morphism, then h is absolutely continuous with respect to Lebesgue measure.
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To describe this statement in more details, fix a local co-ordinate z on U,
with Lebesgue measure Leb equal to the area form

i

2
dz∧dz.

Then, the partial derivatives of h are well defined almost everywhere because h
is absolutely continuous on lines, its jacobian determinant is locally integrable,
and

Leb(h(A)) =
∫

A
Jac(h)(z)

i

2
dz∧dz

for every Borel subset A of U.

4.1.2. Laminations in bidisks (see [34, 39]). By definition, a horizontal graph

in the bidisk D×D is the graph {(z,ϕ(z));z ∈ D} of a holomorphic function
ϕ : D→ D; thus, horizontal graphs are smooth analytic subsets of D×D that
intersect every vertical disk {z}×D in exactly one point. Vertical graphs are
images of horizontal graphs by permutation of the co-ordinates.

Consider a family of disjoint, horizontal, holomorphic graphs in D×D. If m
is a point on the transversal {0}×D which is contained in one of these graphs,
one denotes by ϕm : D→D the holomorphic function such that z 7→ (z,ϕm(z))
parametrizes the graph through m. By Montel and Hurwitz theorems, one can
extend this family of graphs in a unique way into a lamination L of a compact
subset K of D×D by disjoint horizontal graphs. The leaf of L through a point
m is denoted L(m).

If z1 and z2 are two points on D, the vertical disks

∆ j = {(z,w) | z = z j} ( j = 1,2)

are transverse to the lamination L . Denote by hz1,z2 the holonomy from ∆1

to ∆2. More generally, if ∆ and ∆′ are two complex analytic transversals (in-
tersecting each leaf into exactly one point), one gets a holonomy map from
∆ to ∆′. By the Λ-Lemma (see [34]), the holonomy is automatically quasi-

conformal; in particular, it is absolutely continuous with respect to Lebesgue
measure. The quasi-conformal constant of hz1,z2 satisfies

0 ≤ K(z1,z2)−1 ≤ |z2 − z1|.

Hence it converges to 1 when ∆′ converges to ∆ in the C 1-topology.

4.2. Laminarity and Pesin boxes.
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4.2.1. Pesin boxes (see [7, Section 4], and [18, 21, 35]). A Pesin box P for
the automorphism f : X → X consists in an open subset U of X which is bi-
holomorphic to a bidisk D×D together with two transverse laminations Ls

and Lu. To fix the ideas the lamination Lu is horizontal: its leaves Lu(m)

are horizontal graphs. These graphs Lu(m) intersect the vertical transversal
{0}×D onto a compact set K − and the union of these graphs is homeomor-
phic to the product D×K −. Similarly, Ls is a lamination by vertical graphs
with support homeomorphic to K +×D.

Given a point w ∈ K − and a point w′ ∈ K +, the horizontal leaf Lu((0,w))
intersect the vertical leaf Ls((w′,0)) in a unique point [w,w′] ∈ U. This pro-
vides a homeomorphism h between the product K −×K + and the intersection
K ⊂ U of the supports of Ls and Lu. Moreover, by definition, a Pesin box
P = (U,Lu,Ls) must satisfy the following properties.

(0) For µ f -almost every point x ∈ K , the leaf Lu(x) (resp. Ls(x)) is con-
tained in the global stable manifold W u(x) (resp. W s(x)).

(1) There is a measure ν+ whose support is K + such that the laminar
current

T+
P :=

∫
w∈K +

{Ls(w)}dν+(w)

is dominated by the restriction of T+
f to U and coincides with T+

f on
the set of continuous (1,1)-forms whose support is a compact subset
of the support of Ls.

(2) There is, similarly, a uniformly laminar current T−
P associated to the

lamination Lu and a transverse measure ν− whose support is K −; this
current is the restriction of T−

f to the support of the unstable lamina-
tion Lu.

(3) Via the homeomorphism h : K −×K + → K , the measure µ f corre-
sponds to the product measure ν+⊗ν−, i.e. µ f |K = h∗(ν+⊗ν−).

In a Pesin box P , the measure ν+ can be identified to the conditional mea-
sure of µ f with respect to the lamination Ls (see property (3)). One way to
specify this fact is the following. By property (1), one can slice T+

f with an

unstable leaf Lu(m) to get a measure (T+
f )|Lu(m) (see § 2.4); then restrict this

measure to the intersection of Lu(m) with the support of the stable lamination,
and then push it on K + (using the holonomy of Ls); again, one gets ν+.

Pesin boxes exist, and their union has full µ f -measure: this comes from
Pesin theory of non-uniformly hyperbolic dynamical systems, and from the
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fact that T+
f and T−

f are Ahlfors currents of entire curves parametrizing generic
stable and unstable manifolds. See [7, Section 4] (and also [18, 21, 35]).

4.2.2. Laminar structure of T±
f (see [7]). The previous section says that T±

f

is uniformly laminar current in each Pesin box. In fact, T±
f is a sum of such

currents. More precisely, there is a countable family of Pesin boxes Pi =

(Ui,L
u
i ,L

s
i ), with transverse measures ν±i , such that the support of the stable

laminations Ls
i are disjoint, and T+

f is the sum

T+
f = ∑

i

T+
Pi

where T+
Pi

is the laminar current

T+
Pi

=
∫

w∈K +
{Ls

i (w)} dν+i (w).

4.3. Absolute continuity of the slices of the invariant currents.

4.3.1. Absolute continuity of the transverse measures ν± in Pesin boxes.

Lemma 4.2. Let P = (U,Lu,Ls) be a Pesin box with transverse measures
ν+ and ν− as in section 4.2. If µ f is absolutely continuous with respect to
Lebesgue measure on X, then ν+ and ν− are absolutely continuous with re-
spect to Lebesgue measure.

The proof resides on the absolute continuity of the holonomy of Lu and
Ls, which we obtained from the Λ-lemma. We provide this proof because it
is closely related to the arguments of Section 7.1. There is a more general
approach, due to Pesin, which necessitates a direct proof of the absolute con-
tinuity of the stable and unstable laminations (see [2], chapter 8, and [56],
chapter 7).

Proof. Let ∆ be the vertical disk {0}×D; it is transverse to Lu. Let A ⊂ ∆ be
a Borel subset with Lebesgue measure 0. Let Lu(A) be the union of the leaves
of Lu that intersect A. Since the holonomy maps are absolutely continuous
(see § 4.1.2), every slice of Lu(A) by a vertical disk has Lebesgue measure
0. Thus, by Fubini theorem and the absolute continuity of µ f , µ f (L

u(A)) = 0.
Since µ f = h∗(ν+⊗ν−) in K (see Property (3) of Pesin boxes), one concludes
that ν+(A) = 0. This shows that ν+ is absolutely continuous with respect to
Lebesgue measure. The argument is similar for ν−. �
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4.3.2. Slices of the invariant currents. The following general lemma will be
useful several times.

Lemma 4.3. Let M be a complex manifold. Let T be a closed positive (1,1)-
current with continuous potentials on M. Let U be an open subset of C. Let
νn : U → M be a sequence of holomorphic mappings that converges uniformly
to ν : U → M on compact subsets of U. Then, the sequence of measures ν∗nT
converges weakly to ν∗T as n goes to ∞.

Proof. Let V be an open subset of M on which T is given by a continuous
potential u. If ν maps U′ ⊂ U into V , then for every test function ϕ with
support contained in U′, the dominated convergence theorem implies that

〈ν∗(T )|ϕ〉=
∫

U′
u◦ν(z)ddcϕ(z) = lim

n→∞

∫
U′

u◦νn(z)ddcϕ(z) = lim
n→∞

〈ν∗nT |ϕ〉.

The result follows. �

Proposition 4.4. Let C be a Riemann surface. Let θ : C →X be a non-constant
holomorphic mapping. If µ f is absolutely continuous with respect to Lebesgue
measure (on X), then the measures θ∗(T+

f ) and θ∗(T−
f ) are absolutely contin-

uous with respect to Lebesgue measure (on C).

Proof. According to Section 4.2.2, the current T+
f is a countable sum of uni-

formly laminar currents

T+
f =

∞

∑
j=1

T+
P j
,

where P j = (U j,L
u
j ,L

s
j) is a family of Pesin boxes with disjoint supports for

the laminations Ls. Fix one of these Pesin boxes P j and an open subset V of
C such that θ|V : V → X is injective and θ(V ) is transverse to Ls

j . It is proven
in [7, Lemmas 8.2 and 8.3] that T+

P j
has continuous potentials and that θ∗(T+

P j
)

coincides on V with the pull back of the transverse measure ν+j . Since θ is
holomorphic and the holonomy of Ls is absolutely continuous, the pull back of
this measure is absolutely continuous. Thus, θ∗(T+

P j
) is absolutely continuous

on the complement of the zeros of θ′ and the tangency points between θ(C)

and Ls. The following lemma shows that the set of points z ∈C such that θ(z)
is tangent to the lamination Ls

j is actually a discrete subset of C. The same
property holds for the zeros of θ′.
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Lemma 4.5 ([7], Lemma 6.4). Let C and D be complex submanifolds of C2

such that (i) C∩D = {p} and (ii) TpC = TpD. Let U be a bounded neighbor-
hood of p. If D′ is sufficiently close to D but D∩D′ = /0, then the intersection
of D′ and C in U is non-empty and non-tangential at all intersection points.

Since θ∗(T+
P j
) has a continuous potential, this measure has no atom. Thus,

θ∗(T+
P j
) is absolutely continuous with respect to the Lebesgue measure on C.

Coming back to T+
f , we deduce that its pull-back is a countable sum of abso-

lutely continuous measures; since θ∗(T+
f ) is locally finite, this measure has a

L1
loc density on C. �

4.4. Lebesgue density points. Assume that µ f is absolutely continuous with
respect to Lebesgue measure. According to Proposition 4.4 the pull-back
of T+

f and T−
f by a curve θ : C → X are absolutely continuous: in local co-

ordinates

θ∗(T±
f ) = ϕ±(z)

i

2
dz∧dz

where ϕ+ and ϕ− are non negative elements of L1
loc(Leb). Recall that a Lebesgue

density point for a function ϕ ∈ L1
loc(Leb) is a point z such that

1
πr2

∫
D(z,r)

|ϕ(w)−ϕ(z)|
i

2
dw∧dw → 0

as r goes to 0. This notion does not depend on the choice of local co-ordinates;
moreover, the set of density points of ϕ has full Lebesgue measure. Thus, on
each curve W ⊂ X , there is a well defined set of density points

Dens(W ;T+
f ) = {m ∈W | m is a density point of T+

f |W}.

In particular, each unstable manifold W u
f (x) contains a subset of full Lebesgue

measure Dens(W u
f (x);T+

f ).
Let us now fix a Pesin box P = (U,Ls,Lu), together with an isomorphism

U ≃ D×D; the unstable lamination Lu is a union of horizontal graphs and
the stable one is a union of vertical graphs. One can identify Lu to a family of
horizontal disks D×{y} for y in K − in two ways:

• with the holonomy maps h0,z from the vertical {0}×D to the vertical
{z}×D; this parametrization is given by

(x,y) ∈ D×K − 7→ (x,h0,x(y)).

• with the graphs ϕm : D→ D:

(x,y) ∈ D×K − 7→ (x,ϕ(0,y)(x)).
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We obtain a similar pair of homeomorphisms between K +×D and the support
of Ls. Each leaf Lu(m) contains a set of density points Dens(Lu(m);T+

f ) and
the union of these sets is a subset of the support of Lu.

Lemma 4.6. Let P be a Pesin box. If µ f is absolutely continuous, the union of
the density points D := ∪mDens(Lu(m);T+

f ) is a subset of the support of Lu

with full Lebesgue measure (resp. µ f -measure).

Proof. Consider the second parametrization of the lamination Lu,

D×K − −→ D×D≃ U

Φ : (x,y) 7→ (x,ϕ(0,y)(x))

and pull-back the density set D by Φ in D×D. Since each ϕ(0,y) is holomor-
phic, the pull-back of Dens(Lu(0,y);T+

f ) on the horizontal disk D×{y} has
full Lebesgue measure. Thus, by Fubini theorem, it has full Lebesgue measure
on D×K −. Then, slice Φ−1(D) by vertical disks and apply Fubini theorem
again: for almost all points x in D,{x}×K − intersects Φ−1(D) onto a subset
of full measure {x}×K −. Then, come back to U with the first parametriza-
tion: since the holonomy maps h0,x are absolutely continuous and map verti-
cals to verticals, the result follows from Fubini theorem (with respect to the
first projection in U ≃ D×D). �

5. RENORMALIZATION ALONG STABLE MANIFOLDS

Our main goal in this section is the following theorem.

Theorem 5.1. Let f be an automorphism of a complex projective surface X
with positive entropy. Assume that the measure of maximal entropy µ f = T+

f ∧

T−
f is absolutely continuous with respect to Lebesgue measure. Then there

exists a measurable subset Λ ⊂ X such that (i) µ f (Λ) = 1 and (ii) every stable
manifold W s(x) for x ∈ Λ is parametrized by an injective entire curve ξs

x : C →

W s(x) satisfying

ξs
x(0) = x and (ξs

x)
∗T−

f =
i

2
dz∧dz. (5.1)

Remark 5.2. The parametrization of an unstable manifold W s(x) by C is
unique up to composition by an affine transformation z 7→ az+b of C. Thus,

(1) every biholomorphism C →W s(x) with properties (5.1) is equal to ξs
x

up to composition by a homothety z 7→ az with |a|= 1;



DYNAMICS ON COMPLEX SURFACES 28

(2) the parametrization ξs
x is the same as the parametrization defined in

Section 3.2.2 up to composition by a dilatation z 7→ az, a 6= 0. This is
the reason why we do not introduce a new notation.

We prove Theorem 5.1 in three steps:

• (see § 5.1) We exhibit local parametrizations ξx of a neighborhood of
x in W s(x) such that ξ∗xT−

f = α(x) i2dz∧dz.
• (see § 5.2) Let ξs

x : C →W s(x) be the global parametrization of W s(x)
defined in section 3.2.2. Using the first step we obtain that (ξs

x)
∗T−

f =

α(x)|hx(z)|2(i/2)dz∧dz for some holomorphic function hx on D(β(x)ρ(x)/4).
• Finally, we show that |hx| is indeed constant by using recurrence and

exhaustion arguments.

5.1. First step: smoothness of a local density. In the following proposition
Λ, β and q are respectively the measurable set and the ε-tempered functions
introduced in Theorem 3.1. Let c > 0 be the constant introduced in Proposi-
tion 3.3.

Proposition 5.3. Let f be an automorphism of a complex projective surface
X with positive entropy logλ f . Assume that µ f is absolutely continuous with
respect to Lebesgue measure.

(1) Then for every x ∈ Λ there exist ρ(x)> 0 and an injective holomorphic
mapping ξx : D(ρ(x))→W s,loc(x) such that

(i) ξx(0) = x and β(x)≤ |ξ′x(0)| ≤ 1,

(ii) 2β(x)/3 ≤ |ξ′x(z)| ≤ 2 on D(ρ(x)),

(iii) ξ∗xT−
f = α(x) ·

i

2
dz∧dz̄ on D(ρ(x)) for some α(x)> 0.

(2) The Lyapunov exponents of µ f satisfy

λs =−
1
2

logλ f and λu =
1
2

logλ f .

Proof. We prove the first assertion together with the estimate | logλ f +2λs| ≤

2ε. The second assertion then follows from this estimate, applied to both f
and f−1 for arbitrary small ε > 0.

• Good subsets Ql,m.– To prove the proposition it suffices to work in a fixed
Pesin box P because the union of all Pesin boxes has full µ f -measure. Let us
recall that σx : D(q(x))→W s,loc(x) is the injective parametrization of the local
stable manifold introduced in Section 3.2.2. Let ηx : D(cq(x))→ D(q(x)) be
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the holomorphic function of Proposition 3.3; it satisfies ηx(0) = 0, η′
x(0) = 1,

and

f ◦ (σx ◦ηx) = (σ f (x) ◦η f (x))◦Mx.

We recall that ξ
s,loc
x = σx ◦ηx and that it is equal to the restriction of ξs

x on
D(cq(x)). Changing Λ in another invariant subset of full measure if nec-
essary, Lemma 4.6 implies that for every x ∈ P ∩Λ there exists a function
ϕx ∈ L1

loc(D(cq(x))) such that 0 is a Lebesgue density point of ϕx and

(ξs
x)

∗T−
f = ϕx(z) ·

i

2
dz∧dz̄ on D(cq(x)). (5.2)

Since the origin 0 is a Lebesgue density point of ϕx, the value ϕx(0) is a well
defined non-negative number. Let us define for every l ≥ 1:

Ql := P ∩Λ∩{1/l ≤ cq(x)}∩{1/l ≤ β(x)≤ 1}∩{1/l ≤ ϕx(0)≤ l}.

Then apply Lusin’s theorem to find for every m ≥ 1 a subset Ql,m ⊂ Ql of
measure (1−1/m)µ f (Ql) on which β is continuous. One may assume Ql,m ⊂

Ql,m+1, and we have

µ f (∪l,m≥1Ql,m) = µ(P ).

Fix a pair of integers (l,m) and denote Ql,m by Q in what follows. Since
the union of the sets Ql,m has full µ f -measure, we only need to prove the
proposition for µ f -generic points x ∈ Q.

• Montel property.– Let f̃ : Q → Q be the first return map defined as f̃ (x) :=
f r(x)(x) where r(x) is the smallest integer r ≥ 1 satisfying f r(x) ∈ Q. The
induced measure µ̃(·) := µ(Q∩ ·)/µ(Q) is f̃ -invariant and ergodic. Let x be a
generic point of Q. Birkhoff’s ergodic theorem, applied to f̃ , yields a sequence
(n j) j depending on x such that f−n j(x) is contained in Q and converges to x.
To simplify the exposition we avoid the indices of the subsequence and write
f−n(x) instead of f−n j(x). Define xn := f−n(x), ηn = ηxn , and σn = σxn .

Since cq ≥ 1/l on Q = Ql,m, one can consider the restriction ηn : D(1/l)→
D(q(xn))⊂ D. Montel’s and Hurwitz’s theorems provide a subsequence (still
denoted ηn) such that

(i) ηn converges towards an injective, holomorphic function η : D(1/l)→
D such that η(0) = 0 and η′(0) = 1. Moreover, |η(z)| ≤ l|z| on D(1/l)
by Schwarz’s lemma.

We can also consider the restriction σn : D(1/l) → W s,loc(xn). For large
enough n, its image is contained in the ball Bx(2), and the image of Ψx ◦
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Ψ−1
xn

◦σn is a graph above the vertical axis. Moreover |σ′
n(0)| ≥ β(xn) ≥ 1/l.

Montel’s theorem and the continuity of β on Q = Ql,m then yield

(ii) σn converges towards an injective holomorphic mapping σ : D(1/l)→
W s,loc(x) such that σ(0) = x and |σ′(0)| ≥ β(x)≥ 1/l.

Thus, the function ξ := σ ◦η : D(1/l2)→ W s,loc(x) is well defined, injective
and satisfies σ ◦η(0) = x; by construction, the sequence of parametrizations
ξs

n := σn ◦ηn converges towards the holomorphic map ξ on D(1/l2). This map
will be our desired ξx, it is a non-constant holomorphic mapping with values in
the stable manifold W s(x) (we shall compare it with ξs

x in Section 5.2). Since
all ξs

n satisfy the Lipschitz property listed in Section 3.2.2, we get

2β(x)/3 ≤ |ξ′(z)| ≤ 2 on D(1/l2).

• Renormalization.– The identity ( f n)∗T−
f = λ−n

f T−
f for n ≥ 1 implies

( f n ◦ξs
n)

∗T−
f = λ−n

f (ξs
n)

∗T−
f on D(1/l2).

Proposition 3.3 yields

( f n ◦ξs
n)

∗T−
f = (ξs

x ◦Mn)
∗T−

f on D(1/l2),

where Mn is defined by Mn := Mx−1 ◦ · · · ◦Mx−n . Note that Mn(z) = mn · z on
D(1/l2) with |mn| ∈ enλs · [e−nε,enε]. Combining these equations, one gets

(ξs
n)

∗T−
f = λn

f M∗
n (ξs

x)
∗T−

f on D(1/l2). (5.3)

Now, denote by ϕn the density of (ξs
n)

∗T−
f and by ϕx the density for (ξs

x)
∗T−

f ,
as in Equation (5.2). Equation (5.3) gives

ϕn(z) = λn
f |mn|

2ϕx(z).

Since xn and x are in the set Q, the origin is a Lebesgue density point for the
densities ϕn and ϕx, and l−1 ≤ ϕn(0), ϕx(0)≤ l. Thus,

l−2 ≤ λn
f |mn|

2 ≤ l2.

Taking logarithms and dividing by n leads to

| logλ f +2λs|< 2ε

as desired. Moreover, taking a subsequence, one may assume that λn
f |mn|

2

converges to a positive real number θ ∈ [l−2, l2].
Now, we come back to the equation (5.3) which can be written

(ξs
n)

∗T−
f = λn

f |mn|
2 ·ϕx(mnz) ·

i

2
dz∧dz̄ on D(1/l2). (5.4)
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The left hand side converges to (ξ)∗T−
f in the sense of distributions on D(1/l2),

because T−
f has continuous potentials (see Lemma 4.3). The right hand side

converges in the sense of distributions to

θ ·ϕx(0) ·
i

2
dz∧dz̄,

because Mn converges locally uniformly to the constant mapping 0 on compact
subsets of D(1/l2) and 0 is a Lebesgue density point for ϕx. As a consequence,

(ξ)∗T−
f = θ ·ϕx(0) ·

i

2
dz∧dz̄ on D(1/l2).

Setting ξx = ξ, ρ(x) = 1/(l2) and α(x) = θϕx(0) we get ξ∗xT−
f =α(x) · i2dz∧dz̄

on D(ρ(x)), as desired (ρ(x) can be defined as the best constant l for which x
is in Ql,m). �

5.2. Second step: from ξx to ξs
x. We need to translate Proposition 5.3 in

terms of the global parametrization ξs
x : C → W s(x). Proposition 5.3 asserts

that there is a parametrization ξx : D(ρ(x))→W s(x) of a small neighborhood
of x in W s(x) such that ξ∗xT−

f = α(x)(i/2)dz∧dz̄ on D(ρ(x)). Both ξx and ξs
x

satisfy the Lipschitz property

2β(x)/3 ≤ |ξ′(z)| ≤ 2

on their domain of definition, thus (ξs
x)

−1 ◦ ξx is defined on D(ρ(x)) and the
modulus of its derivative is bounded from below by β(x)/3 and from above by
3β(x)−1; moreover, its derivative at the origin is in between β(x) and β(x)−1.
This function is injective and its domain of definition is D(ρ(x)). By Koebe
one quarter theorem, its image contains the disk of radius β(x)ρ(x)/4, so that
the reciprocal function is defined on D(β(x)ρ(x)/4) and has derivative be-
tween β(x)/3 and 3β(x)−1 on this disk.

In order to pull back T−
f by ξs

x, one can first compute its pull back by ξx,

the result being α(x)(i/2)dz∧dz̄, and then take its pull-back under (ξx)
−1 ◦ξs

x.
This gives

(ξs
x)

∗T−
f = α(x)|hx(z)|

i

2
dz∧dz̄ (5.5)

on D(β(x)ρ(x)/4), where hx is holomorphic and |hx(z)| is bounded by

β(x)/3 ≤ |hx(z)| ≤ 3β(x)−1. (5.6)
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5.3. Final step for the proof of Theorem 5.1. Now, fix a Pesin box P , and
a subset Q = Ql,m as in the proof of Proposition 5.3. Then, there exists an
integer N such that

1/N ≤ (βρ/4)2 ≤ 1, 1/N ≤ β/3 ≤ 1, and 1/N ≤ α ≤ N

on the set Q. Apply Birkhoff ergodic theorem: for a generic point x of Q there
is a sequence of points f−ni(x) ∈ Q that converges towards x. As above, we
drop the index i from ni, and write xn for f−n(x), ξs

n for ξs
xn

. As in Equation
(5.3), we obtain

(ξs
x)

∗T−
f = λn

f M∗
n (ξs

xn
)∗T−

f on C, (5.7)

where Mn is a linear map z 7→ mn ·z with |mn| ∈ enλs · [e−nε,enε]. Equation (5.5)
shows that the right hand side of Equation (5.7) has density

λn
f |M

′
n|

2 ·α(xn) · |hn(Mn(z))|
2 (5.8)

on M−1
n (D(1/N)), where hn is holomorphic with modulus in [1/N,N]. Again,

evaluation at z = 0 gives λn
f |mn|

2 ·α(xn) ∈ [1/N5,N5], so that a subsequence

of λn
f |mn|

2 · α(xn) converges to some θ in [1/N5,N5]. Moreover Montel’s
theorem and Equation (5.6) imply that the sequence (hn)n is equicontinu-
ous on D(1/N); thus a subsequence converges locally uniformly to a function
h : D(1/N)→ C with modulus in [1/N,N].

Let γ(x) := θ|h(0)|2. Let K be a compact subset of C and restrict the study to
integers n≥ 1 such that K ⊂M−1

n (D(1/N)). Since (Mn)n converges uniformly
to zero on K, we get

(ξs
x)

∗T−
f = γ(x)

i

2
dz∧dz̄ on K.

The same formula holds on C by compact exhaustion. Changing ξs
x into ξs

x(az)
with |a|−2 := γ(x), we obtain the parametrization promised by Theorem 5.1.

6. NORMAL FAMILIES OF ENTIRE CURVES

6.1. Singularities. In this section, we need to work on the surface X0, ob-
tained by contracting all periodic curves of f . This surface may be singular.
We refer to [30, 28] for all necessary concepts of pluri-potential theory on
singular analytic spaces.

Note that, up to now, all arguments were done on the smooth surface X ,
most of them at a generic point for µ f , but they could have been done on X0

directly. (we worked on X to simplify the notations).



DYNAMICS ON COMPLEX SURFACES 33

Remark 6.1. Birkhoff ergodic theorem tells us that the forward orbit of a µ f -
generic point equidistributes with respect to µ f .

Let ξ : C → X be an injective parametrization of a stable (resp. unstable)
manifold W s(x). Assume that ξ is not contained in a periodic algebraic curve.
Let D be an irreducible periodic algebraic curve, and suppose f (D) = D for
simplicity. If W s(x) intersects D, the forward orbit of x converges towards D.
On the other hand, µ f (D) = 0 because µ f does not charge any proper analytic
subset of X . Thus, x is not a generic point with respect to µ f .

Thus, in the definition of the set of generic points Λ in Oseledets-Pesin
theorem (Theorem 3.1), we can add the hypothesis that the global stable man-
ifolds W s(x), x ∈ Λ, do not intersect the periodic curves of f (in X0, they do
not go through the singularities). In particular, the injective parametrization
ξs

x : C → X remains injective when one projects it into X0.

In what follows, we keep the same notation ξ
u/s
x for the unstable and stable

manifolds, but consider them as entire curves in X0. We also keep the same
notation T±

f for the invariant currents.

6.2. The family of entire curves Au
f . Let f be an automorphism of a complex

projective surface with positive entropy and let T±
f be the invariant currents of

f defined in Section 2.5. Let π : X → X0 be the morphism that contracts the
periodic curves of f (see Proposition 2.1). Let X reg

0 be the smooth part of X0.
Let T±

0 := π∗T±
f ; Remark 2.6 shows that these currents are well defined and

have continuous potentials.

Definition 6.2. Let Au
f be the family of entire curves ξ : C → X0 such that

ξ∗(T+
0 ) =

i

2
dz∧dz and ξ∗(T−

0 ) = 0.

If µ f is absolutely continuous, Theorem 5.1 and Remark 6.1 show that al-
most every unstable manifold W u

f (x) can be parametrized by an injective entire
curve ξu

x : C → X0 that belongs to Au
f . In particular Au

f is not empty.

6.3. Zalcman’s theorem and compactness of Au
f . Let M be a compact com-

plex space. Fix a hermitian metric on M (see [30]).
We say that a sequence of entire curves ξn : C → M converges towards

ξ : C → M if ξn converges locally uniformly to ξ. A family E of entire curves
on M is closed if the limit of every converging sequence (ξn) ∈ EN is an
element of E . It is normal if every sequence of elements of F contains a
converging subsequence. It is compact if it is non empty, normal and closed.
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Lemma 6.3 (Zalcman [62]). Let M be a compact, complex analytic space.
If a sequence of entire curves ξn : C → M is not normal then there exists a
sequence of affine automorphisms z 7→ anz+bn such that

(1) limn an = 0,
(2) the sequence νn : C → M defined by z 7→ ξn(anz+ bn) converges to-

wards a Brody curve ν : C → M.

The following result is a fundamental step in the proof of our main theorem.
Its statement does not require any assumption on µ f .

Theorem 6.4. Let f be an automorphism of a complex projective surface X
with positive entropy, with π : X → X0 the birational morphism that contracts
the f -periodic curves. If non-empty, Au

f is a compact family.

Proof. Lemma 4.3 implies that Au
f is closed. Let us prove that Au

f is a normal
family. If not, Zalcman’s Lemma provides a sequence ξn ∈ Au

f and automor-
phisms gn : z 7→ anz+bn such that

νn : z 7→ ξn(anz+bn)

converges towards a Brody curve ν : C → X0. This curve satisfies

ν∗(T+
0 ) = lim

n→∞
ν∗n(T

+
0 ) = lim

n→∞
g∗n(

i

2
dz∧dz) = 0

because limn an = 0. Similarly, ν∗(T−
0 ) = 0. This contradicts the second as-

sertion in Corollary 3.15. �

6.4. The compact family Bu
f of unstable manifolds. We assume that µ f is

absolutely continuous, so that Au
f is not empty.

Definition 6.5. Let Bu
f be the smallest compact subset of Au

f that contains all
injective parametrizations of unstable manifolds which are in Au

f . We set

Bu
f (X0) = X reg

0

⋂ ⋃
ξ∈Bu

f

ξ(C).

Note that Au
f and Bu

f are invariant under translation and rotation: if ξ is an

element of one of these sets, then z 7→ ξ(eiθz+b) is an element of the same set
for all b ∈ C and θ ∈ R. Using this remark, one verifies that Bu

f (X0) is a closed
subset of X reg

0 , because Bu
f is a compact family of entire curves. The sets

Bs
f and Bs

f (X0) are defined in a similar way, with parametrizations of stable

manifolds such that (ξs
x)

∗T−
f = ( i2)dz∧dz.

Let us now derive further properties of Bu
f and Bu

f (X0).
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Lemma 6.6. Let η1,η2 be elements of Bu
f . Then either η1(C) and η2(C) are

disjoint or η1(C) = η2(C). In the later case η1(z) = η2(eiθz+ b) on C for
some b ∈ C and θ ∈ R.

Proof. The first property follows from Hurwitz’s lemma (see [7], Lemma 6.4):

Lemma 6.7 (Hurwitz). Let Cn and Dn be two families of irreducible curves in
the unit ball of C2. Assume that Cn ∩Dn is empty for all n, that Cn converges
to an irreducible curve C uniformly and that Dn converges to an irreducible
curve D uniformly. Then either C∩D is empty or C coincides with D.

To prove the second property, assume that η1 and η2 have the same im-
age W . Let m be a point of W and fix two points z1 and z2 such that η1(z1) =

η2(z2) = m. Assume that m and z2 satisfy (η2)
′(z2) 6= 0; one can always find

such pairs (m,z2) because η2 is not constant. Then η2 determines a local dif-
feomorphism from a neighborhood of z2 in C to a neighborhood of m in W .
The map ϕ = η−1

2 ◦η1 is defined on a small disk centered at z1, is holomor-
phic, and preserves (i/2)dz∧ dz̄. Thus, ϕ(z) = eiθz+ b for some b ∈ C and
θ ∈ R. As a consequence, there is a non-empty open subset of C on which
η2(eiθz+b) = η1(z); this property holds on C by analytic continuation. �

Lemma 6.8. Let x be an element of Bu
f (X0) and ξ be an element of Bu

f with
x = ξ(0). Let ε be a positive real number. There exists a neighborhood V of x
in X reg

0 such that: for every η∈Bu
f with η(0)∈V , there exists θ∈R satisfying

∀z ∈ Dr0 , distX0(η(e
iθz),ξ(z))≤ ε.

Proof. If not, there exists a sequence ηn ∈ Bu
f such that ηn(0) ∈ Bx(

1
n) and

∀θ ∈ R, ∃zn,θ ∈ Dr0 , dist(ηn(e
iθzn,θ),ξ(zn,θ))> ε.

For every angle θ ∈ R, choose a limit point zθ ∈ Dr0 of the sequence zn,θ. By
compactness of Bu

f , one can assume that ηn converges to some η ∈ Bu
f with

η(0) = x. By construction,

∀θ ∈ R, distX0(η(e
iθzθ),ξ(zθ))≥ ε.

In particular η is not equal to ξ up to a rotation, contradicting Lemma 6.6. �

Proposition 6.9. Assume that the measure µ f is absolutely continuous with
respect to Lebesgue measure. Let ξ be an element of Bu

f . Then

(1) ξ(C)∩X reg
0 is contained in Bu

f (X0)∩Bs
f (X0);

(2) ∀z ∈ C, ξ(z) is contained in the image of an entire curve ν ∈ Bs
f ;
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(3) the set of points z ∈ C such that ξ intersects a stable manifold ξs
y of f

transversely at ξ(z) is dense in C.

The same result holds if one permutes the roles of stable and unstable parame-
trizations.

Proof. (recall that, for simplicity, the current π∗(T
±
f ) is still denoted T±

f )
Assertion (2) is weaker than assertion (1). Thus, we only prove (1) and

(3). First, by definition, ξ(C)∩X reg
0 is contained in Bu

f (X0). Since Bu
f (X0)

is a closed subset of X reg
0 , it contains ξ(C)∩X reg

0 ; similarly, Bs
f (X0) contains

η(C)∩X reg
0 for all curves η ∈ Bs

f . Since ξ∗T+
f coincides with Lebesgue mea-

sure, it has full support. But T+
f is an Ahlfors-Nevanlinna current for every

stable manifold ξs
x : C → X0 (see § 3.11). Taking ξs

y in Bs
f , we obtain

ξ(C)⊂ ξs
y(C)⊂ Bs

f (X0),

and the first assertion follows from these inclusions.
To prove assertion (3), we use the same curve ξs

y ∈ Bs
f (X0). Recall that T+

f
is laminar and has continuous potentials. By [7, section 8], this implies that
the slice of T+

f by ξ is geometric; in particular, ξs
y(C) intersects ξ(C) on a

dense subset. By Lemma 4.5, each of these intersections can be approximated
by transverse ones. This completes the proof of the proposition. �

6.5. Local laminations. Every ξ∈Bu
f is a uniform limit of (generic) unstable

manifolds ξu
n ∈ Au

f ; in particular, ξu
n takes values in X reg

0 and (ξu
n)

′(z) 6= 0 for
every z ∈ C. But it may happen that ξ′(z) = 0 for some z ∈ C. For instance, in
(singular) Kummer examples, the velocity vanishes for the stable and unstable
manifolds when they pass through the singularities of the surface.

Definition 6.10. The velocity v(x) at a point x ∈ Bu
f (X0) is defined by

v(x) :=‖ ξ′(0) ‖,

where ξ is any element of Bu
f such that ξ(0) = x. The set Bu

f (X0) is partitioned
into the set

B
u,+
f (X0) :=

{
x ∈ Bu

f (X0) , v(x)> 0
}

and

B
u,0
f (X0) :=

{
x ∈ Bu

f (X0) , v(x) = 0
}
.

The fact that the velocity is well defined, i.e. does not depend on the choice
for ξ, follows from Lemma 6.6.
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Proposition 6.11. Assume that µ f is absolutely continuous. Let x be a point
in B

u,+
f (X0) and ξ be an element of Bu

f such that ξ(0) = x. There are neigh-

borhoods U ⊂ U′ of x in X reg
0 such that

(1) U′ is isomorphic to a bidisk D×D.
(2) The connected component of ξ(C)∩U′ that contains x is a horizontal

graph in U.
(3) There is a lamination Lu of the whole open set U by horizontal graphs,

each of which is contained in the image of a curve η ∈ Bu
f . In particu-

lar x is an interior point of Bu
f (X0) in the complex surface X reg

0 .
(4) If η is an element of Bu

f , ∆ is an open subset of C and η(∆) is contained
in U then η(∆) is contained in a leaf of this lamination.

(5) There is a transversal to the lamination Lu which is a piece of a stable
manifold of f .

(6) The support of µ f in U coincides with U.

U

U"

U’

V

FIGURE 1. The point x is the red point right in the middle. The
open set V is the red shaded ball, the open set U is grey; U ′ is light
grey with a green contour, and U” is white with a blue contour. The
horizontal curves represent pieces of unstable manifolds (one of them
is not a graph above D).

Proof. By definition, ξ′(0) 6= 0. Hence, there exist r0 > 0 and neighborhoods
U′ ⊂ U′′ of x in X reg

0 such that

• ξ(Dr0) is a smooth curve,
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• the pair of open sets (U′,U′′) is isomorphic to a pair of bidisks (D×

D,DR ×DR), with R > 1,
• ξ(∂Dr0)⊂ X reg

0 \U′ and ξ(Dr0) is contained in U′′,
• ξ(Dr0)∩U′ is a horizontal graph in the bidisk U′.

Changing (U′,U′′) if necessary there exists r < r0 such that ξ(Dr0)∩U′ =

ξ(Dr).

Lemma 6.12. Let r0 > 0 and U′ as above. There exists a neighborhood V of
x in X reg

0 such that for every η ∈ Bu
f with η(0) ∈ V , the curve η(Dr0)∩U′ is a

horizontal graph in U′.

Proof. Apply Lemma 6.8: given ε> 0, there is a neighborhood V of ξ(0) such
that every curve η ∈ Bu

f with η(0) ∈V is ε-close to ξ on Dr0 after composition

with a rotation z 7→ eiθz. All we need to prove, is that η is also a horizontal
graph if ε is small enough.

Let π : U′′ ≃ DR ×DR → DR denote the first projection. The holomorphic
mappings π◦ξ and π◦η are ε-close on Dr0 . On the smaller disk Dr, the map
π◦ ξ is one-to-one, with image equal to the unit disk D. If ε is small enough,
|π◦η−π◦ξ|< |π◦ξ| on the boundary of Dr0 . Thus, Rouché theorem implies
that π◦η : Dr → D is also one-to-one, and the result follows. �

Fix V as in the previous lemma. The curves η(Dr0)∩U′ with η ∈ Bu
f and

η(0)∈V form a family of horizontal graphs in U′. Let U be the union of these
graphs. By Lemma 6.6 it is laminated by disjoint horizontal graphs; we denote
this lamination by Lu. It remains to prove that U is an open neighborhood of
ξ(Dr) in U′.

Apply Proposition 6.9, Assertion (3), to the curve ξ. One can find an ele-
ment ξs

y of Bs
f such that ξs

y(0) ∈ ξ(Dr)∩V , with transverse intersection. Let
∆ be a disk centered at the origin for which ξs

y(∆) is contained in V . Ap-
ply Proposition 6.9, Assertion (1), but to the stable manifold ξs

y: every point
of ξs

y(∆) is contained in the image of a curve η ∈ Bu
f . Thus, the set U con-

tains ξs
y(∆). But U is laminated, and the λ-lemma implies that the holonomy

of a lamination are (quasi-conformal) homeomorphisms. Thus, U contains a
neighborhood of ξ(Dr).

For property (5), shrink ∆ and U to assure that ξs
y(∆) is transverse to Lu.

The previous argument shows that the support of the restriction T−
f |U co-

incides with U because its slice ξs
y(T

−
f )|∆ is the Lebesgue measure (see the

proof of Proposition 6.9). To prove property (6), fix a small ball B ⊂ U. Since



DYNAMICS ON COMPLEX SURFACES 39

T−
f charges B, there is an unstable manifold that enters B. Take a point x′ ∈ B

on this unstable manifold which intersects a stable manifold transversally, and
apply properties (1) to (5) for the stable manifolds: we get a stable lamination
Ls of a neighborhood W of x′ which is transverse to Lu. In W , the product of
T−

f and T u
f is strictly positive; hence µ f (B)> 0. �

7. HOLOMORPHIC FOLIATION AND HARTOGS EXTENSION

We conclude the proof of the main theorem. The first step is to promote the
local laminations obtained in Proposition 6.11 into local holomorphic folia-
tions. Then we use Hartogs phenomenon to extend the foliation into a global,
singular foliation of X . The theorem eventually follows from a classification
of automorphisms preserving holomorphic foliations.

7.1. From laminations to holomorphic foliations. Proposition 6.11 asserts
that Bu

f determines near every x ∈ B
u,+
f (X0) a local lamination denoted by

Lu. In this section we promote these local laminations into local holomorphic
foliations.

Proposition 7.1. The local laminations Lu are holomorphic.

Proof. The following argument is due to Ghys (see [38, 18]).
Let U and U′ be connected open subsets of X reg

0 such that U′ is biholomor-
phic to a bidisk D×D, U is contained in U′, and the lamination Lu of U is
made of disjoint horizontal graphs (as in Fig. 1). Denote by (x1,x2) the coor-
dinates in U′ ≃ D×D and by π1 and π2 the two projections (πi(x1,x2) = xi,
i = 1,2). Let p = (p1, p2) be a point of U and ∆p ⊂ U′ be the vertical curve
{x1 = p1}. Denote by γ a continuous path in the leaf through x that starts
at x and ends at another point q = (q1,q2). The holonomy map from the
transversal ∆p to the transversal ∆q := {x1 = q1} is a homeomorphism hγ from
∆p,U := ∆p ∩U to its image ∆q,U := ∆q ∩U. According to the Λ-lemma,
this homeomorphism hp,q is K(p,q)-quasi-conformal, with a constant K(p,q)
satisfying

0 ≤ K(p,q)−1 ≤ dist(p,q).

Recall that a 1-quasi-conformal map is conformal, hence holomorphic (see
§ 4.1.1).

Instead of looking at vertical disks, we first choose pairs of disks ∆ and ∆′

which are contained in stable manifolds of f and are transverse to the lam-
ination. Let γ be a path in a leaf Lu(m) that joins the intersection points
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x := ∆∩Lu(m) and x′ := Lu(m)∩∆′, let hγ be the (germ of) holonomy from
∆ to ∆′. Applying f−n and using Remark 3.6 there exists αn ∈ C∗ such that

f−n ◦ξu
x(z) = ξu

f−n(x)(αnz).

Proposition 3.5 precisely asserts that limn αn = 0 for almost every point x.
Using Poincaré recurrence theorem we can assume that f−n(x) ∈ U. This

and the compactness of Bu
f imply that the path γ is shrunk uniformly under the

action of f−n; simultaneously, the disks ∆ and ∆′ are mapped to large disks
f−n(∆) and f−n(∆′): the connected components of f−n(∆)∩U and f−n(∆′)∩

U containing f−n(x) and f−n(x′) are (smaller) vertical disks in U, and their
relative distance goes to 0 with n. Thus, the holonomy h−n between these
disks is Kn-quasi-conformal, with limn Kn = 1. But f n conjugates h−n with
hγ on a small neighborhood of x in ∆. Hence, for almost every point x ∈ ∆

(with respect to the conditional measure of µ f and therefore also with respect
to Lebesgue measure), and for every ε > 0, the holonomy hγ is (1+ ε)-quasi-
conformal on a small neighborhood ∆ε ⊂∆ of x. This implies that hγ is (1+ε)-
quasi-conformal for all ε > 0; hence, hγ is indeed conformal.

We have proved that the holonomy between two transversal disks which
are contained in stable manifolds is holomorphic. By Proposition 6.9 these
transversal disks form a dense subset of transversals. Consequently, the ho-
lonomy between all pairs of vertical disks ∆x and ∆y is holomorphic. This
implies that the lamination Lu is holomorphic. �

7.2. A holomorphic foliation F u on B
u,+
f (X0).

Lemma 7.2. The local holomorphic foliations Lu defined near every point of
B

u,+
f (X0) can be glued together to provide a holomorphic foliation F u of the

open set B
u,+
f (X0).

Proof. Propositions 6.11 and 7.1 show that if x is in B
u,+
f (X0), then there exists

a neighborhood U of x and a holomorphic foliation Lu of U such that all
entire curves η ∈ Bu

f are tangent to Lu. More precisely, if η is an element of
Bu

f and η(∆) is contained in U, then η(∆) is contained in a leaf of Lu; in other
words, if ωu is a holomorphic 1-form on U which defines the foliation Lu,
then η∗ωu = 0 on ∆. The holomorphic foliation F u can therefore be defined
as the unique holomorphic foliation of B

u,+
f (X0) such that the generic unstable

manifolds of f are leaves of F u. �
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7.3. Hartogs extension of the holomorphic foliation F u. The holomorphic
foliation F u is defined on the open set B

u,+
f (X0). Now, we extend it to X reg

0

(i.e. to B
u,0
f (X0)).

Proposition 7.3. Let x be an element of B
u,0
f (X0). There exists a neighborhood

V of x ∈ X reg
0 such that the holomorphic foliation F u extends as a (singular)

holomorphic foliation of V .

To prove this proposition, fix a curve ξ ∈ Bu
f with ξ(0) = x (and ξ′(0) = 0).

Remark 7.4. The curve ξ(D) may have a singularity at x, but Proposition
15 of [51] rules out this eventuality (see also [9]). On the other hand, this
argument does not exclude the possibility of a vanishing velocity. (thanks to
Misha Lyubich for pointing out this reference)

Even if ξ(D) is singular, there exists an open neighborhood V of x such that

(i) V ⊂ C2 up to a local choice of co-ordinates,
(ii) the connected component of ξ−1(V ) containing 0 is a disk Dr,

(iii) ξ′(0) = 0 but ξ′ does not vanish on Dr \{0}.

Fix a radius s with 0 < s < r/3. Since ξ′ does not vanish on ∂Ds, there is an
open neighborhood U ⊂ V of ξ(∂Ds) and a holomorphic foliation Lu on U

such that all entire curves η ∈ Bu
f are tangent to Lu in U.

Fix ε > 0. Let θ ∈ R and define xθ := ξ(seiθ). By Lemma 6.8 there ex-
ists a neighborhood U(θ,ε) ⊂ U of xθ such that, if η ∈ Bu

f and η(seiθ) ∈

U(θ,ε), then there exists a complex number a with |a|= 1 such that η(z) and
ξ(az) are ε-close on Dr. In particular, the curve η(D2s) is contained in an
ε-neighborhood of ξ(Dr).

Thus, there is a neighborhood U0 ⊂ U of ξ(∂Ds) satisfying

• ∀m ∈ U0, the leaf of Lu through m is contained in a disk η(D2s) where
η is an element of Bu

f which is ε-close to ξ on Dr;

• if (xn) ∈ UN
0 converges towards a point of ξ(Ds), one can choose such

disks ηn(D2s) with ηn ∈ Bu
f converging towards ξ uniformly on Dr.

Let (xn)n≥1 be such a sequence, with the additional property that xn is con-
tained in an unstable manifold of f for all n. Then, ηn is a parametrization
of an unstable manifold, and therefore η′

n does not vanish. Hence, there is
an open neighborhood Un of ηn(Ds) such that Lu extends as a holomorphic
foliation of U0 ∪Un. As explained in Section 7.2, the extensions of Lu to the
open sets Un are compatible, and determine a foliation of U∞ := ∪n≥0Un.
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Note that U∞ is a subset of V ⊂ C2. The slopes of the leaves of Lu deter-
mine a holomorphic function su : U∞ → P

1 (with P
1 the projective line of all

possible “slopes”). Such a function extends as a meromorphic function ŝu on
the envelop of holomorphy Û∞ of U∞ (see [42]). The function ŝu determines
a (singular) holomorphic foliation on Û∞ which extends Lu.

It remains to show that Û∞ contains a neighborhood of ξ(Ds), hence a
neighborhood of x. For this purpose, we apply the following theorem to
D = U∞, Sn = ηn(Ds) and S = ξ(Ds), and we remark that the boundaries
η(∂Ds) are contained in a compact neighborhood K of ξ(∂Ds) with K ⊂ U0.

Theorem 7.5 (Behnke-Sommer, [27], chapter 13). Let D be a bounded do-
main of Cm, m ≥ 2. Let Sn be a sequence of complex analytic curves which are
properly contained in D. Assume that Sn converges towards a curve S ⊂ Cm

and that the boundaries ∂Sn converge to a curve Γ ⋐ D. Then every holomor-
phic function h ∈ O(D) extends to a neighborhood of S.

Since, on a surface, the singularities of a holomorphic foliation are isolated
(they correspond to the indeterminacy points of the “slope function ŝu”), there
is an open neighborhood of x in which Lu has at most one singular leaf, namely
the leaf ξ(Dr).

Corollary 7.6. The set Bu
f (X0) coincides with X reg

0 and the foliation F u ex-

tends to a (singular) holomorphic foliation of X reg
0 , and this foliation is f -

invariant. Its lift to X by the birational morphism π : X → X0 determines a
(singular) f -invariant foliation of X.

Proof. The set Bu
f (X0) is closed. Propositions 6.11 and 7.3 show that Bu

f (X0)

is also open. Since X reg
0 is isomorphic to the complement of finitely many

curves in X , it is connected. Thus, Bu
f (X0) is equal to X reg

0 , and X reg
0 supports

a (singular) holomorphic foliation F u, such that every unstable manifold of f
is a leaf of F u. This implies that f preserves F u.

It remains to show that F u lifts to a holomorphic foliation of X . In the
complement X ′ of the periodic curves of f , the foliation π∗F u is a well-defined
holomorphic foliation. Given an open covering Ui of X ′, the foliation π∗F u

is defined by local holomorphic vector fields vi with isolated zeroes, such that
on Ui ∩U j

vi = gi, jv j

for some non-vanishing holomorphic function gi, j ∈ O∗(Ui ∩U j). This cocy-
cle determines a line bundle on X ′: the cotangent bundle T ∗

π∗F u of π∗F u. Since
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the periodic curves can be contracted, they are contained in arbitrarily small
pseudo-convex open subsets of X , and the line bundle T ∗

π∗F u can be extended
to a line bundle T on X . The relations vi = gi, jv j can be thought of as defin-
ing relations of a holomorphic section v of T ⊗ T X on the open subset X ′.
Again, this section extends to a global holomorphic section on X . This sec-
tion corresponds to local vector fields extending π∗F u to a global, f -invariant,
(singular) holomorphic foliation on X . �

7.4. Proof of the main theorem. To complete the proof of the main theorem,
we refer to the articles [18] and [22, Théorème 3.1], in which the following
theorem is proved:

Theorem 7.7. Let X be a compact Kähler surface, with a (singular) holomor-
phic foliation F and an automorphism f : X → X of positive entropy. If f
preserves F , then (X , f ) is a Kummer example, and the stable (or unstable)
manifolds of f are leaves of F .

The results of [18, 22] are more general: they classify triples (X ,F , f )
where X is a smooth surface, F is a (singular) holomorphic foliation of X ,
and f is a birational transformation of X of infinite order preserving F .

8. CONSEQUENCES AND APPLICATIONS

8.1. Equivalent dynamical characterizations. As before, consider an auto-
morphism f of a complex projective surface X , with positive entropy logλ f .

8.1.1. Ruelle’s inequalities and absolute continuity. The first part of the fol-
lowing result is due to Ruelle. The second part is proved by Ledrappier in [49,
Corollaire 5.6], in a more general setting. Here the local product structure of
µ f leads to a somewhat simplified proof.

Proposition 8.1 (Ruelle, Ledrappier). Let X be a complex projective surface
and f be an automorphism of X with positive entropy logλ f . Then the Lya-
punov exponents of f with respect to µ f satisfy

λs ≤−
1
2

logλ f and λu ≥
1
2

logλ f .

If equality holds simultaneously in these two inequalities, then µ f is absolutely
continuous with respect to Lebesgue measure.
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Proof. Ruelle’s inequality states that log(λ f )≤ 2λu and log(λ f )≤−2λs (see
[57] and [46], p. 669). Assume that equality holds simultaneously in these
two inequalities. Fix a Pesin box P , as in Section 4.2. According to [49,
Théorème 4.8], the conditional measures of µ f with respect to the stable and
unstable manifolds are absolutely continuous with respect to Lebesgue mea-
sure. In other words, both ν+ and ν− are absolutely continuous with respect
to Lebesgue measure, because these measures coincide with the conditional
measures of µ f with respect to the stable and unstable laminations of P . In the
Pesin box, µ f corresponds to the product measure ν+⊗ν− via the homeomor-
phism h of § 4.2.1. Since the holonomy of the stable and unstable laminations
are quasi-conformal, they are absolutely continuous with respect to Lebesgue
measure (see § 4.3.1). Hence, µ f is absolutely continuous with respect to the
Lebesgue measure in P , and therefore in X . �

8.1.2. Proof of Corollary 1.6. Our main theorem provides (1) ⇒ (4), while
the reverse implication is obvious. We proved (2)⇒ (1) in Proposition 8.1 and
(1)⇒ (2) in Proposition 5.3 (recall that this equivalence is also a consequence
of [49, Corollaire 5.6]). To prove (2)⇔ (3) we use Ruelle’s inequality [57],
which provides λs ≤ −1

2 logλ f and λu ≥
1
2 logλ f , and Young’s theorem [60]

which ensures that the generic limits in property (3) are equal to (1/λu −

1/λs) logλ f . (note that Young’s theorem is proved for C ∞-diffeomorphisms of
compact surfaces, but her proof applies also to our context)

8.2. K3 and Enriques surfaces.

8.2.1. The Classification Theorem. The Classification Theorem stated in the
introduction is proved in [22, 23]. Let us add two remarks. Assertion (1) of
the Classification Theorem rules out the case of Enriques surfaces. In partic-
ular, if f is an automorphism of an Enriques surface with positive entropy,
then µ f is singular with respect to Lebesgue measure. Assertion (3) is sharp,
meaning that there are rational Kummer examples with λ f in Q(ζl) for all
possible orders l = 3, 4, and 5. For instance, an example is given in [23], of
an automorphism g of an abelian surface A such that λg = |1+ ζ5|

2, where
ζ5 is the primitive fifth root of unity exp(2iπ/5). The linear transformation
(x,y) 7→ (ζ5x,ζ5y) induces an automorphism of A, and the quotient is a ra-
tional surface: this gives examples of Kummer automorphisms on rational
surfaces for which λ f has degree 4.
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8.2.2. Proof of Corollary 1.7. This corollary is a direct consequence of the
second assertion of the Classification Theorem and the following classical re-
sult.

Lemma 8.2. Let X be a complex projective K3 surface, with Picard number
equal to 2. The group of automorphisms of X is infinite if and only if the
intersection form does not represent 0 and −2 in NS(X). If it is infinite, then
it is virtually cyclic, and all elements of Aut(X) of infinite order have positive
topological entropy.

Sketch of proof. Let Iso(NS(X)) be the group of isometries of the lattice NS(X)

with respect to the intersection form 〈·|·〉.
Step 1.– By Hodge index theorem the intersection form has signature (1,1)

on NSR(X). Assume that this form represents 0; this means that the two
isotropic lines of 〈·|·〉 are defined over Z: they contain primitive elements
v1 and v2 in NS(X). Since the isotropic cone is Iso(NS(X))-invariant and the
automorphisms of Z coincides with ±Id, a subgroup of index at most 4 in
Iso(NS(X)) preserves the two isotropic lines pointwise. Thus, Iso(NS(X)) has
at most four elements. On the other hand, every element f of Aut(X) deter-
mines an element f ∗ in Iso(X) and the morphism f 7→ f ∗ has finite kernel
(because the group of automorphisms of a K3 surface is discrete). Thus, if the
intersection form represents 0, the group Aut(X) is finite.

Step 2.– Now assume that 〈·|·〉 does not represent 0. Consider the subgroup
Iso(NS(X))+ of Iso(NS(X)) that fixes the connected component H of {u ∈

NSR(X); 〈u|u〉 > 0} containing ample classes. This group is infinite, and it
is either cyclic, or dihedral (this is equivalent to the resolution of Pell-Fermat
equations); more precisely, a subgroup of Iso(NS(X))+ of index at most 2 is
generated by a hyperbolic isometry ψ, which dilates one of the isotropic lines
by a factor λψ > 1 and contracts the other one by 1/λψ.

If the ample cone of X coincides with H, Torelli theorem shows that the
image of Aut(X) in Iso(NS(X)) is a finite index subgroup of Iso(NS(X))+

(see [3]). Since the kernel of f 7→ f ∗ is finite, Aut(X) is virtually cyclic and, if
f is an automorphism of X of infinite order, f ∗ coincides with an iterate of ψl ,
l 6= 0. Thus, the topological entropy of f is equal to |l| log(λψ) and is positive.

Step 3.– The ample cone of X is the subset of classes a in the cone H
such that 〈a|[E]〉 > 0 for all irreducible curves E ⊂ X with negative self-
intersection. But, on a K3 surface, such a curve is a smooth rational curve
with self-intersection −2. Thus, H coincides with the ample cone if and only
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if X does not contain any −2-curve. On the other hand, Riemann-Roch for-
mula implies that X contains such a −2-curve if and only if the intersection
form represents −2 on NS(X). To sum up, if 〈·|·〉 represents −2, the ample
cone is a strict sub-cone of H. In that case, the group of isometries of NS(X)

preserving both H and the ample cone is finite, so that Aut(X) is finite too. �

8.2.3. Proof of Corollary 1.8. Let Z be an Enriques surface. The Néron-
Severi group NS(Z) and its intersection form qZ form a non-degenerate lattice
of dimension 10 and signature (1,9); this lattice is isomorphic to U⊕ (−E8).
For a generic Enriques surface, the action of Aut(Z) on NS(Z) is an embedding
that realizes Aut(Z) as a finite index subgroup in OqZ(Z): the image coincides
with the subgroup of matrices B that preserve each connected component of
the set {u ∈ NS(Z)⊗R| qZ(u) > 0} and are equal to the identity modulo 2
(see [4]). Thus, Aut(Z) contains non-abelian free groups and contains many
elements f with λ f > 1. To complete the proof it suffices to apply Lemma 1.3
(or, to notice that Enriques surfaces depend on 10 parameters and tori depend
on 4 parameters).

Remark 8.3. There are examples of Enriques surfaces with finite automor-
phism group. There are examples for which Aut(Z) is infinite but no automor-
phism has positive entropy (see [4], Section 4; in that example, Aut(Z) is finite
by cyclic). If Aut(Z) is not virtually abelian, then it contains a non abelian free
group made of automorphisms with positive entropy (see [21]); each of these
automorphisms has a singular measure of maximal entropy.

8.2.4. Kummer surfaces. Building on the strategy of [19], it seems reasonable
to expect the existence of Kummer surfaces X such that (i) X is a K3 surface,
(ii) there is an automorphism f of X of positive entropy with µ f = ΩX ∧ΩX ,
and (iii) there is an automorphism g of X of positive entropy such that µg is
singular.

8.3. Rational surfaces and Galois conjugates.

8.3.1. Proof of Corollary 1.9. Let A be a complex abelian surface. Its Picard
number is bounded from above by h1,1(A;R) hence by 4. The dynamical de-
gree λg of every g ∈ Aut(A) is the largest eigenvalue of g∗ on NS(A)⊗Z R. As
such, λg is a root of the characteristic polynomial of g∗ : NS(A)→ NS(A), and
it is an algebraic integer of degree at most 4. Passing to a finite g-equivariant
quotient π : A → X0, one does not change the topological entropy. Thus, if



DYNAMICS ON COMPLEX SURFACES 47

(X , f ) is a Kummer example, the dynamical degree λ f is also an algebraic
integer of degree at most 4.

Example 8.4. In [5, 6] and [54], Bedford and Kim and McMullen construct
examples of automorphisms fn : Xn → Xn of rational surfaces with positive
entropy. Corollary 1.9 shows that most of them have a singular measure of
maximal entropy. For instance, with the notation of [54], the dynamical de-
grees λn of the “Coxeter automorphisms” form a sequence of Salem numbers
that converges towards the smallest Pisot number (a root of θ3 = θ+1). This
implies that the degree of λn goes to ∞ with n. Note that the existence of au-
tomorphisms with a singular measure of maximal entropy had already been
observed in [54], chapter 9.

8.3.2. Blanc’s automorphisms.

Lemma 8.5. Let f : X → X be an automorphism of a complex projective sur-
face with positive entropy logλ f . Assume that X contains a curve of genus 1
which is periodic under the action of f . Then µ f is singular with respect to
Lebesgue measure.

Proof. An automorphism of an abelian surface with positive entropy does not
preserve any curve of genus 1. The lemma follows from this remark and our
main theorem. �

Let us now describe a construction due to Blanc (see [13]).
Consider a smooth plane cubic curve C. Given a point q on C, there is

a unique birational involution σq : P2
C 99K P2

C that fixes C point-wise and pre-
serves the pencil of lines through q. The indeterminacy points of σq are q itself
and the four points p of C such that the line (pq) is tangent to C at p. Blowing
up these points, one can lift σq to an automorphism of a rational surface Xq.
The strict transform of C is fixed point-wise by this automorphism.

Now, do that for ℓ points qi on the cubic C. Since C is fixed point-wise
by the involutions σqi , one can lift them simultaneously as automorphisms on
the same surface (blowing up 5ℓ points). This provides an example of a ratio-
nal surface Xℓ with a huge group of automorphisms: Blanc proved that there
is no relation between the involutions, they generate a subgroup of Aut(Xℓ)

isomorphic to the free product of ℓ copies of Z/2Z (see [13], Theorem 6).
There is a meromorphic 2-form Ωℓ on Xℓ that does not vanish and has poles

of order 1 along the strict transform C′ of C (two such forms are proportional).
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Now, define fl : Xℓ → Xℓ to be the composition σq1 ◦ . . . ◦σqℓ of the ℓ in-
volutions. If ℓ ≥ 3, one gets an automorphism of Xℓ of positive entropy. The
meromorphic 2-form Ωℓ determines a volume form Ωℓ∧Ωℓ with poles along
C′; this form has infinite volume, as for

i

2
dz∧dz̄

zz̄

near the origin in C. Thus, the transformation f preserves a “meromorphic”
volume form of infinite volume. Since f fixes the strict transform of a smooth
cubic curve, Lemma 8.5 implies the following proposition.

Proposition 8.6. Let fl be Blanc’s example described above, with l ≥ 3. Then
µ f is singular with respect to Lebesgue measure.

9. APPENDIX

(after Dinh-Sibony and Moncet)

In this appendix, f is an automorphism of a complex projective (resp. compact
Kähler) surface X with positive entropy logλ f , and X0 is the surface obtained by
blowing down all periodic curves of f . Most of the results described in this appendix
are due to Dinh, Sibony, and Moncet (see [31] and [55]).

9.1. Contraction of periodic curves. The notations are as in Section 2. The tensor
product NS(X)⊗Z A, for A a ring, is denoted NS(X ;A).

9.1.1. Periodic curves and the space N f . Consider the subspace PC f of NS(X ;Q)
generated by all classes of f -periodic curves. We consider it as a vector subspace of
NS(X ;Q), and we denote by PC f (Z) its integral points. By construction, PC f is a
subspace of Π⊥

f , because 〈θ±
f |[C]〉= 0 for every periodic curve.

Denote by Ψ f ∈ Z[t] the minimal polynomial of the algebraic integer λ f . The char-
acteristic polynomial of f ∗ ∈ GL(NS(X)) is a product of Ψ f and cyclotomic factors.
The vector space NS(X ;Q) splits as a direct sum N f ⊕N⊥

f such that

(1) N f and N⊥
f are f ∗-invariant;

(2) the characteristic polynomial of f ∗ : N f → N f is equal to Ψ f ;
(3) the characteristic polynomial of f ∗ : N⊥

f → N⊥
f is a product of cyclotomic

factors;
(4) N f contains θ+

f and θ−
f , and the intersection form is of Minkowski type on N f ;

(5) N⊥
f contains PC f and the intersection form is negative definite on N⊥

f .

Remark 9.1. If PC f = Π⊥
f then the plane Π f is defined over Q and λ f is a quadratic

unit, so that PC f is, usually, much smaller than Π⊥
f . (see [24]).
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Lemma 9.2. Let E ⊂ X be a smooth elliptic curve. If E is f -periodic the image of the
restriction morphism

resE : N f → Pic(E)

is finite.

Proof. Replacing f by a positive iterate, one assumes that E is f -invariant. The auto-
morphism f determines a holomorphic automorphism f ♯ of the group Pic0(E); since
every holomorphic automorphism of an elliptic curve has finite order, we may assume
that the automorphism f ♯ : Pic0(E)→ Pic0(E) is the identity.

Every class c in N f intersects E trivially: 〈[E]|c〉= 0, because N f is orthogonal to
PC f . Thus the image of resE is contained in Pic0(E). Since resE is equivariant under
the action of f ∗ on N f and the action of f ♯ on Pic0(E), we get

resE ◦ f ∗ = resE .

Consequently, the kernel of resE contains the image of f ∗− IdN f ; but this image has
finite index in N f (Z) because 1 is not a root of Ψ f . �

Let us now modify X by a finite sequence of equivariant blow-ups to assume that
every irreducible f -periodic curve is smooth. Thus, each of these curves is either a
rational curve or a smooth elliptic curve (see § 2.3).

Lemma 9.3. There is a finite index subgroup N′
f of N f (Z) such that every line bundle

L with first Chern class in N′
f satisfies L|E =OE for every f -periodic irreducible curve

E.

Proof. If F is a rational periodic curve and if c1(L) is an element of N f , the degree of
L|F is equal to 0; hence, L|F = OF . Consequently, we can define N′

f as the intersection
of the kernels of resE , where E describe the finite set of elliptic periodic curves. �

9.1.2. Big and nef classes (see [48]). The pseudo-effective cone is the closure, in
NS(X ;R), of the set of classes of effective R-divisors. A class u ∈ NS(X ;R) is big if
it is in the interior of the pseudo-effective cone. A class u ∈ NS(X ;R) is big and nef if
and only if it is nef and satisfies u2 > 0. The set of big and nef classes forms a convex
cone that contains the Kähler cone.

If the Chern class of a line bundle L is big and nef, then the Kodaira dimension of
(X ,L) is equal to 2 (see [36, 48]).

Let u be a class with positive self-intersection. It is nef if and only if it intersects
every irreducible curve C ⊂ X non-negatively. In other words, the boundary of the big
and nef cone is bounded by the quadratic cone {u2 = 0} and by hyperplanes

〈u|[C]〉= 0

where C is an irreducible curve (one may need infinitely many hyperplanes of this
type to describe the boundary of the cone).
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9.1.3. X0 is projective.

Theorem 9.4. Let f be an automorphism of a projective surface X, with dynamical
degree λ f > 1. Let π : X → X0 be the birational morphism that contracts all periodic
curves of f , and only those curves. The (singular) surface X0 is projective.

Recall that θ+
f and θ−

f denote the co-homology classes of T+
f and T−

f .

Lemma 9.5. There is an open neighborhood W of the class θ+
f +θ−

f in N f which is
contained in the big and nef cone.

Proof. Denote by Σ the sum θ+
f + θ−

f . It is nef, because θ+
f and θ−

f are nef. Since

Σ2 = 〈θ+
f |θ

−
f 〉 > 0, it is also big. If C is a(n effective) curve then 〈Σ|[C]〉 ≥ 0, with

equality if and only if [C] is in Π⊥
f , if and only if C is a periodic curve, if and only if

[C] ∈ PC f (see § 2.3).
We now prove the lemma by contradiction. Since the condition u2 > 0 is open, we

may assume that there is a sequence (wn) of classes wn ∈ N f converging towards Σ
such that wn is not nef. Since wn is not nef, there exists an irreducible curve Cn such
that 〈wn|[Cn]〉 < 0 (see § 9.1.2). In particular, the curve Cn is not in PC f , because wn

is an element of N f ; thus, 〈Σ|[Cn]〉> 0. Similarly, we may assume that the curves Cn

are pairwise distinct; otherwise, we could extract a constant subsequence Cn j =C and
we would have 〈Σ|[C]〉 ≤ 0 because Σ is the limit of (wn): this would contradict the
fact that C is effective but not in PC f .

Take a subsequence of ([Cn]/ ‖ [Cn] ‖) that converges to a pseudo-effective class
c∞. We have 〈Σ|c∞〉= 0, because wn converges towards Σ. Being pseudo-effective, c∞

is in Π⊥
f and consequently c2

∞ < 0. On the other hand, c2
∞ is the limit of 〈Cn|Cn+1〉/(‖

[Cn] ‖‖ [Cm] ‖) and, as such, is non-negative. This contradiction concludes the proof.
�

Remark 9.6. Since the cone of nef and big classes is f ∗-invariant, this lemma implies
that every element of the form aθ+

f +bθ−
f with a and b positive is in this cone, and is

in the relative interior of this cone in N f (R).

To prove Theorem 9.4, we may assume that all periodic curves of f are smooth
(otherwise, resolve the singularities by a finite, equivariant, sequence of blow-ups).

Consider the set of all line bundles L such that c1(L) is in N′
f and is big and nef.

The Kodaira dimension kod(X ;L) of such a line bundle is equal to 2, but the linear
system |L| may have fixed components. Write

L = M+F

where M is the mobile part and F is the fixed part; kod(X ;M) is equal to 2, and the
linear system |M| has no fixed component. Taking sums (i.e. tensor products) L1 +L2

the fixed part decreases. Thus, there is an effective divisor R such that R is contained
in the fixed part of |L| for all such line bundles L and R is equal to the fixed part of
L if L is “sufficiently large”. By construction, R is uniquely determined by N f and is
therefore f -invariant. Thus, R is a sum (with multiplicities) of periodic curves.

Take L with fixed part equal to R and consider its mobile part M. The linear system
|M| may have base points. Again, we may choose L such that the set of base points
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is f -invariant. Blow-up these base points (including infinitely near points), to get a
new surface Y with a birational morphism ε : Y → X . By construction f lifts to an
automorphism fY of Y and all irreducible periodic curves of fY are smooth, because
they are either strict transforms of periodic curves of f or exceptional divisors. The
line bundle L lifts to a big and nef bundle LY such

LY = MY +RY

where the fixed part RY is made of fY -periodic curves and the mobile part MY is
base point free. Since the Kodaira dimension kod(Y ;MY ) is equal to 2, the linear
system |MY | determines a morphism η : Y → Z: the linear system |MY | corresponds
to the linear system |MZ| of hyperplane sections of Z. On the surface Z, one gets
LZ = MZ +RZ with, now, an ample mobile part. In particular, H1(Z,mMZ) vanishes
if m is large enough (see [48], §1.4.D and 4.3). Thus, the morphism

H0(Z;L⊗m
Z )→ H0(RZ;L⊗m

Z|RZ
)

is onto if m is large. Since, by Lemma 9.3, the restriction of LZ to each irreducible
component of RZ is trivial, there is a section of L⊗m

Z which does not vanish on RZ .
Hence, L⊗m

Z has no fixed component and is ample. On the other hand, L (and thus LZ)
intersects trivially all periodic curves of f (resp. of fZ). This implies that η contracts
all periodic curves of fY ; in particular, η contracts all exceptional divisors of ε and
η ◦ ε−1 : X → Z is a morphism that contracts all periodic curves of f . Since Z is a
projective surface, X0 is also a projective surface.

Remark 9.7. Once all periodic curves of f have been contracted, the class Σ becomes
an ample class.

9.2. Continuous potentials. Denote by π : X → X0 the morphism that contracts all
periodic curves of f (and is an isomorphism in the complement of these curves). By
the previous section, the surface X0 is projective. Its Néron-Severi group NS(X0) lifts
to the orthogonal complement of PC f in NS(X). Let (ui) be a basis of NS(X0;Q) such
that every ui is ample. Each ui is the class of a Kähler form: up to a multiplicative
factor, it is the restriction of the Fubini-Study form κFS to X0 for some embedding
ιi : X0 → P

ki in a projective space; more precisely ui is the class of the form κi,0 =
ι∗i κFS. The pull-backs π∗κi,0 of these forms on X give a finite set of smooth (1,1)-
forms κi which are Kähler forms in the complement of the set of periodic curves, and
vanish along them. Moreover, if D is a connected component of the set of periodic
curves, π maps D to a point q of X0; thus, each κi is given by a local potential wi in
some neighborhood U of D. Moreover, adding a constant, wi vanishes identically on
D. Now, use the fact that the pre-image of NS(X0) in NS(X) is f -invariant, and apply
f ∗ to κ1:

1
λn

f
( f n)∗κ1 = ∑ai(n)κi +ddc(vn)

where the ai(n) are real numbers, vn : X → R is a smooth function, and vn is constant
on every connected component of the set of periodic curves of f .
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Then, apply the same strategy as in [32]: the sequence λ−n
f ( f n)∗κ1 converges to-

wards T+
f ; each sequence of real numbers ai(n) converges to a real number αi; and

(vn) converges uniformly to a Hölder continuous function w∞. Thus,

T+
f = ddc

(
∑

i

αiwi +w∞

)

= ∑
i

αiκi +ddcw∞,

where the first expression is a local one and the second is global. The function w∞

is constant on every connected component of the set of periodic curves of f ; one can
therefore write π∗(T

+
f ) = ∑i αiκi,0 +ddc(w∞,0) for some continuous function w∞,0 on

X0. There are analogous expressions for T−
f . Similarly, Remark 9.7 shows that

π∗(T
+
f +T−

f ) = κ+ddc(w)

where κ is a kähler form on X0 and w : X0 → R is a continuous function.

Theorem 9.8. Let f be an automorphism of a complex projective surface X, with
positive entropy. The current T+

f (resp. T−
f ) is a closed positive current with Hölder

continuous potentials. If D is a connected component of the union of all f -periodic
curves, there exists a neighborhood U of D and a Hölder continuous function u : U →
R such that T+

f = ddcu on U and u = 0 on D. The projection π∗T+
f of T+

f on

X0 is a closed positive current with continuous potentials, and π∗(T
+
f + T−

f ) is co-
homologous to a Kähler form on X0.

9.3. Dinh-Sibony Theorem.

9.3.1. Brody curves and Dinh-Sibony theorem. Let M be a compact Kähler manifold
(or compact, complex analytic space). Fix a hermitian metric κ on M. A Brody curve

ξ : C → M is a non-constant entire curve such that ‖ ξ′(z) ‖κ is uniformly bounded.
Let ξ : C → M be a non-constant entire curve, and denote by A(r;ξ) the area of

ξ(Dr) and by L(r;ξ) the length of ∂ξ(Dr); more precisely,

A(r;ξ) =
∫

ξ(Dr)
κ =

∫ r

0

∫ 2π

0
‖ ξ′(teiθ) ‖2 tdtdθ

L(r;ξ) =
∫ 2π

0
‖ ξ′(reiθ) ‖ rdθ.

The currents

Sr =
1

A(r;ξ)
{ξ(Dr)}

form a family of positive currents of mass 1; the mass of their boundary is equal to the
ratio L(r;ξ)/A(r;ξ). An Ahlfors current for the curve ξ is a closed positive current
obtained as a limit of the currents Sr along a subsequence (rn), with rn →n ∞; Ahlfors
currents always exist (see [15]).



DYNAMICS ON COMPLEX SURFACES 53

Theorem 9.9 (Dinh-Sibony, see [31]). Let M be a compact Kähler manifold (resp.
a compact, Kähler analytic space). Let T be a closed positive (1,1)-current with
continuous potentials. Let ξ : C → X be a Brody curve, such that ξ∗T = 0. Then there
is at least one Ahlfors current S associated to ξ such that T ∧S = 0.

In what follows, we shall apply this result in the singular surface X0.

9.4. Applications.

9.4.1. Proof of Corollary 3.15. The first property follows from the fact that π∗(T
+
f +

T−
f ) is co-homologous to a Kähler form. More precisely, Section 9.2 shows that

π∗(T
+
f +T−

f ) is equal to the sum of a kähler form κ plus ddc(w) for some globally
defined continuous function. Hence, the total mass of the product measure π∗(T

+
f +

T−
f )∧Aν is equal to the mass of κ∧Aν and, therefore, to the mass of the current Aν

with respect to κ; as such, it is positive.
To prove the second property, assume that such a curve ξ exists. If it is not a Brody

curve, apply Zalcman’s re-parametrization Lemma and Lemma 4.3 to change it in a
Brody curve. Then, apply Dinh-Sibony theorem to construct a Ahlfors current that
contradicts the first property.

9.4.2. Fatou components. Let M be a compact, complex analytic space, with a fixed
hermitian metric. Let U be a subset of M. One says that U is hyperbolically embed-

ded in M if there is a uniform bound for the derivative ‖ ϕ′(0) ‖ of all holomorphic
mappings ϕ : D → U ⊂ M. Brody’s Lemma implies that there exists a Brody curve
ξ : C → U if U is not hyperbolically embedded. If U is hyperbolically embedded,
it is Kobayashi hyperbolic, meaning that the Kobayashi pseudo-distance is a distance
(see [47]).

Let f be an automorphism of a complex projective surface X with λ f > 1. The
Fatou set Fat( f ) is the largest open subset on which the sequence ( f n)n∈Z is locally
equicontinuous.

Let K( f ) be the support of T+
f +T−

f , and let U( f ) be its complement. It is easy to
show that Fat( f ) is contained in U( f ) (see [58, 31, 55]).

Theorem 9.8 shows that π∗(T
+
f +T−

f ) has continuous potentials on X0. If π(U( f ))⊂
X0 is not hyperbolically embedded in X0, Brody re-parametrization lemma and Lemma 4.3
provide a Brody curve ξ : C → X0 such that ξ∗(π∗(T

+
f +T−

f )) = 0. Dinh-Sibony The-
orem asserts that there is an Ahlfors current S for ξ such that π∗(T

+
f +T−

f )∧ S = 0.
This contradicts Corollary 3.15. Thus, π(U( f )) is hyperbolically embedded in X0.

Theorem 9.10 (Dinh-Sibony, Moncet). Let f be an automorphism of a complex pro-
jective surface X with positive entropy. The Fatou set Fat( f ) is Kobayashi hyperbolic
modulo periodic curves: if x and y are distinct points of Fat( f ) with Kobayashi dis-
tance kobdist(x,y) = 0, then x and y are contained in a (reducible) connected periodic
curve of f .

Proof. The projection π : X → X0 is holomorphic and every holomorphic map is 1-
Lipschitz with respect to the Kobayashi distance. Hence, π(x) = π(y), because π(U)
is Kobayashi hyperbolic. �
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