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We study the boundary behaviour of positive functions u satisfying (E) -∆u -κ d 2 (x) u + g(u) = 0 in a bounded domain Ω of R N , where 0 < κ ≤ 1 4 , g is a continuous nonndecreasing function and d(.) is the distance function to ∂Ω. We first construct the Martin kernel associated to the the linear operator

and give a general condition for solving equation (E) with any Radon measure µ for boundary data. When g(u) = |u| q-1 u we show the existence of a critical exponent q c = q c (N, κ) > 1 whith the following properties: when 0 < q < q c any measure is eligible for solving (E) with µ for boundary data; if q ≥ q c , a necessary and sufficient condition is expressed in terms of the absolute continuity of µ with respect to some Besov capacity. The same capacity characterizes the removable compact boundary sets. At end any positive solution (F) -∆u -κ d 2 (x) u + |u| q-1 u = 0 with q > 1 admits a boundary trace which is a positive outer regular Borel measure. When 1 < q < q c we prove that to any positive outer regular Borel measure we can associate a positive solutions of (F ) with this boundary trace. Contents 1 Introduction 2 2 The linear operator L κ = -∆ -κ d 2 (x) 8 2.1 Classical results on Hardy's inequality and the operator L κ . . . . . . .

Introduction

Let Ω be a bounded smooth domain in R N and d(x) = dist (x, Ω c ). In this article we study several aspects of the nonlinear boundary value associated to the equation

-∆u - κ d 2 (x) u + |u| p-1 u = 0 in Ω, (1.1) 
where p > 1. The study of the boundary trace of solutions of (1.1) is a natural framework for a general study of several nonlinear problems where the nonlinearity, the geometric properties of the domain and the coefficient κ interact. On this point of view, the case κ = 0 has been thoroughly treated by Marcus and Véron (e.g. [START_REF] Marcus | Removable singularities and boundary trace[END_REF], [START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF], [START_REF] Marcus | Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case[END_REF], [START_REF] Marcus | The precise boundary trace of the positive solutions of the equations ∆u = u q in the supercritical case[END_REF] and the synthesis presented in [START_REF] Marcus | Nonlinear Second Order Elliptic Equations Involving Measures[END_REF]). The associated linear Schrödinger operator u → L κ u := -∆u -

κ d 2 (x) u (1.2)
plays an important role in functional analysis because of the particular singularity of the potential V (x) := -κ d 2 (x) . The case κ < 0 and more generally of nonnegative potentials has been studied by Ancona [START_REF] Ancona | Negatively curved manifolds, elliptic operators and the Martin boundary[END_REF] who has shown the existence of a Martin kernel which allows a general representation formula of nonnegative solutions of

L κ u = 0 in Ω. (1.3) 
When κ < 1 4 , Ancona proved that L κ is weakly coercive in H 1 0 (Ω). Thus any positive solution u of (1.3) admits a representation under the form

u(x) = ∂Ω K Lκ (x, ξ)dµ(ξ)
in Ω, (1.4) see [START_REF] Ancona | Negatively curved manifolds, elliptic operators and the Martin boundary[END_REF]Remark p. 523]. Furthermore the kernel K Lκ (x, ξ) with pole at ξ is unique up to a multiplication [START_REF] Ancona | Negatively curved manifolds, elliptic operators and the Martin boundary[END_REF]Th 3]. When κ = 1 4 , then L κ is no longer weakly coercive in H 1 0 (Ω) and Ancona's results cannot be applied. Ancona's representation theorem turned out to be the key ingredient of the full classification of positive solutions of -∆u + u q = 0 in Ω, (1.5) which was obtained by Marcus [START_REF] Marcus | Complete classification of the positive solutions of -∆u + u q = 0[END_REF]. In a more general setting, Véron and Yarur [START_REF] Véron | Boundary value problems with measures for elliptic equations with singular potentials[END_REF] constructed a capacitary theory associated to the linear equation

L V u := -∆u + V (x)u = 0 in Ω, (1.6) 
where the potential V is nonnegative and singular near ∂Ω. When V (x) := -κ d 2 (x) with κ > 0, V is called a Hardy potential. There is a critical value κ = 1 4 . If κ > 1 4 , no positive solution of (1.3) exists. When 0 < κ ≤ 1 4 , there exist positive solutions, and the geometry of the domain plays a fundamental role in the study of the mere linear equation (1.3). We define the constant c Ω by

c Ω = inf v∈H 1 0 (Ω)\{0} Ω |∇v| 2 dx Ω v 2 d 2 (x) dx . (1.7)
It is known that 0 < c Ω ≤ 1 4 , and if Ω is convex then c Ω = 1 4 (see [START_REF] Marcus | On the best constant for Hardy's inequality in R n[END_REF]). When 0 < κ ≤ 1 4 , which is always assumed in the sequel and -∆d ≥ 0 in the sense of distributions, it is possible to define the first eigenvalue λ κ of the operator L κ . If we define the two fundamental exponents α + and α -by

α + = 1 + √ 1 -4κ and α -= 1 - √ 1 -4κ, (1.8) 
then the first eigenvalue is achieved by an eigenfunction φ κ which satisfies φ κ (x) ≈ d α + 2 (x) as d(x) → 0. Similarly, the Green kernel G Lκ associated to L κ inherits this type of boundary behaviour since there holds

1 C κ min 1 |x -y| N -2 , d α + 2 (x)d α + 2 (y) |x -y| N +α+-2 ≤ G Lκ (x, y) ≤ C κ min 1 |x -y| N -2 , d α + 2 (x)d α + 2 (y) |x -y| N +α+-2 .
(1.9) We show that L κ satisfies the maximum principle in the sense that if u ∈ H 1 loc ∩ C(Ω) is a subsolution, i.e. L κ u ≤ 0, such that

(i) lim sup x→y u(x) d α-(x) ≤ 0 if 0 < κ < 1 4 , (ii) lim sup x→y u(x) d(x)| ln d(x)| ≤ 0 if κ = 1 4 , (1.10) 
for all y ∈ ∂Ω, then u ≤ 0. This result has to be compared with the result on the the existence of positive sub-harmonic functions in Ω given in [START_REF] Bandle | Boundary blow up type sub-solutions to semilinear elliptic equations with Hardy potential[END_REF]Theorem 2. 3] which is associated to the maximum principle in neighborhood of ∂Ω stated in [4, Lemma 2. 4].

If ξ ∈ ∂Ω and r > 0, we set ∆ r (ξ) = ∂Ω ∩ B r (ξ). We prove that a positive solution of L κ u = 0 which vanishes on a part of the boundary in the sense that

(i) lim x→y u(x) d α-(x) = 0 ∀y ∈ ∆ r (ξ) if 0 < κ < 1 4 , (ii) lim x→y u(x) d(x)| ln d(x)| = 0 ∀y ∈ ∆ r (ξ) if κ = 1 4 , (1.11) satisfies u(x) φ κ (x) ≤ C 1 u(y) φ κ (y) ∀x, y ∈ ∆ r 2 (ξ), (1.12) 
for some C 1 = C 1 (Ω, κ) > 0.

For any h ∈ C(∂Ω) we construct the unique solution v := v h of the Dirichlet problem

L κ v = 0 in Ω v = h on ∂Ω, (1.13) 
noting that the boundary data h is achieved in the sense that

lim x→y u(x) d α-(x) = h(y) if 0 < κ < 1 4
and lim

x→y u(x) d(x)| ln d(x)| = h(y) if κ = 1 4 .
Using this construction and estimates (1.10) we show the existence of the L κ -measure, which is a bounded Borel measure ω x with the property that for any h ∈ C(∂Ω), the above function v h satisfies v h (x) = ∂Ω h(y)dω x (y).

(1.14)

Because of Harnack inequality, the measures ω x and ω z are mutually absolutely continuous for x, z ∈ Ω, and for any x ∈ Ω we can define the Radon-Nikodym derivative K(x, y) := dω x dω x0 (y) for ω x0 -almost y ∈ ∂Ω.

(

1.15)

There exists r 0 := r 0 (Ω) such that for any x ∈ Ω verifying d(x) ≤ r 0 , there exists a unique ξ = ξ x ∈ ∂Ω with the property that d(x) = |x-ξ x |. If we denote by Ω ′ r0 the set of x ∈ Ω such that 0 < d(x) < r 0 , the mapping Π from Ω ′ r0 to [0, r 0 ] × ∂Ω defined by Π(x) = (d(x), ξ x ) is a C 1 diffeomorphism. If ξ ∈ ∂Ω and 0 ≤ r ≤ r 0 , we set x r (ξ) = Π -1 (r, ξ). Let W be defined in Ω by

W (x) = d α - 2 (x) if κ < 1 4 , d(x)| ln d(x)| if κ = 1 4 .
(1. [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF] We prove that the L κ -harmonic measure can be equivalently defined by

ω x (E) = inf ψ : ψ ∈ C + (Ω), L κ -superharmonic in Ω and s.t. lim inf x→E ψ(x) W (x) ≥ 1 , (1.17) 
on compact sets E ⊂ ∂Ω and then extended by regularity to Borel subsets of ∂Ω.

The L κ -harmonic measure is connected to the Green kernel of L κ by the following estimates

Theorem A There exists C 3 := C 3 (Ω) > 0 such that for any r ∈ (0, r 0 ] and ξ ∈ ∂Ω, there holds

1 C3 r N + α - 2 -2 G Lκ (x r (ξ), x) ≤ ω x (∆ r (ξ)) ≤ C 3 r N + α - 2 -2 G Lκ (x r (ξ), x) ∀x ∈ Ω \ B 4r(ξ) , (1.18) 
if 0 < κ < 1 4 , and

1 C3 r N -2+ 1 2 | ln d(x)|G L 1 4 (x r (ξ), x) ≤ ω x (∆ r (ξ)) ≤ C 3 r N -2+ 1 2 | ln d(x)|G L 1 4 (x r (ξ), x) ∀x ∈ Ω \ B 4r(ξ) ,
(1.19) when κ = 1 4 . As a consequence ω x has the doubling property. The previous estimates allow to construct a kernel function of L κ in Ω, prove its uniqueness up to an homothety. When normalized, the kernel function denoted by K Lκ is the Martin kernel, defined by

K Lκ (x, ξ) = lim x→ξ G Lκ (x, y) G Lκ (x, x 0 ) ∀ξ ∈ ∂Ω, (1.20) 
for some x 0 ∈ Ω. Thank to this kernel we can represent any positive L κ -harmonic function u by mean of a Poisson type formula which endows the form

u(x) = ∂Ω K Lκ (x, ξ)dµ(ξ). (1.21) 
for some unique positive Radon measure µ on ∂Ω. The measure µ is called the boundary trace of u. Furthermore K Lκ satisfies the following two-side estimates

Theorem B There exists C 3 := C 3 (Ω, κ) > 0 such that for any (x, ξ) ∈ Ω × ∂Ω there holds

1 C 3 d α + 2 |x -ξ| N +α+-2 ≤ K Lκ (x, ξ) ≤ C 3 d α + 2
|x -ξ| N +α+-2 .

(1.22)

In the sections 3-6 of this paper we develop the study of the semilinear equation (E) and emphasize the particular case of equation (1.1). With the help of the previous estimates we adapt the approach developed in [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF] to prove the existence of weak solutions to the nonlinear boundary value problem

-∆u - κ d 2 (x) u + g(u) = ν in Ω u = µ in ∂Ω, (1.23) 
where g is a continuous nondecreasing function such that g(0) ≥ 0 and ν and µ are Radon measures on Ω and ∂Ω respectively . We define the class X κ (Ω) of test functions by

X κ (Ω) = η ∈ L 2 (Ω) s.t. ∇(d -α + 2 η) ∈ L 2 φ k (Ω) and φ -1 κ L κ η ∈ L ∞ (Ω) , (1.24) 
and we prove

Theorem C Assume g satisfies ∞ 1 (g(s) + |g(-s)|)s -2 N -1+ α + 2 N -2+ α + 2 ds < ∞. (1.25)
Then for any Radon measures ν on Ω and such that Ω φ κ d|µ| < ∞ and µ on ∂Ω there exists a unique u ∈ L 1 φκ (Ω) such that g(u) ∈ L 1 φκ (Ω) which satisfies

Ω (uL κ η + g(u)η) dx = Ω (ηdν + K Lκ [µ]L κ ηdx) ∀η ∈ X κ (Ω).
(1.26)

When g(r) = |r| q-1 r the critical value is

q c = N + α + 2 N + α + 2 -2
and (1.25) is satisfied for 0 ≤ q < q c (the subcritical range). In this range of values of q, existence and uniqueness of a solution to

-∆u - κ d 2 (x) u + |u| q-1 u = 0 in Ω u = µ in ∂Ω, (1.27) 
has been recently obtained by Marcus and Nguyen [START_REF] Marcus | Moderate solutions of semilinear elliptic equations with Hardy potential[END_REF]. However, when q ≥ q c not all the Radon measures are eligible for solving problem (1.27).

We prove the following result in the statement of which C R N -1

2-

2+α + 2q ′ ,q ′ denotes the Besov capacity associated to the Besov space B 2-2+α + 2q ′ ,q ′ (R N -1 ).

Theorem D Assume q ≥ q c and µ is a positive Radon measure on ∂Ω. Then problem (1.27) admits a weak solution if and only if µ vanishes on Borel sets E ⊂ ∂Ω such that C R N -1 2-2+α + 2q ′ ,q ′ (E) = 0. Note that a special case of this result is proved in [START_REF] Marcus | Moderate solutions of semilinear elliptic equations with Hardy potential[END_REF] when µ = δ a for a boundary point and q ≥ q c . In that case δ a does not vanish on {a} although C R N -1 2-2+α + 2q ′ ,q ′ ({a}) = 0. This capacity plays a fundamental for characterizing the removable compact boundary sets which can only exist in the supercritical range q ≥ q c . Theorem E Assume q ≥ q c and K ⊂ ∂Ω is compact. Then any function u ∈ C(Ω \ K) which satisfies

-∆u - κ d 2 (x) u + |u| q-1 u = 0 in Ω u = 0 in ∂Ω \ K, (1.28) 
is identically zero if and only if C R N -1

2-

2+α + 2q ′ ,q ′ (K) = 0. The proof of Theorems D and E is delicate and based upon the use of the optimal lifting operator which has been introduced in [START_REF] Marcus | Removable singularities and boundary trace[END_REF] and the kernels estimates of [START_REF] Marcus | Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case[END_REF]Appendix].

We show that any positive solution u of (1.1) admits a boundary trace in the class of outer regular positive Borel measures, not necessarily locally bounded, and more precisely we prove that the following dichotomy holds:

Theorem F Let u be a positive solution of (1.1) in Ω and a ∈ ∂Ω. Then (i) either for any ǫ > 0 lim δ→0 Σ δ ∩Bǫ(a)

udω x0 Ω ′ δ = ∞, (1.29) 
where

Ω ′ δ = {x ∈ Ω : d(x) > δ}, Σ δ = ∂Ω ′ δ and ω x0 Ω ′ δ
is the harmonic measure in Ω ′ δ , (ii) or there exist ǫ 0 > 0 and a positive Radon measure λ on ∂Ω ∩ B ǫ0 (a) such that for any Z ∈ C(Ω) with support in Ω ∪ (∂Ω ∩ B ǫ0 (a)), there holds

lim δ→0 Σ δ ∩Bǫ(a) Zudω x0 Ω ′ δ = ∂Ω∩Bǫ(a)
Zdλ.

(1.30)

The set of points a ∈ ∂Ω such that (i) (resp. (ii)) holds is closed (resp. relatively open) and denoted by S u (resp R u ). There exists a unique Radon measure µ u on R u such that, for any Z ∈ C(Ω) with support in Ω ∪ R u there holds

lim δ→0 Σ δ Zudω x0 Ω ′ δ = Ru Zdµ u .
(1.31)

The couple (S u , µ u ) is called the boundary trace of u and denoted by T r ∂Ω (u). A notion of normalized boundary trace of positive moderate solutions of (1.1), i.e. solutions such that u ∈ L q (φ κ ), is developed in [START_REF] Marcus | Moderate solutions of semilinear elliptic equations with Hardy potential[END_REF]. It is proved therein that there exists a boundary trace µ ≈ ({∅}, µ u ), and that the corresponding representation of u via the Martin and Green kernels holds.

If 1 < q < q c we denote by u kδa positive solution of (1.1) with µ = kδ a for some a ∈ ∂Ω and k ≥ 0. Then there exists lim k→∞ u kδa = u ∞,a and we prove the following:

Theorem G Assume 1 < q < q c and a ∈ ∂Ω. If u is a positive solution of (1.1) such that a ∈ S u , then u ≥ u ∞,a .

In order to go further in the study of boundary singularities, we construct separable solutions of (1.1) in R N + = {x = (x ′ , x N ) :

x N > 0} = {(r, σ) ∈ R + × S N -1 +
} which vanish on ∂R N + \ {0} under the form u(r, σ) = r -2 q-1 ω(σ), where r > 0, σ ∈ S N -1

+

. They are solutions of

-∆ S N -1 ω -ℓ q,N ω - κ e N .σ ω + |ω| q-1 ω = 0 in S N -1 + ω = 0 in ∂S N -1 + , (1.32) 
where ∆ S N -1 is the Laplace-Beltrami operator, e N the unit vector pointing toward the North pole and ℓ q,N is a positive constant. We prove that if 1 < q < q c , then problem (1.32) admits a unique positive solution ω κ while no such solution exists if q ≥ q c . To this phenomenon is associated a result of classification of the positive solutions of (1.1) in Ω which vanishes of ∂Ω \ {0} (here we assume that 0 ∈ ∂Ω and that the tangent hyperplane to ∂Ω at 0 is {x : x.e N = 0}, and that there exists r 0 > 0 such that B r0 (r 0 e N ) ⊂ Ω, B r0 (r 0 e N ) ⊂ {x : x.e N ≥ 0} and d(r 0 e N ) = |r 0 e N | = r 0 ).

Theorem H Assume 1 < q < q c and let u ∈ C(Ω \ {a} be a solution of (1.1) in Ω which vanishes of ∂Ω \ {a}. Then (i) either u = u ∞,a and lim r→0 r 2 q-1 u(r, .) = ω κ (1.33) locally uniformly in S N -1 + , (ii) or there exists k ≥ 0 such that u = u kδa and u(x) = kK Lκ (x, a)(1 + o1))

as x → 0.

(1.34)

If 1 < q < q c we prove that to any couple (F, µ) where F is a closed subset of ∂Ω and µ a positive Radon measure on R = ∂Ω \ F , we can associate a positive solution u of (1.1) in Ω with the property that T r ∂Ω (u) = (F, µ). The construction is based upon the existence of barrier functions which allow to prove local a priori estimate that is satisfied by any positive solution with boundary trace (F, 0). The delicate proof of the existence of these barrier is presented in Appendix I. A priori estimates which follow from the barrier method are presented in Appendix II. In Appendix III we develop some regularity results based upon Moser's iterative scheme adapted to the framework of the Hardy operator.

The results presented here are announced in [START_REF] Gkikas | Measure boundary value problem for semilinear elliptic equations with critical Hardy potentials[END_REF].

The linear operator

L κ = -∆ -κ d 2 (x)
Throughout this article c j (j=1,2,...) denote positive constants the value of which may change from one occurrence to another. The notation κ is reserved to the value of the coefficient of the Hardy potential.

Classical results on Hardy's inequality and the operator L κ

We first recall some known results concerning Hardy's inequalities and the associated eigenvalue problem (see [START_REF] Davila | Hardy-type inequalities[END_REF], [START_REF] Filippas | Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains[END_REF]).

1-The constant c Ω defined in (1.7) has value in (0, 1 4 ]. If Ω is convex or if the function d is superharmonic then c Ω = 1 4 . Moreover this equality is verified if and only if there exists no minimizer to the problem (1.7) [START_REF] Marcus | On the best constant for Hardy's inequality in R n[END_REF]. For any κ ∈ (0, 1 4 ] there exists

inf Ω |∇u| 2 - κ d 2 u 2 dx : Ω u 2 dx = 1 = λ κ > -∞. (2.1) Furthermore λ κ > 0 if κ < c Ω or if k ≤ 1 4
and d is a superharmonic function in Ω. (see [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF]). 2-If 0 < κ < 1 4 the minimizer φ κ of (2.1) belongs to the space H 1 0 (Ω) and it satisfies

φ κ ≈ d α + 2 (x), (2.2) 
where α + (as well as α -) are defined by (1.8).

3-If

κ = 1 4
, there is no minimizer in H 1 0 (Ω), but there exists a non-negative function

φ 1 4 ∈ H 1 loc (Ω) such that φ 1 4 ≈ d 1 2 (x), (2.3) 
and it solves -∆u -

1 4d 2 u = λ k u in Ω
in the sense of distributions. In addition, the function

ψ 1 4 = d -1 2 φ 1 4 belongs to H 1 0 (Ω; d(x)dx). 4-Let H 1 0 (Ω, d α (x)dx) denote the closure of C ∞ 0 (Ω) functions under the norm ||u|| 2 H 1 0 (Ω,d α (x)dx) = Ω |∇u| 2 d α (x)dx + Ω |u| 2 d α (x)dx. (2.4)
If α ≥ 1 there holds [START_REF] Filippas | Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains[END_REF]Th. 2.11]

H 1 0 (Ω, d α (x)dx) = H 1 (Ω, d α (x)dx) ∀α ≥ 1. (2.5) 5-Let 0 < κ ≤ c Ω . Let H κ (Ω) be the subset of functions of H 1 loc (Ω) satisfying Ω |∇φ| 2 - κ d 2 φ 2 dx < ∞. (2.6)
Then the mapping

φ → Ω |∇φ| 2 - κ d 2 φ 2 dx 1 2 (2.7) is a norm on H κ (Ω). The closure W κ (Ω) of C ∞ 0 (Ω) into H κ (Ω) satisfies W κ (Ω) = H 1 0 (Ω) ∀ 0 < κ < c Ω and W 1 4 (Ω) ⊂ W 1,q 0 (Ω) if λ 1 4 > 0 ∀1 ≤ q < 2, (2.8) 
see [START_REF] Barbatis | A unified approach to improved L p Hardy inequalities with best constants[END_REF]Th B]. As a consequence W κ (Ω) is compactly imbedded into L r (Ω) for any r ∈ [1, 2 * ). 6-Let α > 0 and Ω ⊂ R N be a bounded domain. There exists c * > 0 depending on diam(Ω), N and α such that for any v ∈ C ∞ 0 (Ω)

Ω |v| 2(N +α) N +α-2 d α dx N +α-2 N +α ≤ c * Ω |∇v| 2 d α dx. (2.9)
For a proof see [START_REF] Filippas | Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains[END_REF]Th. 2.9].

The boundary behaviour of the first eigenfunction yields a two-side similar estimate of the Green kernel for Schrödinger operators with a general Hardy type potentials [14, Corollary 1.9]. Proposition 2.1. Consider the operator

E := -∆ -V, in Ω where V = V 1 + V 2 , with |V 1 | ≤ 1 4d 2 (x)
and

V 2 ∈ L p (Ω), p > N 2 .
We also assume that

0 < λ 1 := inf u∈H 1 0 (Ω) Ω |∇u| 2 dx -V u 2 dx Ω u 2 dx
, and that to λ 1 is associated a positive eigenfunction φ 1 . If, for some α ≥ 1 and C 1 , C 2 > 0, there holds

c 1 d α 2 (x) ≤ φ 1 (x) ≤ c 2 d α 2 (x) ∀x ∈ Ω, then the Green kernel G Ω E associated to E in Ω satisfies G Ω E (x, y) ≈ c 3 min 1 |x -y| N -2 , d α 2 (x)d α 2 (y) |x -y| N +α-2 .
(2.10)

Next we define the sets Ω δ , Ω ′ δ and Σ δ by

Ω δ = {x ∈ Ω : d(x) < δ} , Ω ′ δ = {x ∈ Ω : d(x) > δ} and Σ δ = {x ∈ Ω : d(x) = δ}. (2.11) Definition 2.2. Let G ⊂ Ω be open and let H 1 c (G) denote the subspace of H 1 (G) of functions with compact support in G. A function h ∈ W 1,1 loc (G) is L κ -harmonic in G if G ∇h.∇ψdx -κ Ω 1 d 2 (x) hψdx = 0 ∀ψ ∈ H 1 c (G). A function h ∈ H 1 loc (G) ∩ C(G) is L κ -subharmonic in G if G ∇h.∇ψdx -κ Ω 1 d 2 (x) hψdx ≤ 0 ∀ψ ∈ H 1 c (G), ψ ≥ 0.
We say that h is a local L κ -subharmonic function if there exists

δ > 0 such that h ∈ H 1 loc (Ω δ ) ∩ C(Ω δ ) is L κ -subharmonic in Ω δ .
Similarly, (local) L κ -superharmonics h are defined with " ≥ " in the above inequality.

Note that L κ -harmonic functions are C 2 in G by standard elliptic equations regularity theory. The Phragmen-Lindelöf principle yields the following alternative [START_REF] Bandle | Boundary blow up type sub-solutions to semilinear elliptic equations with Hardy potential[END_REF]Theorem 2.6].

Proposition 2.3. Let κ ≤ 1 4 .
If h is a local L κ -subharmonic function, then the following alternative holds:

(i) either for every local positive L κ -superharmonic function h lim sup

d(x)→0 h(x) h(x) > 0, (2.12) 
(ii) or for every local positive L κ -superharmonic function h lim sup

d(x)→0 h(x) h(x) < ∞. (2.13) Definition 2.4. If a local L κ -subharmonic function h satisfies (i) (resp. (ii)) it is called a large L κ - subharmonic (resp. a small L κ -subharmonic).
The next statement is [4, Theorem 2.9].

Proposition 2.5. Let h be a small local L κ -subharmonic of L κ .

(i) If κ < 1 4 , then the following alternative holds:

either lim sup x→∂Ω h(x) (d(x)) α - 2 > 0 or lim sup x→∂Ω h(x) (d(x)) α + 2 < ∞. (ii) If κ = 1 4
, then the following alternative holds:

either lim sup x→∂Ω h(x) (d(x)) 1 2 log( 1 d ) > 0 or lim sup x→∂Ω h(x) (d(x)) 1 2 
< ∞.

Definition 2.6. Let f 0 ∈ L 2 loc (Ω). We say that a function u ∈ H 1 loc (Ω) is a solution of

L κ u = f 0 in Ω, (2.14) 
if there holds

Ω ∇u.∇ψdx -κ Ω 1 d 2 (x) uψdx = Ω f 0 ψdx ∀ψ ∈ C ∞ 0 (Ω).
(2.15)

Preliminaries

In this part we study some regularity properties of solutions of linear equations involving L κ .

Lemma 2.7.

(i) If α > 1 and d -α 2 u ∈ H 1 (Ω, d α (x)dx), then u ∈ H 1 0 (Ω). (ii) If α = 1 and d -1 2 u ∈ H 1 (Ω, d(x)dx), then u ∈ W 1,p 0 (Ω), ∀p < 2.
Proof. There exists

β 0 > 0 such that d ∈ C 2 (Ω β0 ) and set u = d α 2 v. In the two cases (i)-(ii), our assumptions imply u ∈ L 2 (Ω) and ∇u - α 2 ud -1 ∇d ∈ L 2 (Ω). (2.16) (i) Since v ∈ H 1 (Ω, d α (x)dx), by (2.5) there exists a sequence v n ∈ C ∞ 0 (Ω) such that v n → v in H 1 (Ω, d α (x)dx). Set u n = d α v n . Let 0 < β ≤ β0
2 and ψ β be a cut of function such that

ψ β = 0 in Ω ′ β and ψ β = 1 in Ω β 2 . Then u n = d α 2 (ψ β v n + (1 -ψ β )v n ). Thus it is enough to prove that u n = d α 2 ψ β v n remains bounded in H 1 (Ω) independently of n. Set w n = ψ β v n , then Ω |∇ u n | 2 dx = Ω β |∇w n | 2 dx ≤ c 4 Ω β d α |∇w n | 2 dx + Ω β d α-2 w 2 n dx . Note that α -2 > -1. Now Ω β d α-2 w 2 n dx = 1 α -1 Ω β w 2 n div(d α-1 ∇d)dx - 1 α -1 Ω β (d α-1 (∆d)w 2 n dx. Now since |∆d(x)| < c 5 , ∀x ∈ Ω β0 , we have 1 α -1 Ω β d α-1 (∆d)w 2 n dx ≤ c 5 β α-1 0 α -1 Ω β w 2 n dx.
Also

Ω β w 2 n div(d α-1 ∇d)dx = 2 Ω β w n d α 2 d α 2 -1 ∇d.∇w n dx ≤ c 6 Ω β d α |∇w n | 2 dx + δ Ω β d α-2 w 2 n dx,
where c 6 = c 6 (δ) > 0. The result follows in this case, if we choose δ small enough and then let n → ∞.

(ii) By the same calculations we have

Ω d -p 2 |w n | p dx ≤ c 7 Ω β d p 2 |∇w n | p dx ≤ c 7 Ω d(x)dx p 2 Ω β d|∇w n | 2 dx.
In the following statement we prove regularity up to the boundary for the function u φκ . Proposition 2.8. Let f 0 ∈ L 2 (Ω). Then there exists a unique u ∈ H

1 loc (Ω) such that φ -1 κ u ∈ H 1 (Ω, d α+ (x)dx), satisfying (2.14). Furthermore, if f 1 := f0 φκ ∈ L q (Ω, φ 2 κ dx), q > N +α+ 2
, then there exists 0 < β < 1 such that sup

x,y∈Ω, x =y |x -y| -β u(x) φ κ (x) - u(y) φ κ (y) < c 8 ||f 1 || L q (Ω,φ 2 κ dx) .
(2.17)

Proof. If there exists a solution u, then ψ = u φκ satisfies

-φ -2 κ div(φ 2 κ ∇ψ) + λ κ ψ = φ -1 κ f 0 , (2.18) 
and we recall that

φ κ (x) ≈ d α + 2 (x). We endow the space H 1 (Ω, φ 2 κ dx) with the inner product a, b = Ω (∇a.∇b + λ κ ab) φ 2 κ dx.
By a solution ψ of (2.18) we mean that ψ ∈ H

1 0 (Ω, φ 2 κ dx) satisfies ∇ψ, ∇ζ = Ω ∇ψ.∇ζ φ 2 κ dx + λ κ Ω ψζφ 2 κ dx = Ω f 0 ζφ κ dx ∀ζ ∈ H 1 0 (Ω, φ 2 κ dx). (2.19)
By Riesz's representation theorem we derive the existence and uniqueness of the solution in this space. Since H 1 (Ω, φ 2 κ dx) = H 1 0 (Ω, φ 2 κ dx) by [START_REF] Filippas | Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains[END_REF]Th 2.11], any weak solution u of (2.14) such that φ -1 κ u ∈ H 1 (Ω, φ 2 κ dx) is obtained by the above method. Finally if f 0 ∈ L q (Ω, φ 2 κ dx), where q > N +α+ 2 , thanks to (2.9) we can prove the estimate

||ψ|| L ∞ (Ω) ≤ c 8 ||f 0 || L q (Ω,φ 2 κ dx) , (2.20) 
where c 8 = c 8 (Ω, κ, q). Then we can apply the Moser iteration (see subsection 6.3) to derive the Hölder regularity up to the boundary.

In the next results we make more precise the rate of convergence of a solution of (2.14) to its boundary value.

Proposition 2.9. Assume κ < 1 4 . If f 0 ∈ L 2 (Ω) and h ∈ H 1 (Ω) there exists a unique weak solution u of (2.14) belonging to H 1 loc (Ω) and such that

d -α + 2 (u -d α - 2 h) ∈ H 1 (Ω, d α+ (x)dx). Furthermore, if f 1 := f0 φκ ∈ L q (Ω, φ 2 κ dx), q > n+α 2 and h ∈ C 2 (Ω)
, then there exists 0 < β < 1 with the property that

lim x∈Ω, x→y∈∂Ω u(x) (d(x)) α - 2 = h(y) ∀y ∈ ∂Ω,
uniformly with respect to y,

u d α - 2 L ∞ (Ω) ≤ c 9 ||h|| C 2 (Ω) + ||f 1 || L q (Ω,φ 2 κ dx) , and 
sup x,y∈Ω, x =y |x -y| -β u(x) (d(x)) α - 2 - u(y) (d(y)) α - 2 ≤ c 10 ||h|| C 2 (Ω) + ||f 1 || L q (Ω,φ 2 κ dx) , (2.21) 
with c 9 and c 10 depending on Ω, N, q, and κ.

Remark. By Lemma 2.7 we already know that ud α -

2 h ∈ H 1 0 (Ω). Proof. Let β ≤ β 0 and η ∈ C 2 (Ω) be a function such that η = d α - 2 (x) in Ω β and η(x) > c > 0, if x ∈ Ω ′ β . We set u = φ κ v + ηh. Then v is a weak solution of - div(φ 2 κ ∇v) φ 2 κ + λ κ v = 1 φ κ f 0 + (∆η + κ η d 2 )h + 2∇η.∇h + η∆h , (2.22) 
in the sense that

Ω ∇v.∇ψ φ 2 κ dx + λ κ Ω v ψ φ 2 κ dx = Ω f 0 + (∆η + κ η d 2 )h + 2∇η.∇h ψ φ κ dx - Ω ∇h.∇ (ηψ φ κ ) dx ∀ψ ∈ C ∞ 0 (Ω). (2.23) Let ψ ∈ C ∞ 0 (Ω β )
. By an argument similar to the one in the proof of Lemma 2.7 we have

Ω ψ 2 dx = Ω β ψ 2 dx = Ω β div(d∇d)|ψ| 2 dx - Ω β d∆d|ψ| 2 dx, which implies Ω β ψ 2 dx ≤ c ′ 10 Ω β d 2 |∇ψ| 2 dx ≤ c 11 Ω β d α+ |∇ψ| 2 dx. (2.24) 
Now

Ω β (∆η + κ η d 2 )h + 2∇η.∇h ψ φ κ dx ≤ c 12 Ω β ψ 2 dx,
and

Ω β ∇h.∇ (ηψ φ κ ) dx ≤ c 13 Ω β |∇h| 2 dx + Ω β d α+ |∇ψ| 2 dx + Ω β ψ 2 dx .
By (2.24) we can take ψ ∈ H 

if ψ ∈ C ∞ 0 (Ω ε ) Ω ψdx = - Ωε d∇d.∇ψdx - Ωε d∆dψdx.
Since

Ω (∆η + κ η d 2 )h + 2∇η.∇h + η∆h ψ φ κ dx ≤ c 14 ||h|| C 2 (Ω) Ω |ψ|dx ≤ 1 2 Ωε d α+ |∇ψ| 2 dx + c 15 (Ω, κ)||h|| C 2 (Ω) ,
we use again (2.9) and Moser's iterative scheme as in Proposition 2.8, and we obtain

||v|| L ∞ (Ω) ≤ c 9 ||h|| C 2 (Ω) + ||f 0 || L q (Ω,φ 2 κ dx) ,
where c 9 = c 9 (Ω, q, κ) > 0. From inequality it follows that v is Hölder continuous up to the boundary and the uniform convergence holds.

Proposition 2.10.

Assume κ = 1 4 . If f 0 ∈ L 2 (Ω) and h ∈ H 1 (Ω), there exists a unique function u in H 1 loc (Ω) weak solution of L 1 4 u = f 0 verifying d -1 2 (u -d 1 2 | log d|h) ∈ H 1 (Ω, d(x)dx). Furthermore, if f 1 := f0 φ 1 4 ∈ L q (Ω), q > n+1 2 and h ∈ C 2 (Ω), then there exists 0 < β < 1 such that lim x∈Ω, x→y∈∂Ω u d 1 2 | log d| (x) = h(y) ∀y ∈ ∂Ω,
uniformly with respect to y,

u √ d | log d D0 | L ∞ (Ω) ≤ c 16 ||h|| C 2 (Ω) + ||f 1 || L q (Ω,φ 2 1 4 dx)
where D 0 = 2 sup x∈Ω d(x). Finally there holds

sup x,y∈Ω, x =y |x -y| -β u(x) d(x)| log d(x) D0 | - u(y) d(y)| log d(y) D0 | < c 17 ||h|| C 2 (Ω) + ||f 1 || L q (Ω,φ 2 1 4
dx) .

(2.25)

Proof. Using again Lemma 2.7, we know that ud

1 2 | log d|h ∈ W 1,p 0 (Ω), ∀p < 2.
The proof is very similar to the proof of Proposition 2.9. The only differences are we impose η = d In the next result we prove that the boundary Harnack inequality holds, provided the vanishing property of a solution is understood in a an appropriate way.

Proposition 2.11. Let δ > 0 be small enough, ξ ∈ ∂Ω and u ∈ H 1 loc (B δ (ξ) ∩ Ω) ∩ C(B δ (ξ) ∩ Ω) be a positive L 1 4 -harmonic function in B δ (ξ) ∩ Ω vanishing on ∂Ω ∩ B δ (ξ) in the sense that lim dist (x,K)→0 u(x) d 1 2 (x)| log d(x)| = 0 ∀K ⊂ ∂Ω ∩ B δ (ξ) , K compact. (2.26)
Then there exists a constant c 18 = c 18 (N, Ω, κ) > 0 such that

u(x) φ 1 4 (x) ≤ c 18 u(y) φ 1 4 (y) ∀x, y ∈ Ω ∩ B δ 2 (ξ).
Proof. We already know that u

∈ C 2 (Ω). Let δ ≤ min(β 0 , 1 2 ) such that B δ (ξ) ∩ Ω ⊂ Ω δ ⊂ Ω β0 . By [4, Lemma 2.8] there exists a positive supersolution ζ ∈ C 2 (Ω δ ) of (1.3) in Ω δ with the following behaviour ζ(x) ≈ d 1 2 (x) log 1 d(x) 1 + c 19 log 1 d(x) -β
, for some β ∈ (0, 1) and

c 19 = c 19 (Ω) > 0. Set v = ζ -1 u, then it satisfies -ζ -2 div(ζ 2 ∇v) ≤ 0 in B δ (ξ) ∩ Ω.
(2.27)

Let η ∈ C ∞ 0 (B δ (ξ)) such that 0 ≤ η ≤ 1 and η = 1 in B 3δ 4 
(ξ). We set v s = η 2 (vs) + Since by assumption v s has compact support in B δ (ξ) ∩ Ω, we can use it as a test function in (2.27) and we get

B δ (ξ)∩Ω ζ 2 ∇v.∇v s dx = B δ (ξ)∩Ω ζ 2 ∇(v -s) + .∇v s dx ≤ 0, (2.28) 
which yields

B δ (ξ)∩Ω |∇(v -s) + | 2 ζ 2 η 2 dx ≤ 4 B δ (ξ)∩Ω |∇η| 2 (v -s) 2 + ζ 2 dx.
Letting s → 0 we derive

B δ (ξ)∩Ω |∇v| 2 ζ 2 η 2 dx ≤ 4 B δ (ξ)∩Ω |∇η| 2 v 2 ζ 2 dx. Since |∇(v -s) + | 2 ζ 2 η 2 ↑ |∇v| 2 ζ 2 η 2 as s → 0,
and convergence of ∇(vs) + to ∇v holds a.e. in Ω, it follows by the monotone convergence theorem

lim s→0 B δ (ξ)∩Ω |∇(v -(v -s) + )| 2 ζ 2 η 2 dx = 0. (2.29) Finally ζv s → η 2 ζv in H 1 (B δ (ξ) ∩ Ω), which yields in particular η 2 u = η 2 ζv ∈ H 1 0 (B δ (ξ) ∩ Ω).
Step 2. By [4, Lemma 2.8] there exists a positive subsolution h ∈ C 2 (Ω δ ) of (1.3) in Ω δ with the following behaviour

h(x) ≈ d 1 2 (x) log 1 d(x) 1 -c 20 log 1 d(x) -β
, where β ∈ (0, 1) and c 20 = c 20 (Ω) > 0. Set w = h -1 u and w s = η 2 (ws) + . Then w s → η 2 w in H 1 (B δ (ξ) ∩ Ω) by Step 1. Put u s = hw s , thus, for 0 < s, s ′ , we have

B δ (ξ)∩Ω |∇(u s -u s ′ )| 2 dx - 1 4 B δ (ξ) |u s -u s ′ | 2 d 2 (x) dx = B δ (ξ)∩Ω h 2 |∇(w s -w s ′ )| 2 dx (2.30) + B δ (ξ)∩Ω |∇h| 2 |w s -w s ′ | 2 dx + B δ (ξ)∩Ω h∇h.∇(u s -u s ′ ) 2 dx - 1 4 B δ (ξ)∩Ω h 2 |w s -w s ′ | 2 d 2 (x) dx ≤ B δ (ξ)∩Ω h 2 |∇(w s -w s ′ )| 2 dx,
where, in the last inequality, we have performed by parts integration and then used the fact that h is a subsolution. Thus we have by (2.29) that

lim s,s ′ →0 B δ (ξ) |∇(u s -u s ′ )| 2 dx - 1 4 B δ (ξ) |u s -u s ′ | 2 d 2 (x) dx = 0. (2.31) 
Step 3. Let W(Ω) denote the closure of C ∞ 0 (Ω) in the space of functions φ satisfying

||φ|| 2 H := Ω |∇Φ| 2 dx - 1 4 Ω |Φ| 2 d 2 (x) dx < ∞. Thus η 2 u ∈ W(Ω), which implies ηu φ 1 4 ∈ H 1 0 (Ω, d(x)dx).
Next we set ṽ = φ -1 ∇ṽ) + λ 1 4 ṽ = 0.

Put ṽ * (x, t) = e tλ 1 4 ṽ, then ṽ * satisfies

ṽ * t -φ -2 1 4 div(φ 2 1 4 ∇ṽ * ) = 0 (2.32)
in the weak sense of [START_REF] Filippas | Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains[END_REF]Definition 2.9]. By [14, Theorem 1.5], ṽ * satisfies a Harnack inequality up to the boundary of Ω in the sense that ess sup ṽ * (y, t) : (y, t)

∈ B r 2 (ξ) × [ r 2 4 , r 2 2 ] ≤ C ess inf ṽ * (y, t) : (y, t) ∈ B r 2 (ξ) × [ 3r 2 4 , r 2 ] (2.33)
where B r 2 (ξ) is a Lipschitz deformed Euclidean ball (see [14, p. 244] and Definition 6.6). Since r is bounded and ṽ satisfies the same estimate up to a constant depending on Ω and finally there exists a constant c 18 = c 18 (Ω) > 0 such that

v(x) ≤ c 18 v(y) ∀x, y ∈ B δ 2 (ξ).
The result follows.

In the case κ < 1 4 , the result holds with minor modifications. Proposition 2.12. Let δ > 0 be small enough, ξ ∈ Ω, 0 < κ < 1 4 and u ∈ H 1 loc (B δ (ξ)∩Ω)∩C(B δ (ξ)∩ Ω) be a nonnegative L κ -harmonic in B δ (ξ) vanishing on ∂Ω ∩ B δ (ξ) in the sense that

lim dist (x,K)→0 u(x) (d(x)) α - 2 = 0 ∀K ⊂ ∂Ω ∩ B δ (ξ) , K compact. (2.34)
Then there exists

c 21 = c 21 (Ω, κ) > 0 such that u(x) φ κ (x) ≤ c 21 u(y) φ κ (y) ∀x, y ∈ Ω ∩ B δ 2 (ξ).
Proof. As in the previous proof we apply [START_REF] Bandle | Boundary blow up type sub-solutions to semilinear elliptic equations with Hardy potential[END_REF]Lemma 2.8], we consider a super-solution

ζ ≈ d α-(1 + c 19 d β ) and a sub-h ≈ d α-(1 -c 20 d β ) where β ∈ (0, √ 1 -4κ). Thus ηu φ κ ∈ H 1 0 (Ω, d α+ (x)dx),
where η is a cut-off function adapted to B r (ξ). The function ṽ = φ -1 κ u satisfies -φ -2 κ div(φ 2 κ ∇ṽ) + λ κ ṽ = 0, and ṽ ∈ H 1 0 (B 3δ 4 (ξ), d α+ (x)dx). Then the proof follows as in the previous Proposition. Then u ≤ 0.

Proof. We set v = max(u, 0) and we proceed as in the Step 1 of the proof of Proposition 2.11 with η = 1. The result follows by letting s → 0.

Similarly we have

Proposition 2.14.

Let u ∈ H 1 loc (Ω) ∩ C(Ω) be a L κ -subharmonic function such that lim sup d(x)→0 u(x) (d(x)) α - 2 ≤ 0.
Then u ≤ 0.

The two next statements shows that comparison holds provided comparable boundary data are achieved in way which takes into account the specific form of the L κ -harmonic functions Proposition 2.15. Assume κ < 1 4 and

h i ∈ H 1 (Ω) (i=1,2). Let u i ∈ H 1 loc (Ω) be two L κ -harmonic functions such that d -α + 2 u i -d α - 2 h i ∈ H 1 (Ω, d α+ (x)dx). Then If h 1 ≤ h 2 a.e. in Ω, there holds u 1 (x) ≤ u 2 (x) ∀x ∈ Ω. If h 1 -h 2 ∈ H 1 0 (Ω), there holds u 1 (x) = u 2 (x) ∀x ∈ Ω. Proof. Set w = φ -1 κ (u 1 -u 2 ), then w ∈ H 1 (Ω, φ 2 κ dx) and -div(φ 2 κ ∇w) + λ κ φ 2 κ w = 0 Since H 1 (Ω, φ 2 κ dx) = H 1 0 (Ω, φ 2 κ dx
) by (2.5) we derive that w and w + belong to H 1 0 (Ω, φ 2 κ dx) and, integrating by part, we derive w + = 0. The proof of the second statement is similar.

In the same way we have in the case κ = 1 4 . Proposition 2.16.

Assume κ = 1 4 . Let h i ∈ H 1 (Ω) (i=1,2) and let u i ∈ H 1 loc (Ω) be two L 1 4 -harmonic functions such that d -1 2 (u i -d 1 2 | log d|h i ) ∈ H 1 (Ω, d(x)dx). (i) If h 1 ≤ h 2 a.e. in Ω, then u 1 (x) ≤ u 2 (x) ∀x ∈ Ω. (ii) If h 1 -h 2 ∈ H 1 0 (Ω), then u 1 (x) = u 2 (x) ∀x ∈ Ω.
We end with existence and uniqueness results for solving the Dirichlet problem associated to L κ .

Proposition 2.17. Assume κ = 1 4 . For any h ∈ C(∂Ω) there exists a unique L 

u m d 1 2 | log d| (x) = h m (y)
uniformly for y ∈ ∂Ω.

By Proposition 2.10 we have

u m -u n d 1 2 | log d D0 | L ∞ (Ω) ≤ c 16 ||h m -h n || C(∂Ω) .
Thus there exists u such that

lim m→∞ u m -u d 1 2 | log d D0 | L ∞ (Ω) = 0 and u is a solution of L 1 4 u = 0. Let x ∈ Ω, with d(x) < 1 2 and y ∈ ∂Ω u d 1 2 | log d| (x) -h(y) ≤ u d 1 2 | log d| (x) - u m d 1 2 | log d| (x) + u m d 1 2 | log d| (x) -h m (y) + |h(y) -h m (y)|.
The result follows by letting successively x → y and m → ∞.

Similarly we have

Proposition 2.18. Assume κ < 1 4 . Then for any h ∈ C(∂Ω) there exists a unique L κ -harmonic function

u ∈ H 1 loc (Ω) satisfying lim x∈Ω, x→y∈∂Ω u d α - 2 (x) = h(y)
uniformly for y ∈ ∂Ω.

Furthermore there exists a constant c 9 = c 9 (Ω, κ) > 0 such that

u d α-L ∞ (Ω) ≤ c 9 ||h|| C(∂Ω) .
A useful consequence of [4, Lemma 2.8] and Propositions 2.9 and 2.10 is the following local existence result.

Proposition 2.19. There exists a positive L κ -harmonic function

Z κ ∈ C(Ω β0 ) ∩ C 2 (Ω β0 ) satisfying lim d(x)→0 Z 1 4 (x) d(x)| ln d(x)| = 0 (2.35) if κ = 1 4
, and lim

d(x)→0 Z κ (x) (d(x)) α - 2 = 0 (2.36) if 0 < κ < 1 4 . 2.3 L κ -harmonic measure Let x 0 ∈ Ω, h ∈ C(∂Ω) and denote L κ,x (h) := v h (x 0 )
where v h is the solution of the Dirichlet problem (see Propositions 2.17 and 2.18)

L κ v = 0 in Ω v = h in ∂Ω, (2.37) 
where v takes the boundary data in the sense of Lemmas 2.17 and 2.18. By Lemma's 2.14 and 2.13, the mapping h → L κ,x0 (h) is a linear positive functional on C(∂Ω). Thus there exists a unique Borel measure on ∂Ω, called L κ -harmonic measure in Ω, denoted by ω x0 , such that

v h (x 0 ) = ∂Ω h(y)dω x0 (y).
Thanks to Harnack inequality the measures ω x and ω x0 , x 0 , x ∈ Ω are mutually absolutely continuous.

For every fixed x we denote the Radon-Nikodyn derivative by

K Lκ (x, y) := dw x dw x0 (y) for ω x0 -almost all y ∈ ∂Ω.
It is classical that the following formula is an equivalent definition of the L κ -harmonic measure: for any closed set

E ⊂ ∂Ω ω x0 (E) = inf ψ : ψ ∈ C + (Ω) , L κ -superhamornic in Ω s.t. lim inf x→E ψ(x) W (x) ≥ 1 ,
where

W (x) = d α - 2 (x) if κ < 1 4 , d 1 2 (x)| log d(x)| if κ = 1 4 .
The extension to open sets is standard. Let ξ ∈ ∂Ω. We set ∆ r (ξ) = ∂Ω ∩ B r (ξ) and x r = x r (ξ) ∈ Ω, such that d(x r ) = |x r -ξ| = r. Also x r (ξ) = ξrn ξ where n ξ is the unit outward normal vector to ∂Ω at ξ. We recall that β 0 = β 0 (Ω) > 0 has been defined in Lemma 2.7.

Lemma 2.20. There exists a constant c 25 > 0 which depends only on Ω and κ such that if 0 < r ≤ β 0 and ξ ∈ ∂Ω, there holds

ω x (∆ r (ξ)) W (x) ≥ c 25 ∀x ∈ Ω ∩ B r 2 (ξ). (2.38) 
Proof. Let h ∈ C(∂Ω) be a function with compact support in ∆ r (ξ), 0 ≤ h ≤ 1 and h = 1 on ∆ 3r 4 (ξ). And let v h , v 1 the corresponding L κ -harmonic functions with respective boundary data (in the sense of Lemmas 2.17 and 2.18) h and 1 . Then v 1 (x) ≥ v h (x) ≥ 0 and

lim x∈Ω, x→x0 v 1 (x) -v h (x) W (x) = 0 ∀x 0 ∈ Ω ∩ B 3r 4 (ξ).
By Lemmas 2.12 and 2.11, and

φ κ ≈ d α + 2 , there exists c 26 = c 26 (Ω, κ) > 0 such that v 1 (x) -v h (x) d α + 2 (x) ≤ c 26 v 1 (y) -v h (y) d α + 2 (y) ∀x, y ∈ Ω ∩ B r 2 (ξ).
We consider first the case κ = 1 4 . By Proposition 2.10, we have

0 ≤ v 1 (y) -v h (y) d 1 2 (y) ≤ v 1 (y) d 1 2 (y) ≤ c 24 | log d(y)|.
Thus, combining all above we have that

v 1 (x) d 1 2 (x)| log d(x)| -c 27 | log d(y)| | log d(x)| ≤ v h (x) d 1 2 (x)| log d(x)| .
Now by Lemma 2.10, there exists ε 0 > 0 such that

v 1 (x) d 1 2 (x)| log d(x)| > 1 2 ∀x ∈ Ω ε0 .
Thus if we choose y such that d(y) = r 4 , there exists a constant c 27 = c 27 (Ω, κ) > 0 such that

c 27 | log d(y)| | log d(x)| = c 27 | log r 4 | | log d(x)| ≤ c 27 | log r 4 | | log r D0 | ≤ 1 4 ∀x ∈ Ω r D 0 , thus v h (x) d 1 2 (x)| log d(x)| ≥ 1 4 ∀x ∈ B r 2 (ξ) ∩ Ω r D 0 . (2.39) In particular v h (x a * r (ξ)) √ a * r| log(a * r)| ≥ 1 4 , (2.40) 
where

a * = (max{2, D 0 }) -1 . If D 0 ≤ 2 we obtain the claim. If D 0 > 2, set k * = E[ D0 2 ] + 1 (we recall that E[x] denotes the largest integer less or equal to x). If x ∈ B r 2 (ξ) ∩ Ω ′ r D 0
there exists a chain of at most 4k * points {z j } j=j0 j=0 such that

z j ∈ B r 2 (ξ) ∩ Ω, d(z j ) ≥ a * r, z 0 = x a * r (ξ), z j0 = x and |z j -z j+1 | ≤ a * r 4 . By Harnack inequality (applied j 0 -times) v h (x a * r (ξ)) ≤ c 28 v h (x). (2.41) Since W (x a * r (ξ)) ≥ (a * ) 1 2 W (x),
we obtain finally

1 4 ≤ ω x a * r (ξ) (∆ r (ξ)) √ a * r| log(a * r)| ≤ c 28 1 a * 1 2 ω x (∆ r (ξ)) W (x) ∀x ∈ Ω ∩ B r 2 (ξ). (2.42) 
In the case κ < 1 4 , the proof is simpler since no log term appears and we omit it.

The next result is a Carleson type estimate valid for positive L κ -harmonic functions.

Lemma 2.21. There exists a constant c 29 which depends on Ω and κ such that for any ξ ∈ ∂Ω and

0 < r ≤ s ≤ β 0 . , ω x (∆ r (ξ)) W (x) ≤ c 29 ω xs(ξ) (∆ r (ξ)) W (x s (ξ)) ∀x ∈ Ω \ B s (ξ).
(2.43)

Proof. Let h ∈ C(∂Ω) with compact support in ∆ r (ξ)) and 0 ≤ h ≤ 1. We denote by v h , v 1 , the solutions of (2.37) with boundary data h and 1 respectively. By Propositions 2.17 and 2.18 there exists a constant c 30 > 0 such that for 0 < r < β 0 ,

v h W (x) ≤ ω x (∆ r (ξ)) W (x) ≤ ω x (∂Ω) W (x) ≤ c 30 ∀x ∈ Ω.
(2.44) By Propositions 2.17 and 2.18, there holds

lim d(x)→0 v 1 (x) W (x) = 1, (2.45) 
thus we can replace W by v 1 in (2.43). Since w h = v h (x) v1(x) is Hölder continuous in Ω and satisfies

-div(v 2 1 ∇w h ) = 0 in Ω \ B s (ξ) 0 ≤ w h ≤ 1 in Ω \ B s (ξ) w h = 0 in ∂Ω \ B s (ξ), (2.46) 
the maximum of w h is achieved on Ω ∩ ∂B s (ξ), therefore it is sufficient to prove the Carleson estimate

w h (x) ≤ c 29 w h (x s (ξ)) ∀x ∈ Ω ∩ ∂B s (ξ).
(2.47)

If x such that |x -ξ| = s is "far" from ∂Ω, w h (x) is "controled" by w h (x s (ξ)) thanks to Harnack inequality, while if it is close to ∂Ω, w h (x) is "controled by the fact that it vanishes on ∂Ω ∩ ∂B s (ξ).

We also note that (2.38) can be written under the form

w h (x) ≥ c 25 ∀x ∈ Ω ∩ B r 2 (ξ).
(2.48)

Step 1. : r ≤ s ≤ 4r. By Lemma 2.20, (2.44) and the above inequality we have that

w h (x r 2 (ξ)) ≥ c 25 c 30 w h (x) ∀x ∈ Ω.
Applying Harnack inequality to w h in the balls B (2+j)r 4 (x (2+j)r 4 (ξ)) for j = 0, ..., j 0 ≤ 14, we obtain

w h (x (2+j)r 4 (ξ)) ≥ c j 31 w h (x r 2 (ξ)) for j = 1, ..., j 0 .
This implies

w h (x s (ξ)) ≥ c 32 w h (x) ∀x ∈ Ω. (2.49) 
Step 2: β 0 ≥ s > 4r. We apply Propositions 2.11, 2.12 to

w h in B s 2 (ξ 1 ) ∩ Ω where ξ 1 ∈ ∂Ω is such that |ξ -ξ 1 | = s and we get w h (x) ≤ c 18 w h (x s 4 (ξ 1 )) ∀x ∈ B s 4 (ξ 1 ) ∩ Ω. (2.50) 
Then we apply six times Harnack inequality to w h between x s 4 (ξ 1 ) and x s (ξ) and obtain w h (x s 4 (ξ 1 )) ≤ c 33 w h (x s (ξ 1 )).

(2.51)

Combining (2.50) and (2.51) we derive (2.47).

Step 3.

For ǫ > 0, set z h = w h -c 33 w h (x s (ξ)) -ǫ. Then z + h has compact support in Ω \ B s (ξ) and thus belongs to H 1 0 (Ω \ B s (ξ)).
Integration by parts in (2.46) leads to

Ω\Bs(ξ) v 2 1 |∇z + h | 2 dx = 0. (2.52) 
Then z + h = 0 by letting ǫ → 0. Combining with (2.49) and h ↑ χ ∆r(ξ) implies (2.43).

Theorem 2.22. There exists a constant c 34 which depends on Ω and κ such that, for any 0 < r ≤ β 0 and ξ ∈ ∂Ω, there holds

1 c 34 r N -1-1 2 | log r|G L 1 4 (x r (ξ), x) ≤ ω x (∆ r (ξ)) ≤ c 34 r N -1-1 2 | log r|G L 1 4 (x r (ξ), x) ∀x ∈ Ω\B 4r (ξ).
(2.53)

Proof. Let η ∈ C ∞ 0 (B 2r (ξ)) such that 0 ≤ η ≤ 1 and η = 1 in B r (ξ). We set u = η(-ln d) √ d := ηψ,
(we assume that 4r < 1), in order to have

lim x→x0 u(x) ψ(x) = η⌊ ∂Ω (x 0 ) = ζ(x 0 ) ∀x 0 ∈ ∂Ω,
uniformly with respect to x 0 . Since

-∆ψ - 1 4 ψ d 2 (x) = 2 + ln d 2 √ d ∆d = -(N -1) 2 + ln d 2 √ d K,
where K is the mean curvature of ∂Ω. We have also

|∇η| ≤ c 0 χ Ω∩B2r (ξ) 1 r and |∆η(x)| ≤ c 0 χ Ω∩B2r (ξ) 1 r 2 ≤ c 0 χ Ω∩B2r (ξ) 1 r d -1 (x), thus u satisfies -∆u - 1 4 u d 2 (x) = -ψ∆η + 2 + ln d 2 √ d (2∇d.∇η -(N -1)Kη) := f in Ω u = ζ on ∂Ω. Furthermore |f | ≤ c35 r (-ln d √ d )χ Ω∩B2r (ξ) since η vanishes outside B 2r (ξ).
We have by the representation formula [START_REF] Filippas | Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains[END_REF] 

0 = u(x) = Ω G L 1 4 (x, y)f dy + ∂Ω h(y)dω x (y) ∀x ∈ Ω \ B 2r (ξ).
(2.54) By Lemma 2.1, we have that for any x ∈ Ω \ B 4r (ξ) and y ∈ B 2r (ξ)

G L 1 4 (x, y) ≤ c 36 G L 1 4 (x, x r (ξ)), thus ω x (∆ r (ξ)) ≤ Ω∩B2r (ξ) G L 1 4 (x, y)|f (y)|dy ≤ c 37 r G L 1 4 (x, x r (ξ)) Ω∩B2r (ξ) | ln d(y)| d(y) dy ≤ c 38 G L 1 4 (x, x r (ξ))r N -1-1 2 | ln r|, (2.55) 
since

Ω∩B2r (ξ) | ln d(y)| d(y) dy ≤ c 39 r N -1 2r 0 | ln t|dt √ t ≤ 2c 39 r N -1 2 | ln r|.
This implies the right-hand side part of (2.53). For the opposite inequality we observe that if x ∈ ∂B 4r (ξ) ∩ Ω, there holds by (2.38)

r N -1-1 2 | log r|G L 1 4 (x r (ξ), x) ≤ c 40 r N -1-1 2 | log r| min 1 |x -x r (ξ)| N -2 , d(x) d(x r (ξ)) |x -x r (ξ)| N -1 ≤ c 41 d(x)| log r| ≤ c 42 W (x) ≤ c42 c25 ω x r 8 (ξ) (∆ r (ξ)).
We end the proof by Harnack inequality between ω

x r 8 (ξ) (∆ r (ξ)) and ω x4r (ξ) (∆ r (ξ)) and by Harnack inequality between ω x (∆ r (ξ)) and ω x4r(ξ) (∆ r (ξ)) on ∂B 4r (ξ) and an argument like in the step 3 in Lemma 2.21.

Replacing, in the last proof, the function

ψ = √ d(-ln d) by ψ = d α -
2 , we obtain similarly the following two-side estimate Theorem 2.23. Assume κ < 1 4 . There exists a constant c 42 which depends only on Ω and κ such that, for any 0 < r ≤ β 0 and ξ ∈ ∂Ω, there holds

1 c 42 r N -2+ α - 2 G Lκ (x r (ξ), x) ≤ ω x (∆ r (ξ)) ≤ c 42 r N -2+ α - 2 G Lκ (x r (ξ), x) ∀x ∈ Ω \ B 4r (ξ).
As a consequence of Theorems 2.22 and 2.23 and the Harnack inequality, the harmonic measure for L κ possesses the doubling property.

Theorem 2.24. Let 0 < κ ≤ 1 4 . There exists a constant c 42 which depends only on Ω, κ such that for any 0 < r ≤ β 0 , there holds

ω x (∆ 2r (ξ)) ≤ c 42 ω x (∆ r (ξ)) ∀x ∈ Ω \ B 4r (ξ).
The next result will be useful in the study of the Poisson kernel of L κ .

Lemma 2.25. Let 0 < r ≤ β 0 and u be a positive L κ -harmonic function such that

(i) u ∈ C(Ω \ B r (ξ)), (ii) 
lim x→x0 u(x) W (x) = 0 ∀x 0 ∈ Ω \ B r (ξ),
uniformy with respect to x 0 . Then

c -1 42 u(x r (ξ)) W (x r (ξ)) w x (∆ r (ξ)) ≤ u(x) ≤ c 42 u(x r (ξ)) W (x r (ξ)) w x (∆ r (ξ)) ∀x ∈ Ω \ B 2r (ξ),
with c 42 depends only on κ and Ω.

Proof. It follows from Propositions 2.11, 2.12 that there exists C > 0 such that

1 C u(x 2r (ξ)) w x2r (ξ) (∆ r (ξ)) ≤ u(x) w x (∆ r (ξ)) ≤ C u(x 2r (ξ)) w x2r (ξ) (∆ r (ξ)) ∀x ∈ Ω ∩ ∂B 2r (ξ).
Applying Harnack inequality between x 2r (ξ) and x r (ξ) we obtain

1 C u(x r (ξ)) w xr (ξ) (∆ r (ξ)) ≤ u(x) w x (∆ r (ξ)) ≤ C u(x r (ξ)) w xr (ξ) (∆ r (ξ)) ∀x ∈ Ω ∩ ∂B 2r (ξ).
Also by Harnack inequality we have that

w xr (ξ) (∆ r (ξ)) ≥ Cw x r 2 (ξ) (∆ r (ξ)) > C 0 W (x r (ξ)),
where in the last inequality above we have used Lemma 2.20. Combining all the above inequalities, we derive

C -1 u(x r (ξ)) W (x r (ξ)) w x (∆ r (ξ)) ≤ u(x) ≤ C u(x r (ξ)) W (x r (ξ)) w x (∆ r (ξ)) ∀x ∈ Ω ∩ ∂B 2r (ξ).
The result follows by an argument similar to step 3 in Lemma 2.21.

The Poisson kernel of L κ

In this section we establish some properties of the Poisson kernel associated to L κ .

Definition 2.26. Fix ξ ∈ ∂Ω. A function K defined in Ω is called a kernel function at ξ with pole at

x 0 ∈ Ω if (i) K(•, ξ) is L κ -harmonic in Ω, (ii) K(•, ξ) ∈ C(Ω \ {ξ}) and for any η ∈ ∂Ω \ {ξ} lim x→η K(x, ξ) W (x) = 0, (iii) K(x, ξ) > 0 for each x ∈ Ω and K(x 0 , ξ) = 1.
Proposition 2.27. There exists one and only one kernel function for L κ at ξ with pole at x 0 .

Proof. The proof is similar as the one of [9, Th. 3.1] and we indicate it for the sake of completeness. Set

u n (x) = w x (∆ 2 -n (ξ)) w x0 (∆ 2 -n (ξ)) . Since u n ≥ 0, L κ u n = 0 in Ω and u n (x 0 ) = 1 the sequence {u n } is locally bounded in Ω by Harnack inequality.
Hence we can find a subsequence, again denoted by {u n }, which converges to a function u, locally uniformly in Ω.

It is clear that u ≥ 0 in Ω and L κ u = 0 in Ω. Since u(x 0 ) = 1, u is strictly positive in Ω. Now fix P ∈ ∂Ω and P = ξ. Let n 0 ∈ N be such that P ∈ Ω \ B 2 n+1 (ξ), ∀n ≥ n 0 .
By Lemma 2.25 if we take n 0 sufficiently large, we have

u n (x) ≤ c 42 u n (x 2 -n 0 (ξ)) W (x 2 -n 0 (ξ)) w x (∆ 2 -n 0 (ξ)) ∀x ∈ Ω \ B 2 -n 0 +1 (ξ), which implies u(x) ≤ c 42 u(x 2 -n 0 (ξ)) W (x 2 -n 0 (ξ)) w x (∆ 2 -n 0 (ξ)) ∀x ∈ Ω \ B 2 -n 0 +1 (ξ),
and thus

lim x→P u(x) W (x) = 0.
We now turn to the question of uniqueness of the kernel function. Let us consider two arbitrary kernel functions f and g for L κ in Ω at ξ. By Lemma 2.25 and the properties of f, g there holds

1 c 2 42 f (x r (ξ)) g(x r (ξ)) ≤ f (x) g(x) ≤ c 2 42 f (x r (ξ)) g(x r (ξ)) ∀x ∈ Ω \ B 2r (ξ).
In particular we can obtain if we take

x = x 0 f (x r (ξ)) g(x r (ξ)) ≤ c 2 42 ,
and we obtain, using again Harnack,

f (x) g(x) ≤ c 3 42 := c ∀x ∈ Ω.
We derive that for any two kernel functions f and g for L κ at ξ there holds

f (x) ≤ cg(x) ≤ c 2 f (x) ∀x ∈ Ω. (2.56) Obviously c ≥ 1. If c = 1 the result is proved. If c > 1 then f + A(f -g) is also a Kernel function for L κ at ξ with A = 1 c-1 .
Since (2.56) holds for any kernel functions,

g ≤ c(f + A(f -g)),
and therefore

f + A(f -g) + A(f + A(f -g)),
is a kernel function at ξ. Proceeding in the above manner and by induction we conclude that for each positive integer k there exists nonnegative numbers a 1k , ..., a kk such that

f + kA + k i=1 a ik (f -g) is a kernel function at ξ. Hence f + kA + k i=1 a ik (f -g) ≤ c 2 f.
This last inequality can hold for all k only if f ≡ g.

We recall here that we denote by

K Lκ (x, ξ) := dw x dw x0 (ξ)
for ω x0 -almost all ξ ∈ ∂Ω, the kernel function in Ω. Also in view of the proof of Proposition 2.27 and by uniqueness we can write

K Lκ (x, ξ) = lim r→0 w x (∆ r (ξ)) w x0 (∆ r (ξ)) for ω x0 -almost all ξ ∈ ∂Ω.
Proposition 2.28. For any x ∈ Ω, the function ξ → K Lκ (x, ξ) is continuous on ∂Ω.

Proof. The proof is an adaptation of the one of [START_REF] Caffarelli | Boundary behavior of nonnegative solutions of elliptic operators in divergence form[END_REF]Corollary 3.2]. Suppose that ξ n → ξ as n → ∞.

Then the sequence, K(•, ξ n ), of positive solutions of L κ u = 0 has a subsequence which converges locally uniformly in Ω to a function which must be a positive solution of L κ u = 0 in Ω. Outside any fixed neighborhood, B, of ξ,

KL κ (x,ξn) W (x)
converges to zero uniformly in n as x → P ∈ ∂Ω\ B. Hence the limit function of the subsequence is the kernel function for L κ at ξ. By uniqueness of the kernel function we conclude that the convergence

K Lκ (x, ξ n ) → K Lκ (x, ξ)
holds for the entire sequence {ξ n }.

We can now identify the Martin boundary and topology with their classical analogues. We begin by recalling the definitions of the Martin boundary and related concepts. For x, y ∈ Ω we set

K κ (x, y) := G Lκ (x, y) G Lκ (x 0 , y) .
Consider the family of sequences {y k } k≥1 of points of Ω without cluster points in Ω for which K κ (x, y k ) converges in Ω to a harmonic function, denoted K κ (x, {y k }). Two such sequences y k and

y ′ k are called equivalent if K κ (x, {y k }) = K κ (x, {y ′ k })
and each equivalence class is called an element of the Martin boundary Γ. If Y is such an equivalence class (i.e., Y ∈ Γ) then K κ (x, Y ) will denote the corresponding harmonic limit function. Thus each Y ∈ Ω ∪ Γ is associated with a unique function K κ (x, Y ). The Martin topology on Ω ∪ Γ is given by the metric

ρ(Y, Y ′ ) = A |K κ (x, Y ) -K κ (x, Y ′ )| 1 + |K κ (x, Y ) -K κ (x, Y ′ )| dx Y, Y ′ ∈ Ω ∪ Γ,
where A is a small enough neighborhood of

x 0 . K κ (x, Y ) is a ρ -continuous function of Y ∈ Ω ∪ Γ
for xinΩ fixed, Ω ∪ Γ is compact and complete with respect to ρ, Ω ∪ Γ is the ρ-closure of Ω and the ρ-topology is equivalent to the Euclidean topology in Ω. We have the following results.

Proposition 2.29. There is a one-to-one correspondence between the Martin boundary of Ω and the Euclidean boundary ∂Ω.

If Y ∈ Γ corresponds to ξ ∈ ∂Ω then K κ (x, Y ) = K Lκ (x, ξ). The Martin topology on Ω ∪ Γ is equivalent to the Euclidean topology on Ω ∪ ∂Ω.
Proof. The proof is similar as the one of Theorem 4.2 in [START_REF] Hunt | Positive harmonic functions on Lipschitz domains[END_REF] and we recall it for the sake of completeness. By uniqueness of the kernel function we have that

K κ (x, {y k }) = K Lκ (x, ξ),
where {y k } is a sequence in Ω such that y k → ξ ∈ ∂Ω. It follows that each point of Γ may be associated with a point of ∂Ω. Lemma 2.25 clearly shows that

K Lκ (•, ξ) = K Lκ (•, ξ ′ ) if ξ = ξ ′ .
Hence, the functions K κ (x, y k ) cannot converge if the sequence y k has more than one cluster point on ∂Ω and different points of ∂Ω must be associated with different points of Γ. This gives a one-to-one correspondence between ∂Ω and Γ with 

K κ (x, Y ) = K Lκ (x, ξ) when Y ∈ Γ corresponds to ξ ∈ ∂Ω. If y k → ξ in the Euclidean topology then K κ (x, Y k ) → K κ (x,
1 c 43 d α + 2 (y) |ξ -y| N +α+-2 ≤ K Lκ (y, ξ) ≤ c 43 d α + 2 (y) |ξ -y| N +α+-2 .
(2.57)

Let us give a Lemma that we will use to prove the representation formula.

Lemma 2.31. Let ξ ∈ ∂Ω, r > 0 be small enough and u be a positive L κ -harmonic function in Ω. There exists a super L κ -harmonic function V such that

V (x) = v(x) in Ω \ B r (ξ) u(x) in Ω ∩ B r (ξ),
where v satisfies

L κ v = 0 in Ω \ B r (ξ) lim x→y v(x) = u(y) ∀y ∈ ∂B r (ξ) ∩ Ω lim x→y v(x) W (x) = 0 ∀y ∈ ∂Ω \ B r (ξ).
(2.58)

Proof. The function u is C 2 in Ω since it is L κ -harmonic. Let ξ 0 ∈ B r (ξ)
∩ Ω, and r 0 be such that B r0 (ξ 0 ) ⊂ Ω. We consider the problem

L κ w = 0, in Ω \ B r (ξ) lim x→y w(x) = η(y)w(y) ∀y ∈ ∂B r (ξ) ∩ Ω lim x→y w(x) W (x) = 0, ∀y ∈ ∂Ω \ B r (ξ), where η ∈ C ∞ 0 (B r 0 2 (ξ 0 )), 0 ≤ η ≤ 1.
In view of the proof of Propositions 2.9 and 2.10 we can find a positive solution of the above problem w. Also we note here that w ≤ u, and by Harnack inequalities 2.11 and 2.12, we have that for any

ζ ∈ ∂Ω w(x) φ κ (x) ≤ C(κ, N, Ω) w(y) φ κ (y) ∀x, y ∈ B ρ (ζ), where ρ ≤ 1 2 dist(ζ, ∂B r (ξ)). Thus we derive w(x) φ κ (x) ≤ C(κ, N, Ω) u(y) φ κ (y) ∀x, y ∈ B ρ (ζ).
The remaining of the proof is standard and we omit it.

We consider a increasing sequence of bounded smooth domains

{Ω n } such that Ω n ⊂ Ω n+1 , ∪ n Ω n = Ω and H N -1 (Ω n ) → H N -1 (Ω)
. Such a sequence is a smooth exhaustion of Ω. For each n, the operator L Ωn κ defined by

L Ωn κ u = -∆u - κ d 2 (x) u (2.59)
is uniformly elliptic and coercive in H 1 0 (Ω n ) and its first eigenvalue λ Ωn κ is larger than 

λ κ . If h ∈ C(∂Ω n ) the following problem L Ωn κ v = 0 in Ω n v = h on ∂Ω n , ( 2 
Z(x)W (x)dω x0 Ωn (x) = ∂Ω Z(x)dω x0 (x).
(2.63)

Proof. We recall that d ∈ C 2 (Ω ε ) for any 0 < ε ≤ β 0 and let n 0 ∈ N be such that dist(∂Ω n , ∂Ω) < β 0 2 ∀n ≥ n 0 .
For n ≥ n 0 let w n be the solution of

L Ωn κ w n = 0 in Ω n w n = W on ∂Ω n . (2.64)
It is straightforward to see that the proof of Propositions 2.17 and 2.18 it is inferred that there exists a positive constant c 44 = c 44 (Ω, κ) such that Then lim

w n L ∞ (Ωn) ≤ c 44 ∀n ≥ n 0 . Furthermore w n (x 0 ) = ∂Ωn W (x)dω x0 Ωn (x) < c 45 . ( 2 
d(x)→0 z(x) W (x) = ζ and z(x 0 ) = ∂Ω ζdω x0 .
By Propositions 2.17 and 2.18, z W ∈ C(Ω). Since z W ⌊ ∂Ωn converges uniformly to ζ as n → ∞, there holds

z(x 0 ) = ∂Ωn z⌊ ∂Ωn dω x0 Ωn = ∂Ωn W z⌊ ∂Ωn W dω x0 Ωn → ∂Ω ζdω as n → ∞.
It follows

∂Ω ζd ω = ∂Ω ζdω x0 ∀ζ ∈ C(∂Ω).
Consequently ω = dω x0 . Because the limit does not depend on the subsequence it follows that the whole sequence W (x)dω x0 Ωn converges weakly to w. This implies (2.63).

Theorem 2.33. Let u be a positive L κ -harmonic in the domain Ω. Then u ∈ L 1 φκ (Ω) and there exists a unique Radon measure µ on ∂Ω such that

u(x) = ∂Ω K Lκ (x, ξ)dµ(ξ).
Proof. The proof which is presented below follows the ideas of the one of [START_REF] Hunt | Positive harmonic functions on Lipschitz domains[END_REF]Th. 4.3]. Let B be a relatively closed subset of Ω. We define

R B u (x) := inf{ψ(x) : ψ is nonnegative supersolution in Ω with ψ ≥ u on B}.
For a closed subset F of ∂Ω, we define

µ x (F ) := inf{R Ω∩G u (x) : F ⊂ G, G open in R N }.
The set function µ x (F ) defines a regular Borel measure on ∂Ω for each fixed x ∈ Ω. Since µ x (F ) is a positive L κ -harmonic function in Ω the measures µ x are absolutely continuous with respect to µ x0 (F ) by Harnack's inequality. Hence,

µ x (F ) = F dµ x (F )(y) = F dµ x (F ) dµ x0 (F ) dµ x0 (y).
We assert that dµ x (F ) dµ x 0 (F ) = K L (x, y) for a.e. µ x0 (y) in ∂Ω. By Besicovitch's theorem,

dµ x (F ) dµ x0 (F ) = lim µ x (∆ r (y)) µ x0 (∆ r (y)) ,
for a.e. µ x0 (y) in ∂Ω. By Lemma 2.58 and in view of the proof of Proposition 2.27 we have that dµ x (F ) dµ x 0 (F ) is a kernel function, and by uniqueness of Kernel functions the proof of the assertion follows. Hence

µ x (A) = A K L (x, y)dµ x0 (y),
for all Borel A ⊂ ∂Ω and in particular

u(x) = µ x (∂Ω) = ∂Ω K L (x, y)dµ x0 (y). Suppose now u(x) = ∂Ω K L (x, y)dν(y),
for a Borel measure ν on ∂Ω. For a closed set F ⊂ ∂Ω we will show that ν

(F ) = µ x0 (F ). Choose a sequence of open set {G k } in R N such that ∩ ∞ k=1 G k = F and µ x0 (F ) = lim k→∞ R G k u (x). Since R B u (x) ≤ R A u (x) if B ⊂ A, we can choose G k such that G k+1 ⊂ G k , ∀k ≥ 1 and Ω \ G k to be a C 2 domain for all k ≥ 1.
We consider a increasing sequence of bounded smooth domains

{Ω k } such that Ω k ⊂ Ω k+1 , ∪Ω k = Ω, Ω k ∩ G k = ∅, H N -1 (Ω k ) → H N -1 (Ω) and H N -1 (Ω k ∩ G k ) → H N -1 (F ). Let w x0 Ω k (y) be the L κ -harmonic measure in ∂Ω k (see (2.59)-(2.62)). Then R G k u (x) = ∂Ω k R G k u (y)dw x0 Ω k (y) = ∂Ω k ∩∂G k R G k u (y)dw x0 Ω k (y) + ∂Ω k \∂G k R G k u (y)dw x0 Ω k (y) ≥ ∂Ω k ∩∂G k R G k u (y)dw x0 Ω k (y).
Now, by Lemma 2.58

∂Ω k ∩∂G k R G k u (y)dw x0 Ω k (y) = ∂Ω k ∩∂G k u(y)dw x0 Ω k (y) = ∂Ω k ∩∂G k ∂Ω K L (y, ξ)dν(ξ)dw x0 Ω k (y) = ∂Ω ∂Ω k ∩∂G k K L (y, ξ)dw x0 Ω k (y)dν(ξ) ≥ Fn ∂Ω k ∩∂G k K L (y, ξ)dw x0 Ω k (y)dν(ξ),
where

F n ⊂ F, ∪F n = F and dist (F n , ∂Ω \ F ) > 1 n . If ξ ∈ F n we have K(x 0 , ξ) = ∂Ω k ∩∂G k K L (y, ξ)dw x0 Ω k (y) + ∂Ω k \G k K L (y, ξ)dw x0 Ω k (y) But K(y, ξ) ≤ C n N +α+-2 d α + 2 (y) ∀y ∈ ∂Ω k \ G k ,
thus by Proposition 2.32 we have that

lim k→∞ ∂Ω k \G k K L (y, ξ)dw x0 Ω k (y) = 0.
Combining all the above inequality and using Lebesgue's dominated convergence theorem we obtain

µ x0 (F ) = lim k→∞ R G k u (x) ≥ Fn ∂Ω k ∩∂G k K L (x 0 , ξ)dν(ξ) = ν(F n ), which implies µ x0 (F ) ≥ ν(F ).
For the opposite inequality, let

m ≤ k -1, k ≥ 2 then R G k u (x) = ∂Ω k R G k u (y)dw x0 Ω k (y) = ∂Ω k ∩∂Gm R G k u (y)dw x0 Ω k (y) + ∂Ω k \∂Gm R G k u (y)dw x0 Ω k (y).
In view of the proof of Lemma 2.58, we have that

R G k u (x) ≤ Cd α + 2 (x) ∀x ∈ Ω \ G m .
Thus by Proposition 2.32 we have

lim k→∞ ∂Ω k \∂Gm R G k u (y)dw x0 Ω k (y) = 0,
and

∂Ω k ∩∂Gm R G k u (y)dw x0 Ω k (y) ≤ ∂Ω k ∩∂Gm u(y)dw x0 Ω k (y) = ∂Ω k ∩∂Gm ∂Ω K L (y, ξ)dν(ξ)dw x0 Ω k (y) = ∂Ω ∂Ω k ∩∂Gm K L (y, ξ)dw x0 Ω k (y)dν(ξ).
If ξ ∈ ∂Ω \ G m we have again by Proposition 2.32 that

lim k→∞ ∂Ω k ∩∂Gm K L (y, ξ)dw x0 Ω k (y) = 0. If ξ ∈ ∂Ω ∩ G m , then ∂Ω k ∩∂Gm K L (y, ξ)dw x0 Ω k (y) ≤ K Lκ (x 0 , ξ).
Combining all the above inequalities, we obtain

µ x0 (F ) = lim k→∞ R G k u (x) ≤ ∂Ω∩Gm K L (x 0 , ξ)dν(ξ) = ν(∂Ω ∩ G m ), which implies µ x0 (F ) ≤ ν(F ),
and the proof of Theorem follows.

Actually the measure µ is the boundary trace of u. This boundary trace can be achieved in a dynamic way as in [27, Sect 2]. In the same way as the one they develop therein, we have

Proposition 2.34. Let x 0 ∈ Ω 1 and µ ∈ M(∂Ω). Put v := ∂Ω K Lκ (x, y)dµ(y), then for every Z ∈ C(Ω), lim n→∞ ∂Ωn Z(x)vdω x0 Ωn = ∂Ω Z(x)dµ. (2.66)
Proof. The proof is same as the proof of Lemma 2.2 in [START_REF] Marcus | Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case[END_REF] and we omit it.

The next result is an analogous of the Green formula for positive L κ -harmonic functions. 

= -∂ n G Ωj Lκ . We assume that j ≥ j 0 where Ω ′ δ ⊂ Ω j . Set ζ j = Z Gj , where the functions Gj are C ∞ in Ω j , coincide with G Ωj Lκ (x 0 , .) in Ω j ∩ Ω δ and satisfy Gj → G in C 2 (Ω)-loc and such that |∇ Gj .∇Z| ≤ c ′ 45 φ κ . Ωj vL κ ζ j dx = - ∂Ωj v ∂ζ j ∂n dS = - ∂Ωj vZ ∂ Gj ∂n dS = ∂Ωn vZP Ωj Lκ (x 0 , .)dS = ∂Ωj vZdω x0 Ωj .
By (2.66)

∂Ωj vZdω x0 Ωj → ∂Ω Z(x)dµ as j → ∞. Next L κ ζ j = ZL κ Gj + Gj ∆Z + 2∇ Gj .∇Z. Since v ∈ L 1 φκ (Ω), the proof follows .
Similarly we can prove Proposition 2.36. Let v be a positive L κ -harmonic function in Ω with boundary trace µ.

Let 0 ≤ Z ∈ C 2 (Ω) satisfy |∇ φκ .∇Z| ≤ c ′ 45 φ κ . Then, if we set ζ = Zφ κ , there holds Ω vL κ ζdx ≥ c 0 ∂Ω Zdµ,
where the constant c 0 > 0 depends on Ω, N and κ.

3 The nonlinear problem with measures data

The linear boundary value problem with L 1 data

In the sequel we denote by ω = ω x0 the L κ -harmonic measure in Ω, for some fixed x 0 ∈ Ω and by M φκ (Ω) be the space of Radon measures ν in Ω such that φ κ d|ν| is a bounded measure. We also denote by M(∂Ω) the space of Radon measures on ∂Ω with respective norms ν M φκ (Ω) and µ M(∂Ω) . Their respective positive cones are denoted by M + φκ (Ω) and M + (∂Ω). By Fubini's theorem and (2.10), for any ν ∈ M φκ (Ω) we can define

G Lκ [ν](x) = Ω G Lκ (x, y)dν(y),
and we have

G Lκ [ν] L 1 φκ (Ω) ≤ c 46 ν M φκ (Ω) . (3.1) 
If µ ∈ M(∂Ω), we set

K Lκ [µ](x) = ∂Ω K Lκ (x, y)dµ(y), K Lκ [µ] L 1 φκ (Ω) ≤ c 47 µ M(∂Ω) . (3.2)
In the above inequalities c 46 and c 47 are positive constants depending on Ω and κ. For 0 < κ ≤ 1 4 , we define the space of test functions X(Ω) by

X(Ω) = η ∈ H 1 loc (Ω) : η d α + 2 ∈ H 1 (Ω, d α+ dx) , (φ κ ) -1 L κ η ∈ L ∞ (Ω) . (3.3)
The next statement follows immediately from Propositions (2.9) and (2.10).

Lemma 3.1. Let 0 < κ ≤ 1 4 . Let m ∈ L ∞ (Ω) and η m be the solution of L κ η m = mφ κ in Ω η m = 0 on ∂Ω, (3.4) 
obtained by Propositions 2.9 and 2.10 with f 0 = m and h = 0. Then η m belongs to X(Ω). Furthermore

- m -L ∞ (Ω) λ κ φ κ ≤ -η m-≤ η m ≤ η m+ ≤ m + L ∞ (Ω) λ κ φ κ . (3.5) 
In the next Proposition we give some key estimates satisfied by weak solutions of

L κ u = f in Ω u = h on ∂Ω. (3.6) Proposition 3.2. For any (f, h) ∈ L 1 φκ (Ω) × L 1 (∂Ω, dω) there exists a unique u := u f,h ∈ L 1 φκ (Ω) such that Ω uL κ ηdx = Ω f ηdx + Ω K Lκ [hω]L κ ηdx ∀η ∈ X(Ω). (3.7) 
There holds

u = G Lκ [f ] + K Lκ [hω], (3.8 
)

and u L 1 φκ (Ω) ≤ c 46 f L 1 φκ (Ω) + c 47 h L 1 (∂Ω,dω) . (3.9) 
Furthermore, for any η ∈ X(Ω), η ≥ 0, we have

Ω |u|L κ ηdx ≤ Ω f ηsgn(u)dx + Ω K Lκ [|h|ω]L κ ηdx, (3.10) 
and

Ω u + L κ ηdx ≤ Ω f ηsgn + (u)dx + Ω K Lκ [h + ω]L κ ηdx. (3.11) Proof.
Step 1: proof of estimate (3.9). Assume u satisfies (3.7). If η = η sgn(u) , we have

Ω |u|φ κ dx = Ω uL κ ηdx = Ω f ηdx + Ω K Lκ [hω]sgn(u)φ κ dx. By (3.1), (3.2) Ω f ηdx ≤ 1 λ κ Ω |f |φ κ dx, Ω K Lκ [hω]sgn(u)φ κ dx ≤ c 47 ∂Ω |h|dω,
which implies (3.9) and uniqueness.

Step 2: proof of existence. If f and h are bounded, existence follows from Propositions 2.9, 2.10. In the general case let {(f n , h n )} be a sequence of bounded measurable functions in Ω and ∂Ω which converges to

{(f, h)} in L 1 φκ (Ω) × L 1 (∂Ω, dω).
Let {u n } = {u fn,hn } be the sequence weak solutions of (3.6). By estimate (3.9) it is a Cauchy sequence in L 1 φκ (Ω) which converges to u. Letting n → ∞ in identity

Ω u n L κ ηdx = Ω f n ηdx + Ω K Lκ [h n ω]L κ ηdx, (3.12) 
where η ∈ X(Ω) implies that u = u f,h .

Step 3: proof of estimates (3.10), (3.11). We first assume that f is bounded and

h is C 2 (Ω). Set Ω n = Ω ′ 1 n
, Let u n be the unique solution of

L κ u n = f in Ω n v n = W h on ∂Ω n . (3.13) 
Then u n can be written in the form

u n = G n Lκ [f ](x) + w n ,
where w n satisfies

L κ v = 0 in Ω n v = W h on ∂Ω n , (3.14) 
and

G n Lκ [f ](x) = Ω G n Lκ (x, y)f (y)dy,
where

G n Lκ denotes the Green Kernel of L κ in Ω n . Now note that G n L 1 4 (x, y) ≤ G L 1 4 (x, y) := G Ω L 1 4
, and for any x, y

∈ Ω, x = y G n L 1 4 (x, y) ↑ G L 1 4 (x, y). (3.15)
Also, in view of the proof of Proposition 2.32, there exists c 0 > 0 which depends on Ω, N, κ,

||h|| C 2 (Ω) such that sup x∈Ωn |w n | < c 0 , ∀n ∈ N,
and

w n → K Lκ [hω].
Thus by the properties of Green kernel that we described above, there exists a constant

c 01 Ω, N, κ, ||h|| C 2 (Ω) , ||f || L ∞ (Ω) , such that sup x∈Ωn |u n | < c 0 , ∀n ∈ N, and 
u n → u = G Lκ [f ] + K Lκ [hω].
Let η ∈ X(Ω) be nonnegative function and let η n be the solution of the problem

L κ v = L κ η in Ω n v = 0 on ∂Ω n .
Then there exists

c 0 = c 0 (||∆η|| L ∞ (Ω) , κ, N, Ω) such that |η n | ≤ c 0 φ κ and L κ η n → L c0 η, η n → η.
Let z n be the solution of

L κ v = sgn(η n )L κ η on ∂Ω n v = 0 on ∂Ω n .
Then z n ≥ max(η n , 0) since

L κ |η n | ≤ sgn(η n )L κ η n = sgn(η n )L κ η,
and

|z n | ≤ c 0 φ κ , L κ z n → L c0 η, z n → η.
Now note that z n ≥ 0 and z n ∈ C 1 (Ω n ). Also, the following inequality holds (see eg. [START_REF] Véron | Singularities of Solutions of Second Order Quasilinear Equations[END_REF]),

Ω |u n |L c0 z n dx ≤ Ω f z n sgn(u n ) - ∂Ω ∂z n ∂ν |h|W dx = Ω f z n sgn(u n ) + Ω w n L c0 z n dx, (3.16) 
where w n is the solution of

L κ v = 0 in Ω n v = W |h| on ∂Ω n . (3.17) 
In view of the proof of Proposition 2.32 there exists c 02 > 0 which depends on Ω, N, κ,

||h|| C 2 (Ω) such that sup x∈Ωn | w n | < c 0 , ∀n ∈ N,
and

w n → K Lκ [|h|ω]
as n → ∞. Thus combining all above and taking the limit in (3.16) we have the proof of (3.10) in the case that f is bounded and h ∈ C 2 (Ω). We note here that for any h ∈ C 2 (∂Ω) there exists

H m ∈ C 2 (Ω), such that ||H m || C 2 (Ω) ≤ c 03 ||h|| L ∞ (∂Ω)
, for some constant c 03 which depends only on Ω, and H m → h in L ∞ (∂Ω). Thus it is not hard to prove that (2.32) is valid if f is bounded and h ∈ C 2 (∂Ω). In the general case we consider a sequence

(f n , h n ) ⊂ L ∞ (Ω)×C 2 (∂Ω) which converges to (f, h) in L 1 (Ω) × L 1 (∂Ω, dω).
Since u fn,hn converges to u f,h in L 1 φκ (Ω) we obtain (3.10) from the inequality verified by any η ∈ X(Ω)

Ω |u fn,hn |L κ ηdx ≤ Ω f n ηsgn(u)dx + Ω K Lκ [|h n |ω]L κ ηdx.
The proof of (3.11) is follows by adding (3.7) and (3.10).

General nonlinearities

Throughout this section Ω is a smooth bounded domain and κ a real number in the interval (0, 1 4 ]. Let g : R → R be a nondecreasing continuous function, vanishing at 0 for simplicity. The problem under consideration is the following

-∆u - κ d 2 u + g(u) = ν in Ω u = µ in ∂Ω, (3.18) 
where ν and µ are Radon measures respectively in Ω and ∂Ω.

Definition. Let ν ∈ M φκ (Ω) and µ ∈ M(∂Ω). We say that u is a solution of (3.18

) if u ∈ L 1 φκ (Ω), g(u) ∈ L 1
φκ (Ω) and for any η ∈ X(Ω) there holds

Ω (uL κ η + g(u)η) dx = Ω (ηdν + K Lκ [µ]L κ η) dx (3.19)
Our main existence result for subcritical nonlinearities is the following.

Theorem 3.3. Assume g satisfies ∞ 1 (g(s) -g(-s)) s -2 N -1+ α + 2 N -2+ α + 2 ds < ∞. (3.20)
Then for any (ν, µ) ∈ M φκ (Ω)× ∈ M(∂Ω) problem (3.18) admits a unique solution u = u ν,µ . Furthermore the mapping (ν, µ) → u ν,µ is increasing and stable in the sense that if {(ν n , µ n )} converge to (ν, µ) in the weak sense of measures, {u νn,µn } converges to u ν,µ in L 1 φκ (Ω). The proof is based upon estimates of M Lκ and K Lκ into Marcinkiewicz spaces.

Lemma 3.4. Let ν ∈ M + φκ (Ω), µ ∈ M + (∂Ω) and for s > 0, E s (ν) = {x ∈ Ω : G Lκ [ν](x) > s} and F s (µ) = {x ∈ Ω : K Lκ [µ](x) > s}. If we denote E s (ν) = Es(ν) φ κ dx and F s (µ) = Fs(µ) φ κ dx, there holds E s (ν) + F s (µ) ≤ c 47 ν M φκ (Ω) + µ M(∂Ω) s N + α + 2 N -2+ α + 2 . ( 3.21) 
Proof.

Step 1: estimate of F s (ν). By estimate (2.57), for any ξ ∈ ∂Ω,

F s (δ ξ ) ⊂ Fs (δ ξ ) := x ∈ Ω : d α + 2 (x) |x -ξ| N +α+-2 ≥ s c 43 ⊂ B ( c 43 s ) θ (ξ), with θ = 1 N -2+ α + 2
. From (2.2), (2.3)

F s (δ ξ ) ≤ B ( c 43 s ) θ (ξ) φ κ dx ≤ c 49 B ( c 43 s ) θ (ξ) |x -ξ| α + 2 dx = c 50 s - N + α + 2 N -2+ α + 2 .
Therefore, for any s 0 > 0 and any Borel set

G ⊂ Ω G K Lκ (x, ξ)φ κ dx ≤ s 0 G φ κ dx + Fs 0 (δ ξ ) K Lκ (x, ξ)φ κ dx ≤ s 0 G φ κ dx - ∞ s0 sdF s (δ ξ ) ≤ s 0 G φ κ dx + c 50 ∞ s0 s - N + α + 2 N -2+ α + 2 ds ≤ s 0 G φ κ dx + c 51 s - 2 N -2+ α + 2 0 .
Next we choose s 0 so that the two terms in the right part of the last inequality are equal and we get

G K Lκ (x, ξ)φ κ dx ≤ c 52 G φ κ dx 2 N + α + 2 . (3.22)
Henceforth, for any µ ∈ M(∂Ω), there holds by Fubini's theorem,

G K Lκ [|µ|]φ κ dx = Ω G K Lκ (x, ξ)φ κ (x)dxd|µ|(ξ) ≤ c 52 µ M(∂Ω) G φ κ dx 2 N + α + 2 . (3.23)
If we take in particular G = F s (|µ|), we derive

sF s (|µ|) ≤ c 52 µ M(∂Ω) (F s (|µ|)) 2 N + α + 2
, which yields to (3.21) with ν = 0.

Step 2: estimate of E s (ν). By estimate (2.10), for any y ∈ Ω,

E s (δ y ) ⊂ Ẽs (δ y ) := x ∈ Ω : d α + 2 (y)d α + 2 (x) |x -y| N +α+-2 ≥ s c 3 x ∈ Ω : 1 |x -y| N -2 ≥ s c 3 ,
A simple geometric verification shows that there exists an open domain O ⊂ O ⊂ Ω such that y ∈ O, dist (y, O c ) > λ 1 d(y), O ⊂ B λ2d(y) (y) for some 0 < λ 1 < λ 2 < 1 independent of y with the following properties

x ∈ O =⇒ d α + 2 (y)d α + 2 (x) |x -y| N +α+-2 ≥ 1 |x -y| N -2 x ∈ O c =⇒ d α + 2 (y)d α + 2 (x) |x -y| N +α+-2 ≤ 1 |x -y| N -2 . Notice that if Ω = R N + then O = B √ 5 2 (ỹ) where d(ỹ) = 3 2 d(y). Set Ẽ1 s (δ y ) = x ∈ Ω : 1 |x -y| N -2 ≥ s c 3 ∩ O, and 
Ẽ2 s (δ y ) = x ∈ Ω \ O : d α + 2 (y)d α + 2 (x) |x -y| N +α+-2 ≥ s c 3 .
We can easily prove

E s (δ y ) = Es(δy) φ κ dx ≤ Ẽs(δy) φ κ dx ≤ Ẽ1 s (δy) φ κ dx + Ẽ2 s (δy) φ κ dx ≤ c 53 s - N + α + 2 N -2+ α + 2 (d(y)) α + (N + α + 2 ) 2N -4+α + .
As in step 1, for any Borel subset Θ ⊂ Ω, we write

Θ G Lκ (x, y)φ κ dx ≤ s 0 Θ φ κ dx + Es 0 (δy) G Lκ (x, y)φ κ dx ≤ s 0 Θ φ κ dx - ∞ s0 sdE s (δ y ) ≤ s 0 Θ φ κ dx + c 53 (d(y)) α + (N + α + 2 ) 2N -4+α + ∞ s0 s - N + α + 2 N -2+ α + 2 ds ≤ s 0 Θ φ κ dx + c 54 (d(y)) α + (N + α + 2 ) 2N -4+α + s - 2 N -2+ α + 2 0 . Then Θ G Lκ (x, y)φ κ dx ≤ c 55 (d(y)) α + 2 G φ κ dx 2 N + α + 2 ≤ c 56 φ κ (y) G φ κ dx 2 N + α + 2 . (3.24)
Thus, for any ν ∈ M φκ (Ω), we have 

Θ G Lκ [|ν|]φ κ dx = Ω Θ G Lκ (x, y)φ κ (x)dxd|ν|(y) ≤ c 55 ν M φκ (Ω) Θ φ κ dx 2 N + α + 2 . ( 3 
Set v n = K Lκ [µ n ω], then v n ∈ L ∞ (Ω) and it is L κ -harmonic. Set g(t, x) = g(t + v n (x)) -g(v n (x)) and f (x) = ν n (x) -g(v n (x)).
Let J κ be the functional defined in L 2 (Ω) by the expression

J κ (w) = 1 2 Ω |∇w| 2 - κ d 2 w 2 + 2J(w) dx - Ω f wφ κ dx, (3.26) 
where J(w) = w 0 g(t)dt with domain

D(J κ ) = {w ∈ H κ (Ω) : J(w) ∈ L 1 (Ω)},
(see definition in 2.1-5). By (2.8), J κ is a convex lower semicontinuous and coercive functional over L 2 (Ω). Let w n = w νn,µn be its minimum, then u n = u νn,µn = w n + v n is the solution of

L κ u n + g(u n ) = ν n in Ω u n = µ n in ∂Ω, (3.27) 
and for any η ∈ X(Ω), there holds

Ω (u n L κ η + g(u n )η) dx = Ω (ν n η + K Lκ [µ n ω]L κ η) dx. (3.28)
By Proposition 3.2 (3.10), there holds, with η = φ κ ,

Ω (λ κ |u n | + |g(u n )|) φ κ dx ≤ Ω (|ν n | + K Lκ [|µ n |ω]) φ κ dx ≤ c 46 ν n M φκ (Ω) + c 47 µ n M(∂Ω)
≤ c 57 .

(3.29)

Moreover -G Lκ [ν - n ] -K Lκ [µ - n ω] ≤ u n ≤ G Lκ [ν + n ] + K Lκ [µ + n ω]. (3.30) 
By using the local L 1 regularity theory for elliptic equations we obtain that the sequence {u n } is relatively compact in the L 1 -local topology in Ω and that there exist a subsequence still denoted by {u n } and a function u ∈ L 1 φκ (Ω) such that u n → u a.e. in Ω. By (3.30)

|g(u n )| ≤ g (G Lκ [ν + n ] + K Lκ [µ + n ω]) -g (-G Lκ [ν - n ] -K Lκ [µ - n ω]) . (3.31)
We prove the convergence of {g(u n )} to g(u) in L 1 φκ (Ω) by the uniform integrability in the following way: let G ⊂ Ω be a Borel subset. Then for any

s 0 > 0 G |g(u n )|φ κ dx ≤ G (g (G Lκ [ν + n ]) + g (K Lκ [µ + n ω]) -g (-G Lκ [ν - n ]) -g (-K Lκ [µ - n ω])) φ κ dx ≤ s 0 G φ κ dx + Es(ν + ) g (G Lκ [ν + n ]) φ κ dx + Fs(µ + ) g (K Lκ [µ + n ]) φ κ dx - Es(ν -) g (-G Lκ [ν - n ]) φ κ dx - Fs(µ -) g (-K Lκ [µ - n ]) φ κ dx ≤ s 0 G φ κ dx - ∞ s0 g(s)(dE s (ν + n ) + dF s (µ + n )) + ∞ s0 g(-s)(dE s (ν - n ) + dF s (µ - n )). But - ∞ s0 g(s)dE s (ν + n ) = g(s 0 )E s0 (ν + n ) + ∞ s0 E s (ν + n )dg(s) ≤ g(s 0 )E s0 (ν + n ) + c 47 ν + n M φκ N + α + 2 N -2+ α + 2 ∞ s0 s - N + α + 2 N -2+ α + 2 dg(s) ≤ 2N +α+ 2N -4+α+ c 47 ν + n M φκ (Ω) N + α + 2 N -2+ α + 2 ∞ s0 s -2 N -1+ α + 2 N -2+ α + 2 g(s)ds.
All the other terms yields similar estimates which finally yields to s))ds.

G |g(u n )|φ κ dx ≤ s 0 G φ κ dx + c 58 ν n M φκ (Ω) + µ n M(∂Ω) N + α + 2 N -2+ α + 2 ∞ s0 s -2 N -1+ α + 2 N -2+ α + 2 (g(s) -g(-
(3.32)

Since ν n M φκ (Ω) + µ n M(∂Ω) is bounded independently of n, we obtain easily, using (3.20) and fixing s 0 first, that for any ǫ > 0, there exists δ > 0 such that

G φ κ dx ≤ δ =⇒ G |g(u n )|φ κ dx ≤ ǫ. (3.33) Since |u n | ≤ G Lκ [|ν n |] + K Lκ [|µ n |ω],
we have by (3.23), (3.25)

G |u n |φ κ dx ≤ c 52 µ n M(∂Ω) + c 55 ν n M φκ (Ω) G φ κ dx 2 N + α + 2 . (3.34)
This implies the uniform integrability of the sequence {u n }. Letting n → ∞ in identity (3.28), we conclude that (3.19) holds. Uniqueness, as well as the monotonicity of the mapping (ν, µ) → u ν,µ , is an immediate consequence of (3.10), (3.11) and the monotonicity of g.

Step 2: stability. The stability is a direct consequence of inequalities (3.32) and (3.34) which show the uniform integrability of the sequence

(u n , g(u n )) in L 1 φκ (Ω) × L 1 φκ (Ω).
Because of the uniqueness of the solution u µ,ν of problem (3.18) and the fact that g(u µ,ν ) ∈ L 1 φκ (Ω) the following representation statement is valid, and its proof is obtained by approximation of the measures as is [START_REF] Marcus | Boundary trace of positive solutions of supercritical semilinear elliptic equations in dihedral domains[END_REF]

, Lemma 3.2, Def. 3.3]. Proposition 3.5. Let (ν, µ) ∈ M φκ (Ω)× ∈ M(∂Ω) such that problem (3.18) admits a solution u µ,ν . Then u µ,ν = -G Lκ [g(u µ,ν )] + K Lκ [µ]. (3.35) 
Conversely, if u ∈ L 1 φκ (Ω) such that g(u) ∈ L 1 φκ (Ω) satisfies (3.35
), it coincides with the solution u µ,ν of problem (3.18).

The power case

In this section we study in particular the following boundary value problem with µ ∈ M(∂Ω)

L κ u + |u| q-1 u = 0 in Ω u = µ in ∂Ω. ( 3 

.36)

A Radon measure for which this problem has a solution (always unique) is called a good measure. The solution, whenever it exists, is unique and denoted by u µ . For such a nonlinearity, the condition (3.20) is fulfilled if and only if

0 < q < q c := N + α+ 2 N -2 + α+ 2 .
(3.37)

On the contrary, in the supercritical case i.e. if q ≥ q c , a continuity condition with respect to some Besov capacity is needed in order a measure be good. We recall some notations concerning Besov space. For σ > 0, 1 ≤ p < ∞, we denote by

W σ,p (R d ) the Sobolev space over R d . If σ is not an integer the Besov space B σ,p (R d ) coincides with W σ,p (R d ). When σ is an integer we denote ∆ x,y f = f (x + y) + f (x -y) -2f (x) and B 1,p (R d ) = f ∈ L p (R d ) : ∆ x,y f |y| 1+ d p ∈ L p (R d × R d ) , with norm f B 1,p = f p L p + R d ×R d |∆ x,y f | p |y| p+d dxdy 1 p . Then B m,p (R d ) = f ∈ W m-1,p (R d ) : D α x f ∈ B 1,p (R d ) ∀α ∈ N d |α| = m -1 , with norm f B m,p =   f p W m-1,p + |α|=m-1 R d ×R d |D α x ∆ x,y f | p |y| p+d dxdy   1 p
.

These spaces are fundamental because they are stable under the real interpolation method developed by Lions and Petree. For α ∈ R we defined the Bessel kernel of order α by

G α (ξ) = F -1 (1+|.| 2 ) -α 2 F (ξ), where F is the Fourier transform of moderate distributions in R d . The Bessel space L α,p (R d ) is defined by L α,p (R d ) = {f = G α * g : g ∈ L p (R d )}, with norm f Lα,p = g L p = G -α * f L p . It is known that if 1 < p < ∞ and α > 0, L α,p (R d ) = W α,p (R d ) if α ∈ N and L α,p (R d ) = B α,p (R d ) if α / ∈ N, always with equivalent norms. The Bessel capacity is defined for compact subset K ⊂ R d by C R d α,p = inf{ f p Lα,p , f ∈ S ′ (R d ), f ≥ χ K }.
It is extended to open set and then any set by the fact that it is an outer measure. Our main result is the following

Theorem 3.6. Assume 0 < κ ≤ 1 4 . Then µ ∈ M + (∂Ω) is a good measure if and only if it is absolutely continuous with respect to the Bessel capacity C R N -1 2- 2+α + 2q ′ ,q ′ where q ′ = q q-1 , that is ∀E ⊂ ∂Ω, E Borel , C R N -1 2- 2+α + 2q ′ ,q ′ (E) = 0 =⇒ µ(E) = 0. (3.38)
The striking aspect of the proof is that it is based upon potential estimates which have been developed by Marcus and Véron in the study of the supercritical boundary trace problem in polyhedral domains [START_REF] Marcus | Boundary trace of positive solutions of supercritical semilinear elliptic equations in dihedral domains[END_REF]. Before proving this result we need a key potential estimate. Theorem 3.7. Assume 0 < κ ≤ 1 4 and q ≥ q c . There exists a constant c 59 > 1 dependning on Ω, q, and κ such that for any µ ∈ M + (∂Ω) there holds

1 c 59 µ q B -2+ 2+α + 2q ′ ,q ≤ Ω (K Lκ [µ]) q φ κ dx ≤ c 59 µ q B -2+ 2+α + 2q ′ ,q . (3.39) Proof. Step 1: local estimates. Denote by ξ = (ξ 1 , ξ ′ ) the coordinates in R N + , ξ 1 > 0, ξ ′ ∈ R N -1 The ball of radius R > 0 and center a in R N -1 is denoted by B ′ R (a) (by B ′ R if a = 0). Let R > 0, ν ∈ M + (R N -1 + ) with support in B ′ R 2 and K[ν](ξ) = B ′ R 2 dν(ζ ′ ) (ξ 2 1 + |ξ ′ -ζ ′ | 2 ) N -2+α + 2 . (3.40)
Then, by [29, Th 3.1],

1 c60 µ q B -2+ 2+α + 2q ′ ,q ≤ R 0 B ′ R ξ (q+1) α + 2 1   B ′ R 2 dν(ζ ′ ) (ξ 2 1 + |ξ ′ -ζ ′ | 2 ) N -2+α + 2   q dξ ′ dξ 1 ≤ c 60 1 + R (q+1) α + 2 µ q B -2+ 2+α + 2q ′ ,q . 
(3.41)

There exists R > 0 such that for any y 0 ∈ ∂Ω, there exists a

C 2 diffeomorphism Θ := Θ y0 from B R (y 0 ) into R N such that Θ(y 0 ) = 0, Θ y0 (B R (y 0 )) = B R and Θ(Ω ∩ B R (y 0 )) = B + R := B R ∩ R N + , Θ(∂Ω ∩ B R 2 (y 0 )) = B ′ R 2 , Θ(∂Ω ∩ B R (y 0 )) = B ′ R .
Moreover, Θ has bounded distortion, in the sense that since

φ κ (x) ∂Ω∩BR(y0) dµ(z) |x -z| N -2+α+ = φ κ • Θ -1 (ξ) B ′ R d(µ • Θ -1 )(ζ) |Θ -1 (ξ) -Θ -1 (ζ)| N -2+α+ , there holds ξ α + 2 1 c 61 B ′ R 2 d(µ • Θ -1 )(ζ) (ξ 2 1 + |ξ ′ -ζ ′ | 2 ) N -2+α + 2 ≤ φ κ • Θ -1 (ξ) B ′ R 2 d(µ • Θ -1 )(ζ) |Θ -1 (ξ) -Θ -1 (ζ)| N -2+α+ ≤ c 61 ξ α + 2 1 B ′ R 2 d(µ • Θ -1 )(ζ) (ξ 2 1 + |ξ ′ -ζ ′ | 2 ) N -2+α + 2 . Since µ → µ • Θ -1 is a C 2 diffeomorphism between M + (∂Ω ∩ B R 2 (y 0 )) ∩ B -2+ 2+α + 2q ′ ,q (∂Ω ∩ B R 2 (y 0 )) and M + (B ′ R 2 ) ∩ B -2+ 2+α + 2q ′ ,q (B ′ R 2
), we derive, using (2.57) and (3.41),

1 c62 µ q B -2+ 2+α + 2q ′ ,q ≤ Ω∩BR(y0) (K Lκ [µ]) q φ κ dx ≤ c 62 µ q B -2+ 2+α + 2q ′ ,q . (3.42)
Clearly the left-hand side inequality (3.39) follows. Combining Harnack inequality and boundary Harnack inequality we obtain

Ω (K Lκ [µ]) q φ κ dx ≤ c 63 Ω∩BR(y0) (K Lκ [µ]) q φ κ dx, (3.43) 
which implies the left-hand side inequality (3.39) when µ has it support in a ball B R 2 (y 0 ) ∩ ∂Ω.

Step 2: global estimates. We write µ = j0 j=1 µ j where the µ j are positive measures on ∂Ω with support in some ball B R 2 (y j ) with y j ∈ ∂Ω and such that

1 c 64 µ B -2+ 2+α + 2q ′ ,q ≤ µ j B -2+ 2+α + 2q ′ ,q ≤ c 64 µ B -2+ 2+α + 2q ′ ,q . Then K Lκ [µ] L q φκ ≤ j0 j=1 K Lκ [µ j ] L q φκ ≤ c 1 q 59 j0 j=1 µ j q B -2+ 2+α + 2q ′ ,q ≤ j 0 c 64 c 1 q 59 µ B -2+ 2+α + 2q ′ ,q .
On the opposite side

K Lκ [µ] L q φκ ≥ max 1≤j≤j0 K Lκ [µ j ] L q φκ ≥ 1 c 1 q 59 max 1≤j≤j0 µ j B -2+ 2+α + 2q ′ ,q ≥ 1 j0c 1 q 59 j0 j=1 µ j B -2+ 2+α + 2q ′ ,q ≥ 1 c64c 1 q 59 µ B -2+ 2+α +
2q ′ ,q , which ends the proof.

Proof of Theorem 3.6: The condition is sufficient. Let µ be a boundary measure such that |K Lκ [µ]| q ∈ L 1 φκ (Ω). For k > 0 set g k (u) = sgn(u) min{|u| q , k q } and let u k be the solution of

L κ u k + g k (u k ) = 0 in Ω u k = µ in ∂Ω, (3.44) 
which exists a is unique by Theorem 3.3. Furthermore k → u k is decreasing,

0 ≤ u k ≤ K Lκ [µ],
and

0 ≤ g k (u k ) ≤ g k (K Lκ [µ]) ≤ (K Lκ [µ]) q ,
and the first terms on the right of the two previous inequalities are integrable for the measure φ κ dx by Theorem 3.7. Finally for any η ∈ X κ (Ω), there holds

Ω (u k L κ η + g k (u k )η) dx = Ω K Lκ [µ]L κ ηdx.
Since u k and g k (u k ) converge respectively to u and g(u) a.e. and in L 1 φκ (Ω); we conclude that

Ω (uL κ η + u q η) dx = Ω K Lκ [µ]L κ ηdx.
If µ is a positive measure which vanishes on Borel sets E ⊂ ∂Ω with C R N -1

2-

2+α + 2q ′ ,q ′ -capacity zero, there exists an increasing sequence of positive measures in B -2+ 2+α + 2q ′ ,q (∂Ω) {µ n } which converges to µ (see [START_REF] Maso | On the integral representation of certain local functionals[END_REF], [START_REF] Feyel | Topologies fines et compactifications associées Ĺ certains espaces de Dirichlet[END_REF]). Let u µn be the solution of (3.36) with boundary data µ n . The sequence {u µn } is increasing with limit u. Since, by taking φ κ as test function, we obtain

Ω (λ κ u µn + g(u µn )) φ κ dx = λ κ Ω K Lκ [µ n ]φ κ dx, it follows that u, g(u) ∈ L 1 φκ (Ω). Thus Ω (uL κ η + g(u)η) dx = Ω K Lκ [µ]L κ ηdx ∀η ∈ X κ (Ω),
and therefore u = u µ .

Definition A smooth lifting is a continuous linear operator R[.] from C 2 0 (∂Ω) to C 2 0 (Ω) satisfying

(i) 0 ≤ η ≤ 1 =⇒ 0 ≤ R[η] ≤ 1 , R[η]⌊ ∂Ω = η, (ii) |∇φ κ .∇R[η]| ≤ c 65 φ κ , (3.45) 
where c 65 depends on the C 1 -norm of η.

Our proof are based upon a modification of an argument developed by Marcus and Véron in [START_REF] Marcus | Removable singularities and boundary trace[END_REF].

Lemma 3.8. Assume there exists a solution u µ of (3.36) with µ ≥ 0.

For η ∈ C 2 (Ω), 0 ≤ η ≤ 1 set ζ = φ κ (R[η]) q ′ where R is a smooth lifting. Then ∂Ω ηdµ q ′ ≤ c 67 Ω u q ζdx+c 67 Ω u q ζdx 1 q Ω φ κ dx 1 q ′ + q ′ Ω (L[η]) q ′ dx 1 q ′ , (3.46) 
where

L[η] = (R[η]) q ′ -1 2φ -1 q κ |∇φ κ .∇R[η]| + φ 1 q ′ κ |∆R[η]| , (3.47) 
and c 67 depends on Ω, λ κ , q, κ, N.

Proof. There holds

L κ ζ = λ κ (R[η]) q ′ φ κ -2q ′ (R[η]) q ′ -1 ∇φ κ .∇R[η]-q ′ (R[η]) q ′ -2 φ κ R[η]∆R[η] -(q ′ -1)|∇R[η]| 2 .
Then ζ ∈ X κ (Ω) because of (3.45)-(ii) and by Proposition 2.36

c 66 ∂Ω η q ′ dµ ≤ Ω (uL κ ζ + u q ζ) dx.
Since

uL κ ζ ≤ u λ κ (R[η]) q ′ φ κ + 2q ′ (R[η]) q ′ -1 |∇φ κ .∇R[η]| + q ′ (R[η]) q ′ -1 φ κ |∆R[η]| , we obtain Ω uL κ ζdx ≤ Ω u q ζdx 1 q Ω φ κ dx 1 q ′ + q ′ Ω (L[η]) q ′ dx 1 q
, where L[η] is defined by (3.47).

Lemma 3.9. There exist a smooth lifting R such that η

→ L[η] is continuous from B 2- 2+α + 2q ′ ,q ′ (∂Ω) into L q ′ (Ω). Furthermore, L[η] L q ′ (Ω) ≤ c ′ 66 η q ′ -1 L ∞ (∂Ω) η B 2- 2+α + 2q ′ ,q ′ (∂Ω) . ( 3 

.48)

Proof. The construction of the lifting is originated into [27, Sect 1]. For 0 < δ ≤ β 0 , we set Σ δ = {x ∈ Ω : d(x) = δ} and we identify ∂Ω with Σ := Σ 0 . The set {Σ δ } 0<δ≤β0 is a smooth foliation of ∂Ω. For each δ ∈ (0, β 0 ] there exists a unique σ(x) ∈ Σ δ such that d(x) = δ and |xσ(x)| = δ. The set of couples (δ, σ) defines a system of coordinates in Ω β0 called the flow coordinates. The Laplacian obtain the following expression in this system

∆ = ∂ 2 ∂δ 2 + b 0 ∂ ∂δ + Λ Σ , (3.49) 
where Λ Σ is a linear second-order elliptic operator on Σ with C 1 coefficients. Furthermore b 0 → K and Λ Σ → ∆ Σ , where K is the mean curvature of Σ and ∆ Σ the Laplace-Beltrami operator on Σ. If

η ∈ B -2+ 2+α +
2q ′ ,q (∂Ω), we denote by H := H[η] the solution of

∂H ∂s + ∆ Σ H = 0 in (0, ∞) × Σ H(0, .) = η in Σ. (3.50) Let h ∈ C ∞ (R + ) such that 0 ≤ h ≤ 1, h ′ ≤ 0, h ≡ 1 on [0, β0 2 ], h ≡ 0 on [β 0 , ∞].
The lifting we consider is expressed by

R[η](x) = H[η](δ 2 , σ(x))h(δ) if x ∈ Ω β0 0 if x ∈ Ω ′ β0 , (3.51) 
with x ≈ (δ, σ) := (d(x), σ(x). Mutatis mutandis, we perform the same computation as the one in [24, Lemma 1.2], using local coordinates {σ j } on Σ and obtain

∇R[η] = 2δh(δ) ∂H ∂δ (δ 2 , σ)∇δ + N -1 j=1 h(δ) ∂H ∂σ j (δ 2 , σ)∇σ j + h ′ (δ)H(δ 2 , σ)∇δ.
Then there holds in

Ω β 0 2 , ∇R[η].∇φ κ = 2δh(δ) ∂H ∂δ (δ 2 , σ)∇φ κ .∇δ + N -1 j=1 h(δ) ∂H ∂σ j (δ 2 , σ)∇σ j .∇φ κ + h ′ (δ)H(δ 2 , σ)∇δ.∇φ κ . (3.52) Moreover φ κ (x) ≤ c 2 (d(x)) α + 2 = c 2 δ α + 2 and |∇φ κ (x)| ≤ c ′ 2 (d(x)) α + 2 -1 = c ′ 2 δ α + 2 -1 .
Similarly as in [24, (1.13)]

∇φ κ = ∂φ κ ∂δ ∇d + N -1 j=1 ∂φ κ ∂σ j (δ 2 , σ)∇σ j , thus |∇φ κ .∇σ j | ≤ c 68 δ α + 2 , φ -1 q κ |∇R[η].∇φ κ | ≤ c 69 δ α + 2q ′   ∂H ∂δ (δ 2 , σ) + N -1 j=1 ∂H ∂σ j (δ 2 , σ) - h ′ (δ) δ H(δ 2 , σ)   . Thus Ω φ -q ′ q κ |∇R[η].∇φ κ | q ′ dx ≤ c 70 Ω β 0 δ α + 2 ∂H ∂δ (δ 2 , σ) q ′ dx + c 70 N -1 j=1 Ω β 0 δ α + 2 ∂H ∂σ j (δ 2 , σ) q ′ dx + c 70 Ω β 0 \Ω β 0 2 δ α + 2 H q ′ (δ 2 , σ)dx.
Then

Ω φ -q ′ q κ |∇R[η].∇φ κ | q ′ dx ≤ c 71 β0 0 δ α + 2 Σ ∂H ∂δ (δ 2 , σ) q ′ dSdδ ≤ c 71 β 2 0 0 Σ t 2+α + 4q ′ ∂H ∂t (t, .) L q ′ (Σ) q ′ dt t ≤ c 72 η q ′ B 2- 2+α + 2q ′ ,q ′ (Σ) , (3.53) 
by using the classical real interpolation identity

W 2,q ′ (Σ), L q ′ (Σ) 1- 2+α + 4q ′ ,q ′ = B 2- 2+α + 2q ′ ,q ′ (Σ). (3.54)
Similarly (see [24, (1.17),(1.19)])

N -1 j=1 Ω β 0 δ α + 2 ∂H ∂σ j (δ 2 , σ) q ′ dx + Ω β 0 \Ω β 0 2 δ α + 2 H q ′ (δ 2 , σ)dx ≤ c 72 η q ′ W 2- 2+α + 2q ′ ,q ′ (Σ) . (3.55) 
Next we consider the second term. Adapting in a straightforward manner the computation in [24, p. 886-887 ] we obtain the following instead of [24, (1.21)]

Ω φ κ |∆R[η]| q ′ dx ≤ c 72 β0 0 Σ δ 2+ α + 2q ′ ∂ 2 H[η] ∂δ 2 q ′ (δ 2 , σ)dσdδ + c 72 β0 0 Σ δ α + 2 ∂H[η] ∂δ q ′ + |H| q ′ + |Λ ∆ -Λ Σ | q ′ (δ 2 , σ)dx. (3.56) Furthermore β0 0 Σ δ 2+ α + 2q ′ ∂ 2 H[η] ∂δ 2 q ′ (δ 2 , σ)dσdδ = β 2 0 0 Σ t 2 1- 4q ′ -α + -2 8q ′ ∂ 2 H[η] ∂t 2 q ′ dσ dt t ≤ c 73 η q ′ B 2- 2+α + 2q ′ ,q ′ (Σ) , (3.57) 
as a consequence of the real interpolation identity

W 4,q ′ (Σ), L q ′ (Σ) 4q ′ -α + -2 8q ′ ,q ′ = B 2- 2+α + 2q ′ ,q ′ (Σ). (3.58)
The other term in the right-hand side of (3.56) yields to the same inequality as in (3.55).

Proof of Theorem 3.6: The condition is necessary. Let K ⊂ ∂Ω be a compact set and η ∈ C 2 0 (∂Ω) such that 0 ≤ η ≤ 1 and η = 1 on K. Then, by (3.46)

(µ(K)) q ′ ≤ c 67 Ω u q (R[η]) q ′ φ κ dx+ c 67 Ω u q (R[η]) q ′ φ κ dx 1 q Ω φ κ dx 1 q ′ + c ′ 66 q ′ η B 2- 2+α + 2q ′ ,q ′ (∂Ω)
.

(3.59)

From this inequality, we obtain classically the result since if C R N -1
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2+α + 2q ′ ,q ′ (K) = 0 there exists a sequence {η n } in C 2 0 (∂Ω) with the following properties:

0 ≤ η n ≤ 1 , η n = 1 in a neighborhood of K and η n → 0 in B 2- 2+α + 2q ′ ,q ′ (∂Ω) as n → ∞. (3.60)
This implies that u q (R[η n ]) q ′ → 0 in L 1 φκ (Ω). Therefore the right-hand side of (3.59) tends to 0 if we substitute η n to η and thus µ(K) = 0 for any K compact with zero capacity and this relation holds for any Borel subset.
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Definition. We say that a compact set

K ⊂ ∂Ω is removable if any positive solution u ∈ C(Ω \ K) of L κ u + |u| q-1 u = 0 in Ω, (3.61) 
such that

Ω (uL κ η + |u| q-1 uη)dx = 0 ∀η ∈ X K κ (Ω), (3.62) 
where

X K κ (Ω) = {η ∈ X κ (Ω) : s.t. η = 0 in a neighborhood of K}, is identically zero. Theorem 3.10. Assume 0 < κ ≤ 1 4 and q ≥ 1. A compact set K ⊂ ∂Ω is removable if and only if C R N -1 2- 2+α + 2q ′ ,q (K) = 0.
Proof. The condition is clearly necessary since, if a compact boundary set K has positive capacity, there exists a capacitary measure µ k ∈ M + (∂Ω) ∩ B -2+ 2+α + 2q ′ ,q (∂Ω) with support in K (see e.g. [START_REF] Adams | Function Spaces and Potential Theory[END_REF]). For such a measure there exists a solution u µK of (3.36) with µ = µ K by Theorem 3.6. Next we assume that C R N -1 2-2+α + 2q ′ ,q (K) = 0. Then there exists a sequence {η n } in C 2 0 (∂Ω) satisfying (3.60). In particular, there exists a decreasing sequence {O n } of relatively open subsets of ∂Ω, containing K such that η n = 1 on O n and thus η n = 1 on K n := O n . We set ηn = 1η n and ζn = φ κ (R[η n ]) 2q ′ where R is defined by (3.51). Then 0 ≤ ηn ≤ 1 and ηn = 0 on K n . Therefore

ζn (x) ≤ φ κ min 1, c 74 (d(x)) 1-N e -(4d(x)) -2 (dist (x,K c n )) 2 . (3.63) Furthermore (i) |∇R[η n ]| ≤ c 75 min 1, (d(x)) -2-N e -(4d(x)) -2 (dist (x,K c n )) 2 , (ii) |∆R[η n ]| ≤ c 75 min 1, (d(x)) -4-N e -(4d(x)) -2 (dist (x,K c n )) 2 .
(3.64)

Step 1. We claim that Ω uL κ ζn + u q ζn dx = 0.

(3.65) By Proposition 6.3 there exists c 74 > 0 such that

(i) u(x) ≤ c 76 (d(x)) α + 2 (dist (x, K)) -2 q-1 - α + 2 , (ii) |∇u(x)| ≤ c 76 (d(x)) α + 2 -1 (dist (x, K)) -2 q-1 - α + 2 , (3.66) 
for all x ∈ Ω. As in the proof of Lemma 3.8,

|uL κ ζn | ≤ c 77 (R[η n ]) 2q ′ -2 u φ κ R 2 [η n ] + R[η n ]|∇φ κ .∇R[η n ]| +φ κ (R[η n ]|∆R[η n ]| + |∇R[η n ]| 2 ) . (3.67) Let O be a relatively open neighborhood of K such that O ⊂ O n . We set G O,β0 = {x ∈ Ω β0 : σ(x) ∈ O} and G O c ,β0 = Ω β0 \ G O . If x ∈ G O , dist (x, K c n ) ≥ τ > 0. Then, by (3.66)-(i) and (3.63), u q ζn ∈ L q (G O ). Since u(x) = •(W (x)) in G O c it follows that u q ζn ∈ L 1 (Ω β0
) and thus u q ζn is integrable in Ω . Similarly, using (N22-1)-(i) and (ii), uL κ ζn ∈ L 1 (Ω). Since ζn does not vanish in a neighborhood of K, we introduce a cut-off function θ ǫ ∈ C 2 (Ω) for 0 < ǫ ≤ β0 2 , with the following properties,

0 ≤ θ ǫ ≤ 1 , θ ǫ (x) = 0 ∀x ∈ G O,ǫ , θ ǫ (x) = 1 ∀x ∈ Ω s.t. dist (x, G O,ǫ ) ≥ ǫ |∇θ ǫ | ≤ c 78 ǫ -1 χ GO ǫ ,ǫ\GO,ǫ and |D 2 θ ǫ | ≤ c 78 ǫ -2 χ GO ǫ,ǫ \GO,ǫ ,
where we have taken ǫ small enough so that

G Oǫ,ǫ := {x ∈ Ω : dist (x, G O,ǫ ) ≤ ǫ} ⊂ G Kn,2ǫ = {x ∈ Ω 2ǫ : σ(x) ∈ K n }. Clearly θ ǫ ζn ∈ X K κ (Ω), thus Ω uL κ (θ ǫ ζn ) + u q θ ǫ ζn dx = 0. Next Ω uL κ (θ ǫ ζn ) + u q θ ǫ ζn dx = Ω\GO ǫ ,ǫ uL κ (ζ n ) + u q ζn dx + GO ǫ ,ǫ
uL κ (θ ǫ ζn ) + u q θ ǫ ζn dx

= I ǫ + II ǫ .
Clearly

lim ǫ→0 I ǫ = Ω uL κ ζn + u q ζn dx,
and lim ǫ→0 GO ǫ,ǫ u q θ ǫ ζn dx = 0.

Finally, since L κ (θ ǫ ζn ) = θ ǫ L κ ζn + ζn ∆θ ǫ + 2∇θ ǫ .∇ ζn , θ ǫ is constant outside G Oǫ,ǫ \ G O,ǫ and dist (G Oǫ,ǫ \ G O,ǫ , F c n ) ≥ τ > 0, independent of ǫ there holds, by (3.63) |L κ (θ ǫ ζn )| ≤ c 79 ǫ -N +4 e -τ ǫ 2 .
Using (3.66)-(i) we derive lim ǫ→0 GO ǫ ,ǫ uL κ (θ ǫ ζn )dx = 0, which yields to (3.65).

Step 2. We claim that

Ω u q φ κ dx < ∞. (3.68)
Using the expression of L κ ζ n in (3.65) where replace η n by ηn , we derive

Ω u q ζn dx = Ω -λ κ (R[η n ]) 2q ′ φ κ + 4q ′ (R[η n ]) 2q ′ -1 ∇φ κ .∇R[η n ]+ 2q ′ (R[η n ]) 2q ′ -2 φ κ R[η n ]∆R[η n ] +(2q ′ -1)|∇R[η n ]| 2 udx ≤ c 79 Ω u q ζn dx 1 q Ω ( L[η n ]) q ′ dx 1 q ′ , (3.69) 
where we have set

L[η] = (φ κ ) -1 q ∇φ κ .∇R[η n ] + (φ κ ) 1 q ′ |∆R[η n ]| + (φ κ ) 1 q ′ |∇R[η n ]| 2 . (3.70)
By Lemma 3.9 we know that

Ω (φ κ ) -q ′ q |∇φ κ .∇R[η n ]| q ′ + φ κ |∆R[η n ]| q ′ dx ≤ (c 72 + c 73 ) η n q ′ B 2- 2+α + 2q ′ ,2 (∂Ω)
.

(3.71)

The last term is estimated in the following way

Ω φ κ |∇R[η n ]| 2q ′ dx ≤ c 80 β 2 0 0 Σ s q ′ + α + +2 4 ∂H[η n ] ∂s 2q ′ dS ds s + c 80 β 2 0 0 Σ s α + +2 4 |∇ Σ H[η n ]| 2q ′ + (H[η n ]) 2q ′ dS ds s , (3.72) 
where ∇ Σ denotes the covariant gradient on Σ. Since the following interpolation identity holds

W 2,2q ′ (Σ), L 2q ′ (Σ) 1- α + +2 8q ′ ,2q ′ = B 1- α + +2 4q ′ ,2q ′ (Σ),
we obtain

β 2 0 0 Σ s q ′ + α + +2 4 ∂H[η n ] ∂s 2q ′ ds s ≤ c 81 η n 2q ′ B 1- α + +2 4q ′ ,2q ′ (Σ)
.

By the Gagliardo-Nirenberg inequality

η n 2q ′ B 1- α + +2 4q ′ ,2q ′ (Σ) ≤ c 82 η n q ′ B 2- α + +2 2q ′ ,q ′ (Σ) η q ′ L ∞ (Σ) = c 82 η n q ′ B 2- α + +2 2q ′ ,q ′ (Σ) . ( 3 

.73)

By the same inequality

Σ |∇ Σ H[η n ]| 2q ′ + (H[η n ]) 2q ′ dS ≤ c 82 H[η n ] q ′ L ∞ (Σ) Σ |∆ Σ H[η n ]| q ′ + (H[η n ]) q ′ dS.
(3.74)

Using the estimates on L[η] in Lemma 3.9 and the fact that 0 ≤ H[η n ] ≤ 1, we conclude that

β 2 0 0 Σ s α + +2 4 |∇ Σ H[η n ]| 2q ′ + (H[η n ]) 2q ′ dS ds s ≤ c 83 η n q ′ B 2- α + +2 2q ′ ,q ′ .(Σ)
.

It follows from (3.69)

Ω β 0 2 u q (R[η n ]) 2q ′ φ κ dx ≤ c 84 Ω β 0 ( Lη n ) q ′ dx ≤ c 85 η n q ′ B 2- α + +2 2q ′ ,q ′ .(Σ)
.

(3.75)

Letting n → ∞ and using the fact that η n → 0, we obtain by Fatou's lemma that

Ω β 0 2 u q φ κ dx = 0.
Combining this with the fact that u is bounded in

Ω ′ β 0 2
we obtain (3.68). Notice that u L q φκ (Ω) is bounded independently of u.

Step 3. End of the proof. Since u q ∈ L 1 φκ (Ω), by Proposition 3.2 there exists a unique weak solution 

v ∈ L 1 φκ (Ω) of L κ v = u q in Ω v = 0 in ∂Ω, (3.76) and v ≥ 0. Then w = u + v is L κ -harmonic in Ω,
C R N -1 2- 2+α + 2q ′ ,q ′ -capacity. Since C R N -1 2- 2+α + 2q ′ ,q ′ (K) = 0, τ = 0. This implies that u is a weak solution of L κ u + u q = 0 in Ω u = 0 in ∂Ω, (3.77) 
and therefore u = 0.

Remark. Using the fact that u + and u -are subsolutions of (3.61), it is easy to check that Theorem 3.10 remains valid for any signed solution of (3.61).

Remark. If 1 < q < q c (see (3.37)) it follows from Sobolev imbedding theorem that only the empty set has zero C R N -1
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2+α + 2q ′ ,q ′ -capacity. As a consequence of the previous result, if q ≥ q c any isolated boundary singularity of a solution of (3.61) is removable.

Isolated boundary singularities

We denote by {e 1 , ..., e N } the canonical basis in

R N = {x = (x ′ , x N ) ∈ R N -1 × R} and by (r, σ) the spherical coordinates therein. Then R N + = {= (x ′ , x N ) :, x ′ ∈ R N -1 , x N > 0} .
We although denote by S N -1 and S N -1 + the unit sphere and the upper hemisphere of R N + , i.e. S N -1 : ∩R N + . In this section we study the behavior near 0 of solutions of

-∆u - κ d 2 u + |u| q-1 u = 0 (4.1)
in a bounded convex domain Ω of R N with a smooth boundary containing 0 where d is the distance function to the boundary, κ a constant in (0, 1 4 ] and q > 1. Although it is not bounded, the model case is

Ω = R N + = {= (x ′ , x N ) :, x ′ ∈ R N -1 , x N > 0} which is represented by (r, σ), r > 0, σ ∈ S N -1 + in spherical coordinates. Then L κ u = -u rr - N -1 r u r - 1 r 2 ∆ S N -1 u - κ r 2 (e N .σ) 2 u + |u| q-1 u. (4.2)
We also denote by ∇ ′ the covariant gradient on S N -1 in the metric of S N -1 obtained by the imbedding into R N .

The spherical L κ -harmonic problem

It is straightforward to check that the Poisson kernel K Lκ of L κ in R N + has the following expression

K Lκ (x, ξ) = c N,κ x α + 2 N |x -ξ| N +α+-2 . (4.3)
In spherical coordinates

K Lκ (x, 0) = c N,κ r 2-N -α + 2 ψ(σ) r > 0 , σ ∈ S N -1 + where ψ κ (σ) = xN |x| ⌊ α + 2 S N -1 + = (e N .σ) α + 2 solves -∆ S N -1 ψ κ -µ κ ψ κ - κ (e N .σ) 2 ψ κ = 0 in S N -1 + ψ κ = 0 in ∂S N -1 + , (4.4) 
and

µ κ = α + 2 (N + α + 2 -2). (4.5) 
Notice that equation (4.4) admits a unique positive solution with supremum 1. We could have defined the first eigenvalue µ κ of the operator

φ → L ′ κ w := -∆ S N -1 w - κ (e N .σ) 2 w, by µ κ = inf S N -1 + |∇w| 2 -κ(e N .σ) -2 w 2 dS S N -1 + w 2 dS : w ∈ H 1 0 (S N -1 + ), w = 0 . (4.6) By [2, Th 6.1] the infimum exists since ρ(σ) = x N ⌊ S N -1 + = e N .σ is the first eigenfunction of -∆ S N -1 in H 1 0 (S N -1 + ). The minimizer ψ κ belongs to H 1 0 (S N -1 + ) only if 1 < κ < 1 4 . Furthermore ψ κ ∈ Y(S N -1 + ) := {φ ∈ H 1 loc (S N -1 ) : ρ -α + 2 φ ∈ H 1 (S N -1 + , ρ α+ )}. (4.7)
We can also define µ k by

µ k = inf S N -1 + |∇ ′ (ρ -α + 2 ω)| 2 ρ α+ dS : ω ∈ Y(S N -1 + ), S N -1 + ω 2 dS = 1 . (4.8)
We can use the symmetry of the operator to obtain the second eigenvalue and eigenfunction of L ′ κ on S N -1

+

. We first notice that for j = 1, ..., N -1, the function

x → x α + 2 N x j |x| N +α+ , (4.9) is L κ -harmonic in R N -1 +
, positive (resp. negative) on {x = (x 1 , ..., x N : x j > 0, x N > 0} (resp. {x = (x 1 , ..., x N : x j < 0, x N > 0}) and vanishes on {x = (x 1 , ..., x N : x j = 0, x N = 0}. Proposition 4.1. For any j = 1, .., N -1 the function

σ → ψ κ,j (σ) = (e N .σ) α + 2 e j .σ, satisfies L ′ κ ψ κ,j = (µ κ + N -1 + α + )ρ κ,j (4.10) in S N -1 + . It is positive (resp. negative) on S N -1 + ∩ {x = (x 1 , ..., x N ) = x j > 0} (resp. S N -1 + ∩ {x = (x 1 , ..., x N ) = x j < 0}) and it vanishes on ∂S N -1 + ∩ {x = (x 1 , ..., x N ) = x j = 0}. The real number µ κ,2 = µ κ + N -1 + α + = ( α + 2 + 1)(N + α + 2 -1)
is the second eigenvalue of

L ′ κ in Y(S N -1 + ).
Proof. There holds

L ′ κ ψ κ,j = e j .σL κ ψ κ + ψ κ ∆ S N -1 e j .σ + 2∇ ′ ψ κ .∇ ′ e j .σ = (µ κ + N -1)ψ κ,j -α + (e N .σ) α + 2 -1 ∇ ′ (e j .σ).∇ ′ (e N .σ). Now ∇( x j r ) = ( x j r ) r x r + 1 r ∇ ′ ( x j r ) = 1 r ∇ ′ ( x j r ) = 1 r e j - x j r 3 x, thus ∇( x j r ).∇( x N r ) = - x j x N r 4 = 1 r 2 ∇ ′ ( x j r ).∇ ′ ( x N r ) = 1 r 2 ∇
′ (e j .σ).∇ ′ (e N .σ), which implies ∇ ′ (e j .σ).∇ ′ (e N .σ) = -x j x N r 2 = -(e j .σ)(e N .σ), and finally

L κ ψ κ,j = (µ κ + N -1 + α + )ψ κ,j . (4.11) Since S N -1 + = {(σ ′ sin θ, cos θ) : σ ′ ∈ S N -2 , θ ∈ [0, π 2 ]
}, e N .σ = cos θ, e j .σ = e j .σ ′ sin θ and dS = (sin θ) N -2 dS ′ dθ where dS and dS ′ are the volume elements of S N -1 and S N -2 respectively, we derive from the fact that σ ′ → e j .σ ′ is an odd function on S N -2 ,

S N -1 + ψ κ,j ψ κ dS = S N -1 + (e N .σ) α+ e j .σdS = π 2 0 S N -2 e j .σ ′ dS ′ (cos θ) α+ (sin θ) N -1 dθ = 0.
Hence ψ κ,j is an eigenvalue of L ′ κ in Y(S N -1

+

) with two nodal domains and the space the ψ κ,j span is (N-1)-dimensional and any linear combination of the ψ κ,j has exactely two nodal domains since

N -1 j=1 a j ψ κ,j = (e N .σ) α + 2 ( N -1 j=1
a j e j ).σ. This implies that µ κ,2 is the second eigenvalue.

The nonlinear eigenvalue problem

If we look for separable solutions under the form

u(x) = u(r, σ) = r α ω(σ), then necessarily α = -2
q-1 and ω is a solution of

-∆ S N -1 ω -ℓ q,N ω - κ (e N .σ) 2 ω + |ω| q-1 ω = 0 in S N -1 + ω = 0 in ∂S N -1 + , (4.12 
)

ℓ q,N = 2 q -1 2 q -1 + 2 -N , (4.13) 
and (4.6) is transformed accordingly. We denote by

E κ = ω ∈ Y(S N -1 + ) ∩ L q+1 (S N -1 + ) s. t. (4.12) holds (4.14)
and by E + κ the set of the nonnegative ones. We also recall that q c :=

2N + α + 2N -4 + α +
and we define a second critical value q e := 2N + 2 + α + 2N -2 + α + .

The following result holds Theorem 4.2. Assume 0 < κ ≤ 1 4 and q > 1, then (i) If q ≥ q c , E κ = {0}. (ii) If 1 < q < q c , E + κ is contains exactly two elements: 0 and ω κ . Furthermore ω κ depends only on the azimuthal angle θ. (iii) If q e ≤ q < q c , E κ contains three elements: 0, ω κ and -ω κ .

Proof. We recall that q ≥ q c ⇐⇒ ℓ q,N ≤ µ κ . Then non-existence follows by multiplying by ω and integrating on S N -1 + . For existence, we consider the functional

J κ (w) = S N -1 + |∇ ′ (w)| 2 + (µ κ -ℓ q,N )w 2 + 2 q + 1 ψ q-1 κ |w| q+1 ψ 2 κ dS, (4.15) defined in H 1 (S N -1 + , ψ 2 κ dS) ∩ L q+1 (S N -1 +
, ψ q+1 κ dS). Since µ κℓ q,N < 0, there exists a nontrivial minimum ω κ > 0, which satisfies

-div(ψ 2 κ ∇ ′ w κ ) + (µ κ -ℓ q,N )ψ 2 κ w κ + ψ q+1 κ w q κ = 0. (4.16)
If we set ω κ = ψ κ w κ , then ω κ satisfies

L ′ κ ω κ -ℓ q,N ω κ + ω q κ = 0 in S N -1 + . (4.17)
By monotonicity we derive that ω κ ∈ L p (S N -1

+

) for any 1 < p < ∞ and finally, that ω κ satisfies the regularity estimates of Lemma 2.9 and Lemma 2.10. Moreover ω κ > 0 by the maximum principle.

In the case q ≥ q c or equivalently µ κℓ q,N ≥ 0, the nonexistence of nontrivial solution is clear from (4.16).

Uniqueness. By Proposition 2.8 ω κ (x) ≤ c 86 (ρ(x)) α + 2
and by standard scaling techniques |∇ω κ (x)| ≤ c 87 (ρ(x)) α + 2 -1 . Assume now that two different positive solutions of (4.12) ω κ and ω ′ κ exist. Since max{ω κ , ω ′ κ } and ω κ + ω ′ κ are respectively a subsolution and a supersolution and they are ordered, we can assume that ω ′ κ < ω κ < cω ′ κ for some c > 1. Let ǫ > 0 and

ǫ ′ = c -1 ǫ, then ǫω ′ κ ≥ ǫ ′ ω κ . Set ϑ ǫ = ((ω ′ κ + ǫ ′ ) 2 -(ω κ + ǫ) 2 ) + ω κ + ǫ , ϑ ǫ ′ = ((ω ′ κ + ǫ ′ ) 2 -(ω κ + ǫ) 2 ) + ω ′ κ + ǫ ′ , and S ǫ,ǫ ′ = {σ ∈ S N -1 + : ω ′ κ + ǫ ′ > ω κ + ǫ}. The assume that S ǫ,ǫ ′ = ∅ for any ǫ > 0. Then S ǫ,ǫ ′ ∇ω ′ κ .∇ϑ ǫ ′ -∇ω κ .∇ϑ ǫ -(ℓ q,N + κ ρ 2 )(ω ′ κ .ϑ ǫ ′ -ω κ .ϑ ǫ ) + ω ′q κ ϑ ǫ ′ -ω q κ ϑ ǫ dS = 0.
The first integrand on the l.h. side is equal to

S ǫ,ǫ ′ ∇ω ′ κ - ω ′ κ + ǫ ′ ω κ + ǫ ∇ω κ 2 + ∇ω κ - ω κ + ǫ ω ′ κ + ǫ ′ ∇ω ′ κ 2 dS ≥ 0. Since ǫω ′ κ < ǫ ′ ω κ and (ω ′ κ + ǫ ′ ) 2 > (ω κ + ǫ) 2
,the second integrand on the l.h. side is equal to

- S ǫ,ǫ ′ (ℓ q,N + κ ρ 2 ) ω ′ κ ω ′ κ + ǫ ′ - ω κ ω κ + ǫ ((ω ′ κ + ǫ ′ ) 2 -(ω κ + ǫ) 2 )dS ≥ 0.
At end, the last integrand is

S ǫ,ǫ ′ ω ′q κ ω ′ κ + ǫ ′ - ω q κ ω κ + ǫ ((ω ′ κ + ǫ ′ ) 2 -(ω κ + ǫ) 2 )dS.
If we let ǫ → 0, we derive

S N -1 + ω ′q-1 κ -ω q-1 κ (ω ′2 κ -ω 2 κ ) + dS ≤ 0.
This yields a contradiction. Therefore uniqueness holds.

Case q e ≤ q < q c . Assume ω κ is a solution. Using the representation of S N -1 + already introduced in the proof of Proposition 4.1, with σ = (σ ′ , θ) and

∆ S N -1 ω κ = 1 (sin θ) N -2 ∂ ∂θ (sin θ) N -2 ∂ω κ ∂θ + 1 sin 2 θ ∆ S N -2 ω κ ,
where ∆ S N -2 is the Laplace-Beltrami operator on S N -2 , we set

ωκ (θ) = 1 |S N -2 | S N -2 ω κ (σ ′ , θ)dS ′ (σ ′ ).
Then ωκ is independent of σ ′ ∈ S N -2 and furthermore

S N -1 + (ω κ -ωκ )ψ κ dS = π 2 0 S N -2 (ω κ -ωκ )dS ′ (sin θ) N -2 (cos θ) α + 2 dθ = 0,
thus ωκ is the projection of ω κ onto the first eigenspace of L κ and

S N -1 + (ω κ -ωκ )L κ (ω κ -ωκ dS ≥ µ κ,2 S N -1 + (ω κ -ωκ ) 2 dS.
At end, noting that

S N -2 + (g q • ω κ -g q • ωκ )(ω κ -ωκ )dS ′ = 0,
where we have set g q • u = |u| q-1 u for brevity, and thus

S N -1 + (g q • ω κ -g q • ω κ )(ω κ -ωκ )dS = π 2 0 S N -2 + (g q • ω κ -g q • ω κ )(ω κ -ωκ )dS ′ (sin θ) N -2 dθ = π 2 0 S N -2 + (g q • ω κ ) -g q • ωκ )(ω κ -ωκ )dS ′ (sin θ) N -2 dθ ≥ 2 1-q S N -1 + |ω κ -ωκ | q+1 dS,
we derive that w = ω κωκ , satisfies

S N -1 + (µ κ,2 -ℓ N,q )(ω κ -ωκ ) 2 + 2 1-q |ω κ -ωκ | q+1 dS ≤ 0,
which implies ω κ = ωκ and it satisfies

1 (sin θ) N -2 d dθ (sin θ) N -2 dω κ dθ + ℓ q,N + κ cos 2 θ ω κ -g q • ω κ = 0. (4.18) 
Because µ κ,1 < ℓ q,N ≤ µ κ,2 , by [6, Th. 4, Corol. 1], this equation admits the three solutions, ω κ , -ω κ and 0.

Remark. For ǫ > 0 small enough the function ǫψ κ is a subsolution for problem (4.12). This implies

ω κ (σ) ≥ ǫψ κ (σ) ∀σ ∈ S N -1 + . (4.19) 

Isolated boundary singularities

Throughout this section we assume that Ω ⊂ R N + , 0 ∈ ∂Ω the tangent plane to ∂Ω at 0 is ∂R N + and that 1 < q < q c . Lemma 4.3. There holds

lim |x|→0 G Lκ [(K Lκ (., 0)) q ](x) K Lκ (x, 0) = 0. (4.20) 
Proof. We recall the following estimates (1.9), (2.57)

(i) G Lκ (x, y) ≤ c 3 min 1 |x -y| N -2 , (d(x)) α + 2 (d(y)) α + 2 |x -y| N +α+-2 , (ii) c -1 3 (d(x)) α + 2 |x| N +α+-2 ≤ K Lκ (x, 0) ≤ c 3 (d(x)) α + 2 |x| N +α+-2 .
Then 2) , where e x = |x| -1 x. This last integral is finite and independent of x. Since q < q c , (4.20) follows.

G Lκ [K q Lκ (., 0)](x) K Lκ (x, 0) ≤ c q+2 3 |x| N +α+-2 Ω (d(y)) (q+1)α + 2 dy |x -y| N +α+-2 |y| q(N +α+-2) ≤ c q+2 3 |x| N + α + 2 -q(N + α + 2 -2) R N dη |e x -η| N +α+-2 |η| q(N +α+-
Corollary 4.4. Let u kδ0 be the unique solution

L κ u + |u| q-1 u = 0 in Ω u = kδ 0 in ∂Ω. (4.21) 
Then lim

x→0 u kδ0 K Lκ (x) = k. (4.22) 
Proof. This is a consequence of (4.20) and the inequality

kK Lκ [δ 0 ](x) -k q G[(K Lκ [δ 0 ]) q ](x) ≤ u kδ0 (x) ≤ kK Lκ [δ 0 ](x). (4.23) 
Proposition 4.5. There exists u ∞,0 = lim k→∞ u kδ0 and there holds

lim x → 0, x ∈ Ω x|x| -1 → σ |x| 2 q-1 u ∞,0 (x) = ω κ (σ), (4.24) 
uniformly on compact subsets of S N -1

+ .
Proof. The correspondence k → u kδ0 is increasing and, by the Keller-Osserman estimate, it converges, when k → ∞ to some smooth function u ∞,0 defined in Ω where it satisfies (1.1). By Proposition 6.1, for any R ∈ (0, R 0 ), the function u kδ0 , and also u ∞,0 , vanishes on any compact subset of ∂Ω \ {0}. Furthermore

u ∞,0 (x) ≤      c K,γ,κ (dist (x, K)) γ ∀γ ∈ ( α- 2 , α+ 2 ) if 0 < κ < 1 4 , c K dist (x, K) ln diam(Ω) dist(x,K) if κ = 1 4 ,
for all compact set K ⊂ ∂Ω \ {0}. Combining this estimate with Propositions 6.3 we obtain

u ∞,0 (x) ≤ c 90 (d(x)) α + 2 |x| -2 q-1 - α + 2 ∀x ∈ Ω, (4.25) 
and

|∇u ∞,0 (x)| ≤ c 90 (d(x)) α + 2 -1 |x| -2 q-1 - α + 2 ∀x ∈ Ω. (4.26) 
Let ℓ 0 > 0 be small enough such that ℓe ∈ Ω for any 0 < ℓ < ℓ 0 , where e = (0, ..., 0, 1). Then by (1.9), (2.57) and (4.23) we can easily prove that there exist positive constants c 01 and c 02 such that

ℓ 2 q-1 u ∞,0 (ℓe) ≥ c 01 kℓ 2 q-1 -N - α + 2 +2 -c 02 k q ℓ 2-q(N + α + 2 -2)+ 2 q-1 ∀k > 0. Now we set k = 1 Mℓ 2 q-1 -N - α + 2
+2 , then there holds

ℓ 2 q-1 u ∞,0 (ℓe) ≥ c 01 M - c 02 M q .
Thus if we choose M big enough, we can easily show that there exists c 03 > 0 which depends on κ, Ω, q, N such that

ℓ 2 q-1 u ∞,0 (ℓe) ≥ c 03 > 0 ∀0 < ℓ < ℓ 0 . (4.27) 
For ℓ > 0, we put

T ℓ [v](x) = ℓ 2 q-1 v(ℓx), Ω ℓ = ℓ -1 Ω, d ℓ (y) = dist (y, ∂Ω ℓ ). If v satisfies (4.1) in Ω and vanishes on ∂Ω \ {0}, T ℓ [v] vanishes on ∂Ω ℓ \ {0} and satisfies -∆T ℓ [v] - κ d 2 ℓ T ℓ [v] + |T ℓ [v]| q-1 T ℓ [v] = 0 in Ω ℓ . (4.28) 
In order to avoid ambiguity, we set

u kδ0 = u Ω kδ0 , v kδ0 = v Ω kδ0 , u ∞,0 = u Ω ∞,0 and v ∞,0 = v Ω ∞,0 .
Since inequalities (4.25) and (4.26) are invariant under the scaling transformation T ℓ , the standard elliptic equations regularity theory yields the following estimates

u Ω ℓ ∞,0 (y) ≤ c 92 (d ℓ (y)) α + 2 |y| -2 q-1 - α + 2 ∀y ∈ Ω ℓ , (4.29) 
and

|∇u Ω ℓ ∞,0 (y)| ≤ c 92 (d ℓ (y)) α + 2 -1 |y| -2 q-1 - α + 2 ∀y ∈ Ω ℓ , (4.30) 
valid for any

0 < ℓ ≤ 1. If we let k → ∞, we obtain T ℓ [u Ω ∞,0 ] = u Ω ℓ ∞,0
and because of the group property of the transformations {T ℓ } ℓ>0 , there holds

T ℓ ′ [u Ω ℓ ∞,0 ] = u Ω ℓ ′ ℓ
∞,0 for any ℓ, ℓ ′ > 0. Estimates (4.29) and (4.30) imply that {u Ω ℓ ∞,0 } is relatively compact for the topology of convergence on compact subsets of R N + . Therefore there exist a sequence {ℓ n } tending to 0 and a function U such that {u Ω ℓn ∞,0 } converges to U uniformly on any compact subset of R N + . By (4.27) this function is identically equal to zero. Therefore U is a weak solution of

-∆U - κ y 2 N U + U q = 0 in R N + . (4.31) 
Furthermore u

R N + ∞,0 (y) ≤ c 92 y α + 2 N |y| -2 q-1 - α + 2 ∀y ∈ R N + . (4.32) 
Since

T ℓ ′ [u Ω ℓn ∞,0 ] = u Ω ℓ ′ ℓn ∞,0 , we derive T ℓ ′ [U ] = U for any ℓ ′ > 0, thus U is self similar. Set ω( y |y| ) = U ( y |y| ). If we set σ = y |y| , there holds ω(σ) ≤ c 92 ψ κ (σ) ∀σ ∈ S N -1 + . (4.33) 
Therefore ω satisfies (4.12) and it coincides with the unique positive element ω κ of E κ , since by (4.27)

U (e) ≥ c 03 > 0. Thus u Ω ℓ ∞,0 converges to U on compact subsets of R N + .
In particular (4.24) holds on compact subsets of S N -1 + . u * which is a positive solution of (5.1). Furthermore, if U is any solution of (5.1) dominating υ, it dominates u n in Ω n and thus u * ≤ U . The proof of (ii) is similar: we construct a decreasing sequence {u ′ n } of nonnegative solutions of (5.1) in Ω n coinciding with υ on ∂Ω n and dominated by υ. It converges to some u * which satisfies U ≤ u * ≤ υ for any solution U dominated by υ. Proposition 5.4. Let 0 ≤ u, v ∈ C(Ω). (i) If u and v are subsolutions (resp. supersolutions) then max(u, v) is a subsolution (resp. min(u, v) is a supersolution). (ii) If u and v are supersolutions then u + v is a supersolution. (iii) If u is a subsolution and v is a supersolution then (uv) + is a subsolution.

Proof. The first two statements follow Kato's inequality. The last statement is verified using that 

-∆(u -v) + ≤ sign + (u -v)(-∆(u -v)) ≤ -sign + (u -v)(u q -v q ) + κ (u -v) + d 2 (x) ≤ -(u -v) q + + κ (u -v) + d 2 (x) .
v := [max(u, v)] † . (d) If u, v are supersolutions then u ∧ v := [inf(u, v)] † and u ⊕ v = [u + v] † . (e) If u is a subsolution and v is a supersolution then u ⊖ v := [(u -v) + ] † .
The next result based upon local uniform estimates is due to Dynkin [START_REF] Dynkin | Superdiffusions and partial differential equations[END_REF].

Proposition 5.6. (i) Let {u k } ⊂ C(Ω) be a sequence of positive subsolutions (resp. supersolutions) of (5.1). Then U := sup u k (resp. U := inf u k ) is a subsolution (resp. supersolution).

(ii) Let T ⊂ C(Ω) be a family of positive solutions of (5.1). Suppose that, for every pair u 1 , u 2 ∈ T there exists v ∈ T such that

max(u 1 , u 2 ) ≤ v (resp. min(u 1 , u 2 ) ≥ v).
Then there exists a monotone sequence {u n } ⊂ T such that

u n ↑ sup T (resp. u n ↓ inf T ).
Furthermore sup T (resp. inf T ) is a solution.

Definition 5.7. Let F ⊂ ∂Ω be a closed set. We set

U F := sup u ∈ U + (Ω) : lim x→ξ u(x) W (x) = 0, ∀ξ ∈ ∂Ω \ F , (5.7 
)

and [u] F = sup v ∈ U + (Ω) : v ≤ u, lim x→ξ v(x) W (x) = 0, ∀ξ ∈ ∂Ω \ F . (5.8) 
Notice that F → U F and F → [u] F are increasing with respect to the inclusion order relation in ∂Ω,

[u] F = u ∧ U F . As a consequence of Proposition 6.3, U F satisfies lim x→ξ U F (x) W (x) = 0, ∀ξ ∈ ∂Ω \ K.
(5.9) Proof. (i) U E ∧ U F is the largest solution dominated by inf(U E , U F ) and therefore, by definition, it is the largest solution which vanishes outside

Proposition 5.8. Let E, F ⊂ ∂Ω be closed sets. Then (i) U E ∧ U F = U E∩F . (ii) If F n ⊂ ∂Ω
E ∩ F. (ii) If V := lim U Fn then U F ≤ V. But supp (V ) ⊂ F n for each n ∈ N and consequently V ≤ U F .
For β > 0, we recall that Ω β , Σ β and the mapping x → (d(x), σ(x)) have been defined in the proof of Lemma 3.9. We also set

Ω ′ β = Ω \ Ω β and, if Q ⊂ ∂Ω, Σ β (Q) = {x ∈ Ω β : σ(x) ∈ Q}. Proposition 5.9. Let u ∈ U(Ω). (i) If A, B ⊂ ∂Ω are closed sets. Then [[u] A ] B = [[u] B ] A = [u] A∩B .
(5.10)

(ii) If {F n } is a decreasing sequence of closed subsets of ∂Ω and F = ∩F n , then [u] Fn ↓ [u] F . (iii) If A, B ⊂ ∂Ω are closed sets. Then [u] A ≤ [u] A∩B + [u] A\B . (5.11) 
Proof. (i) It follows directly from definition that,

[[u] A ] B ≤ inf(u, U A , U B ).
The largest solution dominated by u and vanishing on

A c ∪ B c is [u] A∩B . Thus [[u] A ] B ≤ [u] A∩B .
On the other hand

[u] A∩B = [[u] A∩B ] B ≤ [[u] A ] B , this proves (5.10). (ii) If F n ↓ F, it follows by Proposition 5.8-(ii) that U Fn → U F , thus [u] F ≤ lim n→∞ [u] Fn = lim n→∞ u ∧ U Fn ≤ lim n→∞ inf(u, U Fn ) ≤ inf(u, U F ). Since [u] F is the largest solution dominated by inf(u, U F ), [u]
Fn is the largest solution dominated by inf(u, U Fn ) and U Fn ↓ U F by Proposition 5.8, the function v = lim n→∞ [u] Fn is a solution of (5.1) dominated by inf(u, U F ), thus v ≤ [u] F and the proof of (ii) is complete.

(iii) Without loss of generality we assume that

A ∩ B = ∅. Let O, O ′ ⊂ ∂Ω be a relatively open set such that A ∩ B ⊂ O and A ∩ B c ⊂ O ′ Set v = [u] A and let v 1 β be the solution of L κ w + |w| q-1 w = 0 in Ω ′ β w = χ Σ β (O) v on Σ β .
Also we denote by v 2 β and v 3 β the solutions of the above problem with respective boundary data χ

Σ(O ′ ) v and χ Σ(O c ∩O ′c ) v. Then v i β ≤ v⌊ Ω ′ β ≤ v 1 β + v 2 β + v 3 β , i = 1, 2, 3.
Let now {β j } be a decreasing sequence converging to 0 and such that

v i βj → v i ≤ v ≤ v 1 + v 2 + v 3 , i = 1, 2, 3 locally uniformly in Ω.
By definition of v i and Proposition 6.1, we have that

v 1 ≤ [v] O , v 2 ≤ [v] O ′ and v 3 ≤ [v] O c ∩O ′c . But by (i) we have [v] O c ∩O ′c = [[u] A ] O c ∩O ′c = [u] A∩O c ∩O ′c = 0. Thus v ≤ [v] O + [v] O ′
We can consider decreasing sequences {O n } and

{O ′ n } such that ∩O n = A ∩ B and ∩O ′ n = A ∩ B c . By (ii) we obtain v ≤ [[u] A ] A∩B + [[u] A ] A∩B c ≤ [u] A∩B + [u] A∩B c which is (iii).
Remark. Since any u ∈ U + (Ω) is dominated by u ∂Ω , it follows from (iii) that for any set A ⊂ ∂Ω, there holds

u = [u] ∂Ω ≤ [u] A + [u] ∂Ω\A ≤ [u] A + [u] ∂Ω\A . (5.12) 
Proposition 5.10. Let u be a positive solution of (5.1). If u ∈ L q φκ (Ω) it possesses a boundary trace µ ∈ M(∂Ω), i.e., u is the solution of the boundary value problem (3.36) with this measure µ.

Proof. If v := G Lκ [u q ] then v ∈ L 1 φκ (Ω) and u + v is a positive L κ -harmonic function. Hence u + v ∈ L 1
φκ (Ω) and there exists a non-negative measure µ ∈ M(∂Ω) such that u

+ v = K Lκ [µ]
. By Proposition 3.5 this implies the result. Proposition 5.11. Let u be a positive solution of (5.1) and µ ∈ M(∂Ω). If for an exhaustion {Ω n } of Ω, we have

lim n→∞ ∂Ωn Z(x)udω x0 Ωn = ∂Ω Z(x)dµ ∀Z ∈ C(Ω),
where ω x0 Ωn is the L κ -harmonic measure of Ω n relative to a point x 0 ∈ Ω 1 , then u and |u| p belong to L 1 φκ (Ω). Furthermore u possesses the boundary trace µ ∈ M(∂Ω), i.e. u is the solution of the boundary value problem (3.36) with this measure µ.

Proof. Let G n

Lκ be the green function of L κ in Ω n , then

G n Lκ (x, y) ≤ G n+1 Lκ (x, y) ∀x, y ∈ Ω n and G n Lκ ↑ G Lκ .
The next result shows that the boundary trace has a local character.

Proposition 5.13. Let u ∈ U + (Ω) and ξ ∈ ∂Ω. We assume that there exists ρ > 0 such that Bρ(ξ)∩Ω u q (x)φ κ (x)dx < ∞.

(5.13) Proof. (i) Let F be a closed set and 0 < ρ ′ < ρ be such that

(i) Then [u] q F ∈ L 1 φκ (Ω) ∀F ⊂ ∂Ω ∩ B ρ (ξ), F closed.
F ⊂ ∂Ω ∩ B ρ ′ (ξ). Since [u] F ≤ inf(u, U F ) and U F ∈ C(Ω \ F ), we have Ω [u] q F φ κ (x)dx ≤ Bρ(ξ)∩Ω |u| p φ κ (x)dx + Ω\Bρ(ξ) |U F | p φ κ (x)dx < ∞. (ii) Let 0 < ρ 1 < ρ 2 < ρ, then [u] Bρ 2 (ξ)∩∂Ω ≤ u ≤ [u] Bρ 2 (ξ)∩∂Ω + U ∂Ω\Bρ 2 (ξ) .
The function [u] Bρ 2 (ξ)∩∂Ω which belongs L q φκ (Ω) admits a boundary trace ν ∈ M(∂Ω) and Using a partition of unity it is easy to prove the following extension of the previous result.

Proposition 5.14. The set R u of points ξ such that there exists r > 0 such that (5.14) holds is relatively open. For any compact set F ⊂ R u and any open set

G ⊂ R N such that F ⊂ G∩∂Ω ⊂ G ∩ ∂Ω ⊂ R u , there holds G∩Ω u q (x)φ κ (x)dx < ∞.
(5.15) 

Then [u] F ∈ L 1 φκ (Ω), [u] F

Zudω x0

Ωn < ∞.

There exists a subsequence n j such that lim j→∞ ∂Ωn j

Zudω x0

Ωn j = M < ∞.

Let r be such that Z(x) > Z(y) 2 , ∀x ∈ B r (y) ∩ Ω, then for any r ′ < r we have that

lim sup j→∞ ∂Ωn j [u] B r ′ (y)∩∂Ω dω x0 Ωn < ∞.
In view of the proposition of 5.11 the last fact implies that [u] q B r ′ (y)

∈ L φκ (Ω), which implies that u ∈ L q φκ (B r ′′ (y)) for all r ′′ < r ′ , which is clearly a contradiction, by Proposition 5.13.

Proposition 5.17. Let u be a positive solution of (5.1) in Ω with boundary trace

(S u , µ u ). If F is a closed subset of R u , then Ω (uL κ ζ + u q ζ)dx = Ω K Lκ [µ u χ F ]L κ ζdx, for any ζ ∈ X(Ω) such that supp (ζ) ∩ ∂Ω ⊂ F.
Proof. The proof is an adaptation to our situation of [START_REF] Marcus | Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case[END_REF]Th 4.6]. Consider the function ζ ∈ X(Ω) such that supp(ζ) ∩ ∂Ω ⊂ F. For ǫ > 0, set

O ε = {x ∈ R N : dist(x, F ) < ε},
and let ε 0 > 0 be small enough such that

O ε ∩ ∂Ω ⊂ R u , ∀ 0 < ε ≤ ε 0 .
Let ε < ε0 4 and η be a cut off function such that η ∈ C ∞ 0 (O ε ), 0 ≤ η ≤ 1 and η ≡ 1 on O ε 2 . For 0 < β ≤ β 0 , let v β be the solution of

L κ w + |w| q-1 w = 0 in Ω ′ β w = ηu on Σ β .
Since v β remains eventually locally uniformly bounded in Ω, there exists a sequence {β j } decreasing to 0 such that v βj → v locally uniformly, and

v ≤ [u] ∂Ω∩Oε .
Thus v has boundary trace µ 0 such that µ 0 ≤ µ u χ ∂Ω∩Oε .

Let v 1 β and v 2 β be the solutions of

L κ w + |w| q-1 w = 0 in Ω ′ β w = η[u] ∂Ω∩O2ε on Σ β . and L κ w + |w| q-1 w = 0 in Ω ′ β w = ηU ∂Ω\O2ε on Σ β , respectively. Since u ≤ [u] ∂Ω∩O2ε + U ∂Ω\O2ε we have that v β ≤ v 1 β + v 2 β ≤ [u] ∂Ω∩O2ε + v 2 β .
Notice that [u] q ∂Ω∩O2ε ∈ L 1 φκ (Ω). From estimate (6.20) we derive

η(x)U ∂Ω\O2ε (x) ≤ c 90 d α + 2 (x) ∀x ∈ Ω,
where c 90 > 0 depends on N, q, κ and dist (supp(η),

∂Ω \ O ǫ ). Thus v 2 β (x) ≤ c 90 d α + 2 (x) and v β ≤ [u] ∂Ω∩O2ε + c 90 d α + 2 (x), ∀x ∈ Ω ′ β .
(5.18)

Let w β be the solution of

L κ w + |w| q-1 w = 0 in Ω ′ β w = χ Σ β (∂Ω\O ε 2 ) [u] F on Σ β . Then [u] F ≤ v β + w β in Ω ′ β .
We have that w βj → 0 locally uniformly in Ω, which implies that

[u] F ≤ v.

Thus we have

µ u χ F ≤ µ 0 ≤ µ u χ ∂Ω∩Oε . (5.19) 
Let ζ β be the solution of

L κ w = L κ ζ in Ω ′ β w = 0 on Σ β .
Since ζ ∈ X(Ω), there exists a constant c 91 such that ζ β ≤ c 91 φ κ in Ω ′ β . Thus there exists a decreasing sequence {β j } converging to 0 such that ζ βj → ζ locally uniformly. For simplicity we will denote it by {β}. Now,

Ω ′ β (uL κ ζ β + u q ζ β )dx = - ∂Ω ′ β ∂ζ β ∂n ηudS = Ω ′ β (v β L κ ζ β + v q β ζ β )dx (5.20)
which yields, by the definition of ζ β and v β ,

Ω ′ β (uL κ ζ + u q ζ β )dx = Ω ′ β (v β L κ ζ + v q β ζ β )dx (5.21)
Since supp (ζ)∩∂Ω ⊂ F , then for β small enough u ∈ L q φκ (Ω∩O ǫ ). Furthermore v β ≤ u ⌊Ω ′ β , therefore, it follows the following convergence relations by the dominated convergence theorem, (5.17) and (3.5):

lim β→0 Ω ′ β u q ζ β dx = Ω u q ζdx and lim β→0 Ω ′ β v q β ζ β dx = Ω v q ζdx,
and lim

β→0 Ω ′ β uL κ ζdx = Ω uL κ ζdx and lim β→0 Ω ′ β v β L κ ζdx = Ω ′ β vL κ ζ.
This implies

Ω (uL κ ζ + u q ζ)dx = Ω (vL κ ζ + v q ζ)dx = Ω K Lκ [µ 0 ]L κ ζdx.
by (3.19). Letting ε → 0 we have the desired result from (5.19).

Subcritical case

We recall that

q c = N + α+ 2 N + α+ 2 -2
is the critical exponent for the equation. If 1 < q < q c , we have seen in section 4 that for any a ∈ ∂Ω and k ≥ 0 there exists u kδa and lim k→∞ u kδa = u ∞,a . Furthermore, by Proposition 5.16, T r ∂Ω (u ∞,a ) = ({a}, 0). Theorem 5.18. Assume 1 < q < q c and a ∈ S u . Then u(x) ≥ u ∞,a (x) ∀x ∈ Ω.

(5.22)

For proof of the above inequality uses some ideas of the proof of Theorem 7.1 in [START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF] and needs several intermediate lemmas.

Lemma 5.19. Assume 1 < q < q c . Let {ξ n } be a sequence of points in Ω converging to a ∈ ∂Ω and let l ∈ (0, 1). We define the sets

Ω n := Ω ′ d(ξ n ) = {x ∈ Ω : d(x) > d(ξ n )} and Σ n := ∂Ω n . (5.23) 
Let x 0 ∈ Ω ′ 1 and denote by ω n := ω x0 Ωn the L κ -harmonic measure in Ω n relative to x 0 . Put

V n = B rn (ξ n ) ∩ ∂Ω n with r n = d(ξ n ). Let h n ∈ L ∞ (Σ n ), n = 1, 2, .
.. , and suppose that there exist numbers c and k such that

supp (h n ) ⊂ V n and 0 ≤ h n ≤ cr -N - α + 2 +2 n , (5.24) 
and lim n→∞ Σn

h n φdω x0 Ωn = kφ(a) ∀φ ∈ C(Ω).
Let w n be the solution of the problem

L κ w n + |w n | q-1 w n = 0 in Ω n w n = h n on ∂Σ n .
Then w n → u k,a locally uniformly in Ω.

Proof. Let η n ∈ ∂Ω be such that d(ξ n ) = |ξ nη n |. By Corollary 2.30 we have

K Lκ (x, η n ) ≥ 1 c 43 r -N - α + 2 +2 n ≥ 1 c 43 h n (x), ∀x ∈ Σ n , (5.25) 
by the maximum principle,

K Lκ (x, η n ) ≥ 1 c 43 w n (x) ∀x ∈ Ω n .
(5.26)

Moreover Ω K q Lκ (x, y)d α + 2 (x)dx ≤ c(q, Ω) ∀1 < q < q c ,
where c(q, Ω) is a constant independent of y. Since q is subcritical, it follows that the sequences {K q Lκ (•, η n )} and {K Lκ (•, η n } are uniformly integrable in L 1 φκ (Ω). Let w n denotes the extension of w n to Ω defined by w n = 0 in Ω \ Ω n . In view of (5.25) we conclude that the sequences {w q n } and {w n } are uniformly integrable in L 1 φκ (Ω), and locally uniformly bounded in Ω By regularity results for elliptic equations there exists a subsequence of {w n }, say again {w n } that converges locally uniformly in Ω to a solution w of (5.1). This fact and the uniform integrability mentioned above imply that

w n → w in L q φκ (Ω) ∩ L 1 φκ (Ω).
Since w ∈ L q φκ (Ω) by Proposition 5.10 there exists µ ∈ M(Ω) such that

Ω wL κ ηdx + Ω |w| q-1 wηdx = Ω K Lκ [µ]L κ ηdx ∀η ∈ X(Ω).
Furthermore, using (5.25) we prove below that measure µ is concentrated at a. Let φ κ,n be the first eigenfunction of L κ in Ω n normalized by φ κ,n (x 0 ) = 1 for some x 0 ∈ Ω 1 . Let η ∈ X(Ω) be nonnegative function and let η n be the solution of the problem

L κ η n = φκ,n φκ L κ η in Ω n η n = 0 in ∂Ω n .
Then η n ∈ C 2 (Ω n ) and since φ κ,n → φ κ , L κ η n → L κ η and η n → η as n → ∞.

Then we have

Ωn

w n L κ η n dx + Ω |w n | q-1 wηdx = Ω v n L κ η n dx, (5.27) 
where v n solves

L κ v n = 0 in Ω n v n = h n on ∂Σ n .
By the same arguments as above there exists a subsequence of {v n χ Ωn }, that we still denote by {v n χ Ωn }, converging to a a nonnegative L κ -harmonic function v in L 1 φκ (Ω). By (5.25) we have

cc 43 K Lκ (x, a) ≥ v(x) ∀x ∈ Ω.
(5.28)

Thus there exists a measure ν ∈ M(∂Ω), concentrated at a such that v solves

L κ v = 0 in Ω v = ν on ∂Ω. But k = lim n→∞ Σn h n dω x0 Ωn = lim n→∞ v n (x 0 ) = v(x 0 ) = ∂Ω dν,
the results follows if we let n tend to ∞ in (5.27).

Lemma 5.20. For every l ∈ (0, 1) there exists a constant c l = c(N, κ, q, l) such that, for every positive solution u of (5.1) in Ω and every x 0 ∈ Ω,

u(x) ≤ c l u(y) ∀x, y ∈ B lr0 (x 0 ) r 0 = d(x 0 ). (5.29) 
Proof. Put r 1 = 1+l 2 r 0 . Then u satisfies

L κ u + u q = 0 in B r1 (x 0 ).
Denote by Ω r0 the domain

Ω r0 = {y ∈ R n : r 0 y ∈ Ω}.
Set v(y) = u(r 0 y), and y 0 = x0 r , then v(y) satisfies

-∆v -κ v dist 2 (y, ∂Ω y0 ) + r 2 0 |v| q-1 v = 0 in B 1+l 2 (y 0 ). Now note that 1 dist 2 (y, ∂Ω y0 ) ≤ 4 (1 -l) 2 ∀y ∈ B 1+l 2 (y 0 ),
and by Keller Osserman condition

r 2 0 |v(y)| q-1 = r 2 0 |u(r 0 y)| q-1 ≤ C(Ω, κ, N )r 2 0 1 d 2 (r 0 y) ≤ C(Ω, κ, N )B 1+l 2 (y 0 ).
Thus, by Harnack inequality, there exists a constant c l > 0 such that v(z) ≤ c l v(y) ∀z, y ∈ B l (y 0 ), and the results follows.

For the proof of the next lemma we need some notations. Let β > 0 and ξ ∈ Σ β := ∂Ω ′ β . We set

∆ β r (ξ) = Σ β ∩ B r (ξ) and, for 0 < r < β < 2r, x β r = x β r (ξ) ∈ Ω β , such that d(x β r ) = |x β r -ξ| = r. Also we denote by ω x Ω ′ β the L κ -harmonic measure in Ω ′ β := Ω \ Ω β relative to x and H(x) = h 2 (x) -c 101 h 1 (x).
Let n 0 ∈ N such that r n ≤ β0 4 , ∀n ≥ n 0 . then the function H(x) is a nonnegative subsolution in Ω n \ Ω ′ β0 , and H(x) = 0, ∀x ∈ ∂Ω n . By (5.32) we can choose n 1 ∈ N such that

G Ωn L 1 4 (x 0 , x) ≥ c(Ω, N, κ)β 1 2 0 ∀x ∈ ∂Ω ′ β0 .
Thus we can find a constant c 102 = c 102 (β 0 ) > 0 such that

c 102 H(x) ≤ G Ωn L 1 4 (x 0 , x) ∀x ∈ ∂Ω ′ β0 .
Since H vanishes on ∂Ω n it follows by the maximum principle that

c 102 H(x) ≤ G L 1 4 (x 0 , x) ∀x ∈ Ω n \ Ω ′ β0 . (5.34) But H(x(ξ n )) ≥ c 103 (β 0 ) ≥ c 104 (Ω, N )r 1 2
n (-log r n ) 1-ε , thus the result follows by the above inequality combined with inequalities (5.34) and (5.33).

Lemma 5.23. Let κ < 1 4 , ε ∈ 0, √ 1 -4κ and x 0 ∈ Ω 1 . Let {ξ n } be a sequence of points in Ω converging to a ∈ ∂Ω. Then there exists n 0 = n 0 (ε, Ω) ∈ N such that

ω x0 Ωn B d(ξ n ) (ξ n ) ∩ ∂Ω ′ n ≥ c 105 (Ω, N, κ, ε)d(ξ n ) N + α - 2 +ε-2 ∀n ≥ n 0 ,
where Ω n is defined by (5.23) Proof. The proof is similar as the one of Lemma 5. 

(d(x)) N + α + 2 -2 u(x) < ∞, (5.35) 
then a ∈ R u . Thus we have to prove that there exists r 0 > 0 such that u ∈ L q φκ (Ω ∩ B r0 (a)). By (5.35) there exists r 1 > 0 such that sup x∈Ω∩Br 1 (a)

d N + α + 2 -2 (x)u(x) = M < ∞.
Let U be a smooth open domain such that

Ω ∩ B r 1 2 (a) ⊂ U ⊂ Ω ∩ B r1 (a), and 
U ∩ ∂Ω ⊂ ∂Ω ∩ B r1 (a).
For β > 0, set

d U (x) = dist(x, ∂U ) ∀x ∈ U, U β = {x ∈ U : d U (x) > β}, V β = U \ U β .
Let β 0 > 0 be small enough such that

d U ∈ C 2 (U β0 ). Let 0 < β < β 0 and ζ(x) = d U (x) -β. Then u satisfies ∂V β udS = V β \V β 0 (uL κ ζ + u q ζ)dx - ∂V β 0 ∂u ∂n ζdS. Now ∂V β 0 ∂u ∂n ζdS ≤ c 106 (β 0 -β),
where c 106 depends on q, κ, Ω, β 0 ,

V β \V β 0 uL κ ζdx ≤ - V β \V β 0 u∆ζdx ≤ c 107 V β \V β 0 udx,
and by (5.35)

u q-1 (x) ≤ c 108 (d(x)) -(q-1)(N + α + 2 -2) ≤ c 108 (d U (x)) -(q-1)(N + α + 2 -2)
∀x ∈ U.

Combining the above inequalities, we derive

∂V β udS ≤ c 109 β0 β (σ 1-(q-1)(N + α + 2 -2) + 1) ∂Vσ u(x)dSdσ + 1 .
Multiplying the above inequality by β α + 2

we get

∂V β ud α + 2 U dS ≤ c 109 β0 β (σ 1-(q-1)(N + α + 2 -2) + 1) ∂Vσ d α + 2 U (x)u(x)dSdσ + 1 . Set U (σ) = ∂Vσ d α + 2 U (x)u(x)dS,
Then we have

U (β) ≤ c 110 β0 β (σ 1-(q-1)(N + α + 2 -2) + 1)U (σ)dσ + 1 , (5.36) Set W (β) = β0 β (σ 1-(q-1)(N + α + 2 -2) + 1)U (σ)dσ + 1, then W ′ (β) = -(β 1-(p-1)(N + α + 2 -2) + 1)U (β) = -h(β)U (β).
Thus inequality (5.36) becomes

-W ′ (β) ≤ c 110 h(β)W (β) ⇐⇒ (H(β)W (β)) ′ ≥ 0,
where H(β) = e -c110 β 0 β h(s)ds .

Thus we have

W (β) ≤ 1 H(β) W (β 0 ) ∀0 < β < β 0 .
Theorem 5.24. Assume 1 < q < q c and u ∈ C(Ω \ {0}) is a positive solution of (4.1) which satisfies

lim x∈Ω, x→ξ u(x) W (x) = 0 ∀ξ ∈ ∂Ω \ {0}.
Then the following alternative holds: (i) either there exists k ≥ 0 such that

lim x → 0, x ∈ Ω x|x| -1 → σ |x| N + α + 2 -2 u(x) = kψ 1 (σ) (5.42) and u solves -∆u - κ d 2 u + u q = 0 in Ω u = kδ 0 in ∂Ω, (5.43) 
(ii) or lim

x → 0, x ∈ Ω x|x| -1 → σ |x| 2 q-1 u(x) = ω κ (σ) (5.44) locally uniformly on S N -1 + .
The result is a consequence of the following result Lemma 5.25. Assume 1 < q < q c , a ∈ ∂Ω and F ǫ (a) = ∂Ω ∩ B ǫ (a). Then

lim ǫ→0 U Fǫ(a) = u ∞,a . (5.45) 
Proof. Without loss of generality, we can assume a = 0. Clearly, U {0} := lim ǫ→0 U Fǫ(0) is a solution of (5.1) which satisfies

lim x→ξ U {0} W (x) = 0 ∀ξ ∈ ∂Ω \ {0}
locally uniformly on ∂Ω \ {0}. By (6.20) it verifies

U {0} (x) ≤ c|x| -2 q-1 d(x) |x| α + 2 .
(5.46) By Proposition 4.5 and (6.24), we can follow the same argument like in the proof of Theorem 3.4.6-(ii) in [START_REF] Marcus | Nonlinear Second Order Elliptic Equations Involving Measures[END_REF] to prove that: there exists c 0 = c 112 (N, κ, q) > 1 such that

1 c 0 |x| -2 q-1 d(x) |x| α + 2 ≤ u ∞,0 (x) ≤ U {0} (x) ≤ c 0 |x| -2 q-1 d(x) |x| α + 2 Which implies U {0} (x) ≤ cu ∞,0 (x) ∀x ∈ Ω, (5.47) 
where c = c 122 (N, κ, q) > 1.

Assume U {0} = u ∞,0 , thus U {0} (x) > u ∞,0 (x) for all x ∈ Ω and put ũ = u ∞,0 -1 2c (U {0} -u ∞,0 )
. By convexity ũ is a supersolution of (5.1) which is smaller than u ∞,0 . Now c+1 2c u ∞,0 is a subsolution, thus there exists a solution u of (5.1) in Ω which satisfies .48) This implies that T r ∂Ω (u) = ({0}, 0), and by Theorem 5.18, u ≥ u ∞,0 , which is a contradiction.

c + 1 2c u ∞,0 (x) ≤ u(x) ≤ ũ(x) < u ∞,0 (x) ∀x ∈ Ω. ( 5 
Proof of Theorem 5.24 Assume a = 0 without loss of generality. If a ∈ S u , then for any ǫ > 0, u ≤ U Fǫ(0) which is a maximal solution which vanishes on ∂Ω \ F ǫ (0). Thus, using (5.45)

u ≤ lim ǫ→0 U Fǫ(0) = U {0} = u ∞,0 .
If 0 ∈ R u , this implies that T r ∂Ω (u) = (∅, kδ 0 ) for some k ≥ 0 and we conclude with Corollary 4.4.

The next result can be proven by using the same approximation methods as in [START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF]Th 9.6].

Theorem 5.26. . Assume S ⊂ ∂Ω is closed and ν is a positive Radon measure on R = ∂Ω \ S. Then there exists a positive solution of (4.1) in Ω with boundary trace (S, µ).

6 Appendix I: barriers and a priori estimates

Barriers

Following a localization principle introduced in [START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF] we the following lemma is at the core of the a priori estimates construction Proposition 6.1. Let Ω ⊂ R N be a C 2 domain 0 < κ ≤ 1 4 and p > 1.Then there exists R 0 > 0 such that for any z ∈ ∂Ω and 0 < R ≤ R 0 , there exists a super solution f :

= f R,z of (4.1) in Ω ∩ B R (z) such that f ∈ C(Ω ∩ B R (z)), f (x) → ∞ when dist (x, K) → 0, for any compact subset K ⊂ Ω ∩ ∂B R (z)
and which vanishes on ∂Ω ∩ B R (z), and more precisely

f (x) =      c β,γ,κ,q (R 2 -|x -z| 2 ) -β d γ (x) ∀γ ∈ ( α- 2 , α+ 2 ) if 0 < κ < 1 4 c β,γ,q (R 2 -|x -z| 2 ) -β d(x) ln diam(Ω) d(x) if κ = 1 4 (6.1)
for β ≥ max{ 2 q-1 + γ, N -2 2 , 1}.

Proof. We assume z = 0

Step 1: κ < 1 4 . Set f (x) = Λ(R 2 -|x| 2 ) -β (d(x)) γ where β, γ > 0 to be chosen later on. Then, with r = |x|,

Λ -1 L κ f = -(R 2 -r 2 ) -β ∆d γ + κd γ-2 -d γ ∆(R 2 -r 2 ) -β -2∇(R 2 -r 2 ) -β .∇d γ Since ∆d(x) = (N -1)H d where H d is the mean curvature of the foliated set Σ d := {x ∈ Ω : d(x) = d} and |∇d| 2 = 1, ∆d γ = (N -1)γH d d γ-1 + γ(γ -1)d γ-2 ∆d γ + κd γ-2 = (N -1)γH d d γ-1 + (γ(γ -1) + κ) d γ-2 ∇d γ = γd γ-1 ∇d, ∇(R 2 -r 2 ) -β = 2β(R 2 -r 2 ) -β-1 x, thus ∇(R 2 -r 2 ) -β .∇d γ = 2βγd γ-1 (R 2 -r 2 ) -β-1 x∇d ∆(R 2 -r 2 ) -β = 2N β(R 2 -r 2 ) -β-1 + 4β(β + 1)(R 2 -r 2 ) -β-2 r 2 = 2β(R 2 -r 2 ) -β-2 N R 2 + (2β + 2 -N )r 2 Then Λ -1 L κ f = -(R 2 -r 2 ) -β-2 d γ-2 (R 2 -r 2 ) 2 ((N -1)γH d d + γ(γ -1) + κ) +2βd 2 N R 2 + (2β + 2 -N )r 2 + 4βγd(R 2 -r 2 )x.∇d Therefore L κ f + f q = Λ(R 2 -r 2 ) -β-2 d γ-2 Λ q-1 (R 2 -r 2 ) -(q-1)β+2 d (q-1)γ+2 -(R 2 -r 2 ) 2 ((N -1)γH d d + γ(γ -1) + κ) -2βd 2 N R 2 + (2β + 2 -N )r 2 + 4βγd(R 2 -r 2 )x.∇d (6.2) 
If we fix β ≥ max{ 2 q-1 + γ, N -2 2 , 1}, there holds

2βd 2 N R 2 + (2β + 2 -N )r 2 + 4βγd(R 2 -r 2 )x.∇d ≤ 4d 2 β(β + 1)N R 2 + 4βγdR(R 2 -r 2 )
We choose α- 2 < γ < α+ 2 so that γ(γ -1) + κ < 0. There exist δ 0 , ǫ 0 > 0 such that

(N -1)γH d d + γ(γ -1) + κ < -ǫ 0 < -1 provided d(x) ≤ δ 0 . We set A = x ∈ Ω ∩ B R : d(x) ≤ ǫ 0 (R 2 -r 2 ) 16βR and B := A ∩ x ∈ Ω ∩ B R : d(x) ≤ δ 0 Then, if x ∈ B, there holds -(R 2 -r 2 ) 2 ((N -1)γH d d + γ(γ -1) + κ) -2βd 2 N R 2 + (2β + 2 -N )r 2 + 4βγd(R 2 -r 2 )x.∇d ≥ (R 2 -r 2 ) 2 ǫ 0 2 Finally, assume x ∈ A c ∩ x ∈ Ω ∩ B R : d(x) ≤ δ 0 and thus d ≥ c 1 R 2 -r 2 R
In order to have

(i) Λ q-1 (R 2 -r 2 ) 2-(q-1)β d (q-1)γ+2 ≥ d 2 R 2 (ii) Λ q-1 (R 2 -r 2 ) 2-(q-1)β d (q-1)γ+2 ≥ dR(R 2 -r 2 ) (6.3) or equivalently (i) ⇐⇒ Λ 1 γ d ≥ (R 2 -r 2 ) β γ (ii) ⇐⇒ Λ q-1 (q-1)γ+1 d ≥ R 1 (q-1)γ+1 (R 2 -r 2 )
(q-1)β-1 (q-1)γ+1 (6.4) it is sufficient to have, for (i)

c 1 Λ 1 γ R 2 -r 2 R ≥ (R 2 -r 2 ) β γ ∀r ∈ (0, R) ⇐⇒ Λ ≥ c 2 R 2β-γ (6.5)
and for (ii)

c 1 Λ q-1 (q-1)γ+1 R 2 -r 2 R ≥ R 1 (q-1)γ+1 (R 2 -r 2 ) (q-1)β-1 (q-1)γ+1 ∀r ∈ (0, R) ⇐⇒ Λ ≥ c 2 R 2β-γ-2 q-1 (6.6) 
where

c 2 = c 2 (N, γ, β) > 0 since β > γ + 2 q-1 . At end, in the set C := {x ∈ Ω : d(x) ≥ δ 0 }, it suffices that Λ ≥ c 3 max R 2β , R 2β-1 q-1 (6.7) for some c 3 = c 3 (N, γ, β, max |H d |, δ 0 ) > 0 in order to insure (i) Λ q-1 (R 2 -r 2 ) -(q-1)β+2 d (q-1)γ+2 ≥ (R 2 -r 2 ) 2 (N -1)γ|H d |d (ii) Λ q-1 (R 2 -r 2 ) -(q-1)β+2 d (q-1)γ+2 ≥ 4d 2 β(β + 1)N R 2 (iii) Λ q-1 (R 2 -r 2 ) -(q-1)β+2 d (q-1)γ+2 ≥ 4βdR(R 2 -r 2 ). (6.8) Noticing that 2β > 2β -1 q-1 , 2β -γ > 2β -γ -1 q-1 , we conclude that there exists a constant c 4 = c 4 (N, γ, β, max |H d |, δ 0 ) > 0 such that if Λ ≥ c 4 max R 2β , R 2β-γ-1 q-1 (6.9)
there holds L κ (f ) + f q ≥ 0 in Ω. (6.10)

Step

2: κ = 1 4 . Set f (x) = Λ(R 2 -r 2 ) -β √ d(ln eR d ) 1 
2 for some Λ, β to be fixed. Then

∆ √ d(ln eR d ) or equivalently (i) Λ 2q-2 q+1 d(ln eR d ) q-1 q+1 ≥ (R 2 -r 2 ) 2(q-1)β-2 q+1 R 2 q+1 (ii) Λ 2 d ln eR d ≥ R 4 q-1 (R 2 -r 2 ) 2β-4 q-1 (6.14)
Up to taking c 1 small enough, (6.12) is fulfilled if

eR d ≤ R 2 R 2 -r 2 ln( R 2 R 2 -r 2 ) 2 ⇐⇒ d ≥ e(R 2 -r 2 ) R ln( R 2 R 2 -r 2 ) -2 . ( 6.15) 
Inequality (6.13)-(i) will be insured if

Λ 2q-2 q+1 ≥ 1 e (R 2 -r 2 ) 2 (q-1)β-1 q+1 -1 R 2 q+1 +1 (ln( R 2 R 2 -r 2 ) 2 q+1
which holds if, for any ǫ > 0, we have for any r ∈ (0, R)

Λ 2q-2 q+1 ≥ C ǫ (R 2 -r 2 ) 2 (q-1)β-1 q+1 -1 R 2 q+1 +1 R 2 R 2 -r 2 ǫ .
A sufficient condition for such a task is, with the help of (6.15),

Λ ≥ c 3 R 3β-2 q-1 . (6.16) 
As for (6.13)-(ii), it will be insured if

Λ ≥ c 4 R 2β-2 q-1 -1 2 (6.17) Thus, if Λ ≥ c 5 max{R 2β-2 q-1 -1 2 , R 3β-2 q-1 } (6.18) 
for some c 5 > 0 = c 5 (N, γ, β, δ 0 , |H d |), the function f satisfies (6.10).

A priori estimates

By the Keller-Osserman estimate, it is clear that any solution u of 4.1 in Ω satisfies u(x) ≤ C(q, Ω, N )d -2 q-1 (x) ∀x ∈ Ω. (6.19) This estimate is also a consequence of the following result [4, Prop 3.4] Proposition 6.2. Let φ * be the first positive eigenfunction of -∆ in H 1 0 (Ω). For q > 1, there exists γ > 0 and ǫ 0 > 0 such that for any 0 ≤ ǫ ≤ ǫ 0 the function h

+ ǫ = γ(φ * -ǫ) -2 q-1 is a supersolution of 4.1 in Ω ǫ,φ * := {x ∈ Ω : φ * (x) > ǫ}.
We recall here that 

W (x) = d α - 2 (x) if κ < 1 4 d 1 2 (x)| log d(x)| if κ = 1 Proposition 
(x) W (x) = 0 ∀ξ ∈ ∂Ω \ F,
locally uniformly in ∂Ω \ F . Then there exists a constant C depending only on q, κ and Ω such that,

|u(x)| ≤ Cd α + 2 (x) (dist(x, F )) -2 q-1 - α + 2 ∀x ∈ Ω, (6.20) 
| u(x) d α + 2 (x) - u(y) d α + 2 (y) | ≤ C|x -y| β (dist(x, F )) -2 q-1 -β- α + 2 ∀(x, y) ∈ Ω × Ω (6.21) such that dist(x, F ) ≤ dist(y, F ), |∇u(x)| ≤ Cd α + 2 -1 (x) (dist(x, F )) -2 q-1 - α + 2 ∀x ∈ Ω. (6.22)
Proof. The proof is based on the proof of Proposition 3.4.3 in [START_REF] Marcus | Nonlinear Second Order Elliptic Equations Involving Measures[END_REF]. Let ξ ∈ ∂Ω \ F and put d F (ξ) = 1 2 dist(ξ, F ). Denote by Ω ξ the domain

Ω ξ = {y ∈ R n : d F (ξ)y ∈ Ω}.
If u is a positive solution of (5.1) in Ω, denote by u ξ the function

u ξ (y) = |d F (ξ)| 2 q-1 u(d F (ξ)y), ∀y ∈ Ω ξ . Then, -∆u ξ -κ u |dist(y, ∂Ω ξ )| 2 + u ξ q = 0 in Ω ξ .
Let R 0 be the constant in Proposition 6.1. First, we assume that dist(ξ, F ) ≤ 1 1 + R 0 .

Set r 0 = 3R0 4 , then the solution W r0,ξ mentioned in Proposition 6.1 satisfies

u ξ (y) ≤ W r0,ξ (y) ∀y ∈ B 3R 0 4 (ξ) ∩ Ω ξ .
Thus u ξ is bounded in B 3R 0 5 (ξ) ∩ Ω ξ by a constant C > 0 depending only on n, q, κ and the C 2 characteristic of Ω ξ . As d F (ξ) ≤ 1 a C 2 characteristic of Ω is also a C 2 characteristic of Ω ξ therefore the constant C can be taken to be independent of ξ. We note here that the constant 0 < R 0 < 1 depends on C 2 characteristic of Ω. Now we note that

lim y∈Ω ξ , y→P u ξ (y) W (x) = 0 ∀P ∈ ∂Ω ξ ∩ B 3R 0 5 (ξ).
Thus in view of the proof of Lemmas 2.11 and 2.12, by the above inequality and in view of the proof of Theorem 2.12 in [START_REF] Filippas | Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains[END_REF], we have that there exists C > 0 depending only on n, p, κ such that

u ξ (y) ≤ dist(y, ∂Ω ξ ) α + 2 ∀y ∈ B R 0 2 (ξ) ∩ Ω ξ . (6.23) u ξ (y) |dist(y, ∂Ω ξ )| α + 2 ≤ C u ξ (x) |dist(x, ∂Ω ξ )| α + 2 ∀x, y ∈ B R 0 2 (ξ) ∩ Ω ξ Hence u ξ (x) ≤ d α + 2 (x)d F (ξ) -2 q-1 - α + 2 ∀x ∈ B dF (ξ) R 0 2 (ξ) ∩ Ω. u(y) d α + 2 (y) ≤ C u ξ (x) d α + 2 (x) ∀x, y ∈ B dF (ξ) R 0 2 (ξ) ∩ Ω. (6.24) Let x ∈ Ω R 0 2
and assume that

d(x) ≤ R 0 2 d F (x).
Let ξ be the unique point in ∂Ω \ F such that |x -ξ| = d(x). Then we have

d F (ξ) ≤ d(x) + d F (x) ≤ (1 + R 0 )d F (x) < 1 and |u(x)| ≤ Cd α + 2 (x) ((1 + R 0 )dist(x, F )) -2 q-1 - α + 2 . If d(x) > R0 4 d F (x), then by (6.19) we have that |u(x)| ≤ Cd -2 q-1 (x) ≤ Cd α + 2 (x) R 0 2 dist(x, F ) -2 q-1 - α + 2
.

Thus (6.20) holds for every

x ∈ Ω R 0 2 such that dist(x, F ) < 1 1+R0 . Now we assume that x ∈ Ω R 0 2 and dist(x, F ) ≥ 1 1 + R 0 .
Let ξ be the unique point in ∂Ω \ F such that |x -ξ| = d(x). Similarly with the proof of 6.23 we can prove that

u(x) ≤ Cd α + 2 (x) ≤ d α + 2 (x)C ((1 + R 0 )dist(x, F )) -2 q-1 - α + 2 ∀x ∈ B R 0 2 (ξ) ∩ Ω. Now if x ∈ Ω \ Ω R 0 2
, the proof of (6.20) follows by (6.19)

. (ii) Let x 0 ∈ Ω. Set Ω x0 = {y ∈ R n : d(x 0 )y ∈ Ω}, and d x0 (y) = dist(y, ∂Ω x0 ). If x ∈ B d(x 0 ) 2 (x 0 ) then y = x d(x0) belongs to B 1 2 (y 0 ), where y 0 = x0 d(x0) . Also we have that 1 2 ≤ d x0 (y) ≤ 3 2 for each y ∈ B 1 2 (y 0 ). Set now v(y) = u(d(x 0 )y), ∀y ∈ B 1 2 (y 0 ). Then v satisfies -∆v -κ u |d x0 (y)| 2 + d 2 (x 0 ) |v| q = 0 in B 1 2 (y 0 ).
By standard elliptic estimate we have

sup y∈B 1 4 (y0) |∇v| ≤ C   sup y∈B 1 3 (y0) |v| + sup y∈B 1 3 (y0) d 2 (x 0 )|v| q   ,
Now since ∇v(y) = d(x 0 )∇u(d(x 0 )y), by above inequality and (6.20) we have that

|∇u(x 0 )| ≤ C d α + 2 -1 (x 0 ) (dist(x 0 , F )) -2 q-1 - α + 2 + d qα + 2 +1 (x 0 ) (dist(x 0 , F )) -q( 2 q-1 - α + 2 ) .
Using 2q q-1 = 2 q-1 + 2 and the fact that x 0 is arbitrary the result follows. 

q-1 U F (ξ) = ℓ κ = 2(q + 1) (q -1) 2 + κ 1 q-1 uniformly with respect to x ∈ K.

(6.25)

Proof.

Step 1. We claim that for any ǫ > 0 there exists C ǫ , τ ǫ > 0 such that for any z ∈ O such that B 2τǫ (z) ⊂ O, there holds u(x) ≤ (ǫ + ℓ q-1 κ )

1 q-1 τ -2 q-1 + C ǫ ∀τ ∈ (0, τ ǫ ], ∀x ∈ Σ τ (B τǫ (z)). (6.26)

We recall that Σ τ (B τǫ (z)) = x ∈ Ω, x ≈ (d(x), σ(x)), d(x) = τ, σ(x) ∈ B τǫ (z) . Set g(x) = ℓd -2 q-1 (x), then

L κ g + g q = 2(N -1) q -1 H d d -q+1 q-1 + ℓ q-1 -ℓ q-1 κ d - 2q q -1 , (6.27) 
where H d is the mean curvature of Σ d . If Ω is convex we take ℓ = ℓ κ and g is a supersolution for d(x) ≤ R 0 for some R 0 . In the general case, we take ℓ = ℓ(ǫ) = (ǫ+ℓ q-1 κ )

1 q-1 , and g = g ǫ = ℓ(ǫ)d -2 q-1 is a supersolution in the set Ω τǫ where

τ ǫ = max τ : 0 < τ ≤ R 0 2 , 2(N -1) q -1 H τ L ∞ (Στ ) + ǫ > 0 .
Then f 2τǫ,z + g ǫ is a supersolution of (5.1) in B 2τǫ (z) ∩ Ω which tends to infinity on ∂(B 2τǫ (z) ∩ Ω) = ∂Ω∩B 2τǫ (z)∪Ω∩∂B 2τǫ (z). Since we can replace g ǫ (x) by g ǫ,τ (x) = ℓ(d(x)-τ ) -2 q-1 for τ ∈ (0, ρ ǫ ), any positive solution u of (5.1) in Ω is bounded from above by f 2τǫ,z + g ǫ,τ and therefore by f 2τǫ,z + g ǫ . This implies (6.26) with C ǫ = max{f 2τǫ,z (y) : |y -z| ≤ τ ǫ }, and it can be made explicit thanks to (6.1).

Step 2. With the same constants as in step 1, we claim that U F (x) ≥ (ℓ q-1 κ ǫ) 1 q-1 τ -2 q-1 -C ǫ ∀τ ∈ (0, τ ǫ ], ∀x ∈ Σ τ (B τǫ (z)). (6.28)

If in the definition of the function g, we take ℓ = ℓ(ǫ) = (ℓ q-1 κ ǫ) 1 q-1 , then g is a subsolution in the same set Ω τǫ . Since U F + f 2τǫ,z is a supersolution of (5.1) in B 2τǫ (z) ∩ Ω which tends to infinity on the boundary, it dominates the subsolution g ǫ,-τ = ℓ(d(.) + τ ) -2 q-1 for τ ∈ (0, ρ ǫ ) and thus , as τ → 0, g ǫ (x) ≤ U F (x) + f 2τǫ,z (x). This implies (6.28) with the same constant C ǫ .

Step 3. End of the proof. Since K ⊂ O is precompact, for any ǫ > 0, there exists a finite number of points z j , j = 1, ..., k such that K ⊂ ∪ k j=1 B τǫ (z j ) with B 2τǫ (z j ) ⊂ O. Therefore (ℓ q-1 κ ǫ) 1 q-1 τ -2 q-1 -C ǫ ≤ U F (x) ≤ (ǫ + ℓ q-1 κ )

1 q-1 τ -2 q-1 + C ǫ ∀τ ∈ (0, τ ǫ ], ∀x ∈ Σ τ (K). (6.29) Since ǫ is arbitrary, it yields to lim τ →0 τ 2 q-1 U Fℓ κ L ∞ (Στ (K)) = 0 (6.30)

which is (6.25).

Corollary 6.5. Let U ∂Ω be the maximal solution of (5.1) in Ω, then lim d(x)→0

(d(x))

2 q-1 U ∂Ω (x) = ℓ κ . (6.31)

Moser Iteration

In this subsection we always assume that Ω is a bounded smooth convex domain, D = 2 sup x,y∈Ω |x-y| and f 0 ∈ L q (Ω), q > N +α 2 . The main goal of this subsection is to prove Boundary Harnack inequality for positive solutions of the problem -L φκ v := -div(φ 2 κ ∇v)

φ 2 κ = f φ κ in Ω, (6.32) 
where

|f (x)| ≤ c f | log d(x) D | φ κ + f 0 (x)φ κ ∀x ∈ Ω, (6.33) 
for some positive constant c f > 0.

In the sequel we will use the following local representation of the boundary of Ω. There exists a finite number m of coordinate systems (y ′ i , y n ) ∈ ∂Ω, y ′ i = (y i1 , ..., y in-1 ) and the same number m of functions a i (y ′ i ) defined on the closure cubs, ∆ i := {x ∈ R n : |y ijx i | ≤ b, for j = 1, ..., n, and i ∈ {1, .., m} so that for each point x ∈ ∂Ω there is at least i such that x = (x ′ i , a i (x ′ i )). The function a i satisfies the Lipschitz condition on ∆ i with constant A > 0, that is

|a i (y ′ i ) -a i (z ′ i ) ≤ A|y ′ i -z ′ i |, for y ′ i , z ′ i ∈ ∆ i .
Moreover there exists a positive constant b < 1 such that the set B i is defined for any i ∈ {1, .., m} by the relation B i = {(y ′ i , y in ) : y ′ i ∈ ∆ i , a i (y ′ i ) ≤ y in ≤ a i (y ′ i ) + b} and Γ i = B i ∩ ∂Ω = {(y ′ i , y in ) : y ′ i ∈ ∆ i , y in = a i (y ′ i )}. Furthermore, let us observe for any y ∈ B i where someone can make the following inequality on the distance function We first recall some known results the proofs of which are in [START_REF] Filippas | Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains[END_REF]. The first one [START_REF] Filippas | Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains[END_REF]Lemma 2.2]. is a two-sided estimates of V (x, r). Proposition 6.7. There exist positive constants d 1 and d 2 such that for any x ∈ Ω and 0 < r < min{C0,b} 2γ

(1 + A) -1 (y in -a i (y ′ i )) ≤ d(y) ≤ y in -a i (y ′ i ).
, we have d 1 max{d α (x), r α }r N ≤ V (x, r) ≤ d 2 max{d α (x), r α }r N . (6.35)

From the previous lemma it follows the Doubling property satisfied by V (x, .). .

Then we have the following Harnack inequality up to the boundary Theorem 6.12. Let v be a non-negative solution of L φκ v = f in Ω where f satisfies (6.33). Then there exists a constant A > 0 such that the following estimate holds, v(y) ≤ Av(x) ∀x, y ∈ Ω.

In order to prove Theorem 6.12 we use the Moser iteration technique as it is adapted to degenerate elliptic operators in [START_REF] Grigor'yan | Heat kernels on weighted manifolds and applications. The ubiquitous heat kernel[END_REF], [START_REF] Grigor'yan | Stability results for Harnack inequalities[END_REF] and [START_REF] Saloff-Coste | Aspects of Sobolev-Type Inequalities[END_REF]. In this approach one inserts in the weak form of the equation L φκ v = f suitable test functions Φ. One of the key ideas is to use test functions Φ of the form η 2 v q , where v is the weak solution of the equation, η is a cut off function and q ∈ R. To this end one has to check that η 2 v q is in the right space of test function. In this direction the following density theorem is crucial, the proof of which is [START_REF] Filippas | Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains[END_REF]Th 2.11]. where we have set

H 1 0 (U, d α (y)dy) = v = v(y) : ||v|| 2 H 1 1 = U d α (|∇v| 2 + v 2 )dy < ∞ .
We note here the above theorem allows us to take the cut of function η ∈ C ∞ 0 (B(x, r)) instead of it as a usual taking in η ∈ C ∞ 0 (B(x, r) ∩ Ω). Clearly the two function spaces differ only if the "ball" intersects the boundary of Ω.

To explain what are the appropriate modifications of the standard iteration argument by Moser, we now present in detail the first step, which is the L p ; p ≥ 2 mean value inequality for any positive local subsolution of L φκ v ≤ f. Similarly with Definition 6.11, we call a function v ∈ H As R ≤ 1 a C 2 characteristic of Ω is also a C 2 characteristic of Ω R therefore the constant C can be taken to be independent of y. We note here that the constant 0 < c 0 < 1 depends on C 2 characteristic of B(y0,1)∩Ω R |u β m u 2 ψ 2 | q q-1 φ 2 κ dx q-1 q .

Since 2(N +α+) N +α+-2 > 2q q-1 > 2 if q > N +α 2 , we have by interpolation inequality and (2.9) 

B(y0,1)∩Ω R |u β m u 2 ψ 2 | q q-1 φ 2 κ dx q-1 q ≤ ε B(y0,1)∩Ω R

1 2 |

 2 log d| in Ω β and we use the fact that | log d| ∈ L p (Ω), ∀p ≥ 1.

Proposition 2 . 13 .

 213 Let u ∈ H 1 loc (Ω) ∩ C(Ω) be a L 1 4 -subharmonic function such that

  Y ) and, therefore, Y k → Y in the ρ-topology by Lebesgue's dominated convergence theorem. On the other hand suppose Y k → Y in the ρ-topology. If ξ k does not converge to ξ in the Euclidean topology there is a subsequence ξ kj such that ξ kj → ξ ′ = ξ in the Euclidean topology. Then Y kj → Y ′ and Y kj → Y in the ρtopology with Y = Y ′ , which is impossible. Therefore, the Martin ρ-topology on Ω ∪ Γ is equivalent to the Euclidean topology on Ω ∩ ∂Ω. By Proposition 2.29 and Proposition 2.1 we have the following result, Theorem 2.30. Assume 0 < κ ≤ 1 4 . There exists a positive constant c 43 such that

  .65) We extend ω x0 Ωn as a Borel measure on Ω by setting ω x0 Ωn (Ω \ Ω n ) = 0, and keep the notation ω x0 Ωn for the extension. Because of (2.65) the sequence {W ω x0 Ωn } is bounded in the space M b (Ω) of bounded Borel measures in Ω. Thus there exists a subsequence (still denoted by {W (x)ω x0 Ωn } which converges narrowly to some positive measure, say ω which is clearly supported by ∂Ω and satisfies ω M b ≤ c 45 as in (2.65). For every Z ∈ C(Ω) there holds lim n→∞ ∂Ωn Z(x)W dω x0 Ωn = ∂Ω Zd ω. Let ζ := Z⌊ ∂Ω and z(x) := ∂Ω K Lκ (x, y)ζ(y)dω x0 (y).

. 25 )

 25 Thus (3.21) holds. Proof of Theorem 3.3. Step 1: existence and uniqueness. Let {(ν n , µ n )} ⊂ C(Ω) × C 1 (∂Ω) which converges to (ν, µ) in the weak sense of measures in M φκ (Ω)× M(∂Ω).

Notation 5 . 5 .

 55 Let u, v be nonnegative continuous functions in Ω. (a) If u is a subsolution, [u] † denotes the smallest solution dominating u. (b) If u is a supersolution, [u] † denotes the largest solution dominated by u. (c) If u, v are subsolutions then u ∨

  is a decreasing sequence of closed sets there holds lim n→∞ U Fn = U F where F = ∩F n .

Thus

  [u] F possesses a boundary trace µ F ∈ M(∂Ω), and supp (µ F ) ⊂ F. (ii) There exists a nonnegative Radon measure µ ρ on B ρ (ξ) such that for any closed set F ⊂ B ρ (ξ) ∩ ∂Ω µ F = µ ρ χ F , and for any exhaustion {Ω n } of Ω and any Z ∈ C(Ω) such that supp(Z) ∩ ∂Ω ⊂ ∂Ω ∩ B ρ (ξ) lim n→∞ ∂Ωn u(x)Z(x)dω x0 Ωn = ∂Ω u(x)Z(x)dµ ρ . (5.14)

U

  ∂Ω\Bρ 2 (ξ) Z(x)dω x0 Ωn = 0, for any Z ∈ C(Ω) such that supp(Z) ∩ ∂Ω ⊂ ∂Ω ∩ B ρ1 (ξ). Combined with Proposition 5.12 it follows identity(5.14) and finally statement (ii).

. 17 ) 5 . 15 .Proposition 5 . 16 .

 17515516 possesses a boundary trace µ F ∈ M(∂Ω) with support in F . There exists a unique positive Radon measure µ u on R u such thatµ F = µ u χ F ,(5.16)and for any Z ∈ C(Ω) such that supp (Z) ∩ ∂Ω ⊂ R u , there holdslim n→∞ ∂Ωn u(x)Z(x)dω x0 Ωn = ∂Ω u(x)Z(x)dµ u . (5DefinitionThe set S u := ∂Ω \ R u is closed. The couple (S u , µ u ) is the boundary trace of u, denoted by Tr ∂Ω (u). The measure µ u is the regular part of Tr ∂Ω (u), the set (S u ) is its singular part. Let u be a positive solution in Ω and let {Ω n } be an exhaustion of Ω. If y ∈ S u then for every nonnegative Z ∈ C(Ω) such that Z(y) > 0 we have lim n→∞ ∂Ωn Zudω x0 Ωn = ∞. Proof. Let Z ∈ C(Ω), Z ≥ 0, such that Z(y) = 0 and lim inf n→∞ ∂Ωn

22 .

 22 The only difference is that we use d α-(1d ε ) and the supersolution d α-(1 + d ε ) as a subsolution. Proof of Theorem 5.18. Step 1: if lim sup x∈Ω, x→a

Proposition 6 . 4 .

 64 Let O ⊂ ∂Ω be a relatively open subset and F = O. Let U F be defined by (5.7) be the maximal solution of (5.1) which vanishes on ∂Ω \ F . Then for any compact set K ⊂ O, there holds lim ξ→x (d(ξ))

  Finally let x ∈ ∂B i and v ∈ C 1 0 (Ω). Set x i = y i for i = 1, ..., n -1 andx n = y n + a i (y ′ ) then ∇ y ′ v = ∇ x ′ v + v xn ∇ x ′ a i (x ′ ) and v yn = v xn , thus C(A)|∇ x v| ≤ |∇ y v| ≤ c(A)|∇ x v|.(6.34)Let us now define the "balls" which we will use to prove some Poincaré, weighted Poincaré and Moser inequalities. More precisely we have the following definition Definition 6.6. Let γ ∈ (1, 2). For any x ∈ Ω and for any 0 < r < min{C0,b} 2γ , we define the ball centered at x and having radius r as follows.(i) If d(x) ≤ γr then B(x, r) = {(y ′ i , y in ) : |y ′ ix ′ i | ≤ r, d(x)r ≤ y ina i (y ′ i ) ≤ r + d(x)}, where i ∈ {1, ..., m} is uniquely defined by the point x ∈ ∂Ω such that |x -x| = d(x), that is by the projection of the center x onto ∂Ω. (ii) If d(x) ≥ γr then B(x, r) = B(x, r) the Euclidean ball centered at x. We also define byV (x, r) = B(x,r)∩Ω φ 2κ (y)dy, the volume of the "ball" centered at x and having radius r.

Corollary 6 . 8 .Proposition 6 . 9 ..Definition 6 . 11 .

 6869611 Let N ≥ 2, α > 0 and Ω be a smooth bounded domain. Then there exist positive constants C(N, γ, Ω, α) and β(Ω, γ) such that for any x ∈ Ω and 0 < r < β we haveV (x, 2r) ≤ CV (x, r).The Local Poincaré inequality is proved in [14, Theorem 2.5]). There exist positive constants C(N, γ, Ω, α + ) and β(Ω, γ) such that for any x 0 ∈ Ω and r < β we haveinf ξ∈R B(x0,r)∩Ω | f (y) -ξ| 2 φ 2 κ dy ≤ Cr 2 B(x0,r)∩Ω |∇ f (y)| 2 φ 2 κ dy ∀ f ∈ C ∞ (B(x 0 , r) ∩ Ω).As a consquence there holds a local weighted Moser inequality which is proved in [14, Th 2.6] Proposition 6.10. There exist positive constants C M (N, Ω, α + ) and β(Ω) such that for any ν≥ N + α, x 0 ∈ Ω, r < β and f ∈ C ∞ 0 (B(x 0 , r) ∩ Ω) we have B(x0,r)∩Ω |f (y)| 2(1+ 2 ν ) φ 2 κ (y)dy ≤ C M r 2 V (x, r) -2 ν B(x0,r)∩Ω |∇f (y)| 2 φ 2 κ (y)dy B(x0,r)∩Ω |f (y)| 2 φ 2 κ (y)dy 2 νLet us now make precise the notion of a weak solution. We will say that v ∈ H 1 φ (B(x, r) ∩ Ω) is a weak solution ofL φκ v = f in B(x, r) ∩ Ω, if for each Φ ∈ C ∞ 0 (B(x, r) ∩ Ω), we have B(x,r)∩Ω ∇v.∇Φdm = B(x,r)∩Ω f Φdm,where dm = φ 2 κ dx and σ > 0. We denote here by H 1 φ (B(x, r) ∩ Ω) the space of all functions u ∈ L 2 φκ (B(x, r) ∩ Ω) such that ∇u ∈ L 2 φκ (B(x, r) ∩ Ω), endowed with the norm ||u|| H 1 φκ (B(x,r)∩Ω) =

Theorem 6 . 13 .

 613 Let N ≥ 2, α ≥ 1 and U ⊂ R n be a smooth bounded domain. Then we haveH 1 0 (U, d α (y)dy) = H 1 (U, d α (y)dy)

Theorem 6 . 14 . 1 .

 6141 1 φ (B(x, r) ∩ Ω) subsolution of L φκ v ≤ f in B(x, r) ∩ Ω, if for each 0 ≤ Φ ∈ C ∞ 0 (B(x, r) ∩ Ω) we have B(x,r)∩Ω ∇v.∇Φ φ 2 κ dx ≤ Let γ ∈ (1, 2) and p ≥ 2. Then there exist positive constants c 0 (Ω) and C(Ω, p, κ, c 0 ) such that for any x ∈ Ω, R < c 0 and for any positive subsolution of L φκ v ≤ f in B(x, r) ∩ Ω, we have the estimatesup B(x,σR)∩Ω |v| p ≤ C (1σ) ν V (x, R) B(x,R)∩Ω |v| p φ 2 κ dx + C   R 2-α+ (log R)c f + R 2-N +α + q B(x,R)∩Ω |f 0 | q φ 2 κ dxProof. Let γ ∈ (1, 2) and x 0 ∈ Ω. First we assume that d(x 0 ) < γR, in other case the proof is standard and we omit it. Let R < min(c 0 , 1) we denote by Ω R the domainΩ R = {ξ ∈ R n : Rξ ∈ Ω}. Set x 0 = Ry 0 , φ κ (y) = φ κ (Ry) V (y, r) = B(y,r)∩Ω Rφ 2 κ (x)dx, d(y) = dist(y, Ω R ) = d(Ry) R .

ψ 2 u β m u f 0 φ 2 κ dx + c 0 B|ψ 2 u β m u 2 |∇ψ| 2 u β m u 2 φ 2 κ dx + 1 kψ 2 u β m u 2 f 0 φ 2 R u 2 ψ 2 u β f 0 φ κ dx ≤ 1 k

 02121 Ω. Set v(y) = v(Ry), c f = 2R 2-α+ (log R)c f , f (y) = R 2 f (Ry), f 0 (y) = R 2 f 0 (Ry) u = v + k, where k = c f + || f 0 || L q (Ω R , φ 2 κ dx) .Then u is bounded away from zero. Thus by (6.36) we have for anyΦ ∈ C ∞ 0 (B(y, 1) ∩ Ω R ) Let β > 0, we set u m = u u ≤ k + m k + m u > k + m and Φ = ψ 2 u β m u.Due to Theorem 6.13 there exists a sequence of functionsΦ k in C ∞ (B(y 0 , 1) ∩ Ω R ) having compact support in Ω such that Φ k → Φ in H 1 (B(y 0 , 1) ∩ Ω R , d α+ dy). Since φ ∼ d α + 2 , we have that Φ k → Φ in H 1 φκ (B(y 0 , 1) ∩ Ω R ). Hence for any ∀ ψ ∈ C ∞ 0 (B(y 0 , 1)) and m ≥ 1 the function Φ = ψ 2 u βm u is an admissible test function, that is, the following holds true:B(y0,1)∩Ω R ∇u.∇(ψ 2 u β m u) φ 2 κ dx ≤ B(y0,1)∩Ω R dx.Thus by straightforward calculations and Hölder inequality we have1 2 B(y0,1)∩Ω R |∇u| 2 u β m ψ 2 φ 2 κ dx + β B(y0,1)∩Ω R |∇u m | 2 u β m ψ 2 φ 2 κ dx ≤ c B(y0,1)∩Ω R B(y0,1)∩Ω R B(y0,1)∩Ω R | f 0 | q φ 2 κ dx 1 q

|u β m u 2 ψ 2 | 2 mR ψ 2 u β m u 2 | dψ 2 |∇u m |u β m udx ≤ β 4 B| 2 d 2 -α+ ψ 2 u β m u 2 dx. Proposition 6 . 15 .

 22242615 uψ)| 2 φ 2 κ dx + C(N, α + , q)ε -N +α + 2q-N +α + B(y0,1)∩Ω R |u β m u 2 ψ 2 | φ 2 κ dx. Also B(y0,1)∩Ω R | log d(x) |ψ 2 u β m u 2 dx =dx. Let 0 < σ < σ ′ < 1, we choose a function ψ = ξ(|y ′ 0x ′ |)ξ(|x na(x ′ )d(y 0 )|), where ξ ∈ C ∞ (R) and satisfies 0 ≤ ξ ≤ 1, ξ(s) = 1 if s ≤ σ 2 and ξ(s) = 0 if s > σ ′ . Then clearly we have |∇ψ| ≤ C σ ′ -σ . B(y0,1)∩Ω R | log d(x) D |d|∇ψ|u β m u 2 dx ≤ C σ ′σ B(y0,1)∩Ω R | log d(x) D | dψu β m u 2 dx = -C σ ′σ B(y0,1)∩Ω R d 2 ∇ d.∇(| log d(y0,1)∩Ω R ψ 2 |∇u m | 2 u β m d α+ dxLet u be a weak solution of (6.32). Then there exist two constants C > 0 and α ∈ (0, 1], depending on Ω, N and κ such that sup x,y∈Ω x =y |u(x)u(y)| |x -y| α

  1 (Ω, d α+ (x)dx) for test function. Thus we derive that there exists a weak solution v ∈ H 1 (Ω, d α+ (x)dx) of (2.23).To prove (2.21) we first obtain that

  Uniqueness is a consequence of Proposition 2.13. For existence let m ∈ N and h n be smooth functions such that h m → h in L ∞ (∂Ω). Then we can find a functionH m ∈ C 2 (Ω) with value h m on ∂Ω, and ||H m || L ∞ (Ω) ≤ ||h m || L ∞ (∂Ω). By Lemma 2.10 there exists a unique weak solution u m of

	belonging to H 1 loc (Ω) satisfying					1 4 -harmonic function u
	lim x∈Ω, x→y∈∂Ω	d	u(x) 2 (x)| log d(x)| 1	= h(y)	uniformly for y ∈ ∂Ω.
	Furthermore there exists a constant c 16 = c 16 (Ω) > 0 > 0
			d	u 2 | log d 1 D0 |	L ∞ (Ω)	≤ c 24 ||h|| C(∂Ω) ,
	where D 0 = 2 sup x∈Ω d(x).				
	Proof. L 1 4 u = 0 satisfying				
	lim x∈Ω, x→y∈∂Ω				

  Proposition 2.32. Assume 0 < κ ≤ 1 4 and let x 0 ∈ Ω 1 . Then for every Z ∈ C(Ω),

	κ is Thus the Poisson kernel of L Ωn K L Ωn κ (x, y) =	dω x Ωn dω x0 Ωn	(y)	∀y ∈ ∂Ω n .	(2.62)
	lim n→∞ ∂Ωn				
						.60)
	admits a unique solution which allows to define the L Ωn κ -harmonic measure on ∂Ω n by
	v(x 0 ) =	∂Ωn	h(y)dω x0 Ωn (y).	(2.61)

  Proposition 2.35. Let v be a positive L κ -harmonic function in Ω with boundary trace µ. Let Z ∈ C 2 (Ω) and G ∈ C(Ω) which coincides with G Lκ (x 0 , .) in Ω δ for some 0 < δ < β 0 and some x 0 / ∈ Ω β0 . AssumeProof. Let {Ω j } be a smooth exhaustion of Ω with Green kernel G

	|∇ G.∇Z| ≤ c ′ 45 φ κ .	(2.67)
	Then, if we set ζ = Z G, there holds	
	Zdµ.	(2.68)
	∂Ω	
	Ωj Lκ and Poisson kernel P	

Ω vL κ ζdx = Ωj Lκ

  6.3. Let Ω be a bounded open domain uniformly of class C 2 and let F be a compact subset of the boundary. Let u be a nonnegative solution of 5.1 in Ω such that

	x∈Ω, x→ξ lim	u
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The boundary trace of positive solutions

As before we assume that 0 < κ ≤ 1 4 , q > 1 and Ω is a bounded smooth domain, convex if κ = 1 4 . Although the construction of the boundary trace can be made in a more general framework, we restrict ourselves to the class U + (Ω) of positive smooth functions u satisfying L κ u + |u| q-1 u = 0 (5.1) in Ω.

Lemma 5.1. Let f ∈ L 1 φκ (Ω). If u is a nonnegative solution of

there exists µ ∈ M + (∂Ω) such that u admits µ for boundary trace and

(5.3)

then uv is L κ -harmonic and positive thus the result follows.

Definition Let G ⊂ Ω be a domain. A function u ∈ L q loc (G) is a supersolution (resp. subsolution) of (5.1) if L κ u + |u| q-1 u ≥ 0 (resp. L κ u + |u| q-1 u ≤ 0 ) (5.4) in the sense of distributions in G.

The following comparison principle holds [4, Lemma 3.2] Proposition 5.2. Let G ⊂ Ω be a smooth domain and ū, u a pair of nonnegative supersolution and subsolution respectively in G.

then u < ū in G.

(ii) Assume G ⊂ Ω and ū and u belong to

Construction of the boundary trace

We use the notations of [START_REF] Marcus | The precise boundary trace of the positive solutions of the equations ∆u = u q in the supercritical case[END_REF] Proposition 5.3. Let υ be a non-negative function in C(Ω).

(i) If υ is a subsolution of (5.1), there exists a minimal solution u * dominating υ, i.e. υ ≤ u * ≤ U for any solution U ≥ υ.

(ii) If υ is a supersolution of (5.1), there exists a maximal solution u * dominated by υ, i.e. U ≤ u * ≤ υ for any solution U ≤ υ.

Proof. (i) Let {Ω n } be a smooth exhaustion Ω and for each n ∈ N, u n the positive solution of 

Let A be an open set such that F ⊂ A ⊂ A ⊂ O, and for exhaustion we take

which is smooth n large enough, and 

Because of (5.9),

and the result follow by regularity since O is arbitrary.

Lemma 5.21. Let r 0 = r 0 (Ω) > 0 be small enough and 0 < r ≤ r0 4 . Then there exists a constant c 95 which depends only on Ω, N such that

(5.30)

The result follows by [9, Lemma 2.1].

Lemma 5.22. Let κ = 1 4 , ε ∈ (0, 1) and x 0 ∈ Ω 1 . Let {ξ n } be a sequence of points in Ω converging to a ∈ ∂Ω. Then there exist n 0 = n 0 (ε, Ω) ∈ N and c 96 = c 96 (Ω, N, ε) such that

(5.31)

Proof. We recall that for any n ∈ N Ω n is defined by (5.23), G Ωn

, and for a fixed

and by Lemma 5.21 there exists r 0 = r 0 (Ω) > 0 such that for any

Since if |x -y| > ε > 0 there holds

thus we have by the maximum principle and properties of the Green function

By [4, Lemma 2.8] there exists β 0 = β 0 (Ω, ε) > 0 such that the function

is a supersolution in Ω β0 and the function

Thus we have proved that

which implies the existence of a r 2 > 0 such that Ω∩Br 2 (a)

i.e. a ∈ R u , which is the claim.

Step 2. Since a ∈ S u the previous statement implies that there exists a sequence {ξ n } ⊂ Ω such that

(5.37) By Lemma 5.20, there exists a constant c l such that 

Then 

As a consequence we provide a full classification of positive solution of (4.1) with a boundary isolated singularity.

Further 

(6.12)

In order to have

Working as the last two inequalities and using the fact that φ κ ∼ d α + 2 , we can prove that there exists ε ∈ (0, 2α + ), such that

Let β ≥ 2, combining all above there exist δ = δ(N, α + , q) > 0 and C = C(N, α + , q) > 0 such that

Thus we get

Using the above inequality Proposition 6.10 we obtain

ν (y 0 , 1) is the constant in Proposition 6.10. Set β = p and let m → ∞, then we have by (6.38) and the definition of w,

where A = EC the constant in (6.38).

We note that by iteration with p 0 = p, p 1 = p(1

Thus by the same argument as before we have

Now set r 0 = σ ′ and r B(y0,ri-1)∩Ω R u pi-1 φ 2 κ dx where A = C M V -2 ν (x, 1). Thus we have sup B(y0, 1 2

The estimate in B(y 0 , σR) ∩ Ω can be obtained by applying the above result to B(y 0 , (1σ)R) ∩ Ω for any y ∈ B(y, σR) ∩ Ω. Using Moser's iterative scheme we are now in situation to prove