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Abstract

We study the boundary behaviour of positive functions u satisfying (E) −∆u− κ
d2(x)u + g(u) = 0

in a bounded domain Ω of RN , where 0 < κ ≤ 1
4 , g is a continuous nonndecreasing function and d(.)

is the distance function to ∂Ω. We first construct the Martin kernel associated to the the linear operator

Lκ = −∆− κ
d2(x) and give a general condition for solving equation (E) with any Radon measure µ for

boundary data. When g(u) = |u|q−1u we show the existence of a critical exponent qc = qc(N, κ) > 1
whith the following properties: when 0 < q < qc any measure is eligible for solving (E) with µ for

boundary data; if q ≥ qc, a necessary and sufficient condition is expressed in terms of the absolute

continuity of µ with respect to some Besov capacity. The same capacity characterizes the removable

compact boundary sets. At end any positive solution (F) −∆u − κ
d2(x)u + |u|q−1u = 0 with q > 1

admits a boundary trace which is a positive outer regular Borel measure. When 1 < q < qc we prove

that to any positive outer regular Borel measure we can associate a positive solutions of (F ) with this

boundary trace.
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1 Introduction

Let Ω be a bounded smooth domain in RN and d(x) = dist (x,Ωc). In this article we study several

aspects of the nonlinear boundary value associated to the equation

−∆u− κ

d2(x)
u+ |u|p−1u = 0 in Ω, (1.1)

where p > 1. The study of the boundary trace of solutions of (1.1) is a natural framework for a general

study of several nonlinear problems where the nonlinearity, the geometric properties of the domain and

the coefficient κ interact. On this point of view, the case κ = 0 has been thoroughly treated by Mar-

cus and Véron (e.g. [24], [25], [27], [26] and the synthesis presented in [28]). The associated linear

Schrödinger operator

u 7→ Lκu := −∆u− κ

d2(x)
u (1.2)

plays an important role in functional analysis because of the particular singularity of the potential

V (x) := − κ
d2(x) . The case κ < 0 and more generally of nonnegative potentials has been studied

by Ancona [3] who has shown the existence of a Martin kernel which allows a general representation

formula of nonnegative solutions of

Lκu = 0 in Ω. (1.3)

When κ < 1
4 , Ancona proved that Lκ is weakly coercive in H1

0 (Ω). Thus any positive solution u of

(1.3) admits a representation under the form

u(x) =

∫

∂Ω

KLκ
(x, ξ)dµ(ξ) in Ω, (1.4)
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see [3, Remark p. 523]. Furthermore the kernelKLκ
(x, ξ) with pole at ξ is unique up to a multiplication

[3, Th 3]. When κ = 1
4 , then Lκ is no longer weakly coercive in H1

0 (Ω) and Ancona’s results cannot be

applied.

Ancona’s representation theorem turned out to be the key ingredient of the full classification of positive

solutions of

−∆u+ uq = 0 in Ω, (1.5)

which was obtained by Marcus [21]. In a more general setting, Véron and Yarur [34] constructed a

capacitary theory associated to the linear equation

LV u := −∆u+ V (x)u = 0 in Ω, (1.6)

where the potential V is nonnegative and singular near ∂Ω. When V (x) := − κ
d2(x) with κ > 0, V is

called a Hardy potential. There is a critical value κ = 1
4 . If κ > 1

4 , no positive solution of (1.3) exists.

When 0 < κ ≤ 1
4 , there exist positive solutions, and the geometry of the domain plays a fundamental

role in the study of the mere linear equation (1.3). We define the constant cΩ by

cΩ = inf
v∈H1

0 (Ω)\{0}

∫

Ω

|∇v|2dx
∫

Ω

v2

d2(x)dx

. (1.7)

It is known that 0 < cΩ ≤ 1
4 , and if Ω is convex then cΩ = 1

4 (see [22]). When 0 < κ ≤ 1
4 , which is

always assumed in the sequel and −∆d ≥ 0 in the sense of distributions, it is possible to define the first

eigenvalue λκ of the operator Lκ. If we define the two fundamental exponents α+ and α− by

α+ = 1 +
√
1− 4κ and α− = 1−

√
1− 4κ, (1.8)

then the first eigenvalue is achieved by an eigenfunction φκ which satisfies φκ(x) ≈ d
α+
2 (x) as d(x) →

0. Similarly, the Green kernel GLκ
associated to Lκ inherits this type of boundary behaviour since there

holds

1

Cκ

min

{
1

|x− y|N−2
,
d

α+
2 (x)d

α+
2 (y)

|x− y|N+α+−2

}
≤ GLκ

(x, y) ≤ Cκ min

{
1

|x− y|N−2
,
d

α+
2 (x)d

α+
2 (y)

|x− y|N+α+−2

}
.

(1.9)

We show that Lκ satisfies the maximum principle in the sense that if u ∈ H1
loc ∩ C(Ω) is a subsolution,

i.e. Lκu ≤ 0, such that

(i) lim sup
x→y

u(x)

dα−(x)
≤ 0 if 0 < κ < 1

4 ,

(ii) lim sup
x→y

u(x)√
d(x)| ln d(x)|

≤ 0 if κ = 1
4 ,

(1.10)

for all y ∈ ∂Ω, then u ≤ 0. This result has to be compared with the result on the the existence of positive

sub-harmonic functions in Ω given in [4, Theorem 2. 3] which is associated to the maximum principle

in neighborhood of ∂Ω stated in [4, Lemma 2. 4].

If ξ ∈ ∂Ω and r > 0, we set ∆r(ξ) = ∂Ω ∩ Br(ξ). We prove that a positive solution of Lκu = 0
which vanishes on a part of the boundary in the sense that
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(i) lim
x→y

u(x)

dα−(x)
= 0 ∀y ∈ ∆r(ξ) if 0 < κ < 1

4 ,

(ii) lim
x→y

u(x)√
d(x)| ln d(x)|

= 0 ∀y ∈ ∆r(ξ) if κ = 1
4 ,

(1.11)

satisfies
u(x)

φκ(x)
≤ C1

u(y)

φκ(y)
∀x, y ∈ ∆ r

2
(ξ), (1.12)

for some C1 = C1(Ω, κ) > 0.

For any h ∈ C(∂Ω) we construct the unique solution v := vh of the Dirichlet problem

Lκv = 0 in Ω
v = h on ∂Ω,

(1.13)

noting that the boundary data h is achieved in the sense that

lim
x→y

u(x)

dα−(x)
= h(y) if 0 < κ <

1

4
and lim

x→y

u(x)√
d(x)| ln d(x)|

= h(y) if κ =
1

4
.

Using this construction and estimates (1.10) we show the existence of the Lκ-measure, which is a

bounded Borel measure ωx with the property that for any h ∈ C(∂Ω), the above function vh satisfies

vh(x) =

∫

∂Ω

h(y)dωx(y). (1.14)

Because of Harnack inequality, the measures ωx and ωz are mutually absolutely continuous for x, z ∈ Ω,

and for any x ∈ Ω we can define the Radon-Nikodym derivative

K(x, y) :=
dωx

dωx0
(y) for ωx0-almost y ∈ ∂Ω. (1.15)

There exists r0 := r0(Ω) such that for any x ∈ Ω verifying d(x) ≤ r0, there exists a unique ξ = ξx ∈ ∂Ω
with the property that d(x) = |x−ξx|. If we denote by Ω′

r0
the set of x ∈ Ω such that 0 < d(x) < r0, the

mapping Π from Ω
′
r0

to [0, r0] × ∂Ω defined by Π(x) = (d(x), ξx) is a C1 diffeomorphism. If ξ ∈ ∂Ω
and 0 ≤ r ≤ r0, we set xr(ξ) = Π−1(r, ξ). Let W be defined in Ω by

W (x) =

{
d

α−
2 (x) if κ < 1

4 ,√
d(x)| ln d(x)| if κ = 1

4 .
(1.16)

We prove that the Lκ-harmonic measure can be equivalently defined by

ωx(E) = inf

{
ψ : ψ ∈ C+(Ω), Lκ-superharmonic in Ω and s.t. lim inf

x→E

ψ(x)

W (x)
≥ 1

}
, (1.17)

on compact sets E ⊂ ∂Ω and then extended by regularity to Borel subsets of ∂Ω.

The Lκ-harmonic measure is connected to the Green kernel of Lκ by the following estimates

Theorem A There exists C3 := C3(Ω) > 0 such that for any r ∈ (0, r0] and ξ ∈ ∂Ω, there holds

1
C3
rN+

α−
2 −2GLκ

(xr(ξ), x) ≤ ωx(∆r(ξ))

≤ C3r
N+

α−
2 −2GLκ

(xr(ξ), x) ∀x ∈ Ω \B4r(ξ),
(1.18)
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if 0 < κ < 1
4 , and

1
C3
rN−2+ 1

2 | ln d(x)|GL 1
4

(xr(ξ), x)

≤ ωx(∆r(ξ))

≤ C3r
N−2+ 1

2 | ln d(x)|GL 1
4

(xr(ξ), x) ∀x ∈ Ω \B4r(ξ),

(1.19)

when κ = 1
4 . As a consequence ωx has the doubling property. The previous estimates allow to construct

a kernel function of Lκ in Ω, prove its uniqueness up to an homothety. When normalized, the kernel

function denoted by KLκ
is the Martin kernel, defined by

KLκ
(x, ξ) = lim

x→ξ

GLκ
(x, y)

GLκ
(x, x0)

∀ξ ∈ ∂Ω, (1.20)

for some x0 ∈ Ω. Thank to this kernel we can represent any positive Lκ-harmonic function u by mean

of a Poisson type formula which endows the form

u(x) =

∫

∂Ω

KLκ
(x, ξ)dµ(ξ). (1.21)

for some unique positive Radon measure µ on ∂Ω. The measure µ is called the boundary trace of u.

FurthermoreKLκ
satisfies the following two-side estimates

Theorem B There exists C3 := C3(Ω, κ) > 0 such that for any (x, ξ) ∈ Ω× ∂Ω there holds

1

C3

d
α+
2

|x− ξ|N+α+−2
≤ KLκ

(x, ξ) ≤ C3
d

α+
2

|x− ξ|N+α+−2
. (1.22)

In the sections 3-6 of this paper we develop the study of the semilinear equation (E) and emphasize

the particular case of equation (1.1). With the help of the previous estimates we adapt the approach

developed in [16] to prove the existence of weak solutions to the nonlinear boundary value problem

−∆u− κ

d2(x)
u+ g(u) = ν in Ω

u = µ in ∂Ω,
(1.23)

where g is a continuous nondecreasing function such that g(0) ≥ 0 and ν and µ are Radon measures on

Ω and ∂Ω respectively . We define the class Xκ(Ω) of test functions by

Xκ(Ω) =
{
η ∈ L2(Ω) s.t. ∇(d−

α+
2 η) ∈ L2

φk
(Ω) and φ−1

κ Lκη ∈ L∞(Ω)
}
, (1.24)

and we prove

Theorem C Assume g satisfies

∫ ∞

1

(g(s) + |g(−s)|)s
−2

N−1+
α+
2

N−2+
α+
2 ds <∞. (1.25)

Then for any Radon measures ν on Ω and such that
∫
Ω
φκd|µ| < ∞ and µ on ∂Ω there exists a unique

u ∈ L1
φκ
(Ω) such that g(u) ∈ L1

φκ
(Ω) which satisfies

∫

Ω

(uLκη + g(u)η) dx =

∫

Ω

(ηdν +KLκ
[µ]Lκηdx) ∀η ∈ Xκ(Ω). (1.26)
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When g(r) = |r|q−1r the critical value is qc =
N+

α+
2

N+
α+
2 −2

and (1.25) is satisfied for 0 ≤ q < qc (the

subcritical range). In this range of values of q, existence and uniqueness of a solution to

−∆u− κ

d2(x)
u+ |u|q−1u = 0 in Ω

u = µ in ∂Ω,
(1.27)

has been recently obtained by Marcus and Nguyen [23]. However, when q ≥ qc not all the Radon

measures are eligible for solving problem (1.27).

We prove the following result in the statement of which CR
N−1

2− 2+α+

2q′ ,q′
denotes the Besov capacity

associated to the Besov space B
2− 2+α+

2q′ ,q′
(RN−1).

Theorem D Assume q ≥ qc and µ is a positive Radon measure on ∂Ω. Then problem (1.27) admits a

weak solution if and only if µ vanishes on Borel sets E ⊂ ∂Ω such that CR
N−1

2− 2+α+
2q′ ,q′

(E) = 0.

Note that a special case of this result is proved in [23] when µ = δa for a boundary point and q ≥ qc.

In that case δa does not vanish on {a} although CR
N−1

2− 2+α+
2q′ ,q′

({a}) = 0.

This capacity plays a fundamental for characterizing the removable compact boundary sets which

can only exist in the supercritical range q ≥ qc.

Theorem E Assume q ≥ qc and K ⊂ ∂Ω is compact. Then any function u ∈ C(Ω \K) which satisfies

−∆u− κ

d2(x)
u+ |u|q−1u = 0 in Ω

u = 0 in ∂Ω \K,
(1.28)

is identically zero if and only if CR
N−1

2− 2+α+
2q′ ,q′

(K) = 0.

The proof of Theorems D and E is delicate and based upon the use of the optimal lifting operator

which has been introduced in [24] and the kernels estimates of [27, Appendix].

We show that any positive solution u of (1.1) admits a boundary trace in the class of outer regular

positive Borel measures, not necessarily locally bounded, and more precisely we prove that the following

dichotomy holds:

Theorem F Let u be a positive solution of (1.1) in Ω and a ∈ ∂Ω. Then

(i) either for any ǫ > 0

lim
δ→0

∫

Σδ∩Bǫ(a)

udωx0

Ω′
δ
= ∞, (1.29)

where Ω′
δ = {x ∈ Ω : d(x) > δ}, Σδ = ∂Ω′

δ and ωx0

Ω′
δ

is the harmonic measure in Ω′
δ,

(ii) or there exist ǫ0 > 0 and a positive Radon measure λ on ∂Ω ∩ Bǫ0(a) such that for any Z ∈ C(Ω)
with support in Ω ∪ (∂Ω ∩Bǫ0(a)), there holds

lim
δ→0

∫

Σδ∩Bǫ(a)

Zudωx0

Ω′
δ
=

∫

∂Ω∩Bǫ(a)

Zdλ. (1.30)
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The set of points a ∈ ∂Ω such that (i) (resp. (ii)) holds is closed (resp. relatively open) and denoted

by Su (resp Ru). There exists a unique Radon measure µu on Ru such that, for any Z ∈ C(Ω) with

support in Ω ∪Ru there holds

lim
δ→0

∫

Σδ

Zudωx0

Ω′
δ
=

∫

Ru

Zdµu. (1.31)

The couple (Su, µu) is called the boundary trace of u and denoted by Tr∂Ω(u). A notion of normalized

boundary trace of positive moderate solutions of (1.1), i.e. solutions such that u ∈ Lq(φκ), is developed

in [23]. It is proved therein that there exists a boundary trace µ ≈ ({∅}, µu), and that the corresponding

representation of u via the Martin and Green kernels holds.

If 1 < q < qc we denote by ukδa positive solution of (1.1) with µ = kδa for some a ∈ ∂Ω and

k ≥ 0. Then there exists limk→∞ ukδa = u∞,a and we prove the following:

Theorem G Assume 1 < q < qc and a ∈ ∂Ω. If u is a positive solution of (1.1) such that a ∈ Su, then

u ≥ u∞,a.

In order to go further in the study of boundary singularities, we construct separable solutions of (1.1)

in RN
+ = {x = (x′, xN ) : xN > 0} = {(r, σ) ∈ R+ × SN−1

+ } which vanish on ∂RN
+ \ {0} under the

form u(r, σ) = r−
2

q−1ω(σ), where r > 0, σ ∈ SN−1
+ . They are solutions of

−∆SN−1ω − ℓq,Nω − κ

eN .σ
ω + |ω|q−1ω = 0 in SN−1

+

ω = 0 in ∂SN−1
+ ,

(1.32)

where ∆SN−1 is the Laplace-Beltrami operator, eN the unit vector pointing toward the North pole and

ℓq,N is a positive constant. We prove that if 1 < q < qc, then problem (1.32) admits a unique positive

solution ωκ while no such solution exists if q ≥ qc. To this phenomenon is associated a result of

classification of the positive solutions of (1.1) in Ω which vanishes of ∂Ω \ {0} (here we assume that

0 ∈ ∂Ω and that the tangent hyperplane to ∂Ω at 0 is {x : x.eN = 0}, and that there exists r0 > 0 such

that Br0(r0eN ) ⊂ Ω, Br0(r0eN) ⊂ {x : x.eN ≥ 0} and d(r0eN ) = |r0eN | = r0).

Theorem H Assume 1 < q < qc and let u ∈ C(Ω \ {a} be a solution of (1.1) in Ω which vanishes of

∂Ω \ {a}. Then

(i) either u = u∞,a and

limr→0 r
2

q−1 u(r, .) = ωκ (1.33)

locally uniformly in SN−1
+ ,

(ii) or there exists k ≥ 0 such that u = ukδa and

u(x) = kKLκ
(x, a)(1 + o1)) as x→ 0. (1.34)

If 1 < q < qc we prove that to any couple (F, µ) where F is a closed subset of ∂Ω and µ a positive

Radon measure on R = ∂Ω \ F , we can associate a positive solution u of (1.1) in Ω with the property

that Tr∂Ω(u) = (F, µ). The construction is based upon the existence of barrier functions which allow

to prove local a priori estimate that is satisfied by any positive solution with boundary trace (F, 0). The

delicate proof of the existence of these barrier is presented in Appendix I. A priori estimates which follow

from the barrier method are presented in Appendix II. In Appendix III we develop some regularity results

based upon Moser’s iterative scheme adapted to the framework of the Hardy operator.

The results presented here are announced in [15].
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2 The linear operator Lκ = −∆− κ
d2(x)

Throughout this article cj (j=1,2,...) denote positive constants the value of which may change from one

occurrence to another. The notation κ is reserved to the value of the coefficient of the Hardy potential.

2.1 Classical results on Hardy’s inequality and the operator L
κ

We first recall some known results concerning Hardy’s inequalities and the associated eigenvalue prob-

lem (see [11], [14]).

1- The constant cΩ defined in (1.7) has value in (0, 14 ]. If Ω is convex or if the function d is super-

harmonic then cΩ = 1
4 . Moreover this equality is verified if and only if there exists no minimizer to the

problem (1.7) [22]. For any κ ∈ (0, 14 ] there exists

inf

{∫

Ω

(
|∇u|2 − κ

d2
u2
)
dx :

∫

Ω

u2dx = 1

}
= λκ > −∞. (2.1)

Furthermore λκ > 0 if κ < cΩ or if k ≤ 1
4 and d is a superharmonic function in Ω. (see [8]).

2- If 0 < κ < 1
4 the minimizer φκ of (2.1) belongs to the space H1

0 (Ω) and it satisfies

φκ ≈ d
α+
2 (x), (2.2)

where α+ (as well as α−) are defined by (1.8).

3- If κ = 1
4 , there is no minimizer in H1

0 (Ω), but there exists a non-negative function φ 1
4
∈ H1

loc(Ω)
such that

φ 1
4
≈ d

1
2 (x), (2.3)

and it solves

−∆u− 1

4d2
u = λku in Ω

in the sense of distributions. In addition, the function ψ 1
4
= d−

1
2φ 1

4
belongs to H1

0 (Ω; d(x)dx).

4- Let H1
0 (Ω, d

α(x)dx) denote the closure of C∞
0 (Ω) functions under the norm

||u||2H1
0 (Ω,dα(x)dx) =

∫

Ω

|∇u|2dα(x)dx +

∫

Ω

|u|2dα(x)dx. (2.4)

If α ≥ 1 there holds [14, Th. 2.11]

H1
0 (Ω, d

α(x)dx) = H1(Ω, dα(x)dx) ∀α ≥ 1. (2.5)

5- Let 0 < κ ≤ cΩ. Let Hκ(Ω) be the subset of functions of H1
loc(Ω) satisfying

∫

Ω

(
|∇φ|2 − κ

d2
φ2
)
dx <∞. (2.6)

Then the mapping

φ 7→
(∫

Ω

(
|∇φ|2 − κ

d2
φ2
)
dx

) 1
2

(2.7)
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is a norm on Hκ(Ω). The closure Wκ(Ω) of C∞
0 (Ω) into Hκ(Ω) satisfies

Wκ(Ω) = H1
0 (Ω) ∀ 0 < κ < cΩ and W 1

4
(Ω) ⊂W 1,q

0 (Ω) if λ 1
4
> 0 ∀1 ≤ q < 2, (2.8)

see [5, Th B]. As a consequence Wκ(Ω) is compactly imbedded into Lr(Ω) for any r ∈ [1, 2∗).

6- Let α > 0 and Ω ⊂ RN be a bounded domain. There exists c∗ > 0 depending on diam(Ω), N and α
such that for any v ∈ C∞

0 (Ω)

(∫

Ω

|v|
2(N+α)
N+α−2dαdx

)N+α−2
N+α

≤ c∗
∫

Ω

|∇v|2dαdx. (2.9)

For a proof see [14, Th. 2.9].

The boundary behaviour of the first eigenfunction yields a two-side similar estimate of the Green

kernel for Schrödinger operators with a general Hardy type potentials [14, Corollary 1.9].

Proposition 2.1. Consider the operator E := −∆− V, in Ω where V = V1 + V2, with

|V1| ≤
1

4d2(x)
and V2 ∈ Lp(Ω), p >

N

2
.

We also assume that

0 < λ1 := inf
u∈H1

0 (Ω)

∫

Ω

(
|∇u|2dx− V u2

)
dx

∫

Ω

u2dx

,

and that to λ1 is associated a positive eigenfunction φ1. If, for some α ≥ 1 and C1, C2 > 0, there holds

c1d
α
2 (x) ≤ φ1(x) ≤ c2d

α
2 (x) ∀x ∈ Ω,

then the Green kernel GΩ
E associated to E in Ω satisfies

GΩ
E(x, y) ≈ c3 min

(
1

|x− y|N−2
,
d

α
2 (x)d

α
2 (y)

|x− y|N+α−2

)
. (2.10)

Next we define the sets Ωδ , Ω′
δ and Σδ by

Ωδ = {x ∈ Ω : d(x) < δ} , Ω′
δ = {x ∈ Ω : d(x) > δ} and Σδ = {x ∈ Ω : d(x) = δ}. (2.11)

Definition 2.2. Let G ⊂ Ω be open and let H1
c (G) denote the subspace of H1(G) of functions with

compact support in G. A function h ∈ W 1,1
loc (G) is Lκ-harmonic in G if

∫

G

∇h.∇ψdx− κ

∫

Ω

1

d2(x)
hψdx = 0 ∀ψ ∈ H1

c (G).

A function h ∈ H1
loc(G) ∩ C(G) is Lκ-subharmonic in G if

∫

G

∇h.∇ψdx − κ

∫

Ω

1

d2(x)
hψdx ≤ 0 ∀ψ ∈ H1

c (G), ψ ≥ 0.

We say that h is a local Lκ-subharmonic function if there exists δ > 0 such that h ∈ H1
loc(Ωδ) ∩C(Ωδ)

is Lκ-subharmonic in Ωδ. Similarly, (local) Lκ-superharmonics h are defined with ” ≥ ” in the above

inequality.
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Note that Lκ-harmonic functions are C2 in G by standard elliptic equations regularity theory. The

Phragmen-Lindelöf principle yields the following alternative [4, Theorem 2.6].

Proposition 2.3. Let κ ≤ 1
4 . If h is a local Lκ-subharmonic function, then the following alternative

holds:

(i) either for every local positive Lκ-superharmonic function h

lim sup
d(x)→0

h(x)

h(x)
> 0, (2.12)

(ii) or for every local positive Lκ-superharmonic function h

lim sup
d(x)→0

h(x)

h(x)
<∞. (2.13)

Definition 2.4. If a local Lκ-subharmonic function h satisfies (i) (resp. (ii)) it is called a large Lκ-

subharmonic (resp. a small Lκ-subharmonic).

The next statement is [4, Theorem 2.9].

Proposition 2.5. Let h be a small local Lκ-subharmonic of Lκ.
(i) If κ < 1

4 , then the following alternative holds:

either lim sup
x→∂Ω

h(x)

(d(x))
α−
2

> 0 or lim sup
x→∂Ω

h(x)

(d(x))
α+
2

<∞.

(ii) If κ = 1
4 , then the following alternative holds:

either lim sup
x→∂Ω

h(x)

(d(x))
1
2 log( 1

d
)
> 0 or lim sup

x→∂Ω

h(x)

(d(x))
1
2

<∞.

Definition 2.6. Let f0 ∈ L2
loc(Ω). We say that a function u ∈ H1

loc(Ω) is a solution of

Lκu = f0 in Ω, (2.14)

if there holds

∫

Ω

∇u.∇ψdx − κ

∫

Ω

1

d2(x)
uψdx =

∫

Ω

f0ψdx ∀ψ ∈ C∞
0 (Ω). (2.15)

2.2 Preliminaries

In this part we study some regularity properties of solutions of linear equations involving Lκ.

Lemma 2.7. (i) If α > 1 and d−
α
2 u ∈ H1(Ω, dα(x)dx), then u ∈ H1

0 (Ω).

(ii) If α = 1 and d−
1
2u ∈ H1(Ω, d(x)dx), then u ∈ W 1,p

0 (Ω), ∀p < 2.

Proof. There exists β0 > 0 such that d ∈ C2(Ωβ0) and set u = d
α
2 v. In the two cases (i)-(ii), our

assumptions imply

u ∈ L2(Ω) and ∇u− α

2
ud−1∇d ∈ L2(Ω). (2.16)
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(i) Since v ∈ H1(Ω, dα(x)dx), by (2.5) there exists a sequence vn ∈ C∞
0 (Ω) such that vn → v in

H1(Ω, dα(x)dx). Set un = dαvn. Let 0 < β ≤ β0

2 and ψβ be a cut of function such that ψβ = 0 in Ω′
β

and ψβ = 1 in Ω β
2
. Then un = d

α
2 (ψβvn + (1−ψβ)vn). Thus it is enough to prove that ũn = d

α
2 ψβvn

remains bounded in H1(Ω) independently of n. Set wn = ψβvn, then

∫

Ω

|∇ũn|2dx =

∫

Ωβ

|∇wn|2dx ≤ c4

(∫

Ωβ

dα|∇wn|2dx+

∫

Ωβ

dα−2w2
ndx

)
.

Note that α− 2 > −1. Now

∫

Ωβ

dα−2w2
ndx =

1

α− 1

∫

Ωβ

w2
ndiv(d

α−1∇d)dx − 1

α− 1

∫

Ωβ

(dα−1(∆d)w2
ndx.

Now since |∆d(x)| < c5, ∀x ∈ Ωβ0 , we have

∣∣∣∣∣
1

α− 1

∫

Ωβ

dα−1(∆d)w2
ndx

∣∣∣∣∣ ≤
c5β

α−1
0

α− 1

∫

Ωβ

w2
ndx.

Also
∣∣∣∣∣

∫

Ωβ

w2
ndiv(d

α−1∇d)dx
∣∣∣∣∣ = 2

∣∣∣∣∣

∫

Ωβ

wnd
α
2 d

α
2 −1∇d.∇wndx

∣∣∣∣∣

≤ c6

∫

Ωβ

dα|∇wn|2dx+ δ

∫

Ωβ

dα−2w2
ndx,

where c6 = c6(δ) > 0. The result follows in this case, if we choose δ small enough and then let n→ ∞.

(ii) By the same calculations we have

∫

Ω

d−
p
2 |wn|pdx ≤ c7

∫

Ωβ

d
p
2 |∇wn|pdx ≤ c7

(∫

Ω

d(x)dx

) p
2
∫

Ωβ

d|∇wn|2dx.

In the following statement we prove regularity up to the boundary for the function u
φκ

.

Proposition 2.8. Let f0 ∈ L2(Ω). Then there exists a uniqueu ∈ H1
loc(Ω) such that φ−1

κ u ∈ H1(Ω, dα+(x)dx),

satisfying (2.14). Furthermore, if f1 := f0
φκ

∈ Lq(Ω, φ2κdx), q >
N+α+

2 , then there exists 0 < β < 1
such that

sup
x,y∈Ω, x 6=y

|x− y|−β

∣∣∣∣
u(x)

φκ(x)
− u(y)

φκ(y)

∣∣∣∣ < c8||f1||Lq(Ω,φ2
κdx)

. (2.17)

Proof. If there exists a solution u, then ψ = u
φκ

satisfies

−φ−2
κ div(φ2κ∇ψ) + λκψ = φ−1

κ f0, (2.18)

and we recall that φκ(x) ≈ d
α+
2 (x). We endow the space H1(Ω, φ2κdx) with the inner product

〈a, b〉 =
∫

Ω

(∇a.∇b + λκab) φ
2
κdx.
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By a solution ψ of (2.18) we mean that ψ ∈ H1
0 (Ω, φ

2
κdx) satisfies

〈∇ψ,∇ζ〉 =
∫

Ω

∇ψ.∇ζ φ2κdx+ λκ

∫

Ω

ψζφ2κdx =

∫

Ω

f0ζφκdx ∀ζ ∈ H1
0 (Ω, φ

2
κdx). (2.19)

By Riesz’s representation theorem we derive the existence and uniqueness of the solution in this space.

Since H1(Ω, φ2κdx) = H1
0 (Ω, φ

2
κdx) by [14, Th 2.11], any weak solution u of (2.14) such that φ−1

κ u ∈
H1(Ω, φ2κdx) is obtained by the above method.

Finally if f0 ∈ Lq(Ω, φ2κdx), where q > N+α+

2 , thanks to (2.9) we can prove the estimate

||ψ||L∞(Ω) ≤ c8||f0||Lq(Ω,φ2
κdx)

, (2.20)

where c8 = c8(Ω, κ, q). Then we can apply the Moser iteration (see subsection 6.3) to derive the Hölder

regularity up to the boundary.

In the next results we make more precise the rate of convergence of a solution of (2.14) to its boundary

value.

Proposition 2.9. Assume κ < 1
4 . If f0 ∈ L2(Ω) and h ∈ H1(Ω) there exists a unique weak solution u

of (2.14) belonging to H1
loc(Ω) and such that d−

α+
2 (u − d

α−
2 h) ∈ H1(Ω, dα+(x)dx). Furthermore, if

f1 := f0
φκ

∈ Lq(Ω, φ2κdx), q >
n+α
2 and h ∈ C2(Ω), then there exists 0 < β < 1 with the property that

lim
x∈Ω, x→y∈∂Ω

u(x)

(d(x))
α−
2

= h(y) ∀y ∈ ∂Ω,

uniformly with respect to y,

∣∣∣∣
∣∣∣∣
u

d
α−
2

∣∣∣∣
∣∣∣∣
L∞(Ω)

≤ c9

(
||h||C2(Ω) + ||f1||Lq(Ω,φ2

κdx)

)
,

and

sup
x,y∈Ω, x 6=y

|x− y|−β

∣∣∣∣∣
u(x)

(d(x))
α−
2

− u(y)

(d(y))
α−
2

∣∣∣∣∣ ≤ c10

(
||h||C2(Ω) + ||f1||Lq(Ω,φ2

κdx)

)
, (2.21)

with c9 and c10 depending on Ω, N, q, and κ.

Remark. By Lemma 2.7 we already know that u− d
α−
2 h ∈ H1

0 (Ω).

Proof. Let β ≤ β0 and η ∈ C2(Ω) be a function such that η = d
α−
2 (x) in Ωβ and η(x) > c > 0, if

x ∈ Ω′
β . We set u = φκv + ηh. Then v is a weak solution of

−div(φ2κ∇v)
φ2κ

+ λκv =
1

φκ

(
f0 + (∆η + κ

η

d2
)h+ 2∇η.∇h+ η∆h

)
, (2.22)

in the sense that
∫

Ω

∇v.∇ψ φ2κdx+ λκ

∫

Ω

v ψ φ2κdx =

∫

Ω

(
f0 + (∆η + κ

η

d2
)h+ 2∇η.∇h

)
ψ φκdx

−
∫

Ω

∇h.∇ (ηψ φκ) dx ∀ψ ∈ C∞
0 (Ω). (2.23)
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Let ψ ∈ C∞
0 (Ωβ). By an argument similar to the one in the proof of Lemma 2.7 we have

∫

Ω

ψ2dx =

∫

Ωβ

ψ2dx =

∫

Ωβ

div(d∇d)|ψ|2dx−
∫

Ωβ

d∆d|ψ|2dx,

which implies ∫

Ωβ

ψ2dx ≤ c′10

∫

Ωβ

d2|∇ψ|2dx ≤ c11

∫

Ωβ

dα+ |∇ψ|2dx. (2.24)

Now ∣∣∣∣∣

∫

Ωβ

(
(∆η + κ

η

d2
)h+ 2∇η.∇h

)
ψ φκdx

∣∣∣∣∣ ≤ c12

∫

Ωβ

ψ2dx,

and
∣∣∣∣∣

∫

Ωβ

∇h.∇ (ηψ φκ) dx

∣∣∣∣∣ ≤ c13

(∫

Ωβ

|∇h|2dx+

∫ ∫

Ωβ

dα+ |∇ψ|2dx+

∫ ∫

Ωβ

ψ2dx

)
.

By (2.24) we can take ψ ∈ H1(Ω, dα+(x)dx) for test function. Thus we derive that there exists a weak

solution v ∈ H1(Ω, dα+(x)dx) of (2.23).

To prove (2.21) we first obtain that if ψ ∈ C∞
0 (Ωε)

∫

Ω

ψdx = −
∫

Ωε

d∇d.∇ψdx −
∫

Ωε

d∆dψdx.

Since
∣∣∣∣
∫

Ω

(
(∆η + κ

η

d2
)h+ 2∇η.∇h+ η∆h

)
ψ φκdx

∣∣∣∣ ≤ c14||h||C2(Ω)

∫

Ω

|ψ|dx

≤ 1

2

∫

Ωε

dα+ |∇ψ|2dx+ c15(Ω, κ)||h||C2(Ω),

we use again (2.9) and Moser’s iterative scheme as in Proposition 2.8, and we obtain

||v||L∞(Ω) ≤ c9

(
||h||C2(Ω) + ||f0||Lq(Ω,φ2

κdx)

)
,

where c9 = c9(Ω, q, κ) > 0. From inequality it follows that v is Hölder continuous up to the boundary

and the uniform convergence holds.

Proposition 2.10. Assume κ = 1
4 . If f0 ∈ L2(Ω) and h ∈ H1(Ω), there exists a unique function u in

H1
loc(Ω) weak solution of

L 1
4
u = f0

verifying d−
1
2 (u − d

1
2 | log d|h) ∈ H1(Ω, d(x)dx). Furthermore, if f1 := f0

φ 1
4

∈ Lq(Ω), q > n+1
2 and

h ∈ C2(Ω), then there exists 0 < β < 1 such that

lim
x∈Ω, x→y∈∂Ω

u

d
1
2 | log d|

(x) = h(y) ∀y ∈ ∂Ω,

uniformly with respect to y,
∣∣∣∣∣

∣∣∣∣∣
u√

d | log d
D0

|

∣∣∣∣∣

∣∣∣∣∣
L∞(Ω)

≤ c16

(
||h||C2(Ω) + ||f1||Lq(Ω,φ2

1
4

dx)

)
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where D0 = 2 supx∈Ω d(x). Finally there holds

sup
x,y∈Ω, x 6=y

|x− y|−β

∣∣∣∣∣
u(x)√

d(x)| log d(x)
D0

|
− u(y)√

d(y)| log d(y)
D0

|

∣∣∣∣∣ < c17

(
||h||C2(Ω) + ||f1||Lq(Ω,φ2

1
4

dx)

)
.

(2.25)

Proof. Using again Lemma 2.7, we know that u− d
1
2 | log d|h ∈ W 1,p

0 (Ω), ∀p < 2. The proof is very

similar to the proof of Proposition 2.9. The only differences are we impose η = d
1
2 | log d| in Ωβ and we

use the fact that | log d| ∈ Lp(Ω), ∀p ≥ 1.

In the next result we prove that the boundary Harnack inequality holds, provided the vanishing prop-

erty of a solution is understood in a an appropriate way.

Proposition 2.11. Let δ > 0 be small enough, ξ ∈ ∂Ω and u ∈ H1
loc(Bδ(ξ) ∩ Ω) ∩C(Bδ(ξ) ∩ Ω) be a

positive L 1
4

-harmonic function in Bδ(ξ) ∩ Ω vanishing on ∂Ω ∩Bδ(ξ) in the sense that

lim
dist (x,K)→0

u(x)

d
1
2 (x)| log d(x)|

= 0 ∀K ⊂ ∂Ω ∩Bδ(ξ) , K compact. (2.26)

Then there exists a constant c18 = c18(N,Ω, κ) > 0 such that

u(x)

φ 1
4
(x)

≤ c18
u(y)

φ 1
4
(y)

∀x, y ∈ Ω ∩B δ
2
(ξ).

Proof. We already know that u ∈ C2(Ω). Let δ ≤ min(β0,
1
2 ) such that Bδ(ξ) ∩ Ω ⊂ Ωδ ⊂ Ωβ0 .

By [4, Lemma 2.8] there exists a positive supersolution ζ ∈ C2(Ωδ) of (1.3) in Ωδ with the following

behaviour

ζ(x) ≈ d
1
2 (x) log

1

d(x)

(
1 + c19

(
log

1

d(x)

)−β
)
,

for some β ∈ (0, 1) and c19 = c19(Ω) > 0. Set v = ζ−1u, then it satisfies

−ζ−2div(ζ2∇v) ≤ 0 in Bδ(ξ) ∩ Ω. (2.27)

Let η ∈ C∞
0 (Bδ(ξ)) such that 0 ≤ η ≤ 1 and η = 1 in B 3δ

4
(ξ). We set vs = η2(v − s)+ Since by

assumption vs has compact support in Bδ(ξ) ∩ Ω, we can use it as a test function in (2.27) and we get

∫

Bδ(ξ)∩Ω

ζ2∇v.∇vsdx =

∫

Bδ(ξ)∩Ω

ζ2∇(v − s)+.∇vsdx ≤ 0, (2.28)

which yields ∫

Bδ(ξ)∩Ω

|∇(v − s)+|2ζ2η2dx ≤ 4

∫

Bδ(ξ)∩Ω

|∇η|2(v − s)2+ζ
2dx.

Letting s→ 0 we derive

∫

Bδ(ξ)∩Ω

|∇v|2ζ2η2dx ≤ 4

∫

Bδ(ξ)∩Ω

|∇η|2v2ζ2dx.

Since

|∇(v − s)+|2ζ2η2 ↑ |∇v|2ζ2η2 as s→ 0,
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and convergence of ∇(v − s)+ to ∇v holds a.e. in Ω, it follows by the monotone convergence theorem

lim
s→0

∫

Bδ(ξ)∩Ω

|∇(v − (v − s)+)|2ζ2η2dx = 0. (2.29)

Finally ζvs → η2ζv in H1(Bδ(ξ) ∩ Ω), which yields in particular η2u = η2ζv ∈ H1
0 (Bδ(ξ) ∩ Ω).

Step 2. By [4, Lemma 2.8] there exists a positive subsolution h ∈ C2(Ωδ) of (1.3) in Ωδ with the

following behaviour

h(x) ≈ d
1
2 (x) log

1

d(x)

(
1− c20

(
log

1

d(x)

)−β
)
,

where β ∈ (0, 1) and c20 = c20(Ω) > 0. Set w = h−1u and ws = η2(w − s)+. Then ws → η2w in

H1(Bδ(ξ) ∩ Ω) by Step 1. Put us = hws, thus, for 0 < s, s′, we have

∫

Bδ(ξ)∩Ω

|∇(us − us′)|2dx− 1

4

∫

Bδ(ξ)

|us − us′ |2
d2(x)

dx =

∫

Bδ(ξ)∩Ω

h2|∇(ws − ws′ )|2dx (2.30)

+

∫

Bδ(ξ)∩Ω

|∇h|2|ws − ws′ |2dx+

∫

Bδ(ξ)∩Ω

h∇h.∇(us − us′)
2dx − 1

4

∫

Bδ(ξ)∩Ω

h2|ws − ws′ |2
d2(x)

dx

≤
∫

Bδ(ξ)∩Ω

h2|∇(ws − ws′)|2dx,

where, in the last inequality, we have performed by parts integration and then used the fact that h is a

subsolution. Thus we have by (2.29) that

lim
s,s′→0

∫

Bδ(ξ)

|∇(us − us′)|2dx− 1

4

∫

Bδ(ξ)

|us − us′ |2
d2(x)

dx = 0. (2.31)

Step 3. Let W(Ω) denote the closure of C∞
0 (Ω) in the space of functions φ satisfying

||φ||2H :=

∫

Ω

|∇Φ|2dx− 1

4

∫

Ω

|Φ|2
d2(x)

dx <∞.

Thus η2u ∈ W(Ω), which implies
ηu

φ 1
4

∈ H1
0 (Ω, d(x)dx).

Next we set ṽ = φ−1
1
4

u; then ṽ ∈ H1(B 3δ
4
(ξ), d(x)dx) and it satisfies

−φ−2
1
4

div(φ21
4
∇ṽ) + λ 1

4
ṽ = 0.

Put ṽ∗(x, t) = e
tλ 1

4 ṽ, then ṽ∗ satisfies

ṽ∗t − φ−2
1
4

div(φ21
4
∇ṽ∗) = 0 (2.32)

in the weak sense of [14, Definition 2.9]. By [14, Theorem 1.5], ṽ∗ satisfies a Harnack inequality up to

the boundary of Ω in the sense that

ess sup
{
ṽ∗(y, t) : (y, t) ∈ B r

2
(ξ) × [ r

2

4 ,
r2

2 ]
}
≤ Cess inf

{
ṽ∗(y, t) : (y, t) ∈ B r

2
(ξ) × [ 3r

2

4 , r
2]
}

(2.33)
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where B r
2
(ξ) is a Lipschitz deformed Euclidean ball (see [14, p. 244] and Definition 6.6). Since r is

bounded and ṽ satisfies the same estimate up to a constant depending on Ω and finally there exists a

constant c18 = c18(Ω) > 0 such that

v(x) ≤ c18v(y) ∀x, y ∈ B δ
2
(ξ).

The result follows.

In the case κ < 1
4 , the result holds with minor modifications.

Proposition 2.12. Let δ > 0 be small enough, ξ ∈ Ω, 0 < κ < 1
4 and u ∈ H1

loc(Bδ(ξ)∩Ω)∩C(Bδ(ξ)∩
Ω) be a nonnegative Lκ-harmonic in Bδ(ξ) vanishing on ∂Ω ∩Bδ(ξ) in the sense that

lim
dist (x,K)→0

u(x)

(d(x))
α−
2

= 0 ∀K ⊂ ∂Ω ∩Bδ(ξ) , K compact. (2.34)

Then there exists c21 = c21(Ω, κ) > 0 such that

u(x)

φκ(x)
≤ c21

u(y)

φκ(y)
∀x, y ∈ Ω ∩B δ

2
(ξ).

Proof. As in the previous proof we apply [4, Lemma 2.8], we consider a super-solution ζ ≈ dα−(1 +
c19d

β) and a sub-h ≈ dα−(1− c20d
β) where β ∈ (0,

√
1− 4κ). Thus

ηu

φκ
∈ H1

0 (Ω, d
α+(x)dx),

where η is a cut-off function adapted to Br(ξ). The function ṽ = φ−1
κ u satisfies

−φ−2
κ div(φ2κ∇ṽ) + λκṽ = 0,

and ṽ ∈ H1
0 (B 3δ

4
(ξ), dα+(x)dx). Then the proof follows as in the previous Proposition.

Proposition 2.13. Let u ∈ H1
loc(Ω) ∩ C(Ω) be a L 1

4
-subharmonic function such that

lim sup
d(x)→0

u(x)

d
1
2 (x)| log d(x)|

≤ 0.

Then u ≤ 0.

Proof. We set v = max(u, 0) and we proceed as in the Step 1 of the proof of Proposition 2.11 with

η = 1. The result follows by letting s→ 0.

Similarly we have

Proposition 2.14. Let u ∈ H1
loc(Ω) ∩ C(Ω) be a Lκ-subharmonic function such that

lim sup
d(x)→0

u(x)

(d(x))
α−
2

≤ 0.

Then u ≤ 0.



Konstantinos T. Gkikas, Laurent Véron 17

The two next statements shows that comparison holds provided comparable boundary data are achieved

in way which takes into account the specific form of the Lκ-harmonic functions

Proposition 2.15. Assume κ < 1
4 and hi ∈ H1(Ω) (i=1,2). Let ui ∈ H1

loc(Ω) be two Lκ-harmonic

functions such that d−
α+
2

(
ui − d

α−
2 hi

)
∈ H1(Ω, dα+(x)dx). Then

If h1 ≤ h2 a.e. in Ω, there holds

u1(x) ≤ u2(x) ∀x ∈ Ω.

If h1 − h2 ∈ H1
0 (Ω), there holds

u1(x) = u2(x) ∀x ∈ Ω.

Proof. Set w = φ−1
κ (u1 − u2), then w ∈ H1(Ω, φ2κdx) and

−div(φ2κ∇w) + λκφ
2
κw = 0

Since H1(Ω, φ2κdx) = H1
0 (Ω, φ

2
κdx) by (2.5) we derive that w and w+ belong to H1

0 (Ω, φ
2
κdx) and,

integrating by part, we derive w+ = 0. The proof of the second statement is similar.

In the same way we have in the case κ = 1
4 .

Proposition 2.16. Assume κ = 1
4 . Let hi ∈ H1(Ω) (i=1,2) and let ui ∈ H1

loc(Ω) be two L 1
4

-harmonic

functions such that d−
1
2 (ui − d

1
2 | log d|hi) ∈ H1(Ω, d(x)dx).

(i) If h1 ≤ h2 a.e. in Ω, then

u1(x) ≤ u2(x) ∀x ∈ Ω.

(ii) If h1 − h2 ∈ H1
0 (Ω), then

u1(x) = u2(x) ∀x ∈ Ω.

We end with existence and uniqueness results for solving the Dirichlet problem associated to Lκ.

Proposition 2.17. Assume κ = 1
4 . For any h ∈ C(∂Ω) there exists a unique L 1

4
-harmonic function u

belonging to H1
loc(Ω) satisfying

lim
x∈Ω, x→y∈∂Ω

u(x)

d
1
2 (x)| log d(x)|

= h(y) uniformly for y ∈ ∂Ω.

Furthermore there exists a constant c16 = c16(Ω) > 0 > 0
∣∣∣∣∣

∣∣∣∣∣
u

d
1
2 | log d

D0
|

∣∣∣∣∣

∣∣∣∣∣
L∞(Ω)

≤ c24||h||C(∂Ω),

where D0 = 2 supx∈Ω d(x).

Proof. Uniqueness is a consequence of Proposition 2.13. For existence let m ∈ N and hn be smooth

functions such that hm → h in L∞(∂Ω). Then we can find a function Hm ∈ C2(Ω) with value hm
on ∂Ω, and ||Hm||L∞(Ω) ≤ ||hm||L∞(∂Ω). By Lemma 2.10 there exists a unique weak solution um of

L 1
4
u = 0 satisfying

lim
x∈Ω, x→y∈∂Ω

um

d
1
2 | log d|

(x) = hm(y) uniformly for y ∈ ∂Ω.
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By Proposition 2.10 we have
∣∣∣∣∣

∣∣∣∣∣
um − un

d
1
2 | log d

D0
|

∣∣∣∣∣

∣∣∣∣∣
L∞(Ω)

≤ c16||hm − hn||C(∂Ω).

Thus there exists u such that

lim
m→∞

∣∣∣∣∣

∣∣∣∣∣
um − u

d
1
2 | log d

D0
|

∣∣∣∣∣

∣∣∣∣∣
L∞(Ω)

= 0

and u is a solution of L 1
4
u = 0.

Let x ∈ Ω, with d(x) < 1
2 and y ∈ ∂Ω

∣∣∣∣
u

d
1
2 | log d|

(x)− h(y)

∣∣∣∣ ≤
∣∣∣∣

u

d
1
2 | log d|

(x) − um

d
1
2 | log d|

(x)

∣∣∣∣+
∣∣∣∣

um

d
1
2 | log d|

(x) − hm(y)

∣∣∣∣

+ |h(y)− hm(y)|.

The result follows by letting successively x→ y and m→ ∞.

Similarly we have

Proposition 2.18. Assume κ < 1
4 . Then for any h ∈ C(∂Ω) there exists a unique Lκ-harmonic function

u ∈ H1
loc(Ω) satisfying

lim
x∈Ω, x→y∈∂Ω

u

d
α−
2

(x) = h(y) uniformly for y ∈ ∂Ω.

Furthermore there exists a constant c9 = c9(Ω, κ) > 0 such that

∣∣∣
∣∣∣ u

dα−

∣∣∣
∣∣∣
L∞(Ω)

≤ c9||h||C(∂Ω).

A useful consequence of [4, Lemma 2.8] and Propositions 2.9 and 2.10 is the following local exis-

tence result.

Proposition 2.19. There exists a positive Lκ-harmonic function Zκ ∈ C(Ωβ0) ∩ C2(Ωβ0) satisfying

lim
d(x)→0

Z 1
4
(x)

√
d(x)| lnd(x)|

= 0 (2.35)

if κ = 1
4 , and

lim
d(x)→0

Zκ(x)

(d(x))
α−
2

= 0 (2.36)

if 0 < κ < 1
4 .

2.3 L
κ
-harmonic measure

Let x0 ∈ Ω, h ∈ C(∂Ω) and denoteLκ,x(h) := vh(x0) where vh is the solution of the Dirichlet problem

(see Propositions 2.17 and 2.18)

Lκv = 0 in Ω

v = h in ∂Ω, (2.37)
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where v takes the boundary data in the sense of Lemmas 2.17 and 2.18. By Lemma’s 2.14 and 2.13,

the mapping h 7→ Lκ,x0(h) is a linear positive functional on C(∂Ω). Thus there exists a unique Borel

measure on ∂Ω, called Lκ-harmonic measure in Ω, denoted by ωx0 , such that

vh(x0) =

∫

∂Ω

h(y)dωx0(y).

Thanks to Harnack inequality the measures ωx and ωx0 , x0, x ∈ Ω are mutually absolutely continuous.

For every fixed x we denote the Radon-Nikodyn derivative by

KLκ
(x, y) :=

dwx

dwx0
(y) for ωx0- almost all y ∈ ∂Ω.

It is classical that the following formula is an equivalent definition of the Lκ-harmonic measure: for

any closed set E ⊂ ∂Ω

ωx0(E) = inf

{
ψ : ψ ∈ C+(Ω) , Lκ-superhamornic in Ω s.t. lim inf

x→E

ψ(x)

W (x)
≥ 1

}
,

where

W (x) =

{
d

α−
2 (x) if κ < 1

4 ,

d
1
2 (x)| log d(x)| if κ = 1

4 .

The extension to open sets is standard. Let ξ ∈ ∂Ω. We set ∆r(ξ) = ∂Ω∩Br(ξ) and xr = xr(ξ) ∈ Ω,
such that d(xr) = |xr − ξ| = r. Also xr(ξ) = ξ − rnξ where nξ is the unit outward normal vector to

∂Ω at ξ. We recall that β0 = β0(Ω) > 0 has been defined in Lemma 2.7.

Lemma 2.20. There exists a constant c25 > 0 which depends only on Ω and κ such that if 0 < r ≤ β0
and ξ ∈ ∂Ω, there holds

ωx(∆r(ξ))

W (x)
≥ c25 ∀x ∈ Ω ∩B r

2
(ξ). (2.38)

Proof. Let h ∈ C(∂Ω) be a function with compact support in ∆r(ξ), 0 ≤ h ≤ 1 and h = 1 on ∆ 3r
4
(ξ).

And let vh, v1 the corresponding Lκ-harmonic functions with respective boundary data (in the sense of

Lemmas 2.17 and 2.18) h and 1 . Then v1(x) ≥ vh(x) ≥ 0 and

lim
x∈Ω, x→x0

v1(x)− vh(x)

W (x)
= 0 ∀x0 ∈ Ω ∩B 3r

4
(ξ).

By Lemmas 2.12 and 2.11, and φκ ≈ d
α+
2 , there exists c26 = c26(Ω, κ) > 0 such that

v1(x)− vh(x)

d
α+
2 (x)

≤ c26
v1(y)− vh(y)

d
α+
2 (y)

∀x, y ∈ Ω ∩B r
2
(ξ).

We consider first the case κ = 1
4 . By Proposition 2.10, we have

0 ≤ v1(y)− vh(y)

d
1
2 (y)

≤ v1(y)

d
1
2 (y)

≤ c24| log d(y)|.

Thus, combining all above we have that

v1(x)

d
1
2 (x)| log d(x)|

− c27
| log d(y)|
| log d(x)| ≤

vh(x)

d
1
2 (x)| log d(x)|

.
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Now by Lemma 2.10, there exists ε0 > 0 such that

v1(x)

d
1
2 (x)| log d(x)|

>
1

2
∀x ∈ Ωε0 .

Thus if we choose y such that d(y) = r
4 , there exists a constant c27 = c27(Ω, κ) > 0 such that

c27
| log d(y)|
| log d(x)| = c27

| log r
4 |

| log d(x)| ≤ c27
| log r

4 |
| log r

D0
| ≤

1

4
∀x ∈ Ω r

D0
,

thus
vh(x)

d
1
2 (x)| log d(x)|

≥ 1

4
∀x ∈ B r

2
(ξ) ∩Ω r

D0
. (2.39)

In particular
vh(xa∗r(ξ))√
a∗r| log(a∗r)|

≥ 1

4
, (2.40)

where a∗ = (max{2, D0})−1. If D0 ≤ 2 we obtain the claim. If D0 > 2, set k∗ = E[D0

2 ] + 1 (we

recall that E[x] denotes the largest integer less or equal to x). If x ∈ B r
2
(ξ) ∩ Ω′

r
D0

there exists a chain

of at most 4k∗ points {zj}j=j0
j=0 such that zj ∈ B r

2
(ξ) ∩ Ω, d(zj) ≥ a∗r, z0 = xa∗r(ξ), zj0 = x and

|zj − zj+1| ≤ a∗r
4 . By Harnack inequality (applied j0-times)

vh(xa∗r(ξ)) ≤ c28vh(x). (2.41)

Since

W (xa∗r(ξ)) ≥ (a∗)
1
2 W (x),

we obtain finally

1

4
≤ ωxa∗r(ξ)(∆r(ξ))√

a∗r| log(a∗r)|
≤ c28

(
1

a∗

) 1
2 ωx(∆r(ξ))

W (x)
∀x ∈ Ω ∩B r

2
(ξ). (2.42)

In the case κ < 1
4 , the proof is simpler since no log term appears and we omit it.

The next result is a Carleson type estimate valid for positive Lκ-harmonic functions.

Lemma 2.21. There exists a constant c29 which depends on Ω and κ such that for any ξ ∈ ∂Ω and

0 < r ≤ s ≤ β0. ,

ωx(∆r(ξ))

W (x)
≤ c29

ωxs(ξ)(∆r(ξ))

W (xs(ξ))
∀x ∈ Ω \Bs(ξ). (2.43)

Proof. Let h ∈ C(∂Ω) with compact support in ∆r(ξ)) and 0 ≤ h ≤ 1. We denote by vh, v1, the

solutions of (2.37) with boundary data h and 1 respectively. By Propositions 2.17 and 2.18 there exists a

constant c30 > 0 such that for 0 < r < β0,

vh
W (x)

≤ ωx(∆r(ξ))

W (x)
≤ ωx(∂Ω)

W (x)
≤ c30 ∀x ∈ Ω. (2.44)

By Propositions 2.17 and 2.18, there holds

lim
d(x)→0

v1(x)

W (x)
= 1, (2.45)
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thus we can replace W by v1 in (2.43). Since wh = vh(x)
v1(x)

is Hölder continuous in Ω and satisfies

−div(v21∇wh) = 0 in Ω \Bs(ξ)
0 ≤ wh ≤ 1 in Ω \Bs(ξ)

wh = 0 in ∂Ω \Bs(ξ),

(2.46)

the maximum of wh is achieved on Ω ∩ ∂Bs(ξ), therefore it is sufficient to prove the Carleson estimate

wh(x) ≤ c29wh(xs(ξ)) ∀x ∈ Ω ∩ ∂Bs(ξ). (2.47)

If x such that |x − ξ| = s is "far" from ∂Ω, wh(x) is "controled" by wh(xs(ξ)) thanks to Harnack

inequality, while if it is close to ∂Ω, wh(x) is "controled by the fact that it vanishes on ∂Ω ∩ ∂Bs(ξ).

We also note that (2.38) can be written under the form

wh(x) ≥ c25 ∀x ∈ Ω ∩B r
2
(ξ). (2.48)

Step 1. : r ≤ s ≤ 4r. By Lemma 2.20, (2.44) and the above inequality we have that

wh(x r
2
(ξ)) ≥ c25

c30
wh(x) ∀x ∈ Ω.

Applying Harnack inequality to wh in the balls B (2+j)r
4

(x (2+j)r
4

(ξ)) for j = 0, ..., j0 ≤ 14, we obtain

wh(x (2+j)r
4

(ξ)) ≥ cj31wh(x r
2
(ξ)) for j = 1, ..., j0.

This implies

wh(xs(ξ)) ≥ c32wh(x) ∀x ∈ Ω. (2.49)

Step 2: β0 ≥ s > 4r. We apply Propositions 2.11, 2.12 to wh in B s
2
(ξ1)∩Ω where ξ1 ∈ ∂Ω is such that

|ξ − ξ1| = s and we get

wh(x) ≤ c18wh(x s
4
(ξ1)) ∀x ∈ B s

4
(ξ1) ∩ Ω. (2.50)

Then we apply six times Harnack inequality to wh between x s
4
(ξ1) and xs(ξ) and obtain

wh(x s
4
(ξ1)) ≤ c33wh(xs(ξ1)). (2.51)

Combining (2.50) and (2.51) we derive (2.47).

Step 3. For ǫ > 0, set zh = wh − c33wh(xs(ξ)) − ǫ. Then z+h has compact support in Ω \ Bs(ξ) and

thus belongs to H1
0 (Ω \Bs(ξ)). Integration by parts in (2.46) leads to

∫

Ω\Bs(ξ)

v21 |∇z+h |2dx = 0. (2.52)

Then z+h = 0 by letting ǫ→ 0. Combining with (2.49) and h ↑ χ∆r(ξ) implies (2.43).

Theorem 2.22. There exists a constant c34 which depends on Ω and κ such that, for any 0 < r ≤ β0
and ξ ∈ ∂Ω, there holds

1

c34
rN−1− 1

2 | log r|GL 1
4

(xr(ξ), x) ≤ ωx(∆r(ξ)) ≤ c34r
N−1− 1

2 | log r|GL 1
4

(xr(ξ), x) ∀x ∈ Ω\B4r(ξ).

(2.53)
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Proof. Let η ∈ C∞
0 (B2r(ξ)) such that 0 ≤ η ≤ 1 and η = 1 in Br(ξ). We set

u = η(− ln d)
√
d := ηψ,

(we assume that 4r < 1), in order to have

lim
x→x0

u(x)

ψ(x)
= η⌊∂Ω(x0) = ζ(x0) ∀x0 ∈ ∂Ω,

uniformly with respect to x0. Since

−∆ψ − 1

4

ψ

d2(x)
=

2 + ln d

2
√
d

∆d = −(N − 1)
2 + ln d

2
√
d

K,

where K is the mean curvature of ∂Ω. We have also

|∇η| ≤ c0χΩ∩B2r(ξ)
1

r
and |∆η(x)| ≤ c0χΩ∩B2r(ξ)

1

r2
≤ c0χΩ∩B2r(ξ)

1

r
d−1(x),

thus u satisfies

−∆u− 1

4

u

d2(x)
= −ψ∆η + 2 + ln d

2
√
d

(2∇d.∇η − (N − 1)Kη) := f in Ω

u = ζ on ∂Ω.

Furthermore |f | ≤ c35
r
(− ln d√

d
)χΩ∩B2r(ξ) since η vanishes outsideB2r(ξ). We have by the representation

formula [14]

0 = u(x) =

∫

Ω

GL 1
4

(x, y)fdy +

∫

∂Ω

h(y)dωx(y) ∀x ∈ Ω \B2r(ξ). (2.54)

By Lemma 2.1, we have that for any x ∈ Ω \B4r(ξ) and y ∈ B2r(ξ)

GL 1
4

(x, y) ≤ c36GL 1
4

(x, xr(ξ)),

thus

ωx(∆r(ξ)) ≤
∫

Ω∩B2r(ξ)

GL 1
4

(x, y)|f(y)|dy

≤ c37
r
GL 1

4

(x, xr(ξ))

∫

Ω∩B2r(ξ)

| ln d(y)|√
d(y)

dy

≤ c38GL 1
4

(x, xr(ξ))r
N−1− 1

2 | ln r|,

(2.55)

since ∫

Ω∩B2r(ξ)

| ln d(y)|√
d(y)

dy ≤ c39r
N−1

∫ 2r

0

| ln t|dt√
t

≤ 2c39r
N− 1

2 | ln r|.

This implies the right-hand side part of (2.53). For the opposite inequality we observe that if x ∈
∂B4r(ξ) ∩ Ω, there holds by (2.38)

rN−1− 1
2 | log r|GL 1

4

(xr(ξ), x) ≤ c40r
N−1− 1

2 | log r|min

{
1

|x− xr(ξ)|N−2
,

√
d(x)

√
d(xr(ξ))

|x− xr(ξ)|N−1

}

≤ c41
√
d(x)| log r|

≤ c42W (x)

≤ c42
c25
ω
x r

8
(ξ)

(∆r(ξ)).
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We end the proof by Harnack inequality between ω
x r

8
(ξ)

(∆r(ξ)) and ωx4r(ξ)(∆r(ξ)) and by Harnack

inequality between ωx(∆r(ξ)) and ωx4r(ξ)(∆r(ξ)) on ∂B4r(ξ) and an argument like in the step 3 in

Lemma 2.21.

Replacing, in the last proof, the function ψ =
√
d(− ln d) by ψ̃ = d

α−
2 , we obtain similarly the

following two-side estimate

Theorem 2.23. Assume κ < 1
4 . There exists a constant c42 which depends only on Ω and κ such that,

for any 0 < r ≤ β0 and ξ ∈ ∂Ω, there holds

1

c42
rN−2+

α−
2 GLκ

(xr(ξ), x) ≤ ωx(∆r(ξ)) ≤ c42r
N−2+

α−
2 GLκ

(xr(ξ), x) ∀x ∈ Ω \B4r(ξ).

As a consequence of Theorems 2.22 and 2.23 and the Harnack inequality, the harmonic measure for

Lκ possesses the doubling property.

Theorem 2.24. Let 0 < κ ≤ 1
4 . There exists a constant c42 which depends only on Ω, κ such that for

any 0 < r ≤ β0, there holds

ωx(∆2r(ξ)) ≤ c42ω
x(∆r(ξ)) ∀x ∈ Ω \B4r(ξ).

The next result will be useful in the study of the Poisson kernel of Lκ.

Lemma 2.25. Let 0 < r ≤ β0 and u be a positive Lκ-harmonic function such that

(i) u ∈ C(Ω \Br(ξ)),

(ii)

lim
x→x0

u(x)

W (x)
= 0 ∀x0 ∈ Ω \Br(ξ),

uniformy with respect to x0.

Then

c−1
42

u(xr(ξ))

W (xr(ξ))
wx(∆r(ξ)) ≤ u(x) ≤ c42

u(xr(ξ))

W (xr(ξ))
wx(∆r(ξ)) ∀x ∈ Ω \B2r(ξ),

with c42 depends only on κ and Ω.

Proof. It follows from Propositions 2.11, 2.12 that there exists C > 0 such that

1

C

u(x2r(ξ))

wx2r(ξ)(∆r(ξ))
≤ u(x)

wx(∆r(ξ))
≤ C

u(x2r(ξ))

wx2r(ξ)(∆r(ξ))
∀x ∈ Ω ∩ ∂B2r(ξ).

Applying Harnack inequality between x2r(ξ) and xr(ξ) we obtain

1

C

u(xr(ξ))

wxr(ξ)(∆r(ξ))
≤ u(x)

wx(∆r(ξ))
≤ C

u(xr(ξ))

wxr(ξ)(∆r(ξ))
∀x ∈ Ω ∩ ∂B2r(ξ).

Also by Harnack inequality we have that

wxr(ξ)(∆r(ξ)) ≥ Cw
x r

2
(ξ)

(∆r(ξ)) > C0W (xr(ξ)),

where in the last inequality above we have used Lemma 2.20.

Combining all the above inequalities, we derive

C−1 u(xr(ξ))

W (xr(ξ))
wx(∆r(ξ)) ≤ u(x) ≤ C

u(xr(ξ))

W (xr(ξ))
wx(∆r(ξ)) ∀x ∈ Ω ∩ ∂B2r(ξ).

The result follows by an argument similar to step 3 in Lemma 2.21.
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2.4 The Poisson kernel of L
κ

In this section we establish some properties of the Poisson kernel associated to Lκ.

Definition 2.26. Fix ξ ∈ ∂Ω. A function K defined in Ω is called a kernel function at ξ with pole at

x0 ∈ Ω if

(i) K(·, ξ) is Lκ-harmonic in Ω,

(ii) K(·, ξ) ∈ C(Ω \ {ξ}) and for any η ∈ ∂Ω \ {ξ}

lim
x→η

K(x, ξ)

W (x)
= 0,

(iii) K(x, ξ) > 0 for each x ∈ Ω and K(x0, ξ) = 1.

Proposition 2.27. There exists one and only one kernel function for Lκ at ξ with pole at x0.

Proof. The proof is similar as the one of [9, Th. 3.1] and we indicate it for the sake of completeness. Set

un(x) =
wx(∆2−n(ξ))

wx0(∆2−n(ξ))
.

Since

un ≥ 0,

Lκun = 0 in Ω and un(x0) = 1 the sequence {un} is locally bounded in Ω by Harnack inequality.

Hence we can find a subsequence, again denoted by {un}, which converges to a function u, locally

uniformly in Ω.
It is clear that u ≥ 0 in Ω and Lκu = 0 in Ω. Since u(x0) = 1, u is strictly positive in Ω. Now fix

P ∈ ∂Ω and P 6= ξ. Let n0 ∈ N be such that P ∈ Ω \ B2n+1(ξ), ∀n ≥ n0. By Lemma 2.25 if we take

n0 sufficiently large, we have

un(x) ≤ c42
un(x2−n0 (ξ))

W (x2−n0 (ξ))
wx(∆2−n0 (ξ)) ∀x ∈ Ω \B2−n0+1(ξ),

which implies

u(x) ≤ c42
u(x2−n0 (ξ))

W (x2−n0 (ξ))
wx(∆2−n0 (ξ)) ∀x ∈ Ω \B2−n0+1(ξ),

and thus

lim
x→P

u(x)

W (x)
= 0.

We now turn to the question of uniqueness of the kernel function. Let us consider two arbitrary

kernel functions f and g for Lκ in Ω at ξ. By Lemma 2.25 and the properties of f, g there holds

1

c242

f(xr(ξ))

g(xr(ξ))
≤ f(x)

g(x)
≤ c242

f(xr(ξ))

g(xr(ξ))
∀x ∈ Ω \B2r(ξ).

In particular we can obtain if we take x = x0

f(xr(ξ))

g(xr(ξ))
≤ c242,
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and we obtain, using again Harnack,

f(x)

g(x)
≤ c342 := c ∀x ∈ Ω.

We derive that for any two kernel functions f and g for Lκ at ξ there holds

f(x) ≤ cg(x) ≤ c2f(x) ∀x ∈ Ω. (2.56)

Obviously c ≥ 1. If c = 1 the result is proved. If c > 1 then f + A(f − g) is also a Kernel function for

Lκ at ξ with A = 1
c−1 . Since (2.56) holds for any kernel functions,

g ≤ c(f +A(f − g)),

and therefore

f +A(f − g) +A(f +A(f − g)),

is a kernel function at ξ. Proceeding in the above manner and by induction we conclude that for each

positive integer k there exists nonnegative numbers a1k, ..., akk such that

f +

(
kA+

k∑

i=1

aik

)
(f − g)

is a kernel function at ξ. Hence

f +

(
kA+

k∑

i=1

aik

)
(f − g) ≤ c2f.

This last inequality can hold for all k only if f ≡ g.

We recall here that we denote by

KLκ
(x, ξ) :=

dwx

dwx0
(ξ) for ωx0- almost all ξ ∈ ∂Ω,

the kernel function in Ω. Also in view of the proof of Proposition 2.27 and by uniqueness we can write

KLκ
(x, ξ) = lim

r→0

wx(∆r(ξ))

wx0(∆r(ξ))
for ωx0- almost all ξ ∈ ∂Ω.

Proposition 2.28. For any x ∈ Ω, the function ξ 7→ KLκ
(x, ξ) is continuous on ∂Ω.

Proof. The proof is an adaptation of the one of [9, Corollary 3.2]. Suppose that ξn → ξ as n → ∞.
Then the sequence, K(·, ξn), of positive solutions of Lκu = 0 has a subsequence which converges

locally uniformly in Ω to a function which must be a positive solution of Lκu = 0 in Ω. Outside any

fixed neighborhood,B, of ξ,
KLκ (x,ξn)

W (x) converges to zero uniformly in n as x→ P ∈ ∂Ω\B. Hence the

limit function of the subsequence is the kernel function for Lκ at ξ. By uniqueness of the kernel function

we conclude that the convergence

KLκ
(x, ξn) → KLκ

(x, ξ)

holds for the entire sequence {ξn}.
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We can now identify the Martin boundary and topology with their classical analogues. We begin by

recalling the definitions of the Martin boundary and related concepts. For x, y ∈ Ω we set

Kκ(x, y) :=
GLκ

(x, y)

GLκ
(x0, y)

.

Consider the family of sequences {yk}k≥1 of points of Ω without cluster points in Ω for which

Kκ(x, yk) converges in Ω to a harmonic function, denoted Kκ(x, {yk}). Two such sequences yk and

y′k are called equivalent if Kκ(x, {yk}) = Kκ(x, {y′k}) and each equivalence class is called an element

of the Martin boundary Γ. If Y is such an equivalence class (i.e., Y ∈ Γ) then Kκ(x, Y ) will denote

the corresponding harmonic limit function. Thus each Y ∈ Ω ∪ Γ is associated with a unique function

Kκ(x, Y ). The Martin topology on Ω ∪ Γ is given by the metric

ρ(Y, Y ′) =

∫

A

|Kκ(x, Y )−Kκ(x, Y
′)|

1 + |Kκ(x, Y )−Kκ(x, Y ′)|dx Y, Y ′ ∈ Ω ∪ Γ,

where A is a small enough neighborhood of x0. Kκ(x, Y ) is a ρ − continuous function of Y ∈ Ω ∪ Γ
for xinΩ fixed, Ω ∪ Γ is compact and complete with respect to ρ, Ω ∪ Γ is the ρ-closure of Ω and the

ρ-topology is equivalent to the Euclidean topology in Ω. We have the following results.

Proposition 2.29. There is a one-to-one correspondence between the Martin boundary of Ω and the

Euclidean boundary ∂Ω. If Y ∈ Γ corresponds to ξ ∈ ∂Ω then Kκ(x, Y ) = KLκ
(x, ξ). The Martin

topology on Ω ∪ Γ is equivalent to the Euclidean topology on Ω ∪ ∂Ω.

Proof. The proof is similar as the one of Theorem 4.2 in [20] and we recall it for the sake of complete-

ness. By uniqueness of the kernel function we have that

Kκ(x, {yk}) = KLκ
(x, ξ),

where {yk} is a sequence in Ω such that yk → ξ ∈ ∂Ω. It follows that each point of Γ may be asso-

ciated with a point of ∂Ω. Lemma 2.25 clearly shows that KLκ
(·, ξ) 6= KLκ

(·, ξ′) if ξ 6= ξ′. Hence,

the functions Kκ(x, yk) cannot converge if the sequence yk has more than one cluster point on ∂Ω and

different points of ∂Ω must be associated with different points of Γ. This gives a one-to-one correspon-

dence between ∂Ω and Γ with Kκ(x, Y ) = KLκ
(x, ξ) when Y ∈ Γ corresponds to ξ ∈ ∂Ω. If yk → ξ

in the Euclidean topology then Kκ(x, Yk) → Kκ(x, Y ) and, therefore, Yk → Y in the ρ-topology by

Lebesgue’s dominated convergence theorem. On the other hand suppose Yk → Y in the ρ-topology. If

ξk does not converge to ξ in the Euclidean topology there is a subsequence ξkj
such that ξkj

→ ξ′ 6= ξ
in the Euclidean topology. Then Ykj

→ Y ′ and Ykj
→ Y in the ρ − topology with Y 6= Y ′, which

is impossible. Therefore, the Martin ρ-topology on Ω ∪ Γ is equivalent to the Euclidean topology on

Ω ∩ ∂Ω.

By Proposition 2.29 and Proposition 2.1 we have the following result,

Theorem 2.30. Assume 0 < κ ≤ 1
4 . There exists a positive constant c43 such that

1

c43

d
α+
2 (y)

|ξ − y|N+α+−2
≤ KLκ

(y, ξ) ≤ c43
d

α+
2 (y)

|ξ − y|N+α+−2
. (2.57)

Let us give a Lemma that we will use to prove the representation formula.
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Lemma 2.31. Let ξ ∈ ∂Ω, r > 0 be small enough and u be a positive Lκ-harmonic function in Ω. There

exists a super Lκ-harmonic function V such that

V (x) =

{
v(x) in Ω \Br(ξ)

u(x) in Ω ∩Br(ξ),

where v satisfies

Lκv = 0 in Ω \Br(ξ)

lim
x→y

v(x) = u(y) ∀y ∈ ∂Br(ξ) ∩ Ω

lim
x→y

v(x)

W (x)
= 0 ∀y ∈ ∂Ω \Br(ξ).

(2.58)

Proof. The function u is C2 in Ω since it is Lκ-harmonic. Let ξ0 ∈ Br(ξ) ∩ Ω, and r0 be such that

Br0(ξ0) ⊂ Ω. We consider the problem

Lκw = 0, in Ω \Br(ξ)

lim
x→y

w(x) = η(y)w(y) ∀y ∈ ∂Br(ξ) ∩ Ω

lim
x→y

w(x)

W (x)
= 0, ∀y ∈ ∂Ω \Br(ξ),

where η ∈ C∞
0 (B r0

2
(ξ0)), 0 ≤ η ≤ 1. In view of the proof of Propositions 2.9 and 2.10 we can find a

positive solution of the above problem w. Also we note here that w ≤ u, and by Harnack inequalities

2.11 and 2.12, we have that for any ζ ∈ ∂Ω

w(x)

φκ(x)
≤ C(κ,N,Ω)

w(y)

φκ(y)
∀x, y ∈ Bρ(ζ),

where ρ ≤ 1
2dist(ζ, ∂Br(ξ)). Thus we derive

w(x)

φκ(x)
≤ C(κ,N,Ω)

u(y)

φκ(y)
∀x, y ∈ Bρ(ζ).

The remaining of the proof is standard and we omit it.

We consider a increasing sequence of bounded smooth domains {Ωn} such that Ωn ⊂ Ωn+1,

∪nΩn = Ω and HN−1(Ωn) → HN−1(Ω). Such a sequence is a smooth exhaustion of Ω. For each

n, the operator LΩn
κ defined by

LΩn
κ u = −∆u− κ

d2(x)
u (2.59)

is uniformly elliptic and coercive in H1
0 (Ωn) and its first eigenvalue λΩn

κ is larger than λκ. If h ∈
C(∂Ωn) the following problem

LΩn
κ v = 0 in Ωn

v = h on ∂Ωn,
(2.60)

admits a unique solution which allows to define the LΩn
κ -harmonic measure on ∂Ωn by

v(x0) =

∫

∂Ωn

h(y)dωx0

Ωn
(y). (2.61)
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Thus the Poisson kernel of LΩn
κ is

KLΩn
κ

(x, y) =
dωx

Ωn

dωx0

Ωn

(y) ∀y ∈ ∂Ωn. (2.62)

Proposition 2.32. Assume 0 < κ ≤ 1
4 and let x0 ∈ Ω1. Then for every Z ∈ C(Ω),

lim
n→∞

∫

∂Ωn

Z(x)W (x)dωx0

Ωn
(x) =

∫

∂Ω

Z(x)dωx0(x). (2.63)

Proof. We recall that d ∈ C2(Ωε) for any 0 < ε ≤ β0 and let n0 ∈ N be such that

dist(∂Ωn, ∂Ω) <
β0
2

∀n ≥ n0.

For n ≥ n0 let wn be the solution of

LΩn
κ wn = 0 in Ωn

wn =W on ∂Ωn.
(2.64)

It is straightforward to see that the proof of Propositions 2.17 and 2.18 it is inferred that there exists a

positive constant c44 = c44(Ω, κ) such that

‖wn‖L∞(Ωn) ≤ c44 ∀n ≥ n0.

Furthermore

wn(x0) =

∫

∂Ωn

W (x)dωx0

Ωn
(x) < c45. (2.65)

We extend ωx0

Ωn
as a Borel measure on Ω by setting ωx0

Ωn
(Ω \ Ωn) = 0, and keep the notation ωx0

Ωn
for

the extension. Because of (2.65) the sequence {Wωx0

Ωn
} is bounded in the space Mb(Ω) of bounded

Borel measures in Ω. Thus there exists a subsequence (still denoted by {W (x)ωx0

Ωn
} which converges

narrowly to some positive measure, say ω̃ which is clearly supported by ∂Ω and satisfies ‖ω̃‖Mb
≤ c45

as in (2.65). For every Z ∈ C(Ω) there holds

lim
n→∞

∫

∂Ωn

Z(x)Wdωx0

Ωn
=

∫

∂Ω

Zdω̃.

Let ζ := Z⌊∂Ω and

z(x) :=

∫

∂Ω

KLκ
(x, y)ζ(y)dωx0(y).

Then

lim
d(x)→0

z(x)

W (x)
= ζ and z(x0) =

∫

∂Ω

ζdωx0 .

By Propositions 2.17 and 2.18, z
W

∈ C(Ω). Since z
W
⌊∂Ωn

converges uniformly to ζ as n → ∞,

there holds

z(x0) =

∫

∂Ωn

z⌊∂Ωn
dωx0

Ωn
=

∫

∂Ωn

W
z⌊∂Ωn

W
dωx0

Ωn
→
∫

∂Ω

ζdω̃ as n→ ∞.

It follows ∫

∂Ω

ζdω̃ =

∫

∂Ω

ζdωx0 ∀ζ ∈ C(∂Ω).

Consequently ω̃ = dωx0 . Because the limit does not depend on the subsequence it follows that the whole

sequence W (x)dωx0

Ωn
converges weakly to w. This implies (2.63).
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Theorem 2.33. Let u be a positive Lκ-harmonic in the domain Ω. Then u ∈ L1
φκ
(Ω) and there exists a

unique Radon measure µ on ∂Ω such that

u(x) =

∫

∂Ω

KLκ
(x, ξ)dµ(ξ).

Proof. The proof which is presented below follows the ideas of the one of [20, Th. 4.3]. Let B be a

relatively closed subset of Ω. We define

RB
u (x) := inf{ψ(x) : ψ is nonnegative supersolution in Ω with ψ ≥ u on B}.

For a closed subset F of ∂Ω, we define

µx(F ) := inf{RΩ∩G
u (x) : F ⊂ G, G open in R

N}.

The set function µx(F ) defines a regular Borel measure on ∂Ω for each fixed x ∈ Ω. Since µx(F ) is

a positive Lκ−harmonic function in Ω the measures µx are absolutely continuous with respect to µx0(F )
by Harnack’s inequality. Hence,

µx(F ) =

∫

F

dµx(F )(y) =

∫

F

dµx(F )

dµx0(F )
dµx0(y).

We assert that
dµx(F )
dµx0 (F ) = KL(x, y) for a.e. µx0(y) in ∂Ω. By Besicovitch’s theorem,

dµx(F )

dµx0(F )
= lim

µx(∆r(y))

µx0(∆r(y))
,

for a.e. µx0(y) in ∂Ω.

By Lemma 2.58 and in view of the proof of Proposition 2.27 we have that
dµx(F )
dµx0(F ) is a kernel

function, and by uniqueness of Kernel functions the proof of the assertion follows. Hence

µx(A) =

∫

A

KL(x, y)dµ
x0(y),

for all Borel A ⊂ ∂Ω and in particular

u(x) = µx(∂Ω) =

∫

∂Ω

KL(x, y)dµ
x0(y).

Suppose now

u(x) =

∫

∂Ω

KL(x, y)dν(y),

for a Borel measure ν on ∂Ω. For a closed set F ⊂ ∂Ω we will show that ν(F ) = µx0(F ).
Choose a sequence of open set {Gk} in RN such that ∩∞

k=1Gk = F and

µx0(F ) = lim
k→∞

RGk
u (x).

Since

RB
u (x) ≤ RA

u (x) if B ⊂ A,
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we can choose Gk such that Gk+1 ⊂ Gk, ∀k ≥ 1 and Ω \ Gk to be a C2 domain for all k ≥ 1. We

consider a increasing sequence of bounded smooth domains {Ωk} such that Ωk ⊂ Ωk+1, ∪Ωk = Ω,
Ωk ∩Gk = ∅,HN−1(Ωk) → HN−1(Ω) and

HN−1(Ωk ∩Gk) → HN−1(F ).

Let wx0

Ωk
(y) be the Lκ-harmonic measure in ∂Ωk (see (2.59)-(2.62)). Then

RGk
u (x) =

∫

∂Ωk

RGk
u (y)dwx0

Ωk
(y)

=

∫

∂Ωk∩∂Gk

RGk
u (y)dwx0

Ωk
(y) +

∫

∂Ωk\∂Gk

RGk
u (y)dwx0

Ωk
(y)

≥
∫

∂Ωk∩∂Gk

RGk
u (y)dwx0

Ωk
(y).

Now, by Lemma 2.58

∫

∂Ωk∩∂Gk

RGk
u (y)dwx0

Ωk
(y) =

∫

∂Ωk∩∂Gk

u(y)dwx0

Ωk
(y)

=

∫

∂Ωk∩∂Gk

∫

∂Ω

KL(y, ξ)dν(ξ)dw
x0

Ωk
(y)

=

∫

∂Ω

∫

∂Ωk∩∂Gk

KL(y, ξ)dw
x0

Ωk
(y)dν(ξ)

≥
∫

Fn

∫

∂Ωk∩∂Gk

KL(y, ξ)dw
x0

Ωk
(y)dν(ξ),

where Fn ⊂ F, ∪Fn = F and dist (Fn, ∂Ω \ F ) > 1
n
. If ξ ∈ Fn we have

K(x0, ξ) =

∫

∂Ωk∩∂Gk

KL(y, ξ)dw
x0

Ωk
(y) +

∫

∂Ωk\Gk

KL(y, ξ)dw
x0

Ωk
(y)

But

K(y, ξ) ≤ C

nN+α+−2
d

α+
2 (y) ∀y ∈ ∂Ωk \Gk,

thus by Proposition 2.32 we have that

lim
k→∞

∫

∂Ωk\Gk

KL(y, ξ)dw
x0

Ωk
(y) = 0.

Combining all the above inequality and using Lebesgue’s dominated convergence theorem we obtain

µx0(F ) = lim
k→∞

RGk
u (x) ≥

∫

Fn

∫

∂Ωk∩∂Gk

KL(x0, ξ)dν(ξ) = ν(Fn),

which implies

µx0(F ) ≥ ν(F ).
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For the opposite inequality, let m ≤ k − 1, k ≥ 2 then

RGk
u (x) =

∫

∂Ωk

RGk
u (y)dwx0

Ωk
(y)

=

∫

∂Ωk∩∂Gm

RGk
u (y)dwx0

Ωk
(y) +

∫

∂Ωk\∂Gm

RGk
u (y)dwx0

Ωk
(y).

In view of the proof of Lemma 2.58, we have that

RGk
u (x) ≤ Cd

α+
2 (x) ∀x ∈ Ω \Gm.

Thus by Proposition 2.32 we have

lim
k→∞

∫

∂Ωk\∂Gm

RGk
u (y)dwx0

Ωk
(y) = 0,

and
∫

∂Ωk∩∂Gm

RGk
u (y)dwx0

Ωk
(y) ≤

∫

∂Ωk∩∂Gm

u(y)dwx0

Ωk
(y)

=

∫

∂Ωk∩∂Gm

∫

∂Ω

KL(y, ξ)dν(ξ)dw
x0

Ωk
(y)

=

∫

∂Ω

∫

∂Ωk∩∂Gm

KL(y, ξ)dw
x0

Ωk
(y)dν(ξ).

If ξ ∈ ∂Ω \Gm we have again by Proposition 2.32 that

lim
k→∞

∫

∂Ωk∩∂Gm

KL(y, ξ)dw
x0

Ωk
(y) = 0.

If ξ ∈ ∂Ω ∩Gm, then ∫

∂Ωk∩∂Gm

KL(y, ξ)dw
x0

Ωk
(y) ≤ KLκ

(x0, ξ).

Combining all the above inequalities, we obtain

µx0(F ) = lim
k→∞

RGk
u (x) ≤

∫

∂Ω∩Gm

KL(x0, ξ)dν(ξ) = ν(∂Ω ∩Gm),

which implies

µx0(F ) ≤ ν(F ),

and the proof of Theorem follows.

Actually the measure µ is the boundary trace of u. This boundary trace can be achieved in a dynamic

way as in [27, Sect 2]. In the same way as the one they develop therein, we have

Proposition 2.34. Let x0 ∈ Ω1 and µ ∈ M(∂Ω). Put

v :=

∫

∂Ω

KLκ
(x, y)dµ(y),

then for every Z ∈ C(Ω),

lim
n→∞

∫

∂Ωn

Z(x)vdωx0

Ωn
=

∫

∂Ω

Z(x)dµ. (2.66)
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Proof. The proof is same as the proof of Lemma 2.2 in [27] and we omit it.

The next result is an analogous of the Green formula for positive Lκ-harmonic functions.

Proposition 2.35. Let v be a positive Lκ-harmonic function in Ω with boundary trace µ. Let Z ∈ C2(Ω)
and G̃ ∈ C(Ω) which coincides withGLκ

(x0, .) in Ωδ for some 0 < δ < β0 and some x0 /∈ Ωβ0 . Assume

|∇G̃.∇Z| ≤ c′45φκ. (2.67)

Then, if we set ζ = ZG̃, there holds

∫

Ω

vLκζdx =

∫

∂Ω

Zdµ. (2.68)

Proof. Let {Ωj} be a smooth exhaustion of Ω with Green kernel G
Ωj

Lκ
and Poisson kernel P

Ωj

Lκ
=

−∂nGΩj

Lκ
. We assume that j ≥ j0 where Ω

′
δ ⊂ Ωj . Set ζj = ZG̃j , where the functions G̃j are

C∞ in Ωj , coincide with G
Ωj

Lκ
(x0, .) in Ωj ∩ Ωδ and satisfy G̃j → G̃ in C2(Ω)-loc and such that

|∇G̃j .∇Z| ≤ c′45φκ.

∫

Ωj

vLκζjdx = −
∫

∂Ωj

v
∂ζj
∂n

dS = −
∫

∂Ωj

vZ
∂G̃j

∂n
dS =

∫

∂Ωn

vZP
Ωj

Lκ
(x0, .)dS =

∫

∂Ωj

vZdωx0

Ωj
.

By (2.66) ∫

∂Ωj

vZdωx0

Ωj
→
∫

∂Ω

Z(x)dµ as j → ∞.

Next

Lκζj = ZLκG̃j + G̃j∆Z + 2∇G̃j .∇Z.
Since v ∈ L1

φκ
(Ω), the proof follows .

Similarly we can prove

Proposition 2.36. Let v be a positive Lκ-harmonic function in Ω with boundary trace µ. Let 0 ≤ Z ∈
C2(Ω) satisfy

|∇φ̃κ.∇Z| ≤ c′45φκ.

Then, if we set ζ = Zφκ, there holds

∫

Ω

vLκζdx ≥ c0

∫

∂Ω

Zdµ,

where the constant c0 > 0 depends on Ω, N and κ.

3 The nonlinear problem with measures data

3.1 The linear boundary value problem with L
1 data

In the sequel we denote by ω = ωx0 the Lκ-harmonic measure in Ω, for some fixed x0 ∈ Ω and by

Mφκ
(Ω) be the space of Radon measures ν in Ω such that φκd|ν| is a bounded measure. We also denote

by M(∂Ω) the space of Radon measures on ∂Ω with respective norms ‖ν‖Mφκ(Ω) and ‖µ‖M(∂Ω). Their
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respective positive cones are denoted by M
+
φκ
(Ω) and M

+(∂Ω). By Fubini’s theorem and (2.10), for

any ν ∈ Mφκ
(Ω) we can define

GLκ
[ν](x) =

∫

Ω

GLκ
(x, y)dν(y),

and we have

‖GLκ
[ν]‖L1

φκ
(Ω) ≤ c46‖ν‖Mφκ(Ω). (3.1)

If µ ∈ M(∂Ω), we set

KLκ
[µ](x) =

∫

∂Ω

KLκ
(x, y)dµ(y),

‖KLκ
[µ]‖L1

φκ
(Ω) ≤ c47‖µ‖M(∂Ω). (3.2)

In the above inequalities c46 and c47 are positive constants depending on Ω and κ.

For 0 < κ ≤ 1
4 , we define the space of test functions X(Ω) by

X(Ω) =

{
η ∈ H1

loc(Ω) :
η

d
α+
2

∈ H1(Ω, dα+dx) , (φκ)
−1Lκη ∈ L∞(Ω)

}
. (3.3)

The next statement follows immediately from Propositions (2.9) and (2.10).

Lemma 3.1. Let 0 < κ ≤ 1
4 . Let m ∈ L∞(Ω) and ηm be the solution of

Lκηm = mφκ in Ω
ηm = 0 on ∂Ω,

(3.4)

obtained by Propositions 2.9 and 2.10 with f0 = m and h = 0. Then ηm belongs to X(Ω). Furthermore

−‖m−‖L∞(Ω)

λκ
φκ ≤ −ηm− ≤ ηm ≤ ηm+ ≤ ‖m+‖L∞(Ω)

λκ
φκ. (3.5)

In the next Proposition we give some key estimates satisfied by weak solutions of

Lκu = f in Ω
u = h on ∂Ω.

(3.6)

Proposition 3.2. For any (f, h) ∈ L1
φκ
(Ω) × L1(∂Ω, dω) there exists a unique u := uf,h ∈ L1

φκ
(Ω)

such that ∫

Ω

uLκηdx =

∫

Ω

fηdx+

∫

Ω

KLκ
[hω]Lκηdx ∀η ∈ X(Ω). (3.7)

There holds

u = GLκ
[f ] +KLκ

[hω], (3.8)

and

‖u‖L1
φκ

(Ω) ≤ c46‖f‖L1
φκ

(Ω) + c47‖h‖L1(∂Ω,dω). (3.9)

Furthermore, for any η ∈ X(Ω), η ≥ 0, we have

∫

Ω

|u|Lκηdx ≤
∫

Ω

fηsgn(u)dx +

∫

Ω

KLκ
[|h|ω]Lκηdx, (3.10)

and ∫

Ω

u+Lκηdx ≤
∫

Ω

fηsgn+(u)dx +

∫

Ω

KLκ
[h+ω]Lκηdx. (3.11)
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Proof. Step 1: proof of estimate (3.9). Assume u satisfies (3.7). If η = ηsgn(u), we have

∫

Ω

|u|φκdx =

∫

Ω

uLκηdx =

∫

Ω

fηdx+

∫

Ω

KLκ
[hω]sgn(u)φκdx.

By (3.1), (3.2) ∫

Ω

fηdx ≤ 1

λκ

∫

Ω

|f |φκdx,
∫

Ω

KLκ
[hω]sgn(u)φκdx ≤ c47

∫

∂Ω

|h|dω,

which implies (3.9) and uniqueness.

Step 2: proof of existence. If f and h are bounded, existence follows from Propositions 2.9, 2.10. In

the general case let {(fn, hn)} be a sequence of bounded measurable functions in Ω and ∂Ω which

converges to {(f, h)} in L1
φκ
(Ω) × L1(∂Ω, dω). Let {un} = {ufn,hn

} be the sequence weak solutions

of (3.6). By estimate (3.9) it is a Cauchy sequence in L1
φκ
(Ω) which converges to u. Letting n → ∞ in

identity ∫

Ω

unLκηdx =

∫

Ω

fnηdx+

∫

Ω

KLκ
[hnω]Lκηdx, (3.12)

where η ∈ X(Ω) implies that u = uf,h.

Step 3: proof of estimates (3.10), (3.11). We first assume that f is bounded and h is C2(Ω). Set

Ωn = Ω′
1
n

, Let un be the unique solution of

Lκun = f in Ωn

vn =Wh on ∂Ωn.
(3.13)

Then un can be written in the form

un = G
n
Lκ

[f ](x) + wn,

where wn satisfies
Lκv = 0 in Ωn

v =Wh on ∂Ωn,
(3.14)

and

G
n
Lκ

[f ](x) =

∫

Ω

Gn
Lκ

(x, y)f(y)dy,

where Gn
Lκ

denotes the Green Kernel of Lκ in Ωn. Now note that Gn
L 1

4

(x, y) ≤ GL 1
4

(x, y) := GΩ
L 1

4

,

and for any x, y ∈ Ω, x 6= y
Gn

L 1
4

(x, y) ↑ GL 1
4

(x, y). (3.15)

Also, in view of the proof of Proposition 2.32, there exists c0 > 0 which depends on Ω, N, κ, ||h||C2(Ω)

such that

sup
x∈Ωn

|wn| < c0, ∀n ∈ N,

and wn → KLκ
[hω]. Thus by the properties of Green kernel that we described above, there exists a

constant c01 Ω, N, κ, ||h||C2(Ω), ||f ||L∞(Ω), such that

sup
x∈Ωn

|un| < c0, ∀n ∈ N,
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and

un → u = GLκ
[f ] +KLκ

[hω].

Let η ∈ X(Ω) be nonnegative function and let ηn be the solution of the problem

Lκv = Lκη in Ωn

v = 0 on ∂Ωn.

Then there exists c0 = c0(||∆η||L∞(Ω), κ,N,Ω) such that |ηn| ≤ c0φκ and

Lκηn → Lc0η, ηn → η.

Let zn be the solution of
Lκv = sgn(ηn)Lκη on ∂Ωn

v = 0 on ∂Ωn.

Then zn ≥ max(ηn, 0) since

Lκ|ηn| ≤ sgn(ηn)Lκηn = sgn(ηn)Lκη,

and |zn| ≤ c0φκ,
Lκzn → Lc0η, zn → η.

Now note that zn ≥ 0 and zn ∈ C1(Ωn). Also, the following inequality holds (see eg. [32]),

∫

Ω

|un|Lc0zndx ≤
∫

Ω

fznsgn(un)−
∫

∂Ω

∂zn
∂ν

|h|Wdx

=

∫

Ω

fznsgn(un) +

∫

Ω

w̃nLc0zndx, (3.16)

where w̃n is the solution of
Lκv = 0 in Ωn

v =W |h| on ∂Ωn.
(3.17)

In view of the proof of Proposition 2.32 there exists c02 > 0 which depends on Ω, N, κ, ||h||C2(Ω) such

that

sup
x∈Ωn

|w̃n| < c0, ∀n ∈ N,

and w̃n → KLκ
[|h|ω] as n → ∞. Thus combining all above and taking the limit in (3.16) we have the

proof of (3.10) in the case that f is bounded and h ∈ C2(Ω).We note here that for any h ∈ C2(∂Ω) there

existsHm ∈ C2(Ω), such that ||Hm||C2(Ω) ≤ c03||h||L∞(∂Ω), for some constant c03 which depends only

on Ω, and Hm → h in L∞(∂Ω). Thus it is not hard to prove that (2.32) is valid if f is bounded and

h ∈ C2(∂Ω). In the general case we consider a sequence (fn, hn) ⊂ L∞(Ω)×C2(∂Ω) which converges

to (f, h) in L1(Ω)× L1(∂Ω, dω). Since ufn,hn
converges to uf,h in L1

φκ
(Ω) we obtain (3.10) from the

inequality verified by any η ∈ X(Ω)

∫

Ω

|ufn,hn
|Lκηdx ≤

∫

Ω

fnηsgn(u)dx +

∫

Ω

KLκ
[|hn|ω]Lκηdx.

The proof of (3.11) is follows by adding (3.7) and (3.10).
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3.2 General nonlinearities

Throughout this section Ω is a smooth bounded domain and κ a real number in the interval (0, 14 ]. Let

g : R 7→ R be a nondecreasing continuous function, vanishing at 0 for simplicity. The problem under

consideration is the following

−∆u− κ

d2
u+ g(u) = ν in Ω

u = µ in ∂Ω,
(3.18)

where ν and µ are Radon measures respectively in Ω and ∂Ω.

Definition. Let ν ∈ Mφκ
(Ω) and µ ∈ M(∂Ω). We say that u is a solution of (3.18) if u ∈ L1

φκ
(Ω),

g(u) ∈ L1
φκ
(Ω) and for any η ∈ X(Ω) there holds

∫

Ω

(uLκη + g(u)η) dx =

∫

Ω

(ηdν +KLκ
[µ]Lκη) dx (3.19)

Our main existence result for subcritical nonlinearities is the following.

Theorem 3.3. Assume g satisfies

∫ ∞

1

(g(s)− g(−s)) s
−2

N−1+
α+
2

N−2+
α+
2 ds <∞. (3.20)

Then for any (ν, µ) ∈ Mφκ
(Ω)× ∈ M(∂Ω) problem (3.18) admits a unique solution u = uν,µ. Fur-

thermore the mapping (ν, µ) 7→ uν,µ is increasing and stable in the sense that if {(νn, µn)} converge to

(ν, µ) in the weak sense of measures, {uνn,µn
} converges to uν,µ in L1

φκ
(Ω).

The proof is based upon estimates of MLκ
and KLκ

into Marcinkiewicz spaces.

Lemma 3.4. Let ν ∈ M
+
φκ
(Ω), µ ∈ M

+(∂Ω) and for s > 0, Es(ν) = {x ∈ Ω : GLκ
[ν](x) > s} and

Fs(µ) = {x ∈ Ω : KLκ
[µ](x) > s}. If we denote

Es(ν) =
∫

Es(ν)

φκdx and Fs(µ) =

∫

Fs(µ)

φκdx,

there holds

Es(ν) + Fs(µ) ≤ c47

(‖ν‖Mφκ(Ω) + ‖µ‖M(∂Ω)

s

) N+
α+
2

N−2+
α+
2
. (3.21)

Proof. Step 1: estimate of Fs(ν). By estimate (2.57), for any ξ ∈ ∂Ω,

Fs(δξ) ⊂ F̃s(δξ) :=

{
x ∈ Ω :

d
α+
2 (x)

|x− ξ|N+α+−2
≥ s

c43

}
⊂ B(

c43
s

)θ (ξ),

with θ = 1

N−2+
α+
2

. From (2.2), (2.3)

Fs(δξ) ≤
∫

B
(
c43
s

)θ
(ξ)

φκdx ≤ c49

∫

B
(
c43
s

)θ
(ξ)

|x− ξ|
α+
2 dx = c50s

− N+
α+
2

N−2+
α+
2 .
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Therefore, for any s0 > 0 and any Borel set G ⊂ Ω
∫

G

KLκ
(x, ξ)φκdx ≤ s0

∫

G

φκdx+

∫

Fs0 (δξ)

KLκ
(x, ξ)φκdx

≤ s0

∫

G

φκdx−
∫ ∞

s0

sdFs(δξ)

≤ s0

∫

G

φκdx+ c50

∫ ∞

s0

s
− N+

α+
2

N−2+
α+
2 ds

≤ s0

∫

G

φκdx+ c51s
− 2

N−2+
α+
2

0 .

Next we choose s0 so that the two terms in the right part of the last inequality are equal and we get

∫

G

KLκ
(x, ξ)φκdx ≤ c52

(∫

G

φκdx

) 2

N+
α+
2 . (3.22)

Henceforth, for any µ ∈ M(∂Ω), there holds by Fubini’s theorem,

∫

G

KLκ
[|µ|]φκdx =

∫

Ω

∫

G

KLκ
(x, ξ)φκ(x)dxd|µ|(ξ) ≤ c52‖µ‖M(∂Ω)

(∫

G

φκdx

) 2

N+
α+
2 . (3.23)

If we take in particular G = Fs(|µ|), we derive

sFs(|µ|) ≤ c52‖µ‖M(∂Ω) (Fs(|µ|))
2

N+
α+
2 ,

which yields to (3.21) with ν = 0.

Step 2: estimate of Es(ν). By estimate (2.10), for any y ∈ Ω,

Es(δy) ⊂ Ẽs(δy) :=

{
x ∈ Ω :

d
α+
2 (y)d

α+
2 (x)

|x− y|N+α+−2
≥ s

c
3

}
⋂{

x ∈ Ω :
1

|x− y|N−2
≥ s

c
3

}
,

A simple geometric verification shows that there exists an open domain O ⊂ O ⊂ Ω such that y ∈ O,

dist (y,Oc) > λ1d(y), O ⊂ Bλ2d(y)(y) for some 0 < λ1 < λ2 < 1 independent of y with the following

properties

x ∈ O =⇒ d
α+
2 (y)d

α+
2 (x)

|x− y|N+α+−2
≥ 1

|x− y|N−2

x ∈ Oc =⇒ d
α+
2 (y)d

α+
2 (x)

|x− y|N+α+−2
≤ 1

|x− y|N−2
.

Notice that if Ω = RN
+ then O = B√

5
2

(ỹ) where d(ỹ) = 3
2d(y). Set

Ẽ1
s (δy) =

{
x ∈ Ω :

1

|x− y|N−2
≥ s

c
3

}
∩ O,

and

Ẽ2
s (δy) =

{
x ∈ Ω \ O :

d
α+
2 (y)d

α+
2 (x)

|x− y|N+α+−2
≥ s

c
3

}
.
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We can easily prove

Es(δy) =
∫

Es(δy)

φκdx ≤
∫

Ẽs(δy)

φκdx

≤
∫

Ẽ1
s (δy)

φκdx+

∫

Ẽ2
s(δy)

φκdx ≤ c53s
− N+

α+
2

N−2+
α+
2 (d(y))

α+(N+
α+
2

)

2N−4+α+ .

As in step 1, for any Borel subset Θ ⊂ Ω, we write

∫

Θ

GLκ
(x, y)φκdx ≤ s0

∫

Θ

φκdx+

∫

Es0(δy)

GLκ
(x, y)φκdx

≤ s0

∫

Θ

φκdx−
∫ ∞

s0

sdEs(δy)

≤ s0

∫

Θ

φκdx+ c53(d(y))
α+(N+

α+
2

)

2N−4+α+

∫ ∞

s0

s
− N+

α+
2

N−2+
α+
2 ds

≤ s0

∫

Θ

φκdx+ c54(d(y))
α+(N+

α+
2

)

2N−4+α+ s
− 2

N−2+
α+
2

0 .

Then

∫

Θ

GLκ
(x, y)φκdx ≤ c55(d(y))

α+
2

(∫

G

φκdx

) 2

N+
α+
2 ≤ c56φκ(y)

(∫

G

φκdx

) 2

N+
α+
2 . (3.24)

Thus, for any ν ∈ Mφκ
(Ω), we have

∫

Θ

GLκ
[|ν|]φκdx =

∫

Ω

∫

Θ

GLκ
(x, y)φκ(x)dxd|ν|(y) ≤ c55‖ν‖Mφκ(Ω)

(∫

Θ

φκdx

) 2

N+
α+
2 . (3.25)

Thus (3.21) holds.

Proof of Theorem 3.3. Step 1: existence and uniqueness. Let {(νn, µn)} ⊂ C(Ω) × C1(∂Ω) which

converges to (ν, µ) in the weak sense of measures in Mφκ
(Ω)×M(∂Ω). Set vn = KLκ

[µnω], then vn ∈
L∞(Ω) and it is Lκ-harmonic. Set g̃(t, x) = g(t + vn(x)) − g(vn(x)) and f̃(x) = νn(x) − g(vn(x)).
Let Jκ be the functional defined in L2(Ω) by the expression

Jκ(w) =
1

2

∫

Ω

(
|∇w|2 − κ

d2
w2 + 2J(w)

)
dx−

∫

Ω

f̃wφκdx, (3.26)

where J(w) =
∫ w

0
g̃(t)dt with domain

D(Jκ) = {w ∈ Hκ(Ω) : J(w) ∈ L1(Ω)},

(see definition in 2.1-5). By (2.8), Jκ is a convex lower semicontinuous and coercive functional over

L2(Ω). Let wn = wνn,µn
be its minimum, then un = uνn,µn

= wn + vn is the solution of

Lκun + g(un) = νn in Ω
un = µn in ∂Ω,

(3.27)
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and for any η ∈ X(Ω), there holds

∫

Ω

(unLκη + g(un)η) dx =

∫

Ω

(νnη +KLκ
[µnω]Lκη) dx. (3.28)

By Proposition 3.2 (3.10), there holds, with η = φκ,

∫

Ω

(λκ|un|+ |g(un)|)φκdx ≤
∫

Ω

(|νn|+KLκ
[|µn|ω])φκdx

≤ c46‖νn‖Mφκ(Ω) + c47‖µn‖M(∂Ω)

≤ c57.

(3.29)

Moreover

−GLκ
[ν−n ]−KLκ

[µ−
nω] ≤ un ≤ GLκ

[ν+n ] +KLκ
[µ+

nω]. (3.30)

By using the local L1 regularity theory for elliptic equations we obtain that the sequence {un} is rela-

tively compact in the L1-local topology in Ω and that there exist a subsequence still denoted by {un}
and a function u ∈ L1

φκ
(Ω) such that un → u a.e. in Ω. By (3.30)

|g(un)| ≤ g (GLκ
[ν+n ] + KLκ

[µ+
nω])− g (−GLκ

[ν−n ]−KLκ
[µ−

nω]) . (3.31)

We prove the convergence of {g(un)} to g(u) in L1
φκ
(Ω) by the uniform integrability in the following

way: let G ⊂ Ω be a Borel subset. Then for any s0 > 0

∫

G

|g(un)|φκdx ≤
∫

G

(g (GLκ
[ν+n ]) + g (KLκ

[µ+
nω])− g (−GLκ

[ν−n ])− g (−KLκ
[µ−

nω]))φκdx

≤ s0

∫

G

φκdx+

∫

Es(ν+)

g (GLκ
[ν+n ])φκdx+

∫

Fs(µ+)

g (KLκ
[µ+

n ])φκdx

−
∫

Es(ν−)

g (−GLκ
[ν−n ])φκdx−

∫

Fs(µ−)

g (−KLκ
[µ−

n ])φκdx

≤ s0

∫

G

φκdx−
∫ ∞

s0

g(s)(dEs(ν+n ) + dFs(µ
+
n )) +

∫ ∞

s0

g(−s)(dEs(ν−n ) + dFs(µ
−
n )).

But

−
∫ ∞

s0

g(s)dEs(ν+n ) = g(s0)Es0(ν+n ) +

∫ ∞

s0

Es(ν+n )dg(s)

≤ g(s0)Es0(ν+n ) + c47
(
‖ν+n ‖Mφκ

) N+
α+
2

N−2+
α+
2

∫ ∞

s0

s
− N+

α+
2

N−2+
α+
2 dg(s)

≤ 2N+α+

2N−4+α+
c47
(
‖ν+n ‖Mφκ(Ω)

) N+
α+
2

N−2+
α+
2

∫ ∞

s0

s
−2

N−1+
α+
2

N−2+
α+
2 g(s)ds.

All the other terms yields similar estimates which finally yields to

∫

G

|g(un)|φκdx ≤ s0

∫

G

φκdx

+ c58
(
‖νn‖Mφκ (Ω) + ‖µn‖M(∂Ω)

) N+
α+
2

N−2+
α+
2

∫ ∞

s0

s
−2

N−1+
α+
2

N−2+
α+
2 (g(s)− g(−s))ds.

(3.32)
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Since ‖νn‖Mφκ(Ω) + ‖µn‖M(∂Ω) is bounded independently of n, we obtain easily, using (3.20) and

fixing s0 first, that for any ǫ > 0, there exists δ > 0 such that

∫

G

φκdx ≤ δ =⇒
∫

G

|g(un)|φκdx ≤ ǫ. (3.33)

Since

|un| ≤ GLκ
[|νn|] +KLκ

[|µn|ω],
we have by (3.23), (3.25)

∫

G

|un|φκdx ≤
(
c52‖µn‖M(∂Ω) + c55‖νn‖Mφκ(Ω)

)(∫

G

φκdx

) 2

N+
α+
2 . (3.34)

This implies the uniform integrability of the sequence {un}. Letting n → ∞ in identity (3.28), we

conclude that (3.19) holds. Uniqueness, as well as the monotonicity of the mapping (ν, µ) 7→ uν,µ, is an

immediate consequence of (3.10), (3.11) and the monotonicity of g.

Step 2: stability. The stability is a direct consequence of inequalities (3.32) and (3.34) which show the

uniform integrability of the sequence (un, g(un)) in L1
φκ
(Ω)× L1

φκ
(Ω). �

Because of the uniqueness of the solution uµ,ν of problem (3.18) and the fact that g(uµ,ν) ∈ L1
φκ
(Ω)

the following representation statement is valid, and its proof is obtained by approximation of the mea-

sures as is [29, Lemma 3.2, Def. 3.3].

Proposition 3.5. Let (ν, µ) ∈ Mφκ
(Ω)× ∈ M(∂Ω) such that problem (3.18) admits a solution uµ,ν .

Then

uµ,ν = −GLκ
[g(uµ,ν)] +KLκ

[µ]. (3.35)

Conversely, if u ∈ L1
φκ
(Ω) such that g(u) ∈ L1

φκ
(Ω) satisfies (3.35), it coincides with the solution uµ,ν

of problem (3.18).

3.3 The power case

In this section we study in particular the following boundary value problem with µ ∈ M(∂Ω)

Lκu+ |u|q−1u = 0 in Ω
u = µ in ∂Ω.

(3.36)

A Radon measure for which this problem has a solution (always unique) is called a good measure. The

solution, whenever it exists, is unique and denoted by uµ. For such a nonlinearity, the condition (3.20)

is fulfilled if and only if

0 < q < qc :=
N + α+

2

N − 2 + α+

2

. (3.37)

On the contrary, in the supercritical case i.e. if q ≥ qc, a continuity condition with respect to some

Besov capacity is needed in order a measure be good. We recall some notations concerning Besov

space. For σ > 0, 1 ≤ p < ∞, we denote by W σ,p(Rd) the Sobolev space over Rd. If σ is not an

integer the Besov space Bσ,p(Rd) coincides with W σ,p(Rd). When σ is an integer we denote ∆x,yf =
f(x+ y) + f(x− y)− 2f(x) and

B1,p(Rd) =

{
f ∈ Lp(Rd) :

∆x,yf

|y|1+d
p

∈ Lp(Rd × R
d)

}
,
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with norm

‖f‖B1,p =

(
‖f‖pLp +

∫ ∫

Rd×Rd

|∆x,yf |p
|y|p+d

dxdy

) 1
p

.

Then

Bm,p(Rd) =
{
f ∈Wm−1,p(Rd) : Dα

x f ∈ B1,p(Rd) ∀α ∈ N
d |α| = m− 1

}
,

with norm

‖f‖Bm,p =


‖f‖p

Wm−1,p +
∑

|α|=m−1

∫ ∫

Rd×Rd

|Dα
x∆x,yf |p
|y|p+d

dxdy




1
p

.

These spaces are fundamental because they are stable under the real interpolation method developed by

Lions and Petree. For α ∈ R we defined the Bessel kernel of order α byGα(ξ) = F−1(1+|.|2)−α
2 F(ξ),

where F is the Fourier transform of moderate distributions in Rd. The Bessel space Lα,p(R
d) is defined

by

Lα,p(R
d) = {f = Gα ∗ g : g ∈ Lp(Rd)},

with norm

‖f‖Lα,p
= ‖g‖Lp = ‖G−α ∗ f‖Lp.

It is known that if 1 < p < ∞ and α > 0, Lα,p(R
d) = Wα,p(Rd) if α ∈ N and Lα,p(R

d) = Bα,p(Rd)
if α /∈ N, always with equivalent norms. The Bessel capacity is defined for compact subset K ⊂ Rd by

CR
d

α,p = inf{‖f‖pLα,p
, f ∈ S ′(Rd), f ≥ χK}.

It is extended to open set and then any set by the fact that it is an outer measure. Our main result is the

following

Theorem 3.6. Assume 0 < κ ≤ 1
4 . Then µ ∈ M

+(∂Ω) is a good measure if and only if it is absolutely

continuous with respect to the Bessel capacity CR
N−1

2− 2+α+
2q′ ,q′

where q′ = q
q−1 , that is

∀E ⊂ ∂Ω, E Borel , CR
N−1

2− 2+α+

2q′ ,q′
(E) = 0 =⇒ µ(E) = 0. (3.38)

The striking aspect of the proof is that it is based upon potential estimates which have been developed

by Marcus and Véron in the study of the supercritical boundary trace problem in polyhedral domains

[29]. Before proving this result we need a key potential estimate.

Theorem 3.7. Assume 0 < κ ≤ 1
4 and q ≥ qc. There exists a constant c59 > 1 dependning on Ω, q, and

κ such that for any µ ∈ M
+(∂Ω) there holds

1

c59
‖µ‖q

B
−2+

2+α+
2q′ ,q

≤
∫

Ω

(KLκ
[µ])

q
φκdx ≤ c59‖µ‖q

B
−2+

2+α+
2q′ ,q

. (3.39)

Proof. Step 1: local estimates. Denote by ξ = (ξ1, ξ
′) the coordinates in RN

+ , ξ1 > 0, ξ′ ∈ RN−1

The ball of radius R > 0 and center a in RN−1 is denoted by B′
R(a) (by B′

R if a = 0). Let R > 0,

ν ∈ M
+(RN−1

+ ) with support in B′
R
2

and

K[ν](ξ) =

∫

B′
R
2

dν(ζ′)

(ξ21 + |ξ′ − ζ′|2)
N−2+α+

2

. (3.40)
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Then, by [29, Th 3.1],

1
c60

‖µ‖q
B

−2+
2+α+
2q′ ,q

≤
∫ R

0

∫

B′
R

ξ
(q+1)

α+
2

1



∫

B′
R
2

dν(ζ′)

(ξ21 + |ξ′ − ζ′|2)
N−2+α+

2




q

dξ′dξ1

≤ c60

(
1 +R(q+1)

α+
2

)
‖µ‖q

B
−2+

2+α+
2q′ ,q

.

(3.41)

There existsR > 0 such that for any y0 ∈ ∂Ω, there exists a C2 diffeomorphismΘ := Θy0 fromBR(y0)
into RN such that Θ(y0) = 0, Θy0(BR(y0)) = BR and

Θ(Ω ∩BR(y0)) = B+
R := BR ∩R

N
+ , Θ(∂Ω ∩BR

2
(y0)) = B′

R
2
, Θ(∂Ω ∩BR(y0)) = B′

R.

Moreover, Θ has bounded distortion, in the sense that since

φκ(x)

∫

∂Ω∩BR(y0)

dµ(z)

|x− z|N−2+α+
= φκ ◦Θ−1(ξ)

∫

B′
R

d(µ ◦Θ−1)(ζ)

|Θ−1(ξ)−Θ−1(ζ)|N−2+α+
,

there holds

ξ
α+
2

1

c61

∫

B′
R
2

d(µ ◦Θ−1)(ζ)

(ξ21 + |ξ′ − ζ′|2)
N−2+α+

2

≤ φκ ◦Θ−1(ξ)

∫

B′
R
2

d(µ ◦Θ−1)(ζ)

|Θ−1(ξ)−Θ−1(ζ)|N−2+α+

≤ c61ξ
α+
2

1

∫

B′
R
2

d(µ ◦Θ−1)(ζ)

(ξ21 + |ξ′ − ζ′|2)
N−2+α+

2

.

Since µ 7→ µ◦Θ−1 is a C2 diffeomorphism between M
+(∂Ω∩BR

2
(y0))∩B−2+

2+α+
2q′ ,q

(∂Ω∩BR
2
(y0))

and M
+(B′

R
2

) ∩B−2+
2+α+
2q′ ,q

(B′
R
2

), we derive, using (2.57) and (3.41),

1
c62

‖µ‖q
B

−2+
2+α+
2q′ ,q

≤
∫

Ω∩BR(y0)

(KLκ
[µ])qφκdx ≤ c62‖µ‖q

B
−2+

2+α+
2q′ ,q

. (3.42)

Clearly the left-hand side inequality (3.39) follows. Combining Harnack inequality and boundary Har-

nack inequality we obtain

∫

Ω

(KLκ
[µ])qφκdx ≤ c63

∫

Ω∩BR(y0)

(KLκ
[µ])qφκdx, (3.43)

which implies the left-hand side inequality (3.39) when µ has it support in a ball BR
2
(y0) ∩ ∂Ω.

Step 2: global estimates. We write µ =
∑j0

j=1 µj where the µj are positive measures on ∂Ω with support

in some ball BR
2
(yj) with yj ∈ ∂Ω and such that

1

c64
‖µ‖

B
−2+

2+α+
2q′ ,q

≤ ‖µj‖
B

−2+
2+α+
2q′ ,q

≤ c64‖µ‖
B

−2+
2+α+
2q′ ,q

.
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Then

‖KLκ
[µ]‖Lq

φκ
≤

j0∑

j=1

‖KLκ
[µj ]‖Lq

φκ
≤ c

1
q

59

j0∑

j=1

‖µj‖q
B

−2+
2+α+
2q′ ,q

≤ j0c64c
1
q

59‖µ‖
B

−2+
2+α+
2q′ ,q

.

On the opposite side

‖KLκ
[µ]‖Lq

φκ
≥ max1≤j≤j0 ‖KLκ

[µj ]‖Lq

φκ

≥ 1

c
1
q
59

max1≤j≤j0 ‖µj‖
B

−2+
2+α+
2q′ ,q

≥ 1

j0c
1
q
59

∑j0
j=1 ‖µj‖

B
−2+

2+α+
2q′ ,q

≥ 1

c64c
1
q
59

‖µ‖
B

−2+
2+α+
2q′ ,q

,

which ends the proof.

Proof of Theorem 3.6: The condition is sufficient. Let µ be a boundary measure such that |KLκ
[µ]|q ∈

L1
φκ
(Ω). For k > 0 set gk(u) = sgn(u)min{|u|q, kq} and let uk be the solution of

Lκuk + gk(uk) = 0 in Ω
uk = µ in ∂Ω,

(3.44)

which exists a is unique by Theorem 3.3. Furthermore k 7→ uk is decreasing,

0 ≤ uk ≤ KLκ
[µ],

and

0 ≤ gk(uk) ≤ gk(KLκ
[µ]) ≤ (KLκ

[µ])q,

and the first terms on the right of the two previous inequalities are integrable for the measure φκdx by

Theorem 3.7. Finally for any η ∈ Xκ(Ω), there holds

∫

Ω

(ukLκη + gk(uk)η) dx =

∫

Ω

KLκ
[µ]Lκηdx.

Since uk and gk(uk) converge respectively to u and g(u) a.e. and in L1
φκ
(Ω); we conclude that

∫

Ω

(uLκη + uqη) dx =

∫

Ω

KLκ
[µ]Lκηdx.

If µ is a positive measure which vanishes on Borel sets E ⊂ ∂Ω with CR
N−1

2− 2+α+
2q′ ,q′

-capacity zero, there

exists an increasing sequence of positive measures in B
−2+

2+α+
2q′ ,q

(∂Ω) {µn} which converges to µ (see

[10], [13]). Let uµn
be the solution of (3.36) with boundary data µn. The sequence {uµn

} is increasing

with limit u. Since, by taking φκ as test function, we obtain
∫

Ω

(λκuµn
+ g(uµn

))φκdx = λκ

∫

Ω

KLκ
[µn]φκdx,

it follows that u, g(u) ∈ L1
φκ
(Ω). Thus

∫

Ω

(uLκη + g(u)η) dx =

∫

Ω

KLκ
[µ]Lκηdx ∀η ∈ Xκ(Ω),



Konstantinos T. Gkikas, Laurent Véron 44

and therefore u = uµ.

Definition A smooth lifting is a continuous linear operatorR[.] from C2
0 (∂Ω) to C2

0 (Ω) satisfying

(i) 0 ≤ η ≤ 1 =⇒ 0 ≤ R[η] ≤ 1 , R[η]⌊∂Ω= η,

(ii) |∇φκ.∇R[η]| ≤ c65φκ,
(3.45)

where c65 depends on the C1-norm of η.

Our proof are based upon a modification of an argument developed by Marcus and Véron in [24].

Lemma 3.8. Assume there exists a solution uµ of (3.36) with µ ≥ 0. For η ∈ C2(Ω), 0 ≤ η ≤ 1 set

ζ = φκ(R[η])
q′ where R is a smooth lifting. Then

(∫

∂Ω

ηdµ

)q′

≤ c67

∫

Ω

uqζdx+c67

(∫

Ω

uqζdx

) 1
q

((∫

Ω

φκdx

) 1
q′

+ q′
(∫

Ω

(L[η])q
′
dx

) 1
q′
)
, (3.46)

where

L[η] = (R[η])q
′−1

(
2φ

− 1
q

κ |∇φκ.∇R[η]|+ φ
1
q′
κ |∆R[η]|

)
, (3.47)

and c67 depends on Ω, λκ, q, κ,N.

Proof. There holds

Lκζ = λκ(R[η])
q′φκ−2q′(R[η])q

′−1∇φκ.∇R[η]−q′(R[η])q
′−2φκ

(
R[η]∆R[η]− (q′ − 1)|∇R[η]|2

)
.

Then ζ ∈ Xκ(Ω) because of (3.45)-(ii) and by Proposition 2.36

c66

∫

∂Ω

ηq
′
dµ ≤

∫

Ω

(uLκζ + uqζ) dx.

Since

uLκζ ≤ u
(
λκ(R[η])

q′φκ + 2q′(R[η])q
′−1|∇φκ.∇R[η]|+ q′(R[η])q

′−1φκ|∆R[η]|
)
,

we obtain ∫

Ω

uLκζdx ≤
(∫

Ω

uqζdx

) 1
q

((∫

Ω

φκdx

) 1
q′

+ q′
(∫

Ω

(L[η])q
′
dx

) 1
q

)
,

where L[η] is defined by (3.47).

Lemma 3.9. There exist a smooth lifting R such that η 7→ L[η] is continuous from B
2− 2+α+

2q′ ,q′
(∂Ω)

into Lq′(Ω). Furthermore,

‖L[η]‖Lq′(Ω) ≤ c′66‖η‖q
′−1

L∞(∂Ω)‖η‖
B

2−
2+α+
2q′ ,q′

(∂Ω)

. (3.48)
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Proof. The construction of the lifting is originated into [27, Sect 1]. For 0 < δ ≤ β0, we set Σδ = {x ∈
Ω : d(x) = δ} and we identify ∂Ω with Σ := Σ0. The set {Σδ}0<δ≤β0 is a smooth foliation of ∂Ω. For

each δ ∈ (0, β0] there exists a unique σ(x) ∈ Σδ such that d(x) = δ and |x − σ(x)| = δ. The set of

couples (δ, σ) defines a system of coordinates in Ωβ0 called the flow coordinates. The Laplacian obtain

the following expression in this system

∆ =
∂2

∂δ2
+ b0

∂

∂δ
+ ΛΣ, (3.49)

where ΛΣ is a linear second-order elliptic operator on Σ with C1 coefficients. Furthermore b0 → K
and ΛΣ → ∆Σ, where K is the mean curvature of Σ and ∆Σ the Laplace-Beltrami operator on Σ. If

η ∈ B
−2+

2+α+

2q′ ,q
(∂Ω), we denote by H := H [η] the solution of

∂H

∂s
+∆ΣH = 0 in (0,∞)× Σ

H(0, .) = η in Σ.
(3.50)

Let h ∈ C∞(R+) such that 0 ≤ h ≤ 1, h′ ≤ 0, h ≡ 1 on [0, β0

2 ], h ≡ 0 on [β0,∞]. The lifting we

consider is expressed by

R[η](x) =

{
H [η](δ2, σ(x))h(δ) if x ∈ Ωβ0

0 if x ∈ Ω′
β0
,

(3.51)

with x ≈ (δ, σ) := (d(x), σ(x). Mutatis mutandis, we perform the same computation as the one in [24,

Lemma 1.2], using local coordinates {σj} on Σ and obtain

∇R[η] = 2δh(δ)
∂H

∂δ
(δ2, σ)∇δ +

N−1∑

j=1

h(δ)
∂H

∂σj
(δ2, σ)∇σj + h′(δ)H(δ2, σ)∇δ.

Then there holds in Ω β0
2

,

∇R[η].∇φκ = 2δh(δ)
∂H

∂δ
(δ2, σ)∇φκ.∇δ +

N−1∑

j=1

h(δ)
∂H

∂σj
(δ2, σ)∇σj .∇φκ + h′(δ)H(δ2, σ)∇δ.∇φκ.

(3.52)

Moreover φκ(x) ≤ c2(d(x))
α+
2 = c2δ

α+
2 and |∇φκ(x)| ≤ c′2(d(x))

α+
2 −1 = c′2δ

α+
2 −1. Similarly as in

[24, (1.13)]

∇φκ =
∂φκ
∂δ

∇d+
N−1∑

j=1

∂φκ
∂σj

(δ2, σ)∇σj ,

thus

|∇φκ.∇σj | ≤ c68δ
α+
2 ,

φ
− 1

q
κ |∇R[η].∇φκ| ≤ c69δ

α+
2q′



∣∣∣∣
∂H

∂δ
(δ2, σ)

∣∣∣∣+
N−1∑

j=1

∣∣∣∣
∂H

∂σj
(δ2, σ)

∣∣∣∣−
h′(δ)

δ
H(δ2, σ)


 .



Konstantinos T. Gkikas, Laurent Véron 46

Thus ∫

Ω

φ
− q′

q
κ |∇R[η].∇φκ|q

′
dx ≤ c70

∫

Ωβ0

δ
α+
2

∣∣∣∣
∂H

∂δ
(δ2, σ)

∣∣∣∣
q′

dx

+ c70

N−1∑

j=1

∫

Ωβ0

δ
α+
2

∣∣∣∣
∂H

∂σj
(δ2, σ)

∣∣∣∣
q′

dx

+ c70

∫

Ωβ0
\Ωβ0

2

δ
α+
2 Hq′(δ2, σ)dx.

Then ∫

Ω

φ
− q′

q
κ |∇R[η].∇φκ|q

′
dx ≤ c71

∫ β0

0

δ
α+
2

∫

Σ

∣∣∣∣
∂H

∂δ
(δ2, σ)

∣∣∣∣
q′

dSdδ

≤ c71

∫ β2
0

0

∫

Σ

(
t
2+α+
4q′

∥∥∥∥
∂H

∂t
(t, .)

∥∥∥∥
Lq′ (Σ)

)q′

dt

t

≤ c72‖η‖q
′

B
2−

2+α+
2q′ ,q′

(Σ)

,

(3.53)

by using the classical real interpolation identity

[
W 2,q′(Σ), Lq′(Σ)

]
1− 2+α+

4q′ ,q′
= B

2− 2+α+
2q′ ,q′

(Σ). (3.54)

Similarly (see [24, (1.17),(1.19)])

N−1∑

j=1

∫

Ωβ0

δ
α+
2

∣∣∣∣
∂H

∂σj
(δ2, σ)

∣∣∣∣
q′

dx+

∫

Ωβ0
\Ω β0

2

δ
α+
2 Hq′(δ2, σ)dx ≤ c72‖η‖q

′

W
2−

2+α+
2q′ ,q′

(Σ)

. (3.55)

Next we consider the second term. Adapting in a straightforward manner the computation in [24, p.

886-887 ] we obtain the following instead of [24, (1.21)]

∫

Ω

φκ|∆R[η]|q
′
dx ≤ c72

∫ β0

0

∫

Σ

∣∣∣∣δ
2+

α+
2q′
∂2H [η]

∂δ2

∣∣∣∣
q′

(δ2, σ)dσdδ

+ c72

∫ β0

0

∫

Σ

δ
α+
2

(∣∣∣∣
∂H [η]

∂δ

∣∣∣∣
q′

+ |H |q′ + |Λ∆ − ΛΣ|q
′

)
(δ2, σ)dx.

(3.56)

Furthermore

∫ β0

0

∫

Σ

∣∣∣∣δ
2+

α+
2q′
∂2H [η]

∂δ2

∣∣∣∣
q′

(δ2, σ)dσdδ =

∫ β2
0

0

∫

Σ

∣∣∣∣∣t
2

(
1− 4q′−α+−2

8q′

)
∂2H [η]

∂t2

∣∣∣∣∣

q′

dσ
dt

t

≤ c73‖η‖q
′

B
2−

2+α+
2q′ ,q′

(Σ)

,

(3.57)

as a consequence of the real interpolation identity

[
W 4,q′(Σ), Lq′(Σ)

]
4q′−α+−2

8q′ ,q′
= B

2− 2+α+
2q′ ,q′

(Σ). (3.58)

The other term in the right-hand side of (3.56) yields to the same inequality as in (3.55).
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Proof of Theorem 3.6: The condition is necessary. Let K ⊂ ∂Ω be a compact set and η ∈ C2
0 (∂Ω) such

that 0 ≤ η ≤ 1 and η = 1 on K . Then, by (3.46)

(µ(K))q
′ ≤ c67

∫

Ω

uq(R[η])q
′
φκdx+

c67

(∫

Ω

uq(R[η])q
′
φκdx

) 1
q

((∫

Ω

φκdx

) 1
q′

+ c′66q
′‖η‖

B
2−

2+α+
2q′ ,q′

(∂Ω)

)
.

(3.59)

From this inequality, we obtain classically the result since ifCR
N−1

2− 2+α+
2q′ ,q′

(K) = 0 there exists a sequence

{ηn} in C2
0 (∂Ω) with the following properties:

0 ≤ ηn ≤ 1 , ηn = 1 in a neighborhood of K and ηn → 0 in B
2− 2+α+

2q′ ,q′
(∂Ω) as n→ ∞. (3.60)

This implies that uq(R[ηn])
q′ → 0 in L1

φκ
(Ω). Therefore the right-hand side of (3.59) tends to 0 if we

substitute ηn to η and thus µ(K) = 0 for any K compact with zero capacity and this relation holds for

any Borel subset. 2

Definition. We say that a compact set K ⊂ ∂Ω is removable if any positive solution u ∈ C(Ω \K) of

Lκu+ |u|q−1u = 0 in Ω, (3.61)

such that ∫

Ω

(uLκη + |u|q−1uη)dx = 0 ∀η ∈ X
K
κ (Ω), (3.62)

where XK
κ (Ω) = {η ∈ Xκ(Ω) : s.t. η = 0 in a neighborhood of K}, is identically zero.

Theorem 3.10. Assume 0 < κ ≤ 1
4 and q ≥ 1. A compact set K ⊂ ∂Ω is removable if and only if

CR
N−1

2− 2+α+
2q′ ,q

(K) = 0.

Proof. The condition is clearly necessary since, if a compact boundary setK has positive capacity, there

exists a capacitary measure µk ∈ M+(∂Ω) ∩ B−2+
2+α+
2q′ ,q

(∂Ω) with support in K (see e.g. [1]). For

such a measure there exists a solution uµK
of (3.36) with µ = µK by Theorem 3.6. Next we assume that

CR
N−1

2− 2+α+
2q′ ,q

(K) = 0. Then there exists a sequence {ηn} in C2
0 (∂Ω) satisfying (3.60). In particular, there

exists a decreasing sequence {On} of relatively open subsets of ∂Ω, containing K such that ηn = 1 on

On and thus ηn = 1 on Kn := On. We set η̃n = 1− ηn and ζ̃n = φκ(R[η̃n])
2q′ where R is defined by

(3.51). Then 0 ≤ η̃n ≤ 1 and η̃n = 0 on Kn. Therefore

ζ̃n(x) ≤ φκ min
{
1, c74(d(x))

1−N e−(4d(x))−2(dist (x,Kc
n))

2
}
. (3.63)

Furthermore

(i) |∇R[η̃n]| ≤ c75 min
{
1, (d(x))−2−Ne−(4d(x))−2(dist (x,Kc

n))
2
}
,

(ii) |∆R[η̃n]| ≤ c75 min
{
1, (d(x))−4−Ne−(4d(x))−2(dist (x,Kc

n))
2
}
.

(3.64)
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Step 1. We claim that ∫

Ω

(
uLκζ̃n + uq ζ̃n

)
dx = 0. (3.65)

By Proposition 6.3 there exists c74 > 0 such that

(i) u(x) ≤ c76(d(x))
α+
2 (dist (x,K))−

2
q−1−

α+
2 ,

(ii) |∇u(x)| ≤ c76(d(x))
α+
2 −1(dist (x,K))−

2
q−1−

α+
2 ,

(3.66)

for all x ∈ Ω. As in the proof of Lemma 3.8,

|uLκζ̃n| ≤ c77(R[η̃n])
2q′−2u

(
φκR

2[η̃n] +R[η̃n]|∇φκ.∇R[η̃n]|
+φκ(R[η̃n]|∆R[η̃n]|+ |∇R[η̃n]|2)

)
.

(3.67)

Let O be a relatively open neighborhood of K such that O ⊂ On. We set GO,β0 = {x ∈ Ωβ0 :
σ(x) ∈ O} and GOc,β0 = Ωβ0 \GO . If x ∈ GO , dist (x,Kc

n) ≥ τ > 0. Then, by (3.66)-(i) and (3.63),

uq ζ̃n ∈ Lq(GO). Since u(x) = ◦(W (x)) in GOc it follows that uq ζ̃n ∈ L1(Ωβ0) and thus uq ζ̃n is

integrable in Ω . Similarly, using (N22-1)-(i) and (ii), uLκζ̃n ∈ L1(Ω). Since ζ̃n does not vanish in a

neighborhood of K , we introduce a cut-off function θǫ ∈ C2(Ω) for 0 < ǫ ≤ β0

2 , with the following

properties,

0 ≤ θǫ ≤ 1 , θǫ(x) = 0 ∀x ∈ GO,ǫ , θǫ(x) = 1 ∀x ∈ Ω s.t. dist (x,GO,ǫ) ≥ ǫ

|∇θǫ| ≤ c78ǫ
−1χGOǫ,ǫ\GO,ǫ

and |D2θǫ| ≤ c78ǫ
−2χGOǫ,ǫ\GO,ǫ

,

where we have taken ǫ small enough so that

GOǫ,ǫ := {x ∈ Ω : dist (x,GO,ǫ) ≤ ǫ} ⊂ GKn,2ǫ = {x ∈ Ω2ǫ : σ(x) ∈ Kn}.

Clearly θǫζ̃n ∈ X
K
κ (Ω), thus ∫

Ω

(
uLκ(θǫζ̃n) + uqθǫζ̃n

)
dx = 0.

Next
∫

Ω

(
uLκ(θǫζ̃n) + uqθǫζ̃n

)
dx =

∫

Ω\GOǫ,ǫ

(
uLκ(ζn) + uq ζ̃n

)
dx+

∫

GOǫ,ǫ

(
uLκ(θǫζ̃n) + uqθǫζ̃n

)
dx

= Iǫ + IIǫ.

Clearly

lim
ǫ→0

Iǫ =

∫

Ω

(
uLκζ̃n + uq ζ̃n

)
dx,

and

lim
ǫ→0

∫

GOǫ,ǫ

uqθǫζ̃ndx = 0.

Finally, since Lκ(θǫζ̃n) = θǫLκζ̃n + ζ̃n∆θǫ + 2∇θǫ.∇ζ̃n, θǫ is constant outside GOǫ,ǫ \ GO,ǫ and

dist (GOǫ,ǫ \GO,ǫ, F
c
n) ≥ τ > 0, independent of ǫ there holds, by (3.63)

|Lκ(θǫζ̃n)| ≤ c79ǫ
−N+4e−

τ

ǫ2 .
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Using (3.66)-(i) we derive

lim
ǫ→0

∫

GOǫ,ǫ

uLκ(θǫζ̃n)dx = 0,

which yields to (3.65).

Step 2. We claim that ∫

Ω

uqφκdx <∞. (3.68)

Using the expression of Lκζn in (3.65) where replace ηn by η̃n, we derive
∫

Ω

uq ζ̃ndx =

∫

Ω

(
−λκ(R[η̃n])2q

′
φκ + 4q′(R[η̃n])2q

′−1∇φκ.∇R[η̃n]+

2q′(R[η̃n])2q
′−2φκ

(
R[η̃n]∆R[η̃n] +(2q′ − 1)|∇R[η̃n]|2

))
udx

≤ c79

(∫

Ω

uq ζ̃ndx

) 1
q
(∫

Ω

(L̃[ηn])
q′dx

) 1
q′

,

(3.69)

where we have set

L̃[η] = (φκ)
− 1

q ∇φκ.∇R[ηn] + (φκ)
1
q′ |∆R[η̃n]|+ (φκ)

1
q′ |∇R[η̃n]|2. (3.70)

By Lemma 3.9 we know that
∫

Ω

(φκ)
− q′

q |∇φκ.∇R[ηn]|q
′
+ φκ|∆R[η̃n]|q

′
dx ≤ (c72 + c73)‖ηn‖q

′

B
2−

2+α+
2q′ ,2

(∂Ω)

. (3.71)

The last term is estimated in the following way

∫

Ω

φκ|∇R[η̃n]|2q
′
dx ≤ c80

∫ β2
0

0

∫

Σ

sq
′+

α++2

4

∣∣∣∣
∂H [ηn]

∂s

∣∣∣∣
2q′

dS
ds

s

+ c80

∫ β2
0

0

∫

Σ

s
α++2

4

(
|∇ΣH [ηn]|2q

′
+ (H [ηn])

2q′
)
dS

ds

s
,

(3.72)

where ∇Σ denotes the covariant gradient on Σ. Since the following interpolation identity holds

[
W 2,2q′(Σ), L2q′(Σ)

]
1−α++2

8q′ ,2q′
= B

1−α++2

4q′ ,2q′
(Σ),

we obtain ∫ β2
0

0

∫

Σ

sq
′+

α++2

4

∣∣∣∣
∂H [ηn]

∂s

∣∣∣∣
2q′

ds

s
≤ c81‖ηn‖2q

′

B
1−

α++2

4q′ ,2q′
(Σ)

.

By the Gagliardo-Nirenberg inequality

‖ηn‖2q
′

B
1−

α++2

4q′ ,2q′
(Σ)

≤ c82‖ηn‖q
′

B
2−

α++2

2q′ ,q′
(Σ)

‖η‖q
′

L∞(Σ) = c82‖ηn‖q
′

B
2−

α++2

2q′ ,q′
(Σ)

. (3.73)

By the same inequality
∫

Σ

(
|∇ΣH [ηn]|2q

′
+ (H [ηn])

2q′
)
dS ≤ c82‖H [ηn]‖q

′

L∞(Σ)

∫

Σ

(
|∆ΣH [ηn]|q

′
+ (H [ηn])

q′
)
dS.

(3.74)
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Using the estimates on L[η] in Lemma 3.9 and the fact that 0 ≤ H [ηn] ≤ 1, we conclude that

∫ β2
0

0

∫

Σ

s
α++2

4

(
|∇ΣH [ηn]|2q

′
+ (H [ηn])

2q′
)
dS

ds

s
≤ c83‖ηn‖q

′

B
2−

α++2

2q′ ,q′
.(Σ)

.

It follows from (3.69)
∫

Ω β0
2

uq(R[η̃n])
2q′φκdx ≤ c84

∫

Ωβ0

(L̃ηn)
q′dx ≤ c85‖ηn‖q

′

B
2−

α++2

2q′ ,q′
.(Σ)

. (3.75)

Letting n→ ∞ and using the fact that ηn → 0, we obtain by Fatou’s lemma that
∫

Ω β0
2

uqφκdx = 0.

Combining this with the fact that u is bounded in Ω′
β0
2

we obtain (3.68). Notice that ‖u‖Lq
φκ
(Ω) is

bounded independently of u.

Step 3. End of the proof. Since uq ∈ L1
φκ
(Ω), by Proposition 3.2 there exists a unique weak solution

v ∈ L1
φκ
(Ω) of

Lκv = uq in Ω

v = 0 in ∂Ω,
(3.76)

and v ≥ 0. Then w = u + v is Lκ-harmonic in Ω, and by Theorem 2.33 there exists a unique positive

Radon measure τ on ∂Ω such that w = KLκ
[τ ]. Since v and u vanish respectively on on ∂Ω and ∂Ω\K ,

it follows from Propositions 2.34 and 2.35 that the support of τ is included in K . By Theorem 3.6, τ

vanishes on Borel subsets with zero CR
N−1

2− 2+α+
2q′ ,q′

-capacity. Since CR
N−1

2− 2+α+
2q′ ,q′

(K) = 0, τ = 0. This

implies that u is a weak solution of

Lκu+ uq = 0 in Ω

u = 0 in ∂Ω,
(3.77)

and therefore u = 0.

Remark. Using the fact that u+ and u− are subsolutions of (3.61), it is easy to check that Theorem 3.10

remains valid for any signed solution of (3.61).

Remark. If 1 < q < qc (see (3.37)) it follows from Sobolev imbedding theorem that only the empty set

has zero CR
N−1

2− 2+α+
2q′ ,q′

-capacity. As a consequence of the previous result, if q ≥ qc any isolated boundary

singularity of a solution of (3.61) is removable.

4 Isolated boundary singularities

We denote by {e
1
, ..., e

N
} the canonical basis in RN = {x = (x′, xN ) ∈ RN−1 × R} and by (r, σ) the

spherical coordinates therein. Then RN
+ = {= (x′, xN ) :, x′ ∈ RN−1, xN > 0} . We although denote

by SN−1 and SN−1
+ the unit sphere and the upper hemisphere of RN

+ , i.e. SN−1 : ∩RN
+ . In this section

we study the behavior near 0 of solutions of

−∆u− κ

d2
u+ |u|q−1u = 0 (4.1)
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in a bounded convex domain Ω of RN with a smooth boundary containing 0 where d is the distance

function to the boundary, κ a constant in (0, 14 ] and q > 1. Although it is not bounded, the model case is

Ω = RN
+ = {= (x′, xN ) :, x′ ∈ RN−1, xN > 0} which is represented by (r, σ), r > 0, σ ∈ SN−1

+ in

spherical coordinates. Then

Lκu = −urr −
N − 1

r
ur −

1

r2
∆SN−1u− κ

r2(eN .σ)2
u+ |u|q−1u. (4.2)

We also denote by ∇′ the covariant gradient on SN−1 in the metric of SN−1 obtained by the imbedding

into RN .

4.1 The spherical L
κ
-harmonic problem

It is straightforward to check that the Poisson kernel KLκ
of Lκ in RN

+ has the following expression

KLκ
(x, ξ) = cN,κ

x
α+
2

N

|x− ξ|N+α+−2
. (4.3)

In spherical coordinates

KLκ
(x, 0) = cN,κr

2−N−α+
2 ψ(σ) r > 0 , σ ∈ SN−1

+

where ψκ(σ) =
xN

|x| ⌊
α+
2

S
N−1
+

= (e
N
.σ)

α+
2 solves

−∆SN−1ψκ − µκψκ − κ

(e
N
.σ)2

ψκ = 0 in SN−1
+

ψκ = 0 in ∂SN−1
+ ,

(4.4)

and

µκ =
α+

2
(N +

α+

2
− 2). (4.5)

Notice that equation (4.4) admits a unique positive solution with supremum 1. We could have defined

the first eigenvalue µκ of the operator

φ 7→ L′
κw := −∆SN−1w − κ

(e
N
.σ)2

w,

by

µκ = inf

{∫
S

N−1
+

(
|∇w|2 − κ(e

N
.σ)−2w2

)
dS

∫
S

N−1
+

w2dS
: w ∈ H1

0 (S
N−1
+ ), w 6= 0

}
. (4.6)

By [2, Th 6.1] the infimum exists since ρ(σ) = xN⌊
S

N−1
+

= e
N
.σ is the first eigenfunction of −∆SN−1

in H1
0 (S

N−1
+ ). The minimizer ψκ belongs to H1

0 (S
N−1
+ ) only if 1 < κ < 1

4 . Furthermore

ψκ ∈ Y(SN−1
+ ) := {φ ∈ H1

loc(S
N−1) : ρ−

α+
2 φ ∈ H1(SN−1

+ , ρα+)}. (4.7)

We can also define µk by

µk = inf

{∫

S
N−1
+

|∇′(ρ−
α+
2 ω)|2ρα+dS : ω ∈ Y(SN−1

+ ),

∫

S
N−1
+

ω2dS = 1

}
. (4.8)
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We can use the symmetry of the operator to obtain the second eigenvalue and eigenfunction of L′
κ

on SN−1
+ . We first notice that for j = 1, ..., N − 1, the function

x 7→ x
α+
2

N xj
|x|N+α+

, (4.9)

is Lκ-harmonic in R
N−1
+ , positive (resp. negative) on {x = (x1, ..., xN : xj > 0, xN > 0} (resp.

{x = (x1, ..., xN : xj < 0, xN > 0}) and vanishes on {x = (x1, ..., xN : xj = 0, xN = 0}.

Proposition 4.1. For any j = 1, .., N − 1 the function

σ 7→ ψκ,j(σ) = (eN .σ)
α+
2 ej .σ,

satisfies

L′
κψκ,j = (µκ +N − 1 + α+)ρκ,j (4.10)

in SN−1
+ . It is positive (resp. negative) on SN−1

+ ∩ {x = (x1, ..., xN ) = xj > 0} (resp. SN−1
+ ∩ {x =

(x1, ..., xN ) = xj < 0}) and it vanishes on ∂SN−1
+ ∩ {x = (x1, ..., xN ) = xj = 0}. The real number

µκ,2 = µκ +N − 1 + α+ = (
α+

2
+ 1)(N +

α+

2
− 1)

is the second eigenvalue of L′
κ in Y(SN−1

+ ).

Proof. There holds

L′
κψκ,j = ej .σLκψκ + ψκ∆SN−1ej .σ + 2∇′ψκ.∇′

ej .σ

= (µκ +N − 1)ψκ,j − α+(eN .σ)
α+
2 −1∇′(ej .σ).∇′(eN .σ).

Now

∇(
xj
r
) = (

xj
r
)r
x

r
+

1

r
∇′(

xj
r
) =

1

r
∇′(

xj
r
) =

1

r
ej −

xj
r3
x,

thus

∇(
xj
r
).∇(

xN
r

) = −xjxN
r4

=
1

r2
∇′(

xj
r
).∇′(

xN
r

) =
1

r2
∇′(ej .σ).∇′(eN .σ),

which implies

∇′(ej .σ).∇′(eN .σ) = −xjxN
r2

= −(ej.σ)(eN .σ),

and finally

Lκψκ,j = (µκ +N − 1 + α+)ψκ,j . (4.11)

Since SN−1
+ = {(σ′ sin θ, cos θ) : σ′ ∈ SN−2, θ ∈ [0, π2 ]}, eN .σ = cos θ, ej.σ = ej .σ

′ sin θ and

dS = (sin θ)N−2dS′dθ where dS and dS′ are the volume elements of SN−1 and SN−2 respectively, we

derive from the fact that σ′ 7→ ej .σ
′ is an odd function on SN−2,

∫

S
N−1
+

ψκ,jψκdS =

∫

S
N−1
+

(eN .σ)
α+ej .σdS

=

∫ π
2

0

(∫

SN−2

ej .σ
′dS′

)
(cos θ)α+(sin θ)N−1dθ

= 0.
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Hence ψκ,j is an eigenvalue of L′
κ in Y(SN−1

+ ) with two nodal domains and the space the ψκ,j span is

(N-1)-dimensional and any linear combination of the ψκ,j has exactely two nodal domains since

N−1∑

j=1

ajψκ,j = (eN .σ)
α+
2 (

N−1∑

j=1

ajej).σ.

This implies that µκ,2 is the second eigenvalue.

4.2 The nonlinear eigenvalue problem

If we look for separable solutions under the form

u(x) = u(r, σ) = rαω(σ),

then necessarily α = − 2
q−1 and ω is a solution of

−∆SN−1ω − ℓq,Nω − κ

(e
N
.σ)2

ω + |ω|q−1ω = 0 in SN−1
+

ω = 0 in ∂SN−1
+ ,

(4.12)

ℓq,N =
2

q − 1

(
2

q − 1
+ 2−N

)
, (4.13)

and (4.6) is transformed accordingly. We denote by

Eκ =
{
ω ∈ Y(SN−1

+ ) ∩ Lq+1(SN−1
+ ) s. t. (4.12) holds

}
(4.14)

and by E+
κ the set of the nonnegative ones. We also recall that qc :=

2N + α+

2N − 4 + α+
and we define a

second critical value qe :=
2N + 2 + α+

2N − 2 + α+
.

The following result holds

Theorem 4.2. Assume 0 < κ ≤ 1
4 and q > 1, then

(i) If q ≥ qc, Eκ = {0}.

(ii) If 1 < q < qc, E+
κ is contains exactly two elements: 0 and ωκ. Furthermore ωκ depends only on the

azimuthal angle θ.

(iii) If qe ≤ q < qc, Eκ contains three elements: 0, ωκ and −ωκ.

Proof. We recall that q ≥ qc ⇐⇒ ℓq,N ≤ µκ. Then non-existence follows by multiplying by ω and

integrating on SN−1
+ . For existence, we consider the functional

Jκ(w) =

∫

SN−1
+

(
|∇′(w)|2 + (µκ − ℓq,N )w2 +

2

q + 1
ψq−1
κ |w|q+1

)
ψ2
κdS, (4.15)

defined in H1(SN−1
+ , ψ2

κdS) ∩ Lq+1(SN−1
+ , ψq+1

κ dS). Since µκ − ℓq,N < 0, there exists a nontrivial

minimum ωκ > 0, which satisfies

−div(ψ2
κ∇′wκ) + (µκ − ℓq,N )ψ2

κwκ + ψq+1
κ wq

κ = 0. (4.16)
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If we set ωκ = ψκwκ, then ωκ satisfies

L′
κωκ − ℓq,Nωκ + ωq

κ = 0 in SN−1
+ . (4.17)

By monotonicity we derive that ωκ ∈ Lp(SN−1
+ ) for any 1 < p < ∞ and finally, that ωκ satisfies the

regularity estimates of Lemma 2.9 and Lemma 2.10. Moreover ωκ > 0 by the maximum principle.

In the case q ≥ qc or equivalently µκ − ℓq,N ≥ 0, the nonexistence of nontrivial solution is clear

from (4.16).

Uniqueness. By Proposition 2.8 ωκ(x) ≤ c86(ρ(x))
α+
2 and by standard scaling techniques |∇ωκ(x)| ≤

c87(ρ(x))
α+
2 −1. Assume now that two different positive solutions of (4.12) ωκ and ω′

κ exist. Since

max{ωκ, ω
′
κ} and ωκ + ω′

κ are respectively a subsolution and a supersolution and they are ordered, we

can assume that ω′
κ < ωκ < cω′

κ for some c > 1. Let ǫ > 0 and ǫ′ = c−1ǫ, then ǫω′
κ ≥ ǫ′ωκ. Set

ϑǫ =
((ω′

κ + ǫ′)2 − (ωκ + ǫ)2)+
ωκ + ǫ

, ϑǫ′ =
((ω′

κ + ǫ′)2 − (ωκ + ǫ)2)+
ω′
κ + ǫ′

,

and Sǫ,ǫ′ = {σ ∈ SN−1
+ : ω′

κ + ǫ′ > ωκ + ǫ}. The assume that Sǫ,ǫ′ 6= ∅ for any ǫ > 0. Then

∫

Sǫ,ǫ′

(
∇ω′

κ.∇ϑǫ′ −∇ωκ.∇ϑǫ − (ℓq,N +
κ

ρ2
)(ω′

κ.ϑǫ′ − ωκ.ϑǫ) + ω′q
κ ϑǫ′ − ωq

κϑǫ

)
dS = 0.

The first integrand on the l.h. side is equal to

∫

Sǫ,ǫ′

(∣∣∣∣∇ω′
κ − ω′

κ + ǫ′

ωκ + ǫ
∇ωκ

∣∣∣∣
2

+

∣∣∣∣∇ωκ − ωκ + ǫ

ω′
κ + ǫ′

∇ω′
κ

∣∣∣∣
2
)
dS ≥ 0.

Since ǫω′
κ < ǫ′ωκ and (ω′

κ + ǫ′)2 > (ωκ + ǫ)2,the second integrand on the l.h. side is equal to

−
∫

Sǫ,ǫ′

(ℓq,N +
κ

ρ2
)

(
ω′
κ

ω′
κ + ǫ′

− ωκ

ωκ + ǫ

)
((ω′

κ + ǫ′)2 − (ωκ + ǫ)2)dS ≥ 0.

At end, the last integrand is

∫

Sǫ,ǫ′

(
ω′q
κ

ω′
κ + ǫ′

− ωq
κ

ωκ + ǫ

)
((ω′

κ + ǫ′)2 − (ωκ + ǫ)2)dS.

If we let ǫ→ 0, we derive
∫

S
N−1
+

(
ω′q−1
κ − ωq−1

κ

)
(ω′2

κ − ω2
κ)+dS ≤ 0.

This yields a contradiction. Therefore uniqueness holds.

Case qe ≤ q < qc. Assume ωκ is a solution. Using the representation of SN−1
+ already introduced in the

proof of Proposition 4.1, with σ = (σ′, θ) and

∆SN−1ωκ =
1

(sin θ)N−2

∂

∂θ

(
(sin θ)N−2 ∂ωκ

∂θ

)
+

1

sin2 θ
∆SN−2ωκ,

where ∆SN−2 is the Laplace-Beltrami operator on SN−2, we set

ω̄κ(θ) =
1

|SN−2|

∫

SN−2

ωκ(σ
′, θ)dS′(σ′).
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Then ω̄κ is independent of σ′ ∈ SN−2 and furthermore

∫

S
N−1
+

(ωκ − ω̄κ)ψκdS =

∫ π
2

0

(∫

SN−2

(ωκ − ω̄κ)dS
′
)
(sin θ)N−2(cos θ)

α+
2 dθ = 0,

thus ω̄κ is the projection of ωκ onto the first eigenspace of Lκ and

∫

S
N−1
+

(ωκ − ω̄κ)Lκ(ωκ − ω̄κdS ≥ µκ,2

∫

S
N−1
+

(ωκ − ω̄κ)
2dS.

At end, noting that ∫

S
N−2
+

(gq ◦ ωκ − gq ◦ ω̄κ)(ωκ − ω̄κ)dS
′ = 0,

where we have set gq ◦ u = |u|q−1u for brevity, and thus

∫

S
N−1
+

(gq ◦ ωκ − gq ◦ ωκ)(ωκ − ω̄κ)dS =

∫ π
2

0

∫

S
N−2
+

(gq ◦ ωκ − gq ◦ ωκ)(ωκ − ω̄κ)dS
′(sin θ)N−2dθ

=

∫ π
2

0

∫

S
N−2
+

(gq ◦ ωκ)− gq ◦ ω̄κ)(ωκ − ω̄κ)dS
′(sin θ)N−2dθ

≥ 21−q

∫

S
N−1
+

|ωκ − ω̄κ|q+1dS,

we derive that w = ωκ − ω̄κ, satisfies

∫

S
N−1
+

(
(µκ,2 − ℓN,q)(ωκ − ω̄κ)

2 + 21−q|ωκ − ω̄κ|q+1
)
dS ≤ 0,

which implies ωκ = ω̄κ and it satisfies

1

(sin θ)N−2

d

dθ

(
(sin θ)N−2 dωκ

dθ

)
+
(
ℓq,N +

κ

cos2 θ

)
ωκ − gq ◦ ωκ = 0. (4.18)

Because µκ,1 < ℓq,N ≤ µκ,2, by [6, Th. 4, Corol. 1], this equation admits the three solutions, ωκ, −ωκ

and 0.

Remark. For ǫ > 0 small enough the function ǫψκ is a subsolution for problem (4.12). This implies

ωκ(σ) ≥ ǫψκ(σ) ∀σ ∈ SN−1
+ . (4.19)

4.3 Isolated boundary singularities

Throughout this section we assume that Ω ⊂ R
N
+ , 0 ∈ ∂Ω the tangent plane to ∂Ω at 0 is ∂RN

+ and that

1 < q < qc.

Lemma 4.3. There holds

lim|x|→0
GLκ

[(KLκ
(., 0))q](x)

KLκ
(x, 0)

= 0. (4.20)
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Proof. We recall the following estimates (1.9), (2.57)

(i) GLκ
(x, y) ≤ c3 min

{
1

|x− y|N−2
,
(d(x))

α+
2 (d(y))

α+
2

|x− y|N+α+−2

}
,

(ii) c−1
3

(d(x))
α+
2

|x|N+α+−2
≤ KLκ

(x, 0) ≤ c3
(d(x))

α+
2

|x|N+α+−2
.

Then

GLκ
[Kq

Lκ
(., 0)](x)

KLκ
(x, 0)

≤ cq+2
3 |x|N+α+−2

∫

Ω

(d(y))
(q+1)α+

2 dy

|x− y|N+α+−2|y|q(N+α+−2)

≤ cq+2
3 |x|N+

α+
2 −q(N+

α+
2 −2)

∫

RN

dη

|ex − η|N+α+−2|η|q(N+α+−2)
,

where ex = |x|−1x. This last integral is finite and independent of x. Since q < qc, (4.20) follows.

Corollary 4.4. Let ukδ0 be the unique solution of

Lκu+ |u|q−1u = 0 in Ω
u = kδ0 in ∂Ω.

(4.21)

Then

lim
x→0

ukδ0
KLκ

(x)
= k. (4.22)

Proof. This is a consequence of (4.20) and the inequality

kKLκ
[δ0](x) − kqG[(KLκ

[δ0])
q](x) ≤ ukδ0(x) ≤ kKLκ

[δ0](x). (4.23)

Proposition 4.5. There exists u∞,0 = limk→∞ ukδ0 and there holds

lim
x → 0, x ∈ Ω

x|x|−1 → σ

|x| 2
q−1 u∞,0(x) = ωκ(σ),

(4.24)

uniformly on compact subsets of SN−1
+ .

Proof. The correspondence k 7→ ukδ0 is increasing and, by the Keller-Osserman estimate, it converges,

when k → ∞ to some smooth function u∞,0 defined in Ω where it satisfies (1.1). By Proposition 6.1,

for any R ∈ (0, R0), the function ukδ0 , and also u∞,0, vanishes on any compact subset of ∂Ω \ {0}.

Furthermore

u∞,0(x) ≤





cK,γ,κ(dist (x,K))γ ∀γ ∈ (α−
2 ,

α+

2 ) if 0 < κ < 1
4 ,

cK
√

dist (x,K)

√
ln
(

diam(Ω)
dist(x,K)

)
if κ = 1

4 ,

for all compact set K ⊂ ∂Ω \ {0}. Combining this estimate with Propositions 6.3 we obtain

u∞,0(x) ≤ c90(d(x))
α+
2 |x|− 2

q−1−
α+
2 ∀x ∈ Ω, (4.25)



Konstantinos T. Gkikas, Laurent Véron 57

and

|∇u∞,0(x)| ≤ c90(d(x))
α+
2 −1|x|− 2

q−1−
α+
2 ∀x ∈ Ω. (4.26)

Let ℓ0 > 0 be small enough such that ℓe ∈ Ω for any 0 < ℓ < ℓ0, where e = (0, ..., 0, 1). Then by (1.9),

(2.57) and (4.23) we can easily prove that there exist positive constants c01 and c02 such that

ℓ
2

q−1 u∞,0(ℓe) ≥ c01kℓ
2

q−1−N−α+
2 +2 − c02k

qℓ2−q(N+
α+
2 −2)+ 2

q−1 ∀k > 0.

Now we set k = 1

Mℓ
2

q−1
−N−

α+
2

+2
, then there holds

ℓ
2

q−1 u∞,0(ℓe) ≥
c01
M

− c02
M q

.

Thus if we choose M big enough, we can easily show that there exists c03 > 0 which depends on

κ,Ω, q, N such that

ℓ
2

q−1 u∞,0(ℓe) ≥ c03 > 0 ∀0 < ℓ < ℓ0. (4.27)

For ℓ > 0, we put Tℓ[v](x) = ℓ
2

q−1 v(ℓx), Ωℓ = ℓ−1Ω, dℓ(y) = dist (y, ∂Ωℓ). If v satisfies (4.1) in Ω
and vanishes on ∂Ω \ {0}, Tℓ[v] vanishes on ∂Ωℓ \ {0} and satisfies

−∆Tℓ[v]−
κ

d2ℓ
Tℓ[v] + |Tℓ[v]|q−1Tℓ[v] = 0 in Ωℓ. (4.28)

In order to avoid ambiguity, we set ukδ0 = uΩkδ0 , vkδ0 = vΩkδ0 , u∞,0 = uΩ∞,0 and v∞,0 = vΩ∞,0. Since

inequalities (4.25) and (4.26) are invariant under the scaling transformation Tℓ, the standard elliptic

equations regularity theory yields the following estimates

uΩℓ

∞,0(y) ≤ c92(dℓ(y))
α+
2 |y|− 2

q−1−
α+
2 ∀y ∈ Ωℓ, (4.29)

and

|∇uΩℓ

∞,0(y)| ≤ c92(dℓ(y))
α+
2 −1|y|− 2

q−1−
α+
2 ∀y ∈ Ωℓ, (4.30)

valid for any 0 < ℓ ≤ 1. If we let k → ∞, we obtain Tℓ[u
Ω
∞,0] = uΩℓ

∞,0 and because of the group

property of the transformations {Tℓ}ℓ>0, there holds Tℓ′ [u
Ωℓ

∞,0] = u
Ωℓ′ℓ
∞,0 for any ℓ, ℓ′ > 0. Estimates

(4.29) and (4.30) imply that {uΩℓ

∞,0} is relatively compact for the topology of convergence on compact

subsets of RN
+ . Therefore there exist a sequence {ℓn} tending to 0 and a function U such that {uΩℓn

∞,0}
converges to U uniformly on any compact subset of RN

+ . By (4.27) this function is identically equal to

zero. Therefore U is a weak solution of

−∆U − κ

y2N
U + U q = 0 in RN

+ . (4.31)

Furthermore

u
R

N
+

∞,0(y) ≤ c92y
α+
2

N |y|− 2
q−1−

α+
2 ∀y ∈ RN

+ . (4.32)

Since Tℓ′ [u
Ωℓn

∞,0] = u
Ωℓ′ℓn
∞,0 , we derive Tℓ′ [U ] = U for any ℓ′ > 0, thus U is self similar. Set ω( y

|y|) =

U( y
|y|). If we set σ = y

|y| , there holds

ω(σ) ≤ c92ψκ(σ) ∀σ ∈ SN−1
+ . (4.33)

Therefore ω satisfies (4.12) and it coincides with the unique positive element ωκ of Eκ, since by (4.27)

U(e) ≥ c03 > 0. Thus uΩℓ

∞,0 converges to U on compact subsets of RN
+ . In particular (4.24) holds on

compact subsets of SN−1
+ .
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5 The boundary trace of positive solutions

As before we assume that 0 < κ ≤ 1
4 , q > 1 and Ω is a bounded smooth domain, convex if κ = 1

4 .

Although the construction of the boundary trace can be made in a more general framework, we restrict

ourselves to the class U+(Ω) of positive smooth functions u satisfying

Lκu+ |u|q−1u = 0 (5.1)

in Ω.

Lemma 5.1. Let f ∈ L1
φκ
(Ω). If u is a nonnegative solution of

Lκu = f in Ω (5.2)

there exists µ ∈ M+(∂Ω) such that u admits µ for boundary trace and

u = GLκ
[f ] +KLκ

[µ]. (5.3)

Proof. Let v = GLκ
[f ], then u− v is Lκ-harmonic and positive thus the result follows.

Definition Let G ⊂ Ω be a domain. A function u ∈ Lq
loc(G) is a supersolution (resp. subsolution) of

(5.1) if

Lκu+ |u|q−1u ≥ 0 (resp. Lκu+ |u|q−1u ≤ 0 ) (5.4)

in the sense of distributions in G.

The following comparison principle holds [4, Lemma 3.2]

Proposition 5.2. Let G ⊂ Ω be a smooth domain and ū, u a pair of nonnegative supersolution and

subsolution respectively in G.

(i) If there holds

lim sup
dist (x,∂G)→0

(ū(x)− u(x)) < 0,
(5.5)

then u < ū in G.

(ii) Assume G ⊂ Ω and ū and u belong to H1(G) ∩ C(G). If u ≤ ū in ∂G, then u ≤ ū in G.

5.1 Construction of the boundary trace

We use the notations of [26]

Proposition 5.3. Let υ be a non-negative function in C(Ω).
(i) If υ is a subsolution of (5.1), there exists a minimal solution u∗ dominating υ, i.e. υ ≤ u∗ ≤ U for

any solution U ≥ υ.
(ii) If υ is a supersolution of (5.1), there exists a maximal solution u∗ dominated by υ, i.e. U ≤ u∗ ≤ υ
for any solution U ≤ υ.

Proof. (i) Let {Ωn} be a smooth exhaustion Ω and for each n ∈ N, un the positive solution of

Lκu+ |u|q−1u = 0 in Ωn

u = υ in ∂Ωn.
(5.6)

By the comparison principle un ≥ υ, which implies un+1(x) ≥ un(x) ∀x ∈ Ωn. Since {un} is

uniformly bounded on compact subsets of Ω and thus in C2 by standard regularity arguments that un ↑
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u∗ which is a positive solution of (5.1). Furthermore, if U is any solution of (5.1) dominating υ, it

dominates un in Ωn and thus u∗ ≤ U .

The proof of (ii) is similar: we construct a decreasing sequence {u′n} of nonnegative solutions of (5.1) in

Ωn coinciding with υ on ∂Ωn and dominated by υ. It converges to some u∗ which satisfies U ≤ u∗ ≤ υ
for any solution U dominated by υ.

Proposition 5.4. Let 0 ≤ u, v ∈ C(Ω).
(i) If u and v are subsolutions (resp. supersolutions) then max(u, v) is a subsolution (resp. min(u, v) is

a supersolution).

(ii) If u and v are supersolutions then u+ v is a supersolution.

(iii) If u is a subsolution and v is a supersolution then (u− v)+ is a subsolution.

Proof. The first two statements follow Kato’s inequality. The last statement is verified using that

−∆(u− v)+ ≤ sign+(u− v)(−∆(u − v)) ≤ −sign+(u− v)(uq − vq) + κ
(u− v)+
d2(x)

≤ −(u− v)q+ + κ
(u− v)+
d2(x)

.

Notation 5.5. Let u, v be nonnegative continuous functions in Ω.
(a) If u is a subsolution, [u]† denotes the smallest solution dominating u.
(b) If u is a supersolution, [u]† denotes the largest solution dominated by u.
(c) If u, v are subsolutions then u ∨ v := [max(u, v)]†.
(d) If u, v are supersolutions then u ∧ v := [inf(u, v)]† and u⊕ v = [u+ v]†.
(e) If u is a subsolution and v is a supersolution then u⊖ v := [(u − v)+]†.

The next result based upon local uniform estimates is due to Dynkin [12].

Proposition 5.6. (i) Let {uk} ⊂ C(Ω) be a sequence of positive subsolutions (resp. supersolutions) of

(5.1). Then U := supuk (resp. U := inf uk) is a subsolution (resp. supersolution).

(ii) Let T ⊂ C(Ω) be a family of positive solutions of (5.1). Suppose that, for every pair u1, u2 ∈ T
there exists v ∈ T such that

max(u1, u2) ≤ v (resp. min(u1, u2) ≥ v).

Then there exists a monotone sequence {un} ⊂ T such that

un ↑ sup T (resp. un ↓ inf T ).

Furthermore sup T (resp. inf T ) is a solution.

Definition 5.7. Let F ⊂ ∂Ω be a closed set. We set

UF := sup

{
u ∈ U+(Ω) : lim

x→ξ

u(x)

W (x)
= 0, ∀ξ ∈ ∂Ω \ F

}
, (5.7)

and

[u]F = sup

{
v ∈ U+(Ω) : v ≤ u, lim

x→ξ

v(x)

W (x)
= 0, ∀ξ ∈ ∂Ω \ F

}
. (5.8)
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Notice that F 7→ UF and F 7→ [u]F are increasing with respect to the inclusion order relation in ∂Ω,

[u]F = u ∧ UF . As a consequence of Proposition 6.3, UF satisfies

lim
x→ξ

UF (x)

W (x)
= 0, ∀ξ ∈ ∂Ω \K. (5.9)

Proposition 5.8. Let E,F ⊂ ∂Ω be closed sets. Then

(i) UE ∧ UF = UE∩F .
(ii) If Fn ⊂ ∂Ω is a decreasing sequence of closed sets there holds

lim
n→∞

UFn
= UF where F = ∩Fn.

Proof. (i) UE ∧ UF is the largest solution dominated by inf(UE , UF ) and therefore, by definition, it is

the largest solution which vanishes outside E ∩ F.
(ii) If V := limUFn

then UF ≤ V. But supp (V ) ⊂ Fn for each n ∈ N and consequently V ≤ UF .

For β > 0, we recall that Ωβ , Σβ and the mapping x 7→ (d(x), σ(x)) have been defined in the proof

of Lemma 3.9. We also set Ω′
β = Ω \Ωβ and, if Q ⊂ ∂Ω, Σβ(Q) = {x ∈ Ωβ : σ(x) ∈ Q}.

Proposition 5.9. Let u ∈ U(Ω).
(i) If A,B ⊂ ∂Ω are closed sets. Then

[[u]A]B = [[u]B]A = [u]A∩B. (5.10)

(ii) If {Fn} is a decreasing sequence of closed subsets of ∂Ω and F = ∩Fn, then

[u]Fn
↓ [u]F .

(iii) If A,B ⊂ ∂Ω are closed sets. Then

[u]A ≤ [u]A∩B + [u]
A\B. (5.11)

Proof. (i) It follows directly from definition that,

[[u]A]B ≤ inf(u, UA, UB).

The largest solution dominated by u and vanishing on Ac ∪Bc is [u]A∩B. Thus

[[u]A]B ≤ [u]A∩B.

On the other hand

[u]A∩B = [[u]A∩B]B ≤ [[u]A]B,

this proves (5.10).

(ii) If Fn ↓ F, it follows by Proposition 5.8-(ii) that UFn
→ UF , thus

[u]F ≤ lim
n→∞

[u]Fn
= lim

n→∞
u ∧ UFn

≤ lim
n→∞

inf(u, UFn
) ≤ inf(u, UF ).

Since [u]F is the largest solution dominated by inf(u, UF ), [u]Fn
is the largest solution dominated by

inf(u, UFn
) and UFn

↓ UF by Proposition 5.8, the function v = limn→∞[u]Fn
is a solution of (5.1)

dominated by inf(u, UF ), thus v ≤ [u]F and the proof of (ii) is complete.
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(iii) Without loss of generality we assume that A∩B 6= ∅. Let O,O′ ⊂ ∂Ω be a relatively open set such

that A ∩B ⊂ O and A ∩Bc ⊂ O′ Set v = [u]A and let v1β be the solution of

Lκw + |w|q−1w = 0 in Ω′
β

w = χΣβ(O)v on Σβ.

Also we denote by v2β and v3β the solutions of the above problem with respective boundary data χΣ(O′)v

and χΣ(Oc∩O′c)v. Then viβ ≤ v⌊Ω′
β
≤ v1β + v2β + v3β , i = 1, 2, 3. Let now {βj} be a decreasing sequence

converging to 0 and such that

viβj
→ vi ≤ v ≤ v1 + v2 + v3, i = 1, 2, 3 locally uniformly in Ω.

By definition of vi and Proposition 6.1, we have that v1 ≤ [v]O , v2 ≤ [v]O′ and v3 ≤ [v]Oc∩O′c . But by

(i) we have

[v]Oc∩O′c = [[u]A]Oc∩O′c = [u]A∩Oc∩O′c = 0.

Thus

v ≤ [v]O + [v]O′

We can consider decreasing sequences {On} and {O′
n} such that ∩On = A ∩ B and ∩O′

n = A ∩Bc.

By (ii) we obtain

v ≤ [[u]A]A∩B + [[u]A]A∩Bc ≤ [u]A∩B + [u]A∩Bc

which is (iii).

Remark. Since any u ∈ U+(Ω) is dominated by u∂Ω, it follows from (iii) that for any setA ⊂ ∂Ω, there

holds

u = [u]∂Ω ≤ [u]A + [u]
∂Ω\A ≤ [u]A + [u]

∂Ω\A. (5.12)

Proposition 5.10. Let u be a positive solution of (5.1). If u ∈ Lq
φκ
(Ω) it possesses a boundary trace

µ ∈ M(∂Ω), i.e., u is the solution of the boundary value problem (3.36) with this measure µ.

Proof. If v := GLκ
[uq] then v ∈ L1

φκ
(Ω) and u+ v is a positive Lκ-harmonic function. Hence u+ v ∈

L1
φκ
(Ω) and there exists a non-negative measure µ ∈ M(∂Ω) such that u+ v = KLκ

[µ]. By Proposition

3.5 this implies the result.

Proposition 5.11. Let u be a positive solution of (5.1) and µ ∈ M(∂Ω). If for an exhaustion {Ωn} of

Ω, we have

lim
n→∞

∫

∂Ωn

Z(x)udωx0

Ωn
=

∫

∂Ω

Z(x)dµ ∀Z ∈ C(Ω),

where ωx0

Ωn
is the Lκ-harmonic measure of Ωn relative to a point x0 ∈ Ω1, then u and |u|p belong to

L1
φκ
(Ω). Furthermore u possesses the boundary trace µ ∈ M(∂Ω), i.e. u is the solution of the boundary

value problem (3.36) with this measure µ.

Proof. Let Gn
Lκ

be the green function of Lκ in Ωn, then

G
n
Lκ

(x, y) ≤ G
n+1
Lκ

(x, y) ∀x, y ∈ Ωn

and

G
n
Lκ

↑ GLκ
.
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Since ∫

∂Ωn

udωx0

Ωn
= u(x0) +

∫

Ωn

G
n
Lκ

(x, x0)|u(x)|qdx,

we derive, as n→ ∞,

µ(∂Ω) = u(x0) +

∫

Ωn

GLκ
(x, x0)|u(x)|qdx.

By Proposition 2.1 this implies |u|q ∈ L1
φκ
(Ω), and the result follows by Proposition 5.10.

Proposition 5.12. If F ⊂ ∂Ω is a closed set and u a positive solution of (5.1) with boundary trace

µ ∈ M(∂Ω), then [u]F has boundary trace µχF .

Proof. The function [u]F belongs to U+(Ω) and is dominated by u which satisfies (5.1), thus [u]F ∈
Lq
Φκ

(Ω) and [u]F admits a boundary trace µF ≤ µ by Proposition 5.10. Let v be the solution of (3.36)

with boundary data µχF . Let O ⊂ ∂Ω relatively open such that F ⊂ O. By 5.12 we have

v ≤ [v]O + [v]Oc .

Let A be an open set such that F ⊂ A ⊂ A ⊂ O, and for exhaustion we take Ωn = Ω′
1
n

which is smooth

for n large enough, and ∂Ωn = Σ 1
n

. Then

∫

∂Ωn

[v]Ocdω
x0

Ωn
=

∫

Σ 1
n
(A)

[v]Ocdω
x0

Ωn
+

∫

∂Ωn\Σ 1
n
(A)

[v]Ocdω
x0

Ωn

But ∫

Σ 1
n
(A)

[v]Ocdω
x0

Ωn
≤
∫

Σ 1
n
(A)

vdωx0

Ωn
→ 0

and ∫

∂Ωn\Σ 1
n
(A)

[v]Ocdω
x0

Ωn
≤
∫

∂Ωn\Σ 1
n
(A)

UOcdω
x0

Ωn
→ 0,

as n → ∞, thus [v]Oc = 0 by Proposition 5.11 and therefore v ≤ [v]O ≤ [u]O. Since O be an arbitrary

open set, take a sequence of open set {On} such that F ⊂ On ⊂ On ⊂ On−1 and ∩On = F. Using

Proposition 5.9 we derive

v ≤ [u]F ,

and thus µχF ≤ µF . Conversely, let Z ∈ C(Ω), Z ≥ 0,

∫

∂Ωn

Z[u]Fdω
x0

Ωn
=

∫

∂Ωn∩Σ 1
n
(A)

Z[u]Fdω
x0

Ωn
+

∫

∂Ωn\Σ 1
n
(A)

Z[u]Fdω
x0

Ωn

≤
∫

∂Ωn∩Σ 1
n
(A)

Zudωx0

Ωn
+

∫

∂Ωn\Σ 1
n
(A)

ZUFdω
x0

Ωn

≤ In + IIn.

Because of (5.9), IIn → 0 as n→ ∞, thus

∫

∂Ω

ZdµF ≤
∫

∂Ω

ZχFdµ =⇒ µF ≤ µχO,

and the result follow by regularity since O is arbitrary.
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The next result shows that the boundary trace has a local character.

Proposition 5.13. Let u ∈ U+(Ω) and ξ ∈ ∂Ω. We assume that there exists ρ > 0 such that
∫

Bρ(ξ)∩Ω

uq(x)φκ(x)dx <∞. (5.13)

(i) Then

[u]qF ∈ L1
φκ
(Ω) ∀F ⊂ ∂Ω ∩Bρ(ξ), F closed.

Thus [u]F possesses a boundary trace µF ∈ M(∂Ω), and supp (µF ) ⊂ F.

(ii) There exists a nonnegative Radon measure µρ onBρ(ξ) such that for any closed set F ⊂ Bρ(ξ)∩∂Ω
µF = µρχF ,

and for any exhaustion {Ωn} of Ω and any Z ∈ C(Ω) such that supp(Z) ∩ ∂Ω ⊂ ∂Ω ∩Bρ(ξ)

lim
n→∞

∫

∂Ωn

u(x)Z(x)dωx0

Ωn
=

∫

∂Ω

u(x)Z(x)dµρ. (5.14)

Proof. (i) Let F be a closed set and 0 < ρ′ < ρ be such that

F ⊂ ∂Ω ∩Bρ′(ξ).

Since [u]F ≤ inf(u, UF ) and UF ∈ C(Ω \ F ), we have
∫

Ω

[u]qFφκ(x)dx ≤
∫

Bρ(ξ)∩Ω

|u|pφκ(x)dx +

∫

Ω\Bρ(ξ)

|UF |pφκ(x)dx <∞.

(ii) Let 0 < ρ1 < ρ2 < ρ, then

[u]Bρ2(ξ)∩∂Ω ≤ u ≤ [u]Bρ2 (ξ)∩∂Ω + U
∂Ω\Bρ2 (ξ)

.

The function [u]Bρ2 (ξ)∩∂Ω which belongs Lq
φκ
(Ω) admits a boundary trace ν ∈ M(∂Ω) and

lim
n→∞

∫

∂Ωn

U
∂Ω\Bρ2 (ξ)

Z(x)dωx0

Ωn
= 0,

for any Z ∈ C(Ω) such that supp(Z) ∩ ∂Ω ⊂ ∂Ω ∩Bρ1(ξ). Combined with Proposition 5.12 it follows

identity (5.14) and finally statement (ii).

Using a partition of unity it is easy to prove the following extension of the previous result.

Proposition 5.14. The set Ru of points ξ such that there exists r > 0 such that (5.14) holds is relatively

open. For any compact set F ⊂ Ru and any open setG ⊂ R
N such that F ⊂ G∩∂Ω ⊂ G ∩ ∂Ω ⊂ Ru,

there holds ∫

G∩Ω

uq(x)φκ(x)dx <∞. (5.15)

Then [u]F ∈ L1
φκ
(Ω), [u]F possesses a boundary trace µF ∈ M(∂Ω) with support in F . There exists a

unique positive Radon measure µu on Ru such that

µF = µuχF , (5.16)

and for any Z ∈ C(Ω) such that supp (Z) ∩ ∂Ω ⊂ Ru, there holds

lim
n→∞

∫

∂Ωn

u(x)Z(x)dωx0

Ωn
=

∫

∂Ω

u(x)Z(x)dµu. (5.17)
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Definition 5.15. The set Su := ∂Ω \ Ru is closed. The couple (Su, µu) is the boundary trace of u,
denoted by Tr∂Ω(u). The measure µu is the regular part of Tr∂Ω(u), the set (Su) is its singular part.

Proposition 5.16. Let u be a positive solution in Ω and let {Ωn} be an exhaustion of Ω. If y ∈ Su then

for every nonnegative Z ∈ C(Ω) such that Z(y) > 0 we have

lim
n→∞

∫

∂Ωn

Zudωx0

Ωn
= ∞.

Proof. Let Z ∈ C(Ω), Z ≥ 0, such that Z(y) 6= 0 and

lim inf
n→∞

∫

∂Ωn

Zudωx0

Ωn
<∞.

There exists a subsequence nj such that

lim
j→∞

∫

∂Ωnj

Zudωx0

Ωnj
=M <∞.

Let r be such that Z(x) > Z(y)
2 , ∀x ∈ Br(y) ∩ Ω, then for any r′ < r we have that

lim sup
j→∞

∫

∂Ωnj

[u]
Br′ (y)∩∂Ωdω

x0

Ωn
<∞.

In view of the proposition of 5.11 the last fact implies that [u]q
Br′ (y)

∈ Lφκ
(Ω), which implies that

u ∈ Lq
φκ
(Br′′(y)) for all r′′ < r′, which is clearly a contradiction, by Proposition 5.13.

Proposition 5.17. Let u be a positive solution of (5.1) in Ω with boundary trace (Su, µu). If F is a

closed subset of Ru, then
∫

Ω

(uLκζ + uqζ)dx =

∫

Ω

KLκ
[µuχF ]Lκζdx,

for any ζ ∈ X(Ω) such that supp (ζ) ∩ ∂Ω ⊂ F.

Proof. The proof is an adaptation to our situation of [27, Th 4.6]. Consider the function ζ ∈ X(Ω) such

that supp(ζ) ∩ ∂Ω ⊂ F. For ǫ > 0, set

Oε = {x ∈ R
N : dist(x, F ) < ε},

and let ε0 > 0 be small enough such that

Oε ∩ ∂Ω ⊂ Ru, ∀ 0 < ε ≤ ε0.

Let ε < ε0
4 and η be a cut off function such that η ∈ C∞

0 (Oε), 0 ≤ η ≤ 1 and η ≡ 1 on O ε
2

. For

0 < β ≤ β0, let vβ be the solution of

Lκw + |w|q−1w = 0 in Ω′
β

w = ηu on Σβ .

Since vβ remains eventually locally uniformly bounded in Ω, there exists a sequence {βj} decreasing to

0 such that vβj
→ v locally uniformly, and

v ≤ [u]∂Ω∩Oε
.
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Thus v has boundary trace µ0 such that

µ0 ≤ µuχ∂Ω∩Oε
.

Let v1β and v2β be the solutions of

Lκw + |w|q−1w = 0 in Ω′
β

w = η[u]∂Ω∩O2ε
on Σβ.

and
Lκw + |w|q−1w = 0 in Ω′

β

w = ηU∂Ω\O2ε
on Σβ ,

respectively. Since u ≤ [u]∂Ω∩O2ε
+ U∂Ω\O2ε

we have that

vβ ≤ v1β + v2β ≤ [u]∂Ω∩O2ε
+ v2β .

Notice that [u]q
∂Ω∩O2ε

∈ L1
φκ
(Ω). From estimate (6.20) we derive

η(x)U∂Ω\O2ε
(x) ≤ c90d

α+
2 (x) ∀x ∈ Ω,

where c90 > 0 depends on N, q, κ and dist (supp(η), ∂Ω \Oǫ). Thus v2β(x) ≤ c90d
α+
2 (x) and

vβ ≤ [u]∂Ω∩O2ε
+ c90d

α+
2 (x), ∀x ∈ Ω′

β. (5.18)

Let wβ be the solution of

Lκw + |w|q−1w = 0 in Ω′
β

w = χ
Σβ(∂Ω\O ε

2
)
[u]F on Σβ .

Then

[u]F ≤ vβ + wβ in Ω′
β .

We have that wβj
→ 0 locally uniformly in Ω, which implies that

[u]F ≤ v.

Thus we have

µuχF ≤ µ0 ≤ µuχ∂Ω∩Oε
. (5.19)

Let ζβ be the solution of

Lκw = Lκζ in Ω′
β

w = 0 on Σβ.

Since ζ ∈ X(Ω), there exists a constant c91 such that ζβ ≤ c91φκ in Ω′
β . Thus there exists a decreasing

sequence {βj} converging to 0 such that ζβj
→ ζ locally uniformly. For simplicity we will denote it by

{β}. Now, ∫

Ω′
β

(uLκζβ + uqζβ)dx = −
∫

∂Ω′
β

∂ζβ
∂n

ηudS

=

∫

Ω′
β

(vβLκζβ + vqβζβ)dx
(5.20)
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which yields, by the definition of ζβ and vβ ,

∫

Ω′
β

(uLκζ + uqζβ)dx =

∫

Ω′
β

(vβLκζ + vqβζβ)dx (5.21)

Since supp (ζ)∩∂Ω ⊂ F , then for β small enough u ∈ Lq
φκ
(Ω∩Oǫ). Furthermore vβ ≤ u⌊Ω′

β
, therefore,

it follows the following convergence relations by the dominated convergence theorem, (5.17) and (3.5):

lim
β→0

∫

Ω′
β

uqζβdx =

∫

Ω

uqζdx and lim
β→0

∫

Ω′
β

vqβζβdx =

∫

Ω

vqζdx,

and

lim
β→0

∫

Ω′
β

uLκζdx =

∫

Ω

uLκζdx and lim
β→0

∫

Ω′
β

vβLκζdx =

∫

Ω′
β

vLκζ.

This implies ∫

Ω

(uLκζ + uqζ)dx =

∫

Ω

(vLκζ + vqζ)dx =

∫

Ω

KLκ
[µ0]Lκζdx.

by (3.19). Letting ε→ 0 we have the desired result from (5.19).

5.2 Subcritical case

We recall that

qc =
N + α+

2

N + α+

2 − 2

is the critical exponent for the equation. If 1 < q < qc, we have seen in section 4 that for any a ∈ ∂Ω and

k ≥ 0 there exists ukδa and limk→∞ ukδa = u∞,a. Furthermore, by Proposition 5.16, Tr∂Ω(u∞,a) =
({a}, 0).
Theorem 5.18. Assume 1 < q < qc and a ∈ Su. Then

u(x) ≥ u∞,a(x) ∀x ∈ Ω. (5.22)

For proof of the above inequality uses some ideas of the proof of Theorem 7.1 in [25] and needs

several intermediate lemmas.

Lemma 5.19. Assume 1 < q < qc. Let {ξn} be a sequence of points in Ω converging to a ∈ ∂Ω and let

l ∈ (0, 1). We define the sets

Ωn := Ω′
d(ξn) = {x ∈ Ω : d(x) > d(ξn)} and Σn := ∂Ωn. (5.23)

Let x0 ∈ Ω′
1 and denote by ωn := ωx0

Ωn
the Lκ-harmonic measure in Ωn relative to x0. Put

Vn = Brn(ξ
n) ∩ ∂Ωn with rn = d(ξn).

Let hn ∈ L∞(Σn), n = 1, 2, ... , and suppose that there exist numbers c and k such that

supp (hn) ⊂ Vn and 0 ≤ hn ≤ cr
−N−α+

2 +2
n , (5.24)

and

lim
n→∞

∫

Σn

hnφdω
x0

Ωn
= kφ(a) ∀φ ∈ C(Ω).
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Let wn be the solution of the problem

Lκwn + |wn|q−1wn = 0 in Ωn

wn = hn on ∂Σn.

Then

wn → uk,a locally uniformly in Ω.

Proof. Let ηn ∈ ∂Ω be such that d(ξn) = |ξn − ηn|. By Corollary 2.30 we have

KLκ
(x, ηn) ≥ 1

c43
r
−N−α+

2 +2
n ≥ 1

c43
hn(x), ∀x ∈ Σn, (5.25)

by the maximum principle,

KLκ
(x, ηn) ≥ 1

c43
wn(x) ∀x ∈ Ωn. (5.26)

Moreover ∫

Ω

K
q
Lκ

(x, y)d
α+
2 (x)dx ≤ c(q,Ω) ∀1 < q < qc,

where c(q,Ω) is a constant independent of y. Since q is subcritical, it follows that the sequences {Kq
Lκ

(·, ηn)}
and {KLκ

(·, ηn} are uniformly integrable in L1
φκ
(Ω). Let wn denotes the extension of wn to Ω defined

by wn = 0 in Ω \ Ωn. In view of (5.25) we conclude that the sequences {wq
n} and {wn} are uniformly

integrable in L1
φκ
(Ω), and locally uniformly bounded in Ω By regularity results for elliptic equations

there exists a subsequence of {wn}, say again {wn} that converges locally uniformly in Ω to a solution

w of (5.1). This fact and the uniform integrability mentioned above imply that

wn → w in Lq
φκ
(Ω) ∩ L1

φκ
(Ω).

Since w ∈ Lq
φκ
(Ω) by Proposition 5.10 there exists µ ∈ M(Ω) such that

∫

Ω

wLκηdx+

∫

Ω

|w|q−1wηdx =

∫

Ω

KLκ
[µ]Lκηdx ∀η ∈ X(Ω).

Furthermore, using (5.25) we prove below that measure µ is concentrated at a. Let φκ,n be the first

eigenfunction ofLκ in Ωn normalized by φκ,n(x0) = 1 for some x0 ∈ Ω1. Let η ∈ X(Ω) be nonnegative

function and let ηn be the solution of the problem

Lκηn =
φκ,n

φκ
Lκη in Ωn

ηn = 0 in ∂Ωn.

Then ηn ∈ C2(Ωn) and since φκ,n → φκ,

Lκηn → Lκη and ηn → η as n→ ∞.

Then we have ∫

Ωn

wnLκηndx +

∫

Ω

|wn|q−1wηdx =

∫

Ω

vnLκηndx, (5.27)

where vn solves

Lκvn = 0 in Ωn

vn = hn on ∂Σn.
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By the same arguments as above there exists a subsequence of {vnχΩn
}, that we still denote by {vnχΩn

},

converging to a a nonnegative Lκ-harmonic function v in L1
φκ
(Ω). By (5.25) we have

cc43KLκ
(x, a) ≥ v(x) ∀x ∈ Ω. (5.28)

Thus there exists a measure ν ∈ M(∂Ω), concentrated at a such that v solves

Lκv = 0 in Ω

v = ν on ∂Ω.

But

k = lim
n→∞

∫

Σn

hndω
x0

Ωn
= lim

n→∞
vn(x0) = v(x0) =

∫

∂Ω

dν,

the results follows if we let n tend to ∞ in (5.27).

Lemma 5.20. For every l ∈ (0, 1) there exists a constant cl = c(N, κ, q, l) such that, for every positive

solution u of (5.1) in Ω and every x0 ∈ Ω,

u(x) ≤ clu(y) ∀x, y ∈ Blr0(x0) r0 = d(x0). (5.29)

Proof. Put r1 = 1+l
2 r0. Then u satisfies

Lκu+ uq = 0 in Br1(x0).

Denote by Ωr0 the domain

Ωr0 = {y ∈ R
n : r0y ∈ Ω}.

Set v(y) = u(r0y), and y0 = x0

r
, then v(y) satisfies

−∆v − κ
v

dist2(y, ∂Ωy0)
+ r20 |v|q−1v = 0 in B 1+l

2
(y0).

Now note that
1

dist2(y, ∂Ωy0)
≤ 4

(1− l)2
∀y ∈ B 1+l

2
(y0),

and by Keller Osserman condition

r20 |v(y)|q−1 = r20 |u(r0y)|q−1 ≤ C(Ω, κ,N)r20
1

d2(r0y)
≤ C(Ω, κ,N)B 1+l

2
(y0).

Thus, by Harnack inequality, there exists a constant cl > 0 such that

v(z) ≤ clv(y) ∀z, y ∈ Bl(y0),

and the results follows.

For the proof of the next lemma we need some notations. Let β > 0 and ξ ∈ Σβ := ∂Ω′
β. We set

∆β
r (ξ) = Σβ ∩ Br(ξ) and, for 0 < r < β < 2r, xβr = xβr (ξ) ∈ Ωβ , such that d(xβr ) = |xβr − ξ| = r.

Also we denote by ωx
Ω′

β
the Lκ-harmonic measure in Ω′

β := Ω \ Ωβ relative to x
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Lemma 5.21. Let r0 = r0(Ω) > 0 be small enough and 0 < r ≤ r0
4 . Then there exists a constant c95

which depends only on Ω, N such that

ωx
Ω′

β
(∆r(ξ)) > c95 ∀x ∈ Ω ∩B r

2
(ξ). (5.30)

Proof. Since x 7→ ωx
Ω′

β
is positive and Lκ-harmonic in Ω′

β , it is a positive superharmonic function

(relative to the Laplacian) in Ω′
β . Thus

ωx
Ω′

β
≥ υxΩ′

β
∀x ∈ Ω′

β .

The result follows by [9, Lemma 2.1].

Lemma 5.22. Let κ = 1
4 , ε ∈ (0, 1) and x0 ∈ Ω1. Let {ξn} be a sequence of points in Ω converging to

a ∈ ∂Ω. Then there exist n0 = n0(ε,Ω) ∈ N and c96 = c96(Ω, N, ε) such that

ωx0

Ωn
(Bd(ξn)(ξ

n) ∩ ∂Ωn) ≥ c96d(ξ
n)N+ 1

2−2(− log d(ξn))1−ε ∀n ≥ n0. (5.31)

Proof. We recall that for any n ∈ N Ωn is defined by (5.23), GΩn

L 1
4

≤ GL 1
4

:= GΩ
L 1

4

, and for a fixed

point y0 ∈ Ω1

GΩn

L 1
4

χΩn
(x) ↑ GL 1

4

(x, y0) locally uniformly in Ω \ y0. (5.32)

Set x(ξn) = x2rnrn
2
(ξn), with rn = d(ξn)

2 . By (2.10) we have

rN−2
n Gn

L 1
4

(x, x(ξn)) < c97 ∀x ∈ Ωn ∩ ∂Brn(ξ
n),

and by Lemma 5.21 there exists r0 = r0(Ω) > 0 such that for any rn ≤ r0
4

rN−2
n GΩn

L 1
4

(x, x(ξn)) ≤ c98ω
x
Ωn

(∂Ωn ∩Brn(ξ
n)) ∀x ∈ Ωn ∩ ∂Brn(ξ

n).

Since if |x− y| > ε > 0 there holds

GΩn

L 1
4

(x, y) ≈ c99(ε,Ωn)dist(x, ∂Ωn)dist(y, ∂Ωn),

thus we have by the maximum principle and properties of the Green function

rN−2
n GΩn

L 1
4

(x, x(ξn)) ≤ c100ω
x
Ωn

(∂Ωn ∩Brn(ξ
n)) ∀x ∈ Ωn \Brn(ξ

n). (5.33)

By [4, Lemma 2.8] there exists β0 = β0(Ω, ε) > 0 such that the function

h1(x) = d
1
2 (x)(− log d(x))

(
1 + (− log d(x))

−ε
)
,

is a supersolution in Ωβ0 and the function

h2(x) = d
1
2 (x)(− log d(x))

(
1− (− log d(x))

−ε
)
)
,

is a subsolution in Ωβ0 . Set

c101 =
1− (− log d(ξn))

−ε

1 + (− log d(ξn))
−ε
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and

H(x) = h2(x) − c101h1(x).

Let n0 ∈ N such that rn ≤ β0

4 , ∀n ≥ n0. then the function H(x) is a nonnegative subsolution in

Ωn \ Ω′
β0
, and H(x) = 0, ∀x ∈ ∂Ωn. By (5.32) we can choose n1 ∈ N such that

GΩn

L 1
4

(x0, x) ≥ c(Ω, N, κ)β
1
2
0 ∀x ∈ ∂Ω′

β0
.

Thus we can find a constant c102 = c102(β0) > 0 such that

c102H(x) ≤ GΩn

L 1
4

(x0, x) ∀x ∈ ∂Ω′
β0
.

Since H vanishes on ∂Ωn it follows by the maximum principle that

c102H(x) ≤ GL 1
4

(x0, x) ∀x ∈ Ωn \ Ω′
β0
. (5.34)

But

H(x(ξn)) ≥ c103(β0) ≥ c104(Ω, N)r
1
2
n (− log rn)

1−ε,

thus the result follows by the above inequality combined with inequalities (5.34) and (5.33).

Lemma 5.23. Let κ < 1
4 , ε ∈

(
0,
√
1− 4κ

)
and x0 ∈ Ω1. Let {ξn} be a sequence of points in Ω

converging to a ∈ ∂Ω. Then there exists n0 = n0(ε,Ω) ∈ N such that

ωx0

Ωn

(
Bd(ξn)(ξ

n) ∩ ∂Ω′
n

)
≥ c105(Ω, N, κ, ε)d(ξ

n)N+
α−
2 +ε−2 ∀n ≥ n0,

where Ωn is defined by (5.23)

Proof. The proof is similar as the one of Lemma 5.22. The only difference is that we use dα−(1 − dε)
and the supersolution dα−(1 + dε) as a subsolution.

Proof of Theorem 5.18. Step 1: if

lim sup
x∈Ω, x→a

(d(x))N+
α+
2 −2u(x) <∞, (5.35)

then a ∈ Ru. Thus we have to prove that there exists r0 > 0 such that u ∈ Lq
φκ
(Ω ∩Br0(a)). By (5.35)

there exists r1 > 0 such that

sup
x∈Ω∩Br1(a)

dN+
α+
2 −2(x)u(x) =M <∞.

Let U be a smooth open domain such that

Ω ∩B r1
2
(a) ⊂ U ⊂ Ω ∩Br1(a),

and

U ∩ ∂Ω ⊂ ∂Ω ∩Br1(a).

For β > 0, set

dU (x) = dist(x, ∂U) ∀x ∈ U, Uβ = {x ∈ U : dU (x) > β}, Vβ = U \ Uβ .
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Let β0 > 0 be small enough such that dU ∈ C2(Uβ0). Let 0 < β < β0 and ζ(x) = dU (x) − β. Then u
satisfies ∫

∂Vβ

udS =

∫

Vβ\Vβ0

(uLκζ + uqζ)dx −
∫

∂Vβ0

∂u

∂n
ζdS.

Now ∣∣∣∣∣

∫

∂Vβ0

∂u

∂n
ζdS

∣∣∣∣∣ ≤ c106(β0 − β),

where c106 depends on q, κ,Ω, β0,

∫

Vβ\Vβ0

uLκζdx ≤ −
∫

Vβ\Vβ0

u∆ζdx ≤ c107

∫

Vβ\Vβ0

udx,

and by (5.35)

uq−1(x) ≤ c108(d(x))
−(q−1)(N+

α+
2 −2) ≤ c108(dU (x))

−(q−1)(N+
α+
2 −2) ∀x ∈ U.

Combining the above inequalities, we derive

∫

∂Vβ

udS ≤ c109

(∫ β0

β

(σ1−(q−1)(N+
α+
2 −2) + 1)

∫

∂Vσ

u(x)dSdσ + 1

)
.

Multiplying the above inequality by β
α+
2 we get

∫

∂Vβ

ud
α+
2

U dS ≤ c109

(∫ β0

β

(σ1−(q−1)(N+
α+
2 −2) + 1)

∫

∂Vσ

d
α+
2

U (x)u(x)dSdσ + 1

)
.

Set

U(σ) =

∫

∂Vσ

d
α+
2

U (x)u(x)dS,

Then we have

U(β) ≤ c110

(∫ β0

β

(σ1−(q−1)(N+
α+
2 −2) + 1)U(σ)dσ + 1

)
, (5.36)

Set

W (β) =

∫ β0

β

(σ1−(q−1)(N+
α+
2 −2) + 1)U(σ)dσ + 1,

then

W ′(β) = −(β1−(p−1)(N+
α+
2 −2) + 1)U(β) = −h(β)U(β).

Thus inequality (5.36) becomes

−W ′(β) ≤ c110h(β)W (β) ⇐⇒ (H(β)W (β))
′ ≥ 0,

where

H(β) = e−c110
∫ β0
β

h(s)ds.

Thus we have

W (β) ≤ 1

H(β)
W (β0) ∀0 < β < β0.
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But
1

H(β)
= ec110

∫ β0
β

h(s)ds = ec110
∫ β0
β

σ
1−(q−1)(N+

α+
2

−2)+1ds <∞

if and only if

2− (q − 1)(N +
α+

2
− 2) > 0 ⇐⇒ q < qc.

Thus we have proved that ∫

U

uq(dU (x))
α+
2 dx <∞,

which implies the existence of a r2 > 0 such that

∫

Ω∩Br2(a)

uq(d(x))
α+
2 dx <∞,

i.e. a ∈ Ru, which is the claim.

Step 2. Since a ∈ Su the previous statement implies that there exists a sequence {ξn} ⊂ Ω such that

ξn → a and lim sup
n→∞

(d(ξn))N+
α+
2 −2u(ξn) = ∞. (5.37)

By Lemma 5.20, there exists a constant cl such that

u(x) ≤ clu(y) ∀x, y ∈ B rn
2
(ξn), rn = d(ξn). (5.38)

Put Vn := B rn
2
(ξn) ∩ ∂Ω′

rn
, and, for k > 0, hn,k := k

bn
uχVn

.

Case 1: κ = 1
4 . By (5.38) and Lemma 5.22 there exists a constant c111 > 0 such that

bn :=

∫

Vn

udS ≥ c111Anr
N+ 1

2−2
n (− log rn)

1−ε, An := sup
x∈B rn

2
(ξn)

u(x).

Then ∫

∂Ω′
n

hn,kdS = k, hn,k ≤ k

c2
r
2−α+

2 −N
n χVn

∀n ≥ n0. (5.39)

By (5.37),

bn → ∞, rn → 0. (5.40)

Hence, for every k > 0 there exists nk such that

u ≥ hn,k on ∂Ω′
n ∀n ≥ nk. (5.41)

Let wn,k be defined as in Lemma 5.19 with hn replaced by hn,k. By (5.39) and (5.40), the sequence

{hn,k}∞n=1 satisfies (5.24) for every fixed k > 0. Therefore by Lemma 5.19

lim
n→∞

wn,k = ukδa locally uniformly in Ω.

By (5.41), u ≥ wn,k in x ∈ Ω : d(x) > rn. Hence u ≥ ukδa for every k > 0. The proof in the case

0 < κ < 1
4 is similar. 2

As a consequence we provide a full classification of positive solution of (4.1) with a boundary iso-

lated singularity.
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Theorem 5.24. Assume 1 < q < qc and u ∈ C(Ω \ {0}) is a positive solution of (4.1) which satisfies

lim
x∈Ω, x→ξ

u(x)

W (x)
= 0 ∀ξ ∈ ∂Ω \ {0}.

Then the following alternative holds:

(i) either there exists k ≥ 0 such that

lim
x → 0, x ∈ Ω

x|x|−1 → σ

|x|N+
α+
2 −2u(x) = kψ1(σ) (5.42)

and u solves

−∆u− κ

d2
u+ uq = 0 in Ω

u = kδ0 in ∂Ω,
(5.43)

(ii) or

lim
x → 0, x ∈ Ω

x|x|−1 → σ

|x| 2
q−1 u(x) = ωκ(σ)

(5.44)

locally uniformly on SN−1
+ .

The result is a consequence of the following result

Lemma 5.25. Assume 1 < q < qc, a ∈ ∂Ω and Fǫ(a) = ∂Ω ∩Bǫ(a). Then

lim
ǫ→0

UFǫ(a) = u∞,a. (5.45)

Proof. Without loss of generality, we can assume a = 0. Clearly, U{0} := limǫ→0 UFǫ(0) is a solution

of (5.1) which satisfies

lim
x→ξ

U{0}
W (x)

= 0 ∀ξ ∈ ∂Ω \ {0}

locally uniformly on ∂Ω \ {0}. By (6.20) it verifies

U{0}(x) ≤ c|x|− 2
q−1

(
d(x)
|x|

)α+
2

. (5.46)

By Proposition 4.5 and (6.24), we can follow the same argument like in the proof of Theorem 3.4.6-

(ii) in [28] to prove that: there exists c0 = c112(N, κ, q) > 1 such that

1

c0
|x|− 2

q−1

(
d(x)

|x|

)α+
2

≤ u∞,0(x) ≤ U{0}(x) ≤ c0|x|−
2

q−1

(
d(x)

|x|

)α+
2

Which implies

U{0}(x) ≤ cu∞,0(x) ∀x ∈ Ω, (5.47)

where c = c122(N, κ, q) > 1.
Assume U{0} 6= u∞,0, thus U{0}(x) > u∞,0(x) for all x ∈ Ω and put ũ = u∞,0− 1

2c (U{0}−u∞,0).

By convexity ũ is a supersolution of (5.1) which is smaller than u∞,0. Now c+1
2c u∞,0 is a subsolution,

thus there exists a solution u of (5.1) in Ω which satisfies

c+ 1

2c
u∞,0(x) ≤ u(x) ≤ ũ(x) < u∞,0(x) ∀x ∈ Ω. (5.48)
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This implies that Tr∂Ω(u) = ({0}, 0), and by Theorem 5.18, u ≥ u∞,0, which is a contradiction.

Proof of Theorem 5.24 Assume a = 0 without loss of generality. If a ∈ Su, then for any ǫ > 0,

u ≤ UFǫ(0) which is a maximal solution which vanishes on ∂Ω \ Fǫ(0). Thus, using (5.45)

u ≤ lim
ǫ→0

UFǫ(0) = U{0} = u∞,0.

If 0 ∈ Ru, this implies that Tr∂Ω(u) = (∅, kδ0) for some k ≥ 0 and we conclude with Corollary

4.4.

The next result can be proven by using the same approximation methods as in [25, Th 9.6].

Theorem 5.26. . Assume S ⊂ ∂Ω is closed and ν is a positive Radon measure on R = ∂Ω \ S. Then

there exists a positive solution of (4.1) in Ω with boundary trace (S, µ).

6 Appendix I: barriers and a priori estimates

6.1 Barriers

Following a localization principle introduced in [25] we the following lemma is at the core of the a priori

estimates construction

Proposition 6.1. Let Ω ⊂ RN be a C2 domain 0 < κ ≤ 1
4 and p > 1.Then there exists R0 > 0 such

that for any z ∈ ∂Ω and 0 < R ≤ R0, there exists a super solution f := fR,z of (4.1) in Ω∩BR(z) such

that f ∈ C(Ω ∩ BR(z)), f(x) → ∞ when dist (x,K) → 0, for any compact subset K ⊂ Ω ∩ ∂BR(z)
and which vanishes on ∂Ω ∩BR(z), and more precisely

f(x) =





cβ,γ,κ,q(R
2 − |x− z|2)−βdγ(x) ∀γ ∈ (α−

2 ,
α+

2 ) if 0 < κ < 1
4

cβ,γ,q(R
2 − |x− z|2)−β

√
d(x)

√
ln
(

diam(Ω)
d(x)

)
if κ = 1

4

(6.1)

for β ≥ max{ 2
q−1 + γ, N−2

2 , 1}.

Proof. We assume z = 0

Step 1: κ < 1
4 . Set f(x) = Λ(R2 − |x|2)−β(d(x))γ where β, γ > 0 to be chosen later on. Then, with

r = |x|,

Λ−1Lκf

= −(R2 − r2)−β
(
∆dγ + κdγ−2

)
− dγ∆(R2 − r2)−β − 2∇(R2 − r2)−β .∇dγ

Since ∆d(x) = (N−1)Hd whereHd is the mean curvature of the foliated set Σd := {x ∈ Ω : d(x) = d}
and |∇d|2 = 1,

∆dγ = (N − 1)γHdd
γ−1 + γ(γ − 1)dγ−2

∆dγ + κdγ−2 = (N − 1)γHdd
γ−1 + (γ(γ − 1) + κ) dγ−2

∇dγ = γdγ−1∇d,
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∇(R2 − r2)−β = 2β(R2 − r2)−β−1x,

thus

∇(R2 − r2)−β .∇dγ = 2βγdγ−1(R2 − r2)−β−1x∇d

∆(R2 − r2)−β = 2Nβ(R2 − r2)−β−1 + 4β(β + 1)(R2 − r2)−β−2r2

= 2β(R2 − r2)−β−2
(
NR2 + (2β + 2−N)r2

)

Then

Λ−1Lκf = −(R2 − r2)−β−2dγ−2
[
(R2 − r2)2 ((N − 1)γHdd+ γ(γ − 1) + κ)

+2βd2
(
NR2 + (2β + 2−N)r2

)
+ 4βγd(R2 − r2)x.∇d

]

Therefore

Lκf + f q = Λ(R2 − r2)−β−2dγ−2
[
Λq−1(R2 − r2)−(q−1)β+2d(q−1)γ+2

−(R2 − r2)2 ((N − 1)γHdd+ γ(γ − 1) + κ)

−2βd2
(
NR2 + (2β + 2−N)r2

)
+ 4βγd(R2 − r2)x.∇d

]
(6.2)

If we fix β ≥ max{ 2
q−1 + γ, N−2

2 , 1}, there holds

2βd2
(
NR2 + (2β + 2−N)r2

)
+ 4βγd(R2 − r2)x.∇d ≤ 4d2β(β + 1)NR2 + 4βγdR(R2 − r2)

We choose
α−
2 < γ < α+

2 so that γ(γ − 1) + κ < 0. There exist δ0, ǫ0 > 0 such that

(N − 1)γHdd+ γ(γ − 1) + κ < −ǫ0 < −1

provided d(x) ≤ δ0. We set

A =

{
x ∈ Ω ∩BR : d(x) ≤ ǫ0(R

2 − r2)

16βR

}
and B := A ∩

{
x ∈ Ω ∩BR : d(x) ≤ δ0

}

Then, if x ∈ B, there holds

−(R2 − r2)2 ((N − 1)γHdd+ γ(γ − 1) + κ)− 2βd2
(
NR2 + (2β + 2−N)r2

)

+ 4βγd(R2 − r2)x.∇d ≥ (R2 − r2)2ǫ0
2

Finally, assume x ∈ Ac ∩
{
x ∈ Ω ∩BR : d(x) ≤ δ0

}
and thus

d ≥ c1
R2 − r2

R

In order to have

(i) Λq−1(R2 − r2)2−(q−1)βd(q−1)γ+2 ≥ d2R2

(ii) Λq−1(R2 − r2)2−(q−1)βd(q−1)γ+2 ≥ dR(R2 − r2)
(6.3)
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or equivalently

(i) ⇐⇒ Λ
1
γ d ≥ (R2 − r2)

β
γ

(ii) ⇐⇒ Λ
q−1

(q−1)γ+1 d ≥ R
1

(q−1)γ+1 (R2 − r2)
(q−1)β−1
(q−1)γ+1

(6.4)

it is sufficient to have, for (i)

c1Λ
1
γ
R2 − r2

R
≥ (R2 − r2)

β
γ ∀r ∈ (0, R) ⇐⇒ Λ ≥ c2R

2β−γ (6.5)

and for (ii)

c1Λ
q−1

(q−1)γ+1
R2 − r2

R
≥ R

1
(q−1)γ+1 (R2 − r2)

(q−1)β−1
(q−1)γ+1 ∀r ∈ (0, R)

⇐⇒ Λ ≥ c2R
2β−γ− 2

q−1

(6.6)

where c2 = c2(N, γ, β) > 0 since β > γ + 2
q−1 .

At end, in the set C := {x ∈ Ω : d(x) ≥ δ0}, it suffices that

Λ ≥ c3 max
{
R2β, R2β− 1

q−1

}
(6.7)

for some c3 = c3(N, γ, β,max |Hd|, δ0) > 0 in order to insure

(i) Λq−1(R2 − r2)−(q−1)β+2d(q−1)γ+2 ≥ (R2 − r2)2(N − 1)γ|Hd|d
(ii) Λq−1(R2 − r2)−(q−1)β+2d(q−1)γ+2 ≥ 4d2β(β + 1)NR2

(iii) Λq−1(R2 − r2)−(q−1)β+2d(q−1)γ+2 ≥ 4βdR(R2 − r2).

(6.8)

Noticing that 2β > 2β − 1
q−1 , 2β − γ > 2β − γ − 1

q−1 , we conclude that there exists a constant

c4 = c4(N, γ, β,max |Hd|, δ0) > 0 such that if

Λ ≥ c4 max
{
R2β, R2β−γ− 1

q−1

}
(6.9)

there holds

Lκ(f) + f q ≥ 0 in Ω. (6.10)

Step 2: κ = 1
4 . Set f(x) = Λ(R2 − r2)−β

√
d(ln eR

d
)

1
2 for some Λ, β to be fixed. Then

∆
√
d(ln eR

d
)

1
2 = 1√

d

(
1
2 (ln

eR
d
)

1
2 − 1

2 (ln
eR
d
)−

1
2

)
∆d

+ 1

d
3
2

(
− 1

4 (ln
eR
d
)

1
2 − 1

4 (ln
eR
d
)−

3
2

)

= N−1√
d

(
1
2 (ln

eR
d
)

1
2 − 1

2 (ln
eR
d
)−

1
2

)
Hd

+ 1

d
3
2

(
− 1

4 (ln
eR
d
)

1
2 − 1

4 (ln
eR
d
)−

3
2

)

Thus

∆
√
d(ln eR

d
)

1
2 + κ

d2

√
d(ln eR

d
)

1
2 = N−1√

d

(
1
2 (ln

eR
d
)

1
2 − 1

2 (ln
eR
d
)−

1
2

)
Hd − 1

4d
3
2
(ln eR

d
)−

3
2

= 1

d
3
2
(ln eR

d
)−

3
2

[
(N − 1)dHd

(
1
2 (ln

eR
d
)2 − 1

2 (ln
eR
d
)
)
− 1

4 )
]
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Further

∇(R2 − r2)−β .∇
√
d(ln eR

d
)

1
2 =

β(R2−r2)−β−1(ln eR
d

)−
1
2√

d

(
(ln eR

d
)− 1

)
x.∇d.

Therefore

Λ−1Lκf = −(R2 − r2)−β−2d−
3
2 (ln eR

d
)−

3
2

[
(R2 − r2)2

[
(N − 1)dHd

(
1
2 (ln

eR
d
)2 − 1

2 (ln
eR
d
)
)
− 1

4

]

+2β(R2 − r2)d
[
(ln eR

d
)2 − (ln eR

d
)
]
x.∇d + 2βd2(ln eR

d
)2
[
NR2 + (2β + 2−N)r2

] ]

Finally

Lκf + f q = Λ(R2 − r2)−β−2d−
3
2 (ln eR

d
)−

3
2

[
Λq−1(R2 − r2)(1−q)β+2d

q+3
2 (ln eR

d
)

1
2 (q−1)+2

−(R2 − r2)2
[
(N − 1)dHd

(
1
2 (ln

eR
d
)2 − 1

2 (ln
eR
d
)
)
− 1

4

]

−2β(R2 − r2)d
[
(ln eR

d
)2 − (ln eR

d
)
]
x.∇d− 2βd2(ln eR

d
)2
[
NR2 + (2β + 2−N)r2

] ]
.

(6.11)

Notice that eR
d

≥ e thus − 1
2 ≤ (ln eR

d
)2 − (ln eR

d
) ≤ (ln eR

d
)2 If β is large enough, as in Step 1, there

holds
∣∣2β(R2 − r2)d

[
(ln eR

d
)2 − (ln eR

d
)
]
x.∇d+ 2βd2(ln eR

d
)2
[
NR2 + (2β + 2−N)r2

]∣∣

≤ 4Nβ(β + 1)(ln R
d
)2
(
(R2 − r2)dR+ d2R2

)
.

There exists δ0 > 0 such that

(N − 1)dHd

(
1
2 (ln

eR
d
)2 − 1

2 (ln
eR
d
)
)
− 1

4 ≤ − 1
8 < −1

if d(x) ≤ δ0. If we define A,B by

A =

{
x ∈ Ω ∩BR : d(x) ≤ ǫ0(R

2 − r2)

16βR(ln eR
d
)2

}
and B := A ∩

{
x ∈ Ω ∩BR : d(x) ≤ δ0

}

there holds if x ∈ B

−2β(R2 − r2)d
[
(ln eR

d
)2 − (ln eR

d
)
]
x.∇d − 2βd2(ln eR

d
)2
[
NR2 + (2β + 2−N)r2

]

− (R2 − r2)2
[
(N − 1)dHd

(
1
2 (ln

eR
d
)2 − 1

2 (ln
eR
d
)
)
− 1

4

]
≥ (R2−r2)2

16 .

If x ∈ Ac ∩ {x ∈ Ω ∩ Ω : d(x) ≤ δ0}, then

d(x) ≥ c1
R2 − r2

R(ln eR
d
)2
. (6.12)

In order to have

(i) Λq−1(R2 − r2)(1−q)β+2d
q+3
2 (ln eR

d
)

q+3
2 2 ≥ (ln eR

d
)2(R2 − r2)dR

(ii) Λq−1(R2 − r2)(1−q)β+2d
q+3
2 (ln eR

d
)

q+3
2 ≥ (ln eR

d
)2d2R2

(6.13)
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or equivalently

(i) Λ
2q−2
q+1 d(ln eR

d
)

q−1
q+1 ≥ (R2 − r2)

2(q−1)β−2
q+1 R

2
q+1

(ii) Λ2d ln eR
d

≥ R
4

q−1 (R2 − r2)2β−
4

q−1

(6.14)

Up to taking c1 small enough, (6.12) is fulfilled if

eR

d
≤ R2

R2 − r2

(
ln( R2

R2−r2
)
)2

⇐⇒ d ≥ e(R2 − r2)

R

(
ln( R2

R2−r2
)
)−2

. (6.15)

Inequality (6.13)-(i) will be insured if

Λ
2q−2
q+1 ≥ 1

e
(R2 − r2)2

(q−1)β−1
q+1 −1R

2
q+1+1(ln( R2

R2−r2
)

2
q+1

which holds if, for any ǫ > 0, we have for any r ∈ (0, R)

Λ
2q−2
q+1 ≥ Cǫ(R

2 − r2)2
(q−1)β−1

q+1 −1R
2

q+1+1

(
R2

R2 − r2

)ǫ

.

A sufficient condition for such a task is, with the help of (6.15),

Λ ≥ c3R
3β− 2

q−1 . (6.16)

As for (6.13)-(ii), it will be insured if

Λ ≥ c4R
2β− 2

q−1− 1
2 (6.17)

Thus, if

Λ ≥ c5 max{R2β− 2
q−1− 1

2 , R3β− 2
q−1 } (6.18)

for some c5 > 0 = c5(N, γ, β, δ0, |Hd|), the function f satisfies (6.10).

6.2 A priori estimates

By the Keller-Osserman estimate, it is clear that any solution u of 4.1 in Ω satisfies

u(x) ≤ C(q,Ω, N)d−
2

q−1 (x) ∀x ∈ Ω. (6.19)

This estimate is also a consequence of the following result [4, Prop 3.4]

Proposition 6.2. Let φ∗ be the first positive eigenfunction of −∆ in H1
0 (Ω). For q > 1, there exists

γ > 0 and ǫ0 > 0 such that for any 0 ≤ ǫ ≤ ǫ0 the function h+ǫ = γ(φ∗ − ǫ)−
2

q−1 is a supersolution of

4.1 in Ωǫ,φ∗ := {x ∈ Ω : φ∗(x) > ǫ}.

We recall here that

W (x) =

{
d

α−
2 (x) if κ < 1

4

d
1
2 (x)| log d(x)| if κ = 1

4
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Proposition 6.3. Let Ω be a bounded open domain uniformly of class C2 and let F be a compact subset

of the boundary. Let u be a nonnegative solution of 5.1 in Ω such that

lim
x∈Ω, x→ξ

u(x)

W (x)
= 0 ∀ξ ∈ ∂Ω \ F,

locally uniformly in ∂Ω \ F . Then there exists a constant C depending only on q, κ and Ω such that,

|u(x)| ≤ Cd
α+
2 (x) (dist(x, F ))

− 2
q−1−

α+
2 ∀x ∈ Ω, (6.20)

| u(x)

d
α+
2 (x)

− u(y)

d
α+
2 (y)

| ≤ C|x− y|β (dist(x, F ))− 2
q−1−β−α+

2 ∀(x, y) ∈ Ω× Ω (6.21)

such that dist(x, F ) ≤ dist(y, F ),

|∇u(x)| ≤ Cd
α+
2 −1(x) (dist(x, F ))−

2
q−1−

α+
2 ∀x ∈ Ω. (6.22)

Proof. The proof is based on the proof of Proposition 3.4.3 in [28]. Let ξ ∈ ∂Ω \ F and put dF (ξ) =
1
2dist(ξ, F ). Denote by Ωξ the domain

Ωξ = {y ∈ R
n : dF (ξ)y ∈ Ω}.

If u is a positive solution of (5.1) in Ω, denote by uξ the function

uξ(y) = |dF (ξ)|
2

q−1 u(dF (ξ)y), ∀y ∈ Ωξ.

Then,

−∆uξ − κ
u

|dist(y, ∂Ωξ)|2 +
∣∣uξ
∣∣q = 0 in Ωξ.

Let R0 be the constant in Proposition 6.1. First, we assume that

dist(ξ, F ) ≤ 1

1 +R0
.

Set r0 = 3R0

4 , then the solution Wr0,ξ mentioned in Proposition 6.1 satisfies

uξ(y) ≤Wr0,ξ(y) ∀y ∈ B 3R0
4
(ξ) ∩ Ωξ.

Thus uξ is bounded in B 3R0
5
(ξ) ∩ Ωξ by a constant C > 0 depending only on n, q, κ and the C2

characteristic of Ωξ. As dF (ξ) ≤ 1 a C2 characteristic of Ω is also a C2 characteristic of Ωξ therefore

the constant C can be taken to be independent of ξ. We note here that the constant 0 < R0 < 1 depends

on C2 characteristic of Ω.
Now we note that

lim
y∈Ωξ, y→P

uξ(y)

W (x)
= 0 ∀P ∈ ∂Ωξ ∩B 3R0

5
(ξ).

Thus in view of the proof of Lemmas 2.11 and 2.12, by the above inequality and in view of the proof of

Theorem 2.12 in [14], we have that there exists C > 0 depending only on n, p, κ such that

uξ(y) ≤
∣∣dist(y, ∂Ωξ)

∣∣
α+
2 ∀y ∈ BR0

2
(ξ) ∩ Ωξ. (6.23)
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uξ(y)

|dist(y, ∂Ωξ)|
α+
2

≤ C
uξ(x)

|dist(x, ∂Ωξ)|
α+
2

∀x, y ∈ BR0
2
(ξ) ∩Ωξ

Hence

uξ(x) ≤ d
α+
2 (x)dF (ξ)

− 2
q−1−

α+
2 ∀x ∈ B

dF (ξ)
R0
2
(ξ) ∩ Ω.

u(y)

d
α+
2

(y) ≤ C
uξ(x)

d
α+
2 (x)

∀x, y ∈ B
dF (ξ)

R0
2
(ξ) ∩ Ω. (6.24)

Let x ∈ ΩR0
2

and assume that

d(x) ≤ R0

2
dF (x).

Let ξ be the unique point in ∂Ω \ F such that |x− ξ| = d(x). Then we have

dF (ξ) ≤ d(x) + dF (x) ≤ (1 +R0)dF (x) < 1

and

|u(x)| ≤ Cd
α+
2 (x) ((1 +R0)dist(x, F ))

− 2
q−1−

α+
2 .

If d(x) > R0

4 dF (x), then by (6.19) we have that

|u(x)| ≤ Cd−
2

q−1 (x) ≤ Cd
α+
2 (x)

(
R0

2
dist(x, F )

)− 2
q−1−

α+
2

.

Thus (6.20) holds for every x ∈ ΩR0
2

such that dist(x, F ) < 1
1+R0

.

Now we assume that x ∈ ΩR0
2

and

dist(x, F ) ≥ 1

1 +R0
.

Let ξ be the unique point in ∂Ω \ F such that |x − ξ| = d(x). Similarly with the proof of 6.23 we can

prove that

u(x) ≤ Cd
α+
2 (x) ≤ d

α+
2 (x)C ((1 +R0)dist(x, F ))

− 2
q−1−

α+
2 ∀x ∈ BR0

2
(ξ) ∩ Ω.

Now if x ∈ Ω \ ΩR0
2
, the proof of (6.20) follows by (6.19).

(ii) Let x0 ∈ Ω. Set

Ωx0 = {y ∈ R
n : d(x0)y ∈ Ω},

and dx0(y) = dist(y, ∂Ωx0). If x ∈ B d(x0)
2

(x0) then y = x
d(x0)

belongs to B 1
2
(y0), where y0 = x0

d(x0)
.

Also we have that 1
2 ≤ dx0(y) ≤ 3

2 for each y ∈ B 1
2
(y0). Set now v(y) = u(d(x0)y), ∀y ∈ B 1

2
(y0).

Then v satisfies

−∆v − κ
u

|dx0(y)|2
+ d2(x0) |v|q = 0 in B 1

2
(y0).

By standard elliptic estimate we have

sup
y∈B 1

4
(y0)

|∇v| ≤ C


 sup

y∈B 1
3
(y0)

|v|+ sup
y∈B 1

3
(y0)

d2(x0)|v|q

 ,
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Now since ∇v(y) = d(x0)∇u(d(x0)y), by above inequality and (6.20) we have that

|∇u(x0)| ≤ C
(
d

α+
2 −1(x0) (dist(x0, F ))

− 2
q−1−

α+
2 + d

qα+
2 +1(x0) (dist(x0, F ))

−q( 2
q−1−

α+
2 )
)
.

Using 2q
q−1 = 2

q−1 + 2 and the fact that x0 is arbitrary the result follows.

Proposition 6.4. Let O ⊂ ∂Ω be a relatively open subset and F = O. Let UF be defined by (5.7) be the

maximal solution of (5.1) which vanishes on ∂Ω \ F . Then for any compact set K ⊂ O, there holds

lim
ξ→x

(d(ξ))
2

q−1UF (ξ) = ℓκ =

(
2(q + 1)

(q − 1)2
+ κ

) 1
q−1

uniformly with respect to x ∈ K. (6.25)

Proof. Step 1. We claim that for any ǫ > 0 there exists Cǫ, τǫ > 0 such that for any z ∈ O such that

B2τǫ(z) ⊂ O, there holds

u(x) ≤ (ǫ+ ℓq−1
κ )

1
q−1 τ−

2
q−1 + Cǫ ∀τ ∈ (0, τǫ], ∀x ∈ Στ (Bτǫ(z)). (6.26)

We recall thatΣτ (Bτǫ(z)) =
{
x ∈ Ω, x ≈ (d(x), σ(x)), d(x) = τ, σ(x) ∈ Bτǫ(z)

}
. Set g(x) = ℓd−

2
q−1 (x),

then

Lκg + gq =
2(N − 1)

q − 1
Hdd

− q+1
q−1 +

(
ℓq−1 − ℓq−1

κ

)
d
−

2q

q − 1 , (6.27)

where Hd is the mean curvature of Σd. If Ω is convex we take ℓ = ℓκ and g is a supersolution for

d(x) ≤ R0 for someR0. In the general case, we take ℓ = ℓ(ǫ) = (ǫ+ℓq−1
κ )

1
q−1 , and g = gǫ = ℓ(ǫ)d−

2
q−1

is a supersolution in the set Ωτǫ where

τǫ = max

{
τ : 0 < τ ≤ R0

2
,
2(N − 1)

q − 1
‖Hτ‖L∞(Στ ) + ǫ > 0

}
.

Then f2τǫ,z + gǫ is a supersolution of (5.1) in B2τǫ(z)∩Ω which tends to infinity on ∂(B2τǫ(z)∩Ω) =

∂Ω∩B2τǫ(z)∪Ω∩∂B2τǫ(z). Since we can replace gǫ(x) by gǫ,τ(x) = ℓ(d(x)−τ)− 2
q−1 for τ ∈ (0, ρǫ),

any positive solution u of (5.1) in Ω is bounded from above by f2τǫ,z + gǫ,τ and therefore by f2τǫ,z + gǫ.
This implies (6.26) with Cǫ = max{f2τǫ,z(y) : |y − z| ≤ τǫ}, and it can be made explicit thanks to

(6.1).

Step 2. With the same constants as in step 1, we claim that

UF (x) ≥ (ℓq−1
κ − ǫ)

1
q−1 τ−

2
q−1 − Cǫ ∀τ ∈ (0, τǫ], ∀x ∈ Στ (Bτǫ(z)). (6.28)

If in the definition of the function g, we take ℓ = ℓ(ǫ) = (ℓq−1
κ − ǫ)

1
q−1 , then g is a subsolution in the

same set Ωτǫ . Since UF + f2τǫ,z is a supersolution of (5.1) in B2τǫ(z)∩Ω which tends to infinity on the

boundary, it dominates the subsolution gǫ,−τ = ℓ(d(.) + τ)−
2

q−1 for τ ∈ (0, ρǫ) and thus , as τ → 0,

gǫ(x) ≤ UF (x) + f2τǫ,z(x). This implies (6.28) with the same constant Cǫ.

Step 3. End of the proof. Since K ⊂ O is precompact, for any ǫ > 0, there exists a finite number of

points zj , j = 1, ..., k such that K ⊂ ∪k
j=1Bτǫ(zj) with B2τǫ(zj) ⊂ O. Therefore

(ℓq−1
κ − ǫ)

1
q−1 τ−

2
q−1 − Cǫ ≤ UF (x) ≤ (ǫ+ ℓq−1

κ )
1

q−1 τ−
2

q−1 + Cǫ ∀τ ∈ (0, τǫ], ∀x ∈ Στ (K).
(6.29)

Since ǫ is arbitrary, it yields to

limτ→0 ‖τ
2

q−1UF − ℓκ‖L∞(Στ (K)) = 0 (6.30)

which is (6.25).
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Corollary 6.5. Let U∂Ω be the maximal solution of (5.1) in Ω, then

lim
d(x)→0

(d(x))
2

q−1U∂Ω(x) = ℓκ. (6.31)

6.3 Moser Iteration

In this subsection we always assume that Ω is a bounded smooth convex domain,D = 2 supx,y∈Ω |x−y|
and f0 ∈ Lq(Ω), q > N+α

2 . The main goal of this subsection is to prove Boundary Harnack inequality

for positive solutions of the problem

−Lφκ
v := −div(φ

2
κ∇v)
φ2κ

=
f

φκ
in Ω, (6.32)

where

|f(x)| ≤ cf
| log d(x)

D
|

φκ
+ f0(x)φκ ∀x ∈ Ω, (6.33)

for some positive constant cf > 0.

In the sequel we will use the following local representation of the boundary of Ω. There exists a

finite number m of coordinate systems (y′i, yn) ∈ ∂Ω, y′i = (yi1, ..., yin−1) and the same number m of

functions ai(y
′
i) defined on the closure cubs, ∆i := {x ∈ Rn : |yij − xi| ≤ b, for j = 1, ..., n, and

i ∈ {1, ..,m} so that for each point x ∈ ∂Ω there is at least i such that x = (x′i, ai(x
′
i)). The function ai

satisfies the Lipschitz condition on ∆i with constant A > 0, that is

|ai(y′i)− ai(z
′
i) ≤ A|y′i − z′i|,

for y′i, z
′
i ∈ ∆i. Moreover there exists a positive constant b < 1 such that the set Bi is defined for

any i ∈ {1, ..,m} by the relation Bi = {(y′i, yin) : y′i ∈ ∆i, ai(y
′
i) ≤ yin ≤ ai(y

′
i) + b} and

Γi = Bi ∩ ∂Ω = {(y′i, yin) : y′i ∈ ∆i, yin = ai(y
′
i)}. Furthermore, let us observe for any y ∈ Bi where

someone can make the following inequality on the distance function

(1 +A)−1(yin − ai(y
′
i)) ≤ d(y) ≤ yin − ai(y

′
i).

Finally let x ∈ ∂Bi and v ∈ C1
0 (Ω). Set xi = yi for i = 1, ..., n − 1 and xn = yn + ai(y

′) then

∇y′v = ∇x′v + vxn
∇x′ai(x

′) and vyn
= vxn

, thus

C(A)|∇xv| ≤ |∇yv| ≤ c(A)|∇xv|. (6.34)

Let us now define the "balls" which we will use to prove some Poincaré, weighted Poincaré and

Moser inequalities. More precisely we have the following definition

Definition 6.6. Let γ ∈ (1, 2). For any x ∈ Ω and for any 0 < r < min{C0,b}
2γ , we define the ball

centered at x and having radius r as follows.

(i) If d(x) ≤ γr then

B(x, r) = {(y′i, yin) : |y′i − x′i| ≤ r, d(x) − r ≤ yin − ai(y
′
i) ≤ r + d(x)},

where i ∈ {1, ...,m} is uniquely defined by the point x ∈ ∂Ω such that |x − x| = d(x), that is by the

projection of the center x onto ∂Ω.
(ii) If d(x) ≥ γr then B(x, r) = B(x, r) the Euclidean ball centered at x.

We also define by

V (x, r) =

∫

B(x,r)∩Ω

φ2κ(y)dy,

the volume of the "ball" centered at x and having radius r.
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We first recall some known results the proofs of which are in [14]. The first one [14, Lemma 2.2]. is

a two-sided estimates of V (x, r).

Proposition 6.7. There exist positive constants d1 and d2 such that for any x ∈ Ω and 0 < r <
min{C0,b}

2γ , we have

d1 max{dα(x), rα}rN ≤ V (x, r) ≤ d2 max{dα(x), rα}rN . (6.35)

From the previous lemma it follows the Doubling property satisfied by V (x, .).

Corollary 6.8. Let N ≥ 2, α > 0 and Ω be a smooth bounded domain. Then there exist positive

constants C(N, γ,Ω, α) and β(Ω, γ) such that for any x ∈ Ω and 0 < r < β we have

V (x, 2r) ≤ CV (x, r).

The Local Poincaré inequality is proved in [14, Theorem 2.5]).

Proposition 6.9. There exist positive constants C(N, γ,Ω, α+) and β(Ω, γ) such that for any x0 ∈ Ω
and r < β we have

inf
ξ∈R

∫

B(x0,r)∩Ω

|f̃(y)− ξ|2φ2κdy ≤ Cr2
∫

B(x0,r)∩Ω

|∇f̃(y)|2φ2κdy ∀f̃ ∈ C∞(B(x0, r) ∩ Ω).

As a consquence there holds a local weighted Moser inequality which is proved in [14, Th 2.6]

Proposition 6.10. There exist positive constantsCM (N,Ω, α+) and β(Ω) such that for any ν ≥ N+α,
x0 ∈ Ω, r < β and f ∈ C∞

0 (B(x0, r) ∩ Ω) we have

∫

B(x0,r)∩Ω

|f(y)|2(1+ 2
ν
)φ2κ(y)dy

≤ CMr
2V (x, r)−

2
ν

∫

B(x0,r)∩Ω

|∇f(y)|2φ2κ(y)dy
(∫

B(x0,r)∩Ω

|f(y)|2φ2κ(y)dy
) 2

ν

.

Let us now make precise the notion of a weak solution.

Definition 6.11. We will say that v ∈ H1
φ(B(x, r) ∩ Ω) is a weak solution of Lφκ

v = f in B(x, r)∩Ω,
if for each Φ ∈ C∞

0 (B(x, r) ∩ Ω), we have

∫

B(x,r)∩Ω

∇v.∇Φdm =

∫

B(x,r)∩Ω

fΦdm,

where dm = φ2κdx and σ > 0.

We denote here by H1
φ(B(x, r) ∩Ω) the space of all functions u ∈ L2

φκ
(B(x, r) ∩ Ω) such that

∇u ∈ L2
φκ
(B(x, r) ∩ Ω), endowed with the norm

||u||H1
φκ

(B(x,r)∩Ω) =

(∫

B(x,r)∩Ω

|∇u|2φ2κdx+

∫

B(x,r)∩Ω

u2φ2κdx

) 1
2

.

Then we have the following Harnack inequality up to the boundary
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Theorem 6.12. Let v be a non-negative solution of Lφκ
v = f in Ω where f satisfies (6.33). Then there

exists a constant A > 0 such that the following estimate holds,

v(y) ≤ Av(x) ∀x, y ∈ Ω.

In order to prove Theorem 6.12 we use the Moser iteration technique as it is adapted to degenerate

elliptic operators in [17], [18] and [31]. In this approach one inserts in the weak form of the equation

Lφκ
v = f suitable test functions Φ. One of the key ideas is to use test functions Φ of the form η2vq ,

where v is the weak solution of the equation, η is a cut off function and q ∈ R. To this end one has to

check that η2vq is in the right space of test function. In this direction the following density theorem is

crucial, the proof of which is [14, Th 2.11].

Theorem 6.13. Let N ≥ 2, α ≥ 1 and U ⊂ Rn be a smooth bounded domain. Then we have

H1
0 (U, d

α(y)dy) = H1(U, dα(y)dy)

where we have set

H1
0 (U, d

α(y)dy) =

{
v = v(y) : ||v||2H1

1
=

∫

U

dα(|∇v|2 + v2)dy <∞
}
.

We note here the above theorem allows us to take the cut of function η ∈ C∞
0 (B(x, r)) instead of

it as a usual taking in η ∈ C∞
0 (B(x, r) ∩ Ω). Clearly the two function spaces differ only if the ”ball”

intersects the boundary of Ω.

To explain what are the appropriate modifications of the standard iteration argument by Moser, we

now present in detail the first step, which is the Lp ; p ≥ 2 mean value inequality for any positive local

subsolution of Lφκ
v ≤ f. Similarly with Definition 6.11, we call a function v ∈ H1

φ(B(x, r) ∩Ω)
subsolution of Lφκ

v ≤ f in B(x, r) ∩ Ω, if for each 0 ≤ Φ ∈ C∞
0 (B(x, r) ∩Ω) we have

∫

B(x,r)∩Ω

∇v.∇Φφ2κdx ≤
∫

B(x,r)∩Ω

f φ2κdx. (6.36)

Theorem 6.14. Let γ ∈ (1, 2) and p ≥ 2. Then there exist positive constants c0(Ω) and C(Ω, p, κ, c0)
such that for any x ∈ Ω, R < c0 and for any positive subsolution of Lφκ

v ≤ f in B(x, r) ∩ Ω, we have

the estimate

sup
B(x,σR)∩Ω

|v|p ≤ C

(1− σ)νV (x,R)

∫

B(x,R)∩Ω

|v|pφ2κdx

+ C


R2−α+(logR)cf +R2−N+α+

q

(∫

B(x,R)∩Ω

|f0|qφ2κdx
) 1

q




for each 0 < σ < 1.

Proof. Let γ ∈ (1, 2) and x0 ∈ Ω. First we assume that d(x0) < γR, in other case the proof is standard

and we omit it. Let R < min(c0, 1) we denote by ΩR the domain

ΩR = {ξ ∈ R
n : Rξ ∈ Ω}.
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Set x0 = Ry0, φ̃κ(y) = φκ(Ry)

Ṽ (y, r) =

∫

B(y,r)∩ΩR

φ̃2κ(x)dx,

d̃(y) = dist(y,ΩR) =
d(Ry)

R
.

As R ≤ 1 a C2 characteristic of Ω is also a C2 characteristic of ΩR therefore the constant C can be

taken to be independent of y. We note here that the constant 0 < c0 < 1 depends on C2 characteristic of

Ω.
Set ṽ(y) = v(Ry), c

f̃
= 2R2−α+(logR)cf , f̃(y) = R2f(Ry), f̃0(y) = R2f0(Ry) u = ṽ + k,

where k = c
f̃
+ ||f̃0||Lq(ΩR,φ̃2

κdx)
. Then u is bounded away from zero. Thus by (6.36) we have for any

Φ ∈ C∞
0 (B(y, 1) ∩ ΩR)

∫

B(y0,1)∩Ω

∇u.∇Φφ2κdx ≤
∫

B(y0,1)∩ΩR

Φf̃0φ̃κ
2
dx + c

f̃

∫

B(y0,1)∩ΩR

| log Rd̃(x)
D

|Φdx

Let β > 0, we set

um =

{
u u ≤ k +m

k +m u > k +m

and Φ = ψ2uβmu. Due to Theorem 6.13 there exists a sequence of functions Φk in C∞(B(y0, 1) ∩ ΩR)

having compact support in Ω such that Φk → Φ in H1(B(y0, 1) ∩ ΩR, dα+dy). Since φ ∼ d
α+
2 , we

have that Φk → Φ inH1
φκ
(B(y0, 1)∩ΩR). Hence for any ∀ ψ ∈ C∞

0 (B(y0, 1)) andm ≥ 1 the function

Φ = ψ2uβmu is an admissible test function, that is, the following holds true:

∫

B(y0,1)∩ΩR

∇u.∇(ψ2uβmu)φ̃
2
κdx ≤

∫

B(y0,1)∩ΩR

ψ2uβmuf̃0φ̃
2
κdx

+ c0

∫

B(y0,1)∩ΩR

| log d(x)
D

|ψ2uβmudx

≤ 1

k

∫

B(y0,1)∩ΩR

ψ2uβmu
2f̃0φ̃

2
κdx

+
c
f̃

k

∫

B(y0,1)∩ΩR

| log d(x)
D

|ψ2uβmu
2dx.

Thus by straightforward calculations and Hölder inequality we have

1

2

∫

B(y0,1)∩ΩR

|∇u|2uβmψ2φ̃2κdx+ β

∫

B(y0,1)∩ΩR

|∇um|2uβmψ2φ̃2κdx

≤ c

∫

B(y0,1)∩ΩR

|∇ψ|2uβmu2φ̃2κdx+
1

k

∫

B(y0,1)∩ΩR

ψ2uβmu
2f̃0φ̃

2
κdx

+
c
f̃

k

∫

B(y0,1)∩ΩR

| log d(x)
D

|ψ2uβmu
2dx.
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Now we have by Hölder inequality

1

k

∫

B(y0,1)∩ΩR

u2ψ2uβ f̃0φ̃κdx

≤ 1

k

(∫

B(y0,1)∩ΩR

|f̃0|qφ̃2κdx
) 1

q
(∫

B(y0,1)∩ΩR

|uβmu2ψ2| q
q−1 φ̃2κdx

) q−1
q

.

Since
2(N+α+)
N+α+−2 >

2q
q−1 > 2 if q > N+α

2 , we have by interpolation inequality and (2.9)

(∫

B(y0,1)∩ΩR

|uβmu2ψ2| q
q−1 φ̃2κdx

) q−1
q

≤ ε

(∫

B(y0,1)∩ΩR

|uβmu2ψ2|
N+α+

N+α+−2 φ̃2κdx

)N+α+−2

N+α+

+ C(N,α+, q)ε
− N+α+

2q−N+α+

∫

B(y0,1)∩ΩR

|uβmu2ψ2|φ̃2κdx

≤ ε

∫

B(y0,1)∩ΩR

|∇(u
β
2
muψ)|2φ̃2κdx

+ C(N,α+, q)ε
− N+α+

2q−N+α+

∫

B(y0,1)∩ΩR

|uβmu2ψ2|φ̃2κdx.

Also

∫

B(y0,1)∩ΩR

| log d̃(x)
D

|ψ2uβmu
2dx = −

∫

B(y0,1)∩ΩR

| log d̃(x)
D

|d̃∇d̃.∇(ψ2uβmu
2)dx

−
∫

B(y0,1)∩ΩR

| log d̃(x)
D

|d̃∆d̃ψ2G(uk)udx

+

∫

B(y0,1)∩ΩR

ψ2uβmu
2dx.

Let 0 < σ < σ′ < 1, we choose a function ψ = ξ(|y′0 −x′|)ξ(|xn − a(x′)− d̃(y0)|), where ξ ∈ C∞(R)
and satisfies 0 ≤ ξ ≤ 1, ξ(s) = 1 if s ≤ σ

2 and ξ(s) = 0 if s > σ′. Then clearly we have |∇ψ| ≤ C
σ′−σ

.

∫

B(y0,1)∩ΩR

| log d̃(x)
D

|d|∇ψ|uβmu2dx ≤ C

σ′ − σ

∫

B(y0,1)∩ΩR

| log d̃(x)
D

|d̃ψuβmu2dx

= − C

σ′ − σ

(∫

B(y0,1)∩ΩR

d̃2∇d̃.∇(| log d̃(x)
D

|ψuβmu2)dx
)

− C

σ′ − σ

(∫

B(y0,1)∩ΩR

d̃2∆d(| log d̃(x)
D

|ψuβmu2)dx
)
.

β

∫

B(y0,1)∩ΩR

| log d̃(x)
D

|d̃ψ2|∇um|uβmudx ≤ β

4

∫

B(y0,1)∩ΩR

ψ2|∇um|2uβmd̃α+dx

+ C

∫

B(y0,1)∩ΩR

| log d̃(x)
D

|2d̃2−α+ψ2uβmu
2dx.
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Working as the last two inequalities and using the fact that φ̃κ ∼ d̃
α+
2 , we can prove that there exists

ε ∈ (0, 2− α+), such that

∫

B(y0,1)∩ΩR

| log d̃(x)
D

|ψ2uβmu
2dx ≤ β

4

∫

B(y0,1)∩ΩR

ψ2|∇um|2uβmφ̃2κdx

+
1

4

∫

B(y0,1)∩ΩR

ψ2|∇u|2uβmφ̃2κdx

+
C(β + 1)2

(σ′ − σ)2

∫

B(y,σ′)∩ΩR

ψ2uβmu
2φ̃2κdx.

Let β ≥ 2, combining all above there exist δ = δ(N,α+, q) > 0 and C = C(N,α+, q) > 0 such

that

∫

B(y0,1)∩ΩR

|∇u|2uβmψ2φ̃2κdx+

∫

B(y0,1)∩ΩR

|∇um|2uβmψ2φ̃2κdx ≤ Cβδ

(R− r)2

∫

B(y,σ′)∩ΩR

uβmu
2φ̃2κdx.

Set now w = u
β
2
m, then

∫

B(y0,1)∩ΩR

|∇(ψw)|2dx

≤ C(β + 1)

(∫

B(y0,1)∩ΩR

|∇u|2uβmψ2φ̃2κdx+

∫

B(y0,1)∩ΩR

|∇um|2uβmψ2φ̃2κdx

)
.

Thus we get

∫

B(y0,1)∩ΩR

|∇(ψw)|2dx ≤ C
βδ+1

(R− r)2

∫

B(y0,1)∩ΩR

w2φ̃2κdx (6.37)

Using the above inequality Proposition 6.10 we obtain

∫

B(y0,σ)∩ΩR

|w|2+ 4
ν φ̃2κdx ≤

∫

B(y0,1)∩ΩR

|ψw|2+ 4
ν φ̃2κdx

≤ E

(∫

B(y0,1)∩ΩR

|∇(wψ)|2φ̃2κdx
)(∫

B(y0,1)∩ΩR

|ψw|2φ̃2κdx
) 2

ν

≤ ECβδ+1

(
1

(σ′ − σ)2

∫

B(x,σ′)∩Ω

|w|2φ̃2κdx
)1+ 2

ν

(6.38)

where E = CM Ṽ
− 2

ν (y0, 1) is the constant in Proposition 6.10.

Set β = p and let m→ ∞, then we have by (6.38) and the definition of w,

∫

B(y0,σ)∩Ω

|u|p(1+ 2
ν
)φ̃2κdx ≤ A

(
pδ+1

(σ′ − σ)2

∫

B(x,σ′)

|ψu|pφ̃2κdx
)1+ 2

ν

,

where A = EC the constant in (6.38).
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We note that by iteration with p0 = p, p1 = p(1 + 1
ν
), ..., pi = p

(
1 + 1

ν

)i

,

∫

B(y0,σ′′)∩Ω

upi φ̃2κdxdt <∞ ∀ i ≥ 0 and σ′′ < r′.

Thus by the same argument as before we have

∫

B(x,σ)∩Ω

upi+1 φ̃2κdx ≤ A

(
pδ+1
i

(σ′ − σ)2

∫

B(x,σ′)∩Ω

upi φ̃2κdx

)1+ 2
ν

, (6.39)

Now set r0 = σ′ and ri = σ′ − (σ′ − σ)
∑i

j=1 2
−j. Then ri − ri+1 = (δ′ − δ)2−i−1 and pi+1 =

pi(1 +
2
ν
), thus inequality (6.39) becomes

∫

B(y0,ri+1)∩ΩR

upi+1 φ̃2κdx ≤ A
22(i+1)

(σ′ − σ)2

(
pδ+1
i

∫

B(y0,ri)∩ΩR

upi φ̃2κdx

)1+ 2
ν

⇐⇒

(∫

B(y0,ri+1)∩ΩR

upi+1 φ̃2κdx

) 1
pi+1

≤ A
1

pi+1

(
22(i+1)

(σ′ − σ)2

) 1
pi+1

(
pδ+1
i

∫

B(y0,ri)∩ΩR

upi φ̃2κdx

) 1
pi

≤
(

A

(σ′ − σ)2

) 1
pi+1

+ 1
pi

2
2(i+1)
pi+1

+ 2i
pi p

δ+1
pi

i p
δ+1
pi−1

i−1

(∫

B(y0,ri−1)∩ΩR

upi−1 φ̃2κdx

) 1
pi−1

≤
(

A

(σ′ − σ)2

) 1
p

∑∞
j=1 Θ−j

4
1
p

∑∞
j=0

j+1

Θj e
δ+1
2

∑∞
j=0 Θ−j log(p0Θ

j)

(∫

B(y0,r0)∩ΩR

up0 φ̃2κdx

) 1
p0

,

where Θ = 1+ 2
ν
. Observe now that ri → δ as i→ ∞, all sum above are finite and

∑∞
j=0 Θ

−j = ν
2 +1.

Hence we have,

sup
B(y0,σ)∩ΩR

|u|p ≤ A
ν
2

1

(σ′ − σ)ν

∫

B(y0,σ′)∩ΩR

|u|pφ̃2κdx ∀ p ≥ 2.

where A = CM Ṽ
− 2

ν (x, 1).
Thus we have

sup
B(y0,

1
2 )∩ΩR

|ṽ|p ≤ A
ν
2 2ν

(∫

B(y0,1)∩ΩR

|ṽ|pφ̃2κdx+ k

)
∀ p ≥ 2,

which implies

sup
B(y0,

R
2 )∩ΩR

|v|p ≤ 1

V (x,R)

(∫

B(y0,1)∩ΩR

|v|pφ2κdx+ k

)
∀ p ≥ 2,

The estimate in B(y0, σR)∩Ω can be obtained by applying the above result to B(y0, (1−σ)R)∩Ω
for any y ∈ B(y, σR) ∩ Ω.

Using Moser’s iterative scheme we are now in situation to prove
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Proposition 6.15. Let u be a weak solution of (6.32). Then there exist two constants C > 0 and

α ∈ (0, 1], depending on Ω, N and κ such that

sup
x,y∈Ω x 6=y

|u(x)− u(y)|
|x− y|α ≤ C


cf +

(∫

B(x,R)∩Ω

|f0|qφ2κdx
) 1

q


 .
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