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Abstract

We study the boundary behaviour of positive functions w satisfying (E) —Au — dQL(z)u +g(u)=0

in a bounded domain Q of RY, where 0 < x < i, g is a continuous nonndecreasing function and d(.)
is the distance function to ). We first construct the Martin kernel associated to the the linear operator
L,=—-A— d%(w) and give a general condition for solving equation (E) with any Radon measure p for

boundary data. When g(u) = |u|?~!u we show the existence of a critical exponent . = q.(N, x) > 1
whith the following properties: when 0 < g < ¢. any measure is eligible for solving (E) with u for
boundary data; if ¢ > q., a necessary and sufficient condition is expressed in terms of the absolute
continuity of u with respect to some Besov capacity. The same capacity characterizes the removable
compact boundary sets. At end any positive solution (F) —Au — d%(z)u + |u|tu = 0 withq > 1
admits a boundary trace which is a positive outer regular Borel measure. When 1 < ¢ < g. we prove
that to any positive outer regular Borel measure we can associate a positive solutions of (£') with this
boundary trace.
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1 Introduction

Let €2 be a bounded smooth domain in RY and d(z) = dist (z, Q). In this article we study several
aspects of the nonlinear boundary value associated to the equation

—Au— %u+|u|p71u:0 in Q, (1.1)
where p > 1. The study of the boundary trace of solutions of (1.1) is a natural framework for a general
study of several nonlinear problems where the nonlinearity, the geometric properties of the domain and
the coefficient « interact. On this point of view, the case k = 0 has been thoroughly treated by Mar-
cus and Véron (e.g. [24], [25], [27], [26] and the synthesis presented in [28]). The associated linear
Schrodinger operator

K

u— Lou = —Au — d2—($)u (1.2)
plays an important role in functional analysis because of the particular singularity of the potential
V(r) := —37=. The case x < 0 and more generally of nonnegative potentials has been studied

by Ancona [3] who has shown the existence of a Martin kernel which allows a general representation
formula of nonnegative solutions of
L.u=0 in Q. (1.3)

When k < i, Ancona proved that £,; is weakly coercive in H}(€2). Thus any positive solution u of
(1.3) admits a representation under the form

w(z) = | K, (z,)du§)  in €, (1.4)
o0
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see [3, Remark p. 523]. Furthermore the kernel K, (x, £) with pole at £ is unique up to a multiplication
[3, Th 3]. When k = %, then L, is no longer weakly coercive in H& (©) and Ancona’s results cannot be
applied.

Ancona’s representation theorem turned out to be the key ingredient of the full classification of positive

solutions of
—Au+u?=0 in €, (1.5)

which was obtained by Marcus [21]. In a more general setting, Véron and Yarur [34] constructed a
capacitary theory associated to the linear equation

Lyu:=—-Au+V(x)u=0 in Q, (1.6)

where the potential V' is nonnegative and singular near 99). When V() := —d%(m) with k > 0, V is

called a Hardy potential. There is a critical value k = i. Ifk > i, no positive solution of (1.3) exists.
When 0 < k < i, there exist positive solutions, and the geometry of the domain plays a fundamental
role in the study of the mere linear equation (1.3). We define the constant cg, by

/|Vv|2d1:
co = inf AL

(\{0} ' (7
vEH} 0 2
0 /Q dQ(z)dx

It is known that 0 < cq < i, and if € is convex then ¢ = i (see [22]). When 0 < k < i, which is
always assumed in the sequel and —Ad > 0 in the sense of distributions, it is possible to define the first
eigenvalue A, of the operator L,;. If we define the two fundamental exponents oy and a.— by

or =1++vV1—-4k and oa_ =1-+v1—-4k, (1.8)

then the first eigenvalue is achieved by an eigenfunction ¢,, which satisfies ¢, (z) ~ d= () asd(z) —
0. Similarly, the Green kernel G, associated to £, inherits this type of boundary behaviour since there
holds

me{ 1 d"z*(z)d“?(y)}  Ga (0y) < Comin { 1 d“z*(x)d"z*@)}
|$ — K ) = K .

C. —y[V 2 Jo— gV o=y fa— gV

(1.9)
We show that £,; satisfies the maximum principle in the sense that if u € H. . N C() is a subsolution,
i.e. L.u <0, such that

@) limsup-2E < if0< k<l
oy 42 (@) (1.10)
i imwp——ng——<O ifh=1,
1 4

Ty \/d(,@)llﬂd(,@” o

for all y € 912, then u < 0. This result has to be compared with the result on the the existence of positive
sub-harmonic functions in 2 given in [4, Theorem 2. 3] which is associated to the maximum principle
in neighborhood of 02 stated in [4, Lemma 2. 4].

If ¢ € 0N and r > 0, we set A,(§) = 002 N B,(§). We prove that a positive solution of L,u = 0
which vanishes on a part of the boundary in the sense that
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(4) y?dZ%%o VyeA(6)  if0<r<i
’ u(x (1.11)

i im ——— = , if & = 7,
N [T

satisfies

u(z) u(y) )
7 (2) < 5 (0) Va,y € Az (§), (1.12)

for some Cy = C1(Q, k) > 0.

For any h € C'(952) we construct the unique solution v := vy, of the Dirichlet problem

L.v=0 in
v=~h on 012, (1.13)
noting that the boundary data h is achieved in the sense that

=y do-(x)

— h(y)if 0< k<X and Tim u(z)

47 S ) nd(a)

Using this construction and estimates (1.10) we show the existence of the £,-measure, which is a
bounded Borel measure w® with the property that for any h € C(9€2), the above function vy, satisfies

1
—h(y)if kK= ~.
(y)if & 1

on(z) = /8 ) ) (1.14)

Because of Harnack inequality, the measures w® and w? are mutually absolutely continuous for z, z € ),
and for any x € 2 we can define the Radon-Nikodym derivative

dw?®
K(z,y) = -~

(y) forw®-almosty € 9. (1.15)

There exists ro := r¢(£2) such that forany x € Q verifying d(z) < ro, there exists a unique £ = &, € 99
with the property that d(z) = |z —&.|. If we denote by 2], the set of 2 € Q such that 0 < d(x) < 7o, the

mapping II from ﬁlro to [0, 7] x O defined by I1(z) = (d(x),&,) is a C! diffeomorphism. If £ € 9
and 0 < r < ro, we set z,.(§) = II71(r, £). Let W be defined in 2 by

4= (z if k<,

W (z) = ) !

Vd(x)| Ind(x)] if k=1

We prove that the £,;-harmonic measure can be equivalently defined by

(1.16)

w®(E) =inf ¢ : ¢ € C4 (), L,-superharmonicin 2 and s.t. lim inf ¥(z) >1;, (1.17)

on compact sets E2 C 0f) and then extended by regularity to Borel subsets of 0f).
The L,.-harmonic measure is connected to the Green kernel of L, by the following estimates

Theorem A There exists Cs := C5(2) > 0 such that for any r € (0,r¢] and & € %), there holds

VT G, (0(9)2) w0 (ANE) (1.18)
< CyrNtT G, (20(€),7) Vo € Q\ Biey,
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if()<n<i,and

&V nd(x)|Gr, (20(€). )

< W (Ar(6))
< OsrN =202 | Ind(2)|Ge, (w0(€),2) Vo € Q\ Buye,
(1.19)
when kK = i. As a consequence w® has the doubling property. The previous estimates allow to construct

a kernel function of L, in §2, prove its uniqueness up to an homothety. When normalized, the kernel
function denoted by K, is the Martin kernel, defined by

Ke, (2,€) = lim S0,

VE € 99, 1.20
z—E Gl:,; ($,$0) g ( )

for some xg € ). Thank to this kernel we can represent any positive £,-harmonic function u by mean
of a Poisson type formula which endows the form

u(x) = [ Kg, (z,8)du(s). (1.21)
o0

for some unique positive Radon measure y on 0€). The measure p is called the boundary trace of w.
Furthermore K satisfies the following two-side estimates

Theorem B There exists Cs3 := C5(S2, k) > 0 such that for any (z, &) € Q x 02 there holds
= d=
< K‘Crc(z5§) < CBW. (122)

1 d¥
Calo— g/ eor=

In the sections 3-6 of this paper we develop the study of the semilinear equation (E) and emphasize
the particular case of equation (1.1). With the help of the previous estimates we adapt the approach
developed in [16] to prove the existence of weak solutions to the nonlinear boundary value problem

—Au—%u—i—g(u):u in
() (1.23)
U= in 09,

where g is a continuous nondecreasing function such that g(0) > 0 and v and ; are Radon measures on
Q) and 02 respectively . We define the class X () of test functions by

Xo(@) = { ne L2Q) st V(= Fn) € L2, () and 65 Lon € L2(Q) b, (124)

and we prove
Theorem C Assume g satisfies

v

[ ) +lahs T s < o (125)
1

Then for any Radon measures v on ) and such that fQ Ord|p| < oo and p on ON) there exists a unique
u € Ly () such that g(u) € L}, (Q) which satisfies

/ (L + g(u)) do = / (ndv + Ke [iLandz) ¥y € Xou(€2). (1.26)
Q Q
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Nt and (1.25) is satisfied for 0 < ¢ < g (the
N+5E—2 ' S

subcritical range). In this range of values of g, existence and uniqueness of a solution to

When g(r) = |r|?~1r the critical value is q. =

—Au — Lu—|—|u|‘1_1u:0 in Q
d?*(z)
(1.27)
uU=p in 09,

has been recently obtained by Marcus and Nguyen [23]. However, when ¢ > ¢. not all the Radon
measures are eligible for solving problem (1.27).

We prove the following result in the statement of which CfN;a ., denotes the Besov capacity
2q

7

ras
associated to the Besov space B>~ (RN b,

Theorem D Assume q > q. and 1 is a positive Radon measure on 0. Then problem (1.27) admits a
weak solution if and only if 1 vanishes on Borel sets E C 0X) such that C 2+a+ (E)=0.
q/

Note that a special case of this result is proved in [23] when p = ¢, for a boundary point and ¢ > ¢..
In that case d, does not vanish on {a} although CR IV ,({a}) =0.

This capacity plays a fundamental for characterlzmg the removable compact boundary sets which
can only exist in the supercritical range q > q..

Theorem E Assume q > q. and K C 09 is compact. Then any function v € C(Q \ K) which satisfies

—Au — %u + |u|Ttu =0 in Q
(1.28)
u=0 in 0N\ K,

is identically zero if and only lfC’ 2+a+ (K)=0.
a

The proof of Theorems D and E is delicate and based upon the use of the optimal lifting operator
which has been introduced in [24] and the kernels estimates of [27, Appendix].

We show that any positive solution u of (1.1) admits a boundary trace in the class of outer regular
positive Borel measures, not necessarily locally bounded, and more precisely we prove that the following
dichotomy holds:

Theorem F Let u be a positive solution of (1.1) in Q and a € 0X). Then
(i) either for any € > 0

lim udwyd = oo, 1.29
6=0 JssnB.(a) 2 (1.29)

where Q5 = {z € Q : d(x) > ¢}, Bs = 095 and wy) o) i the harmonic measure in €U,

(ii) or there exist ¢g > 0 and a positive Radon measure \ on 92 N B, (a) such that for any Z € C(Q)
with support in QU (0Q N B, (a)), there holds

lim Zudwé‘} :/ ZdM. (1.30)
§—0 $sNBe(a) QN Bc(a)
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The set of points a € 02 such that (i) (resp. (ii)) holds is closed (resp. relatively open) and denoted
by S, (resp R,). There exists a unique Radon measure y,, on R,, such that, for any Z € C(2) with
support in 2 U R,, there holds

: o _
}13(1) EJZudcu%/R Zdfy,. (1.31)

u

The couple (Sy, p.,) is called the boundary trace of v and denoted by Traq (). A notion of normalized
boundary trace of positive moderate solutions of (1.1), i.e. solutions such that u € L%(¢,;), is developed
in [23]. It is proved therein that there exists a boundary trace p = ({0}, ., ), and that the corresponding
representation of u via the Martin and Green kernels holds.

If 1 < ¢ < g. we denote by ugs, positive solution of (1.1) with u = ké, for some a € 0f) and
k > 0. Then there exists limy_, o Uks, = Uoo,q and we prove the following:

Theorem G Assume 1 < q < q. and a € 0S). If u is a positive solution of (1.1) such that a € S, then
U 2 Uoo,a-

In order to go further in the study of boundary singularities, we construct separable solutions of (1.1)
inRY = {z = (17/,2171\1) taxy > 0} = {(r,0) € Ry x S~} which vanish on 9RY \ {0} under the
form u(r, o) = r~ 5 Tw(c), where 7 > 0, o € S ~*. They are solutions of

—Agn-1w — lg nw — S |lw|™tw =0 in SY~1
ey.o N (1.32)
w=0 indS, ™,

where Agn -1 is the Laplace-Beltrami operator, e the unit vector pointing toward the North pole and
L4, N is a positive constant. We prove that if 1 < ¢ < g., then problem (1.32) admits a unique positive
solution w,, while no such solution exists if ¢ > ¢.. To this phenomenon is associated a result of
classification of the positive solutions of (1.1) in £ which vanishes of 9Q \ {0} (here we assume that
0 € 99 and that the tangent hyperplane to 92 at 0 is {x : z.ey = 0}, and that there exists 7o > 0 such
that By, (roen) C €, Byy(roen) C {z : x.ey > 0} and d(roen) = |roen| = ro).

Theorem H Assume 1 < q < q. and let u € C(Q\ {a} be a solution of (1.1) in Q which vanishes of
o0\ {a}. Then
(i) either u = Uoo,q and

lim, SoreTu(r,.) = w, (1.33)
locally uniformly in Siv_l,
(ii) or there exists k > 0 such that u = uys, and

u(x) = kKg, (z,a)(1 4+ ol)) asx — 0. (1.34)

If 1 < g < q. we prove that to any couple (F, 1) where F is a closed subset of 92 and p a positive
Radon measure on R = 99 \ F', we can associate a positive solution u of (1.1) in  with the property
that Trapq(u) = (F, u). The construction is based upon the existence of barrier functions which allow
to prove local a priori estimate that is satisfied by any positive solution with boundary trace (F,0). The
delicate proof of the existence of these barrier is presented in Appendix I. A priori estimates which follow
from the barrier method are presented in Appendix II. In Appendix III we develop some regularity results
based upon Moser’s iterative scheme adapted to the framework of the Hardy operator.

The results presented here are announced in [15].
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2 The linear operator L, = —A — 5t

Throughout this article c; (j=1,2,...) denote positive constants the value of which may change from one
occurrence to another. The notation  is reserved to the value of the coefficient of the Hardy potential.

2.1 Classical results on Hardy’s inequality and the operator L,

We first recall some known results concerning Hardy’s inequalities and the associated eigenvalue prob-
lem (see [11], [14]).

1

1- The constant cq defined in (1.7) has value in (0, 7). If € is convex or if the function d is super-

harmonic then cq = i. Moreover this equality is verified if and only if there exists no minimizer to the
problem (1.7) [22]. For any « € (0, 1] there exists

inf {/ (|Vu|2 - %uQ) dx : /u2d$ = 1} =\, > —00. (2.1)
Q Q

Furthermore A\, > 0if Kk < cq orif k < i and d is a superharmonic function in €. (see [8]).

2-If0< Kk < i the minimizer ¢, of (2.1) belongs to the space HJ (£2) and it satisfies

¢r = d 2 (), 2.2)

where o (as well as «_) are defined by (1.8).

3-1f & = 7, there is no minimizer in Hg(€2), but there exists a non-negative function ¢1 € H}, ()
such that )
~ d3 (), 2.3)
and it solves 1

—Au — @u = A\ U in Q
in the sense of distributions. In addition, the function ¢ 1 = d’%¢% belongs to Hg (Q; d(x)dx).

4- Let Hg (9, d*(z)dz) denote the closure of C§°(£2) functions under the norm

gy = [ IVl + [ fuPa @) 24)
If a > 1 there holds [14, Th. 2.11]

H}(Q,d*(z)dx) = H'(Q,d*(z)dr)  Va > 1. (2.5)

5-Let 0 < k < cq. Let H,(Q2) be the subset of functions of H!

loc

(Q) satisfying

/Q (|v¢>|2 - d—";&) dz < co. (2.6)

Then the mapping

¢ </Q (Ivel? - Z¢*) dx) 2 @7
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is anorm on H,(€2). The closure W, () of C§°(€2) into H, () satisfies
W(Q) = Hy(Q) VO0<k<coand Wi(Q) CWUQ) ifAy >0 Vi<g<2,  (28)

see [5, Th B]. As a consequence W ;(2) is compactly imbedded into L" () for any r € [1,2*).

6- Let o« > 0 and Q C RY be a bounded domain. There exists ¢* > 0 depending on diam(2), N and o
such that for any v € C§°(Q)

N4a—2

2 a N+a
</|U|N(5:%dadz> < c*/|Vv|2dad:r. (2.9)
Q Q

For a proof see [14, Th. 2.9].

The boundary behaviour of the first eigenfunction yields a two-side similar estimate of the Green
kernel for Schrédinger operators with a general Hardy type potentials [14, Corollary 1.9].

Proposition 2.1. Consider the operator EE := —A — V, in Q where V = V1 + Vs, with

1 N
< - p _
|V1|_4d2(ac) andVQEL(Q),p>2.
We also assume that
/ (|Vul?dz — Vu?) dx
0< A := inf Q2

3
ueH; () / u?dx
Q

and that to \1 is associated a positive eigenfunction ¢1. If, for some o > 1 and Cy, Cy > 0, there holds
c1d? (z) < ¢1(z) < cad? (2) Vz € (Q,
then the Green kernel G associated to E in Q) satisfies

1 B @diy) > |

Q N .
OBto) = comin (s [ e

(2.10)

Next we define the sets {25, Q5 and X5 by
Qs={zeQ: dz)<d}, WU={reQ: dz)>d6}and S5={x € Q: d(z)=06}. (2.11)

Definition 2.2. Let G C Q be open and let H}(G) denote the subspace of H*(G) of functions with
compact support in G. A function h € VVllo’cl(G) is L-harmonic in G if

1
/ Vh.Vipds — n/ ——hipdz =0 Vi € H}(G).
G o d*(2)
A function h € H} (G) N C(G) is L,,-subharmonic in G if
1
/ Vh.Vipds — n/ ——hypdz <0 Vip € HY(G), ¢ > 0.
G o d*(z)

We say that h is a local L,;-subharmonic function if there exists 6 > 0 such that h € HL (Q5) N C(Qy5)
is L-subharmonic in Q. Similarly, (local) L-superharmonics h are defined with” > 7 in the above
inequality.
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Note that £,.-harmonic functions are C? in G by standard elliptic equations regularity theory. The
Phragmen-Lindelof principle yields the following alternative [4, Theorem 2.6].

Proposition 2.3. Let k < i. If h is a local L,-subharmonic function, then the following alternative
holds:

(i) either for every local positive L,.-superharmonic function h

h(z)

lim sup = > 0, (2.12)
d(x)—0 h(z)

(ii) or for every local positive L-superharmonic function h
h
lim sup ﬂ < 00. (2.13)
d(z)—0 h(z)

Definition 2.4. If a local L-subharmonic function h satisfies (i) (resp. (ii)) it is called a large L,-
subharmonic (resp. a small L-subharmonic).

The next statement is [4, Theorem 2.9].

Proposition 2.5. Let h be a small local L,;-subharmonic of L,;.
(i) Ifk < i, then the following alternative holds:

h(x) h(z)
either limsup——=— >0 or limsup =
z—0Q (d(z))™= z—0Q (d(x))=

< 0Q.

(ii) If kK = i, then the following alternative holds:

>

: . (z) : h(zx)
either limsup - >0 or limsup — < 00.
z—00 (d(z))? log( z—oQ (d(z))z

-
~—

Definition 2.6. Let fo € L} (). We say that a functionw € H} (Q) is a solution of

loc

L.u= fo in Q, (2.14)
if there holds
1
Vu.Vidr — m/ s updr = / fovdx Vi € C5°(Q). (2.15)
Q o d*(z) Q

2.2 Preliminaries

In this part we study some regularity properties of solutions of linear equations involving L.

Lemma 2.7. (i) Ifa > landd=2u € HY(Q,d*(z)dz), then u € H} ().
(ii) If « = 1 and d~2u € HY(Q, d(x)dx), then u € Wy *(Q), Vp < 2.

Proof. There exists 3y > 0 such that d € C?(Qp,) and set u = d%v. In the two cases (i)-(ii), our
assumptions imply
we LA(Q) and Vu— %ud*w € L3(Q). (2.16)
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(i) Since v € H'(2,d*(z)dx), by (2.5) there exists a sequence v, € C°(f) such that v,, — v in
HY(Q,d*(x)dx). Set u,, = d*v,,. Let 0 < 8 < % and g be a cut of function such that 1p5 = 0 in (2}

and ¢5 = 1in Q. Then u,, = d? (Ygv, + (1 —g)vy,). Thus it is enough to prove that @, = d 2 gv,
2
remains bounded in H'(Q2) independently of n. Set w,, = 15v,,, then

/|Vﬂn|2dz:/ |Vw, [2dz < c4 /da|an|2dx+/ d*"?wldzx | .
Q Qs Qs Qs

Note that o — 2 > —1. Now

1
/ d*2wide = / w2div(d* ' Vd)dz — / (d*"H(Ad)w?idx.
Qs a—1Jq, a—1Jq,

Now since |Ad(z)| < ¢5, Ya € Qg,, we have

1
a—1

a—1

/ d* H(Ad)w?dx

a—1
C
< ﬂ/ widx.

Also

=2

/ w2 div(d*~'Vd)da
Qp

/ wpd?d? " 'Vd.Vw,dz
Qg

< c6/ d*|NVw,|*dx + 6 d* w2 dz,
Qp Qp

where cg = ¢g(8) > 0. The result follows in this case, if we choose § small enough and then let n — oco.
(ii) By the same calculations we have

/ 4% jwn|Pdz < 67/ d? |Vw,[Pdx < ¢ (/ d(x)dx) / d|Vun [*dz.
0 Q5 Q Qs

u

In the following statement we prove regularity up to the boundary for the function o

Proposition 2.8. Let fo € L*(Q2). Then there exists a uniqueu € H. _(Q) such that ¢, 'u € H'(Q, d*+ (z)dx),

loc

satisfying (2.14). Furthermore, if f1 := j:—" € LY, ¢2dx), q > N';O‘*, then there exists 0 < 8 < 1
such that (2) )
5| u(x u(y
s o =31~ |0 - S < oz 2.17)
2R, oty On(@)  $u(y) (.0 de)
Proof. 1If there exists a solution u, then ¢ = d% satisfies
— ¢, 2div (92 V) + Aet) = o fo, (2.18)

o

and we recall that ¢,.(z) ~ d =2 (z). We endow the space H' (€2, $2dz) with the inner product

(a,by = / (Va.Vb + \.ab) ¢2dz.
Q
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By a solution ¢ of (2.18) we mean that 1) € H} (€2, $2dx) satisfies

(V4,VC) = /Q Vi.VC 62dz + A /Q beo2d = /Q foCouds V¢ € HYS, ¢2da).  (2.19)

By Riesz’s representation theorem we derive the existence and uniqueness of the solution in this space.
Since H'(Q, ¢2dz) = Hi(Q, ¢2dz) by [14, Th 2.11], any weak solution u of (2.14) such that ¢ 'u €
H'(Q, $2dx) is obtained by the above method.

Finally if fo € L9(, ¢2dx), where g > +O‘+ , thanks to (2.9) we can prove the estimate

[l Lo () < esllfollLa(o,¢2 de)s (2.20)

where cg = ¢5(€2, k, ¢). Then we can apply the Moser iteration (see subsection 6.3) to derive the Holder
regularity up to the boundary. O

In the next results we make more precise the rate of convergence of a solution of (2.14) to its boundary
value.

Proposition 2.9. Assume k < 1. If fo € LQ(Q) and h e Hl(Q) there exists a unique weak solution u
of (2.14) belonging to H\ (Q) and such that d=72 (u — = >~ h) € HY(Q, d*+(x)dx). Furthermore, if

loc

f1:= % € L1(Q,¢pidx), ¢ > £ and h € C?(RQQ), then there exists 0 < 3 < 1 with the property that

li Y —p Yy € 09,
veo, Mycon Gy W)W

uniformly with respect to y,

U
o
d =

u(z)  u(y)

o

(@)™ (dy)=

with cg and c1g depending on §, N, g, and k.

<o (IIhllea@ + filla@szan)

Lo (Q)

and

sup [ —y| ™’
z,yeN, zHy

< i (Ibllca@y + 1fillzsogzan) @21)

Remark. By Lemma 2.7 we already know that u — d = h € H(Q).

Proof. Let 8 < By and p € C%() be a function such that n = d%(z) in Qg and n(x) > ¢ > 0, if
T € Q,I@ We set u = ¢, v + nh. Then v is a weak solution of

7diV(¢iV1})

= ( fo+ (An+n "Nh + 2V Vh + nAh) (2.22)

in the sense that
Vo.Vi $2dx + )\H/ v pRde = / (fo +(An+ mdz )h + 2V, Vh) b rd
Q Q

VLY (0 ée)dz Y € CE2(Q). (2.23)
Q

12
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Let ¢ € C§°(€Q3). By an argument similar to the one in the proof of Lemma 2.7 we have

Vide = dez:/ div(dVd)|1/;|2dx—/ dAd[y|*dz,
Q Qg Qp

which implies

Yide < c’w/ d?|Vy|?dr < 611/ d+ |V 2da. (2.24)
Now
/ ((An + k-L)h + 2V77.Vh) ¥ drdz| < c1 / W2z,
and

/ VRV (1) 6) de
Qp

< ci3 (/ |Vh|2dz+// da+|V1/;|2dz+// 1/)2dz>.
Qp Qs Qs

By (2.24) we can take ¢ € H'(Q, d*+ (z)dz) for test function. Thus we derive that there exists a weak
solution v € H!(Q, d*+ (x)dx) of (2.23).
To prove (2.21) we first obtain that if ¢» € C§°(Q;)

/ Ydr = — / dVd.Vipdx — / dAdipdz.
Q Q. Qe

Since

/Q ((An + m%)h OV Vh + nAh) b drda

< culltllesq [ 1olds
1
S 5/ da+|v1/)|2d$+Cl5(Q,Ii)||h||CQ(§),
Qs
we use again (2.9) and Moser’s iterative scheme as in Proposition 2.8, and we obtain

o122y < o (IIBlloz + 1 follzo@ozan )

where cg = ¢9(, g, k) > 0. From inequality it follows that v is Holder continuous up to the boundary
and the uniform convergence holds. O

Proposition 2.10. Assume k = %. If fo € L*(Q) and h € H(Q), there exists a unique function w in
H} (Q) weak solution of

loc

Ei’u = fo
verifying d~2 (u — dz |logd|h) € H*(Q, d(x)dz). Furthermore, if f1 :=

h € C?(Q), then there exists 0 < 3 < 1 such that

. U
lim —_
z€Q, z—yed 32 | ]Og d|

€ L), ¢ > 2t and

2k
Lo ]

() =h(y) VyeoQ,

uniformly with respect to y,

u
—_— < ci6 <||h||02 a T 1 fillLa(a,e2 dm))
HﬂuogD%l Lo Y ;
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where Do = 2sup,cq, d(x). Finally there holds

sup |1,7y|7ﬁ (:L') u(y)

u
z,y€eQ, zFy Vd(z)|log %ﬁ” \Vd(y)|log %ﬁ”

<t (Il + MAllzs an )
(2.25)

Proof. Using again Lemma 2.7, we know that u — d2 |logd|h € Wol’p(Q), Vp < 2. The proof is very

similar to the proof of Proposition 2.9. The only differences are we impose 1 = dz |log d| in Q23 and we
use the fact that | log d| € LP(2),Vp > 1. O

In the next result we prove that the boundary Harnack inequality holds, provided the vanishing prop-
erty of a solution is understood in a an appropriate way.

Proposition 2.11. Let § > 0 be small enough, & € O and u € H . (Bs(£) N Q) NC(Bs(€) N Q) bea
positive L1 -harmonic function in Bs(£) N $2 vanishing on 9Q N B (€) in the sense that

 lim & =0 VK CaQN Bs(€), K compact. (2.26)
dist (z,K)—0 dz (x)| log d(z)|

Then there exists a constant c1g = c15(N,Q, k) > 0 such that
u(x)

¢1(z)

4

< c13 Vx,yGQﬁBg(&).

u(y)
¢1(y)

Proof. We already know that u € C%(€). Let § < min(fo, 3) such that Bs(£) N2 C Q5 C Qg,.

By [4, Lemma 2.8] there exists a positive supersolution ¢ € C%(€s) of (1.3) in Qs with the following
behaviour

1

-B
1 1
~ dz loe—— (1 log ——
((x) ~ d?(z)log ) < + c19 (og d(z)) >7
for some 3 € (0,1) and c19 = c19(Q) > 0. Set v = ¢~ tu, then it satisfies
—(2div(¢®Vv) <0 in Bs(&) N Q. (2.27)

Letn € C§°(Bs(€)) such that 0 < np < landn = 11in B%(«E). We set vs = n?(v — s)+ Since by
assumption v has compact support in Bs(£) N §2, we can use it as a test function in (2.27) and we get

/ C*Vo.Vugde = / V(v —s);.Vuedr <0, (2.28)
Bs(£)NQ Bs(§)NQ
which yields
[ NeesPerasa [ i 9

Bs(£)NQ Bs(§)NQ

Letting s — 0 we derive
/ |Vol?¢*nPde < 4/ |Vn|?v? (P da.
B5(£)NQ Bs(£)NQ

Since
V(v = 8)4 PCn® 1 [VoPP¢n® ass =0,
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and convergence of V(v — s)4 to Vo holds a.e. in £2, it follows by the monotone convergence theorem

lim V(v — (v—s)4)]2¢*n*dzx = 0. (2.29)
570 JBs(6)n0

Finally Cvs — n?Cv in H*(Bs(€) N Q), which yields in particular n?u = n?¢v € H} (Bs(£) N Q).
Step 2. By [4, Lemma 2.8] there exists a positive subsolution h € C? (Q5) of (1.3) in Qs with the
following behaviour

-8
h(z) ~ dz (z)log % (1 — ¢20 (1og %) ) )

0,1) and co9 = c20(2) > 0. Set w = h~'u and ws = n*(w — s)+. Then ws — n?w in

where 8 € (
)N Q) by Step 1. Put ug = hws, thus, for 0 < s, s’, we have

HY(Bs(¢

1 |us — us/|2 2 2
|V (us — ug)|?de — = / — 2 dr = / RV (ws — we)|*dz (2.30)
/Ba(f)ﬁ(z 4 /By () Bs(6)nQ

1 h2 s — Wg’ 2
+/ IVh|}|ws — we|*dx Jr/ VAV (us — ug )?dr — —/ Mdz
Bs(£)NQ Bs(£)NQ 4 Bs(6)NQ d?(z)
< / B2|V (w, — wy)2da,
Bs(£)NQ

where, in the last inequality, we have performed by parts integration and then used the fact that & is a
subsolution. Thus we have by (2.29) that

1 o — g2
im IV (s — ) *da — ~ / lus el . 2.31)
5520 /() 4 /) d*(2)

Step 3. Let W () denote the closure of C§° () in the space of functions ¢ satisfying

LS
2 .= WK ——/ .
ol o= [ [VoPar— 1 [ e <o

Thus n?u € W (), which implies

Z—“ € HX(Q, d(z)dz).

1
Next we set & = ¢ u; then & € H'(Bss (€), d(2)dz) and it satisfies
4

— ¢ 2div(¢3 VD) + A
4 4
~ tA1 . - .
Put 9*(z,t) = e 10, then 0* satisfies
U — ¢, 2div(¢1ViT) =0 (2.32)
1

in the weak sense of [14, Definition 2.9]. By [14, Theorem 1.5], v* satisfies a Harnack inequality up to
the boundary of {2 in the sense that

2 2

esssup {77(v, ) : (v, 1) € By (€) x [5, 51} < Cessinf {7°(,4) : (,1) € By (€) x [%7,17]}
(2.33)

15
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where Bg (€) is a Lipschitz deformed Euclidean ball (see [14, p. 244] and Definition 6.6). Since 7 is
bounded and ¥ satisfies the same estimate up to a constant depending on €2 and finally there exists a
constant ¢1g = ¢15(€2) > 0 such that

v(z) < cisv(y)  Va,y € Bs(S).

The result follows. O

In the case Kk < i, the result holds with minor modifications.

Proposition 2.12. Let § > 0 be small enough, & € Q,0 < k <  andu € H}, (Bs(£)NQ)NC(Bs()N

) be a nonnegative L,-harmonic in Bs(§) vanishing on 9Q N Bs(&) in the sense that

~ lim % =0 VK C 002N Bs(§), K compact. (2.34)
dist (z,K)—0 (d(z)) =

Then there exists ca1 = c21(2, k) > 0 such that

a@ = Moy HYENNEO

Proof. As in the previous proof we apply [4, Lemma 2.8], we consider a super-solution ¢ ~ d®- (1 +
c19d”) and a sub-h ~ d*- (1 — capd”) where 8 € (0,+/1 — 4x). Thus

D ¢ gL (Q, d (x)d),

K

where 7 is a cut-off function adapted to B,.(€). The function © = ¢, Lu satisfies
— ¢ 2div(p2 VD) + A\ = 0,

and ¥ € Hg(Bss (£),d*+ (x)dx). Then the proof follows as in the previous Proposition. O

4

Proposition 2.13. Letu € H!

loc

(€2) N C(Q) be a L1 -subharmonic function such that
lim sup % <
syt 43 () log d(a)

Then u < 0.

Proof. We set v = max(u,0) and we proceed as in the Step 1 of the proof of Proposition 2.11 with
1 = 1. The result follows by letting s — 0. O

Similarly we have

Proposition 2.14. Letu € H}!

loc

(Q) N C(Q) be a L.-subharmonic function such that

. u()
limsup ——%— < 0.
d(z)—0 (d(x)) =z

Then u < 0.
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The two next statements shows that comparison holds provided comparable boundary data are achieved
in way which takes into account the specific form of the £,-harmonic functions

Proposition 2.15. Assume r < i and h; € HY(Q) (i=1,2). Let u; € HllOC
functions such that d~"=" (ul —d hi) € HY(Q, d*+(z)dx). Then
If h1 < hg a.e. in S, there holds

(Q) be two L,,-harmonic

up () < ug(x) Vo € Q.
If hy — ha € HY(Q), there holds
up () = ug(x) Vo € Q.
Proof. Setw = ¢ (u1 — uz), thenw € HY(Q, ¢2dz) and
~div(62Vw) + AcdZw = 0
Since H(Q, ¢2dz) = HE(Q, p2dx) by (2.5) we derive that w and w. belong to Hi (L, ¢2dx) and,
integrating by part, we derive w, = 0. The proof of the second statement is similar. (|

In the same way we have in the case k = i.
Proposition 2.16. Assume k = . Let h; € H*(Q) (i=1,2) and let u; € H}, () be two L1 -harmonic
functions such that d== (u; — d2|logd|h;) € HY(RQ, d(x)dz).
(i) If h1 < ho a.e. in §Q, then
up () < ug(x) Vo € Q.

(ii) If h1 — ho € H&(Q), then
u1(z) = ug(x) Vo € (.

We end with existence and uniqueness results for solving the Dirichlet problem associated to L.
Proposition 2.17. Assume k = %. For any h € C(09) there exists a unique Ei-harmonicfunction U
belonging to H}. .(Q) satisfying

u(z)

o =h uniformly for y € 0S.
2€Q, 2—y€dQ d2 (z)|log d(z)| (¥) iformly for y

Furthermore there exists a constant c16 = ¢16(2) > 0> 0

u
< caa| ||| (a0

Lo (Q)

dz|log Di0|
where Do = 2sup,cq, d(x).

Proof. Uniqueness is a consequence of Proposition 2.13. For existence let m € N and h,, be smooth
functions such that h,,, — h in L°°(9€2). Then we can find a function H,, € C2?(Q) with value h,,
on 09, and |[Hy,|| L) < ||hm||Le50).- By Lemma 2.10 there exists a unique weak solution w,, of
L1u = 0 satisfying

Um

li ——(x) = hpy iformly f Q.
e Mo ¥ logd| (x) (y) uniformly for y € 0
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By Proposition 2.10 we have

Um — Un
Mm = tn_ < el lhm — Bl 05
dz | 1Og D_0| Lo (Q)
Thus there exists u such that
lim | =0
m—oo || dz | log D_ol Lo (@)
and u is a solution of L%u =0.
Letz € Q, withd(z) < 1 andy € 9Q
U U U, U,
—(x)—h < xT) — )| + | ————(x) — hm
d%|1ogd|( ) (y)’ ‘dé|1ogd|( ) d%|1ogd|( )‘ ‘dé|1ogd|( ) )
The result follows by letting successively x — y and m — oo. O

Similarly we have

Proposition 2.18. Assume k < %. Then for any h € C(0N) there exists a unique L-harmonic function
u € H} (Q) satisfying

u

lim —
TEQ, x—yEIN d—=

(z) = h(y) uniformly for y € 0€).

Furthermore there exists a constant cg = c9(S2, k) > 0 such that

A useful consequence of [4, Lemma 2.8] and Propositions 2.9 and 2.10 is the following local exis-
tence result.

u
T e =
d%= llLe(Q)

col|hllc(o0)-

Proposition 2.19. There exists a positive L,.-harmonic function Z,, € C(Qg,) N C*(Qg,) satisfying

lim Z%—(x) =0 (2.35)
d(z)=0 y/d(z)|Ind(z)| '
ifk = i, and
m 2@ (2.36)

if0<r<i

2.3 L,.-harmonic measure

Letzg € Q, h € C(0N) and denote L, ,.(h) := vi,(x¢) where vy, is the solution of the Dirichlet problem
(see Propositions 2.17 and 2.18)

L.v=0 in Q
v=~h in 09, (2.37)

18
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where v takes the boundary data in the sense of Lemmas 2.17 and 2.18. By Lemma’s 2.14 and 2.13,
the mapping h — L, ,,(h) is a linear positive functional on C(952). Thus there exists a unique Borel
measure on 052, called L, -harmonic measure in €2, denoted by w®°, such that

on(zo) = /6 b)),

Thanks to Harnack inequality the measures w” and w*°, xg, = € €2 are mutually absolutely continuous.
For every fixed x we denote the Radon-Nikodyn derivative by

dw®
K[:m (‘r7y) = dwzo

(y) for w*- almost all y € 9N).

It is classical that the following formula is an equivalent definition of the £,,-harmonic measure: for
any closed set E C 02

w0 (E) = inf {1/1 : € C1(Q), Lg-superhamornicin  s.t. liminf ;[p/(:v) > 1} ,

r—E (ZL') -

where

d= (x) if K < 1,
W(z) = {

dz ()] log d(z)| if k= 1.
The extension to open sets is standard. Let & € 9Q. We set A,.(§) = 90N B, (€) and z, = x,.(§) € Q,
such that d(z,) = |z, — §| = r. Also x,.(§) = £ — rng where n¢ is the unit outward normal vector to

O at £. We recall that By = Bo(€2) > 0 has been defined in Lemma 2.7.

Lemma 2.20. There exists a constant co5 > 0 which depends only on Q) and k such that if 0 < r < [y
and & € 0N), there holds
w”(Ar(8))

Proof. Let h € C(0) be a function with compact supportin A (£),0 < h < land h =1on Az ().
And let vy, v; the corresponding £,.-harmonic functions with respective boundary data (in the sense of
Lemmas 2.17 and 2.18) h and 1 . Then vy (x) > vp(x) > 0 and

im 2 (x) — vp(x)

=0 V. QNB
TEQ, r—xo W(.I') To € %

27
4

(&)-

By Lemmas 2.12 and 2.11, and ¢,; ~ da%, there exists cag = c26(€2, k) > 0 such that

U1 (y)a* vn(y)
d= (y)

We consider first the case xk = i. By Proposition 2.10, we have

1 (xl— vp(x)
d=s ()

< C26

Va,y € QN Bx(£).

0< U1 (y)l_ Uh(y) < U}(y) < Cg4| 1ogd(y)|
d=(y) dz(y
Thus, combining all above we have that
v () _ . Hogd@y)| _ v ()

d(@)logd(z)| " ogd(z)| = di (z)[log d(x)]

19
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Now by Lemma 2.10, there exists g > 0 such that

v1 ()

PRI
dz2 (z)|log d(x)]

1
5 Vx € QEU-

Thus if we choose y such that d(y) = 7, there exists a constant co7 = c27(£2, &) > 0 such that
| log d(y)| |log § [log gl 1
2T T = C2TT g = C — <~ Ve e Qr,
|log d(z))| | log d(z)] [log 55| — 4 Po
thus )
_w@ L e na. (2.39)
dz (z)|logd(z)| ~ 4 ’ "o
In particular
Uh (xa*r(g)) 1
T 27 2.40
Varr|log(a™r)] = 4 (240

where a* = (max{2, Do})~'. If Dy < 2 we obtain the claim. If Dy > 2, set k* = E[£Z2] 4+ 1 (we
recall that E[z] denotes the largest integer less or equal to z). If z € Bz (£) N QIDL there exists a chain
9

of at most 4k* points {z; 5230“ such that z; € B_g(f) NQ,d(z;) > a*r, zo = xe+r(£), zj, = = and
|zj — zj4+1| < %*. By Harnack inequality (applied jo-times)

Un(Ta+r(§)) < cosvn (). (241

Since

we obtain finally

N]|
&
8
—
>
3
—
I
~
=

1 _ wer©(A,(6) (1 )

e Y ] Vo e QN Bz (§). 242

4 = Va*r|log(a*r)] — *#\ar W(x) :(9) (2.42)
In the case k < i, the proof is simpler since no log term appears and we omit it. |

The next result is a Carleson type estimate valid for positive £,-harmonic functions.

Lemma 2.21. There exists a constant cog which depends on ) and k such that for any £ € 9OS) and
0<r<s<p.,
WH(B,(6) _ @ O(AE)
= C29
W(x) W(xs(£))

Proof. Let h € C(0) with compact support in A,.(§)) and 0 < h < 1. We denote by vy, vy, the
solutions of (2.37) with boundary data h and 1 respectively. By Propositions 2.17 and 2.18 there exists a
constant c3g > 0 such that for 0 < r < Sy,

v, w(Ar(§)) _ w*(09)
W@ S W@ S W)

Vo € Q\ By(6). (2.43)

S C30 Vx € Q. (244)

By Propositions 2.17 and 2.18, there holds

. vi(z)
1
d(z)s0 W (z)

=1, (2.45)

20
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thus we can replace W by v; in (2.43). Since wy, = vn(®) is Helder continuous in Q and satisfies

— vi(z)

—div(v?Vwy) = 0 in Q\ B, (&)
0<w, <1 in Q\ B,(€) (2.46)
wp =0 in 90\ B,(¢),

the maximum of wy, is achieved on 2 N 9B, (&), therefore it is sufficient to prove the Carleson estimate
wp () < cagwp (5(8)) Vo € QN IBs(§). (2.47)

If 2 such that |z — &| = s is "far" from 0%, wp(z) is "controled" by wp(x5(€)) thanks to Harnack
inequality, while if it is close to 9, wy, (x) is "controled by the fact that it vanishes on 9Q N 9B, ().

We also note that (2.38) can be written under the form
wp () > cop Vo € QN Br (§). (2.48)

Step 1. : r < s < 4r. By Lemma 2.20, (2.44) and the above inequality we have that

©) > Buy(x) Vre.

wp, (x
€30

Applying Harnack inequality to wy, in the balls B 1) (2 44 (§)) for j = 0, ..., jo < 14, we obtain

4

wn (2 @iar (§)) 2 cwn(rg(€))  forj =1, ..., jo.

This implies
wp(25(§)) > esowp () Vo € Q. (2.49)

Step 2: By > s > 4r. We apply Propositions 2.11, 2.12 to wy, in B (§1) N2 where & € 9 is such that
|€ — &1] = s and we get

wp(z) < ciswp (s (£1)) Vo € Bs (1) NQ. (2.50)
Then we apply six times Harnack inequality to wy, between z = (1) and x5(£) and obtain

wp (2= (£1)) < eszwp(xs(61)). (2.51)

Combining (2.50) and (2.51) we derive (2.47).

Step 3. For e > 0, set zp, = wp, — czzwp(25(£)) — €. Then z;{ has compact support in Q \ B(&) and
thus belongs to Hj (2 \ Bs(€)). Integration by parts in (2.46) leads to

/ V|V [P dz = 0. (2.52)
Q\B. (€)
Then z,’f = 0 by letting ¢ — 0. Combining with (2.49) and h 1 x A, (¢) implies (2.43). O

Theorem 2.22. There exists a constant csq4 which depends on ) and k such that, for any 0 < r < By
and § € 0N), there holds

LTN_l_%HogHGg% (2r(8),2) < W (A(8)) < C34rN_1_%|1ogr|G£% (2 (€),2) Va € Q\Ba(§).

C34
(2.53)

21
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Proof. Letn € C5°(Bar(§)) suchthat 0 < n < 1landn = 1in B,(§). We set
u=n(—Ind)Vd:=r,

(we assume that 47 < 1), in order to have

m ul@) =nlaa(zo) = ((z0) Vg € 09,

Tr—T0o (:E)
uniformly with respect to xg. Since
1 v 2+4+1Ind 24+ 1Ind
- = Ad=—(N—-1)———K,
4 d?(x) 2vd ( )

—A
v 2V/d
where K is the mean curvature of 92. We have also

1 1 1 _
|Vl < COXONBar (6) . and |An(z)| < COXONBar(€) 73 < CoXmB%(g);d Y(2),

thus u satisfies

1 wu 2+Ind
—Au— ——— = —9pAn+ ——— (2Vd.Vn — (N - 1)Kn) = in )
120 YAn 2\/3( n—( JKn) = f
u=_ on Jf).
Furthermore | f| < €2 (— %) XQnBa, (¢) Since 1) vanishes outside Ba,.(§). We have by the representation
formula [14]

0=u(z) = A Ggi (x,y)fdy + /asz h(y)dw®(y) Vo € Q\ Ba(§). (2.54)

By Lemma 2.1, we have that for any x € Q\ By, (§) and y € B, (§)
Gry (2,y) < 360G,y (2,20 (€)),

1
4

thus
SO [ Ge iy
QN By, (£) 4
1
< @Gh(%xr(g))/ [Ind@)l (2.55)
T QnBa.(6) Vd(y)
< 3G, (2, 20(€))rN 712 Inrl,
since

Ind > | Int|dt
/ o (y)|dy < ngTN?l/ " < 2C397’N7%|h”"|-
QN Bar (€) 0

Vd(y) Vit

This implies the right-hand side part of (2.53). For the opposite inequality we observe that if z €
0By, (£) N Q, there holds by (2.38)

11 i1 . 1 vd(x)y/d(x, (€
PNt 2|1ogr|G£%(zr(§),z)SC4OTN ! 2|10gT|mln{|$_$r(£)|N_2, |x(—x?rr(«f()TN(—1))}
< caiy/d(z)|logr|

S C42W(1‘)

< 2208 9(A(€)).
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We end the proof by Harnack inequality between w” % (5)(AT(§ )) and w® () (A,.(£)) and by Harnack
inequality between w”(A,.(£)) and w (&) (A,.(€)) on OBy, (€) and an argument like in the step 3 in
Lemma 2.21. |

a_

Replacing, in the last proof, the function ¢ = v/d(—1Ind) by Y = d =, we obtain similarly the
following two-side estimate

Theorem 2.23. Assume k < i. There exists a constant cq45 which depends only on §2 and k such that,
forany 0 < r < fyand § € 0N, there holds

1 _ o T _ a—
— N G, (00(6),0) SwT(A(O) € cor™ T Gr (6,(©)) Ve € 2\ Bu(©).
42
As a consequence of Theorems 2.22 and 2.23 and the Harnack inequality, the harmonic measure for

L, possesses the doubling property.

Theorem 2.24. Let 0 < k < i. There exists a constant c4o which depends only on 0, k such that for
any 0 < r < By, there holds

W (A2r(£)) < caw™(Ar(€)) Vo€ Q\ Bur(§).

The next result will be useful in the study of the Poisson kernel of L.

Lemma 2.25. Let 0 < r < By and u be a positive L-harmonic function such that

(i)u € C(Q\ Br(S)),
(ii)

lim u(z)

z—zo W(x)

=0 Vao € Q\ B (§),
uniformy with respect to x.

Then

1 a(@(©)
W, €)

with c42 depends only on k and ).

MMI(AT(@) Vo € Q\ Ba(§),

Proof. 1t follows from Propositions 2.11, 2.12 that there exists C' > 0 such that

U u(@e(§) __ ule u(@2r(§))

)
Cwrr©(A(€) ~ w(Ar(§)) —  wmrO(A(E))
Applying Harnack inequality between x2,.(§) and x,.(§) we obtain

1 u@(©)  __ ulw) u(zr(§))
Cwr @ (A(€)) ~ wr(A(€)) = wor©O(A(€))

Also by Harnack inequality we have that
WO (A (€)) 2 Cw"8 9 (A,(€)) > CoW (:(9)),

where in the last inequality above we have used Lemma 2.20.
Combining all the above inequalities, we derive

W) iy Ar@) Ve € QN OB,

The result follows by an argument similar to step 3 in Lemma 2.21. O

Yz € QN 9Ba(£).

VreQn GBQT(«E)

w*(Ar(6)) < u(z) <

23
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2.4 The Poisson kernel of £,
In this section we establish some properties of the Poisson kernel associated to L.

Definition 2.26. Fix £ € 0f). A function K defined in ) is called a kernel function at £ with pole at
xg € Qif

(i) K (-, &) is L;-harmonic in 2,

(i) K(-,€) € C(Q\ {€}) and for any ) € 992\ {¢}

o K@)
a—n W(x)

=0,

(iii) K (z,&) > 0 for each x € Q and K (x0,€) = 1.
Proposition 2.27. There exists one and only one kernel function for L, at § with pole at x.

Proof. The proof is similar as the one of [9, Th. 3.1] and we indicate it for the sake of completeness. Set

w*(Ay—n (8))

) = e By (€)

Since
Up > 0,

Ly, = 0in Q and u,(zg) = 1 the sequence {u, } is locally bounded in € by Harnack inequality.
Hence we can find a subsequence, again denoted by {u,,}, which converges to a function u, locally
uniformly in €2.

It is clear that w > 0 in  and £,u = 01in Q. Since u(xg) = 1, u is strictly positive in Q2. Now fix

Pedand P # €. Letng € Nbe such that P € Q\ Byn+1(£), ¥n > ng. By Lemma 2.25 if we take
no sufficiently large, we have

un(xzf’*o (5))

mwr(Ag—no €)) Vo €\ Byt (€),

up(z) < caz
which implies

w(@y-n0 (§))

Wy (e) " (A2 €2\ Brnn Q)

u(z) < cas

and thus
lim u()
We now turn to the question of uniqueness of the kernel function. Let us consider two arbitrary
kernel functions f and g for £,; in 2 at £. By Lemma 2.25 and the properties of f, ¢ there holds

1 f@e(§) _ fl@) 2 fzr(§)) . -
64212 g(xr(f)) = g(x) = 429(zr(§)) v EQ\BQT(E)'

In particular we can obtain if we take z = xg

fl@r(©) _ o

< C42;

9(@r(§))

=0.
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and we obtain, using again Harnack,

~

(x
)

We derive that for any two kernel functions f and g for L, at ¢ there holds

~—

gciz =c Vr € Q.

<
—

f(x) < ecgz) < Af(x) Vo € Q. (2.56)

Obviously ¢ > 1. If ¢ = 1 the result is proved. If ¢ > 1 then f + A(f — g) is also a Kernel function for
L, at{ with A = —L-_ Since (2.56) holds for any kernel functions,

g<c(f+A(f-9))

and therefore

f+A(f—g) +A(f + A(f —9)),

is a kernel function at £. Proceeding in the above manner and by induction we conclude that for each
positive integer k there exists nonnegative numbers a;, ..., axi such that

k
[+ (kA+Zaik> (f—9)

i=1
is a kernel function at £. Hence

k
!t <kA + Zaik) (f —g) <.
i=1
This last inequality can hold for all k£ only if f = g. O
We recall here that we denote by

dw®

K (2,8) = -

€3 for w*°- almost all £ € 99,

the kernel function in 2. Also in view of the proof of Proposition 2.27 and by uniqueness we can write

Ko (2,€) = lim 2 (Ar(8)

_— for w*°- almost all £ € 99).
P W (A, (6)) ¢

Proposition 2.28. For any x € , the function § — K, (x,&) is continuous on 5.

Proof. The proof is an adaptation of the one of [9, Corollary 3.2]. Suppose that £, — & asn — oo.
Then the sequence, K (-,&,,), of positive solutions of £,u = 0 has a subsequence which converges
locally uniformly in €2 to a function which must be a positive solution of £,u = 0 in 2. Outside any
fixed neighborhood, B, of £, % converges to zero uniformly in n as  — P € 92\ B. Hence the
limit function of the subsequence is the kernel function for £, at £. By uniqueness of the kernel function
we conclude that the convergence

Ke, (2,6n) = K, (7,8)
holds for the entire sequence {&,}. O
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We can now identify the Martin boundary and topology with their classical analogues. We begin by
recalling the definitions of the Martin boundary and related concepts. For x, y € Q we set

L Gﬁn(way)
Kﬁ(w)y) T GCN(IEO;:’J).

Consider the family of sequences {yx}r>1 of points of 2 without cluster points in €2 for which
K (z,yr) converges in 2 to a harmonic function, denoted K\ (;, {yx}). Two such sequences y; and
yy, are called equivalent if Ky (z, {yx}) = K« (2, {y}}) and each equivalence class is called an element
of the Martin boundary T". If Y is such an equivalence class (i.e., Y € I') then K (z,Y") will denote
the corresponding harmonic limit function. Thus each Y € Q U I is associated with a unique function
Ky (x,Y). The Martin topology on 2 U T is given by the metric

[Ke(2,Y) = Ku(z,Y")]

Y.V = d Y.Y e QuUT
(V.Y A1+|Kﬁ(x,Y)—Kﬁ(x,Y/)|z ¥ euL,

where A is a small enough neighborhood of z¢. K« (x,Y) is a p — continuous functionof Y € QUT
for zin{2 fixed, Q U T is compact and complete with respect to p, 2 U I is the p-closure of §2 and the
p-topology is equivalent to the Euclidean topology in 2. We have the following results.

Proposition 2.29. There is a one-to-one correspondence between the Martin boundary of () and the
Euclidean boundary OQ. If Y € T corresponds to & € 0§ then K,.(x,Y) = K¢, (x,€). The Martin
topology on Q U T is equivalent to the Euclidean topology on ) U 9f).

Proof. The proof is similar as the one of Theorem 4.2 in [20] and we recall it for the sake of complete-
ness. By uniqueness of the kernel function we have that

Kz, {yr}) = K, (z,6),

where {y;} is a sequence in  such that y, — £ € 9Q. It follows that each point of I" may be asso-
ciated with a point of 9€2. Lemma 2.25 clearly shows that K. _(-,§) # K., (-, &) if £ # &'. Hence,
the functions K, (x, yx ) cannot converge if the sequence yj, has more than one cluster point on 9<2 and
different points of 02 must be associated with different points of I'. This gives a one-to-one correspon-
dence between 9 and T’ with K (z,Y) = K¢, (2,£) when Y € T correspondsto £ € Q. If y, — &
in the Euclidean topology then K, (z,Y:) — K. (z,Y) and, therefore, Y, — Y in the p-topology by
Lebesgue’s dominated convergence theorem. On the other hand suppose Y, — Y in the p-topology. If
&, does not converge to ¢ in the Euclidean topology there is a subsequence &, such that &, — & # ¢
in the Euclidean topology. Then Yy, — Y’ and Y, — Y in the p — topology with Y # Y, which
is impossible. Therefore, the Martin p-topology on 2 U I' is equivalent to the Euclidean topology on
QNoQ. O

By Proposition 2.29 and Proposition 2.1 we have the following result,

Theorem 2.30. Assume 0 < k < i. There exists a positive constant c43 such that

d= (y)

€= yor

1 d2(y)

QW < Kg, (y,6) < cus

(2.57)

Let us give a Lemma that we will use to prove the representation formula.
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Lemma 2.31. Let & € 09, r > 0 be small enough and u be a positive L-harmonic function in Q). There
exists a super L-harmonic function V' such that

BN SO A0
| ula) in QN B, (€),
where v satisfies
Lv=0 inQ\ B-(§)

lim o) = uly) Yy €IB()NA (2.58)

ICIN =
lim 775 =0 Yy € 90\ B,.(¢).

Proof. The function u is C? in  since it is £,.-harmonic. Let &, € B,.(£) N £, and 7o be such that
B, (&) C €. We consider the problem

Lew =0, an\ET(E)
lim w(z) =n(y)wly) vy e 0B-(§)NQ

tim V“;(é)) o, vy € 02\ B,(€),

where 17 € C§°(Bro (£)), 0 < n < 1. In view of the proof of Propositions 2.9 and 2.10 we can find a
positive solution of the above problem w. Also we note here that w < u, and by Harnack inequalities
2.11 and 2.12, we have that for any { € 92

P ()
where p < 1dist(¢, 0B, (€)). Thus we derive

< C(k, N, Q)i(é)) Vr,y € B,((),

w(z) uly)
on(e) = GO0

The remaining of the proof is standard and we omit it. |

Va,y € B,(Q).

We consider a increasing sequence of bounded smooth domains {€2,} such that Q,, C Q,.1,
UnQy = Q and HY71(Q,) — HN1(Q). Such a sequence is a smooth exhaustion of ). For each
n, the operator £} defined by

Q) K
is uniformly elliptic and coercive in H}(€2,) and its first eigenvalue A\~ is larger than \,. If h €
C(092,,) the following problem
LSy =0 in Q,

v=~h on 0%, (2.60)

admits a unique solution which allows to define the ES" -harmonic measure on 0f2,, by

o) = [ hly)det, (o). @.61)
O
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Thus the Poisson kernel of £ is

K on(z,y) = = (y) Yy € 09y, (2.62)
5 dwg’

Proposition 2.32. Assume 0 < k < i and let xo € Q1. Then for every Z € C(RQ),

im [ Z(@)W (@)l (z) = / Z(@)dw™ (). (2.63)
n= Jaq, " oQ

Proof. We recall that d € C2(€2.) forany 0 < ¢ < 3y and let ng € N be such that

dist(09Q,, 00Q) < % Vn > ng.

For n > ng let w,, be the solution of

E,?"'wn =0 in Q,

w, = W on 09, (2.64)

It is straightforward to see that the proof of Propositions 2.17 and 2.18 it is inferred that there exists a
positive constant c44 = c44(€2, k) such that

lwn|lLe@,) < caa VYN > ng.

Furthermore

wp(To) = - W(z)dwsy (z) < cas. (2.65)

We extend w;’ as a Borel measure on Q by setting we (2\ ©2,,) = 0, and keep the notation wgy, for
the extension. Because of (2.65) the sequence {Ww } is bounded in the space 9,(€2) of bounded
Borel measures in £2. Thus there exists a subsequence (still denoted by {W (x)w¢ } which converges
narrowly to some positive measure, say & which is clearly supported by 0f2 and satisfies |||, < cas

as in (2.65). For every Z € C(fQ) there holds

lim Z(x)Wdwg? :/ Zdw.
" 89

n—00 o0,

Let ¢ := Z|9q and

z(x) = o Ke, (z,y)C(y)dw™ (y).
Then (@)
) z(z .
d(lgggoW(ac) =( and z(xg) = BQde .

By Propositions 2.17 and 2.18, % € C(Q). Since & |aq, converges uniformly to ¢ as n — oo,
there holds

Z ~
(o) :/ zloa, dwy = W&dwg‘; — [ (dw as n — oo.
oQ,, ’ oQ,, w o0
It follows

Cdw = / Cdw™ V(e C(O90).
o0 o0

Consequently w = dw™. Because the limit does not depend on the subsequence it follows that the whole
sequence W (z)dw¢y converges weakly to w. This implies (2.63). O
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Theorem 2.33. Let u be a positive L,.-harmonic in the domain ). Then u € Lém (Q) and there exists a
unique Radon measure i, on 0S) such that

u(@) = | K (z,8)du(§).
o0

Proof. The proof which is presented below follows the ideas of the one of [20, Th. 4.3]. Let B be a
relatively closed subset of 2. We define

RB(x) := inf{4)(x) : 1 is nonnegative supersolution in 2 with ¢» > u on B}.
For a closed subset F of 9S2, we define
pF(F) == inf{R"C(2): FCG, GopeninRV}.

The set function p*(F') defines a regular Borel measure on 02 for each fixed « € Q. Since p*(F') is
a positive £, —harmonic function in €2 the measures p* are absolutely continuous with respect to ™ (F')
by Harnack’s inequality. Hence,

mw>yﬁwwm@>tﬁig%%wmm.

We assert that =) — Kz, ) for a.e. u™ (y) in OS2. By Besicovitch’s theorem,

T () =
dp(F) _ . 1w (Ar(y)
dp*o (F) 1 (Ar(y))’

for a.e. pu*°(y) in ON.
By Lemma 2.58 and in view of the proof of Proposition 2.27 we have that ;: I'U((I;))
function, and by uniqueness of Kernel functions the proof of the assertion follows. Hence

is a kernel

w) = [ Ke(e)d (),
for all Borel A C 92 and in particular

u(z) = p*(09) = o Ke(w,y)du™ (y).

Suppose now
u(@) = [ Ke(z,y)dv(y),
a0

for a Borel measure v on 0S2. For a closed set F' C OS2 we will show that v(F') = p® (F).
Choose a sequence of open set {G,} in RY such that N° , G, = F and

p(F) = lim RO ().

k—o0

Since
RB(z) < RMz) if BcCA,
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we can choose G, such that G.; C Gy, Vk > 1 and Q \ G}, to be a C? domain for all £ > 1. We
consider a increasing sequence of bounded smooth domains {2} such that Q;, C Qg41, UQ, = Q,
U NG =0, HN () — HN1(Q) and

’HN_l(ﬁk ﬂak) — HN_l(F).

Let wg‘; (y) be the L,-harmonic measure in 92, (see (2.59)-(2.62)). Then
RP@) = [ RS ()dut )
9,

- / RO (y)dws (y) + / RO (y)dw (y)
I NOG aﬂk\aGk

> [ R )i ().
O NOG

Now, by Lemma 2.58

[ R = [ e )
002, NOG, 02, NOG

_ / Ky, v () du ()
QL NOG

/6(2 /BﬂkﬁaGk y&)dw () (5)
2 [ s, Kol €1t a6

where F,, C F, UF,, = F and dist (F,,,0Q \ F) > 1. If £ € F,, we have

K (20,€) = /Waak £(, €)dwi () + /mk\gk £(, &) (1)

But o
ay
K(y,§) < Wd 2 (y) Yy € o\ Gy,
thus by Proposition 2.32 we have that
lim Ke(y, &)dwy) (y) = 0.
k—oo BQk\Gk

Combining all the above inequality and using Lebesgue’s dominated convergence theorem we obtain

k—o0

4 (F) = lim RO ( / /6 Ko, Odv(e) = v(Fy)

which implies
p o (F) > v(F).
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For the opposite inequality, let m < k — 1, k > 2 then

@) = [ R ()duty )
O,
— [ Rrwdsw+ [ R )
80, NAC 82 \OG m

In view of the proof of Lemma 2.58, we have that
RO (z) <Cd™ (z) Vo€ Q\Gnm
Thus by Proposition 2.32 we have

lim R (y)dwe (y) = 0,
k=00 J 90, \0G 2
and
[ rrwwges [ )
OQLNOG 1, QL NOG 1,

_ / Ky, v () du, ()
QL NOG 1,

/an /aszmac £y, §)dwgy, (y)dv (E).

If ¢ € 90\ G,, we have again by Proposition 2.32 that
lim Ke(y,§)dwy (y) = 0.
k=00 JoaQ,naG.,

If € € 90N Gy, then
[ Kel.duig ) < Ke. (0,6)
99,NG
Combining all the above inequalities, we obtain
u*(F) = lim RG’“( ) < / Kp(zo,8)dv(€) = v(0QN G,),
90NG
which implies
p(F) < v(F),
and the proof of Theorem follows.
O
Actually the measure p is the boundary trace of . This boundary trace can be achieved in a dynamic
way as in [27, Sect 2]. In the same way as the one they develop therein, we have
Proposition 2.34. Let zy € Oy and p € M(OQ). Put
vi= | Kg(z,y)du(y),
a9
then for every Z € C(9),

lim Z(z)vdwe :/ Z(x)dp. (2.66)
o0

n—o0 [0,
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Proof. The proof is same as the proof of Lemma 2.2 in [27] and we omit it. |

The next result is an analogous of the Green formula for positive £,-harmonic functions.

Proposition 2.35. Let v be a positive L,;-harmonic function in 2 with boundary trace p. Let Z € C 2(Q)
and G € C(Q) which coincides with G, (o, .) in Qs for some 0 < & < [y and some x ¢ Qg,. Assume

IVG.VZ| < 5. (2.67)

Then, if we set ( = Z G, there holds

/UKKCd$=/ Zdu. (2.68)
Q a0

Proof. Let {€2;} be a smooth exhaustion of 2 with Green kernel Ggi and Poisson kernel ng =
—anaﬁfc. We assume that j > jo where ﬁ; C Qj. Set ¢; = ZG,;, where the functions G are
C°°~ in Q;, coincide with Ggi (z0,.) in ; N Q5 and satisfy G; — G in C%(Q)-loc and such that
VG, VZ| < ¢ys .

0¢; oG _
/ vLnGjdr = _/ Uﬁds = _/ vZ——dS = vZPgJ (z0,.)dS = vZdwy?.
Q; 09 on 89, on o9, " o0, y
By (2.66)
/ vZdwy — | Z(x)dp  as j — oo.
0% ! a0
Next ) ] )
L= ZLGj+ GAZ +2VG; .V Z.
Since v € Ly, (92), the proof follows . .

Similarly we can prove

Proposition 2.36. Let v be a positive L-harmonic function in §) with boundary trace 1. Let 0 < Z €
C?(Q) satisfy 3
V6. VZ| < s

Then, if we set ( = Z ¢, there holds

/ vL(dx > co/ Zdu,
Q a0

where the constant co > 0 depends on 2, N and k.

3 The nonlinear problem with measures data

3.1 The linear boundary value problem with L' data

In the sequel we denote by w = w®® the L,-harmonic measure in {2, for some fixed g € €2 and by
M. (2) be the space of Radon measures v in 2 such that ¢,.d|v| is a bounded measure. We also denote
by M(012) the space of Radon measures on 92 with respective norms |[v|lon,, (o) and [|i[|on(aq). Their

32



Konstantinos T. Gkikas, Laurent Véron

respective positive cones are denoted by sm;; (2) and M+ (). By Fubini’s theorem and (2.10), for
any v € M, () we can define

G, [W)(z) = / G, (2, 9)dv(y),

and we have

1G . [Wllly (o) < casllvllon,, @) (3.1)
If 1 € M(ON), we set

Ke, [u](z) = o Ke, (z,y)du(y),

IKe, [M]HL}M(Q) < carl plloncon)- (3.2)

In the above inequalities c46 and c47 are positive constants depending on €2 and .
For0 < k < i, we define the space of test functions X (2) by

X(Q2) = {77 € HL.(Q): = € HY(Q,d*+dx), (¢n) "Lun € LOO(Q)} . (3.3)
d 2

The next statement follows immediately from Propositions (2.9) and (2.10).

Lemma 3.1. Ler 0 < k < 1. Let m € L°°(Q) and 1y, be the solution of

Ennm = m(b;{ in Q

Nm =0 on 012, 34

obtained by Propositions 2.9 and 2.10 with fo = m and h = 0. Then n,,, belongs to X(2). Furthermore

HTn—HLOc Q ||m+||Loo Q
_7()¢n < —Tm_ < m < Ny < 7()(?;% (35)
s Ak
In the next Proposition we give some key estimates satisfied by weak solutions of
Leu=f in Q
w=h  on o9 (36)

Proposition 3.2. For any (f,h) € L} (Q) x L*(09, dw) there exists a unique u := uyy € Lj ()
such that

/ ulyndr = | fndx + /Kﬁﬁ[hw]ﬁnnd:c vy € X(Q). 3.7
Q Q Q
There holds
u=Ge,[f]+Ke, [hw], (3.8)
and
lullzy (@) < casllfllzy (o) + carllhllLro0,dw): (3.9)

Furthermore, for any nn € X(Q), n > 0, we have

/|u|£,mdx < /fnsgn(u)dx+/K£~[|h|w]£,€ndx, (3.10)
Q Q Q

and

/u+£,€77dac < /fnsgn+(u)dx+/Kgn[h_kw]ﬁ,mdx. (3.11)
Q Q Q
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Proof. Step 1: proof of estimate (3.9). Assume u satisfies (3.7). If n = nggy(u), We have

/Q|“|¢nd$:/gwcn77d$:/Qf77d$+/QKLN[hw]5gn(u)¢ﬁdX.

By (3.1),(3.2)
1
[ nas< 5 [ \7lode.
Q K JQ

/Kgn [hw]sgn(u)p,dx < 047/ [h|dw,
Q T9)

which implies (3.9) and uniqueness.
Step 2. proof of existence. If f and h are bounded, existence follows from Propositions 2.9, 2.10. In
the general case let {(fy, hn)} be a sequence of bounded measurable functions in £ and 92 which
converges to {(f,h)} in Ly, (Q) x L'(9Q, dw). Let {un} = {uy, n, } be the sequence weak solutions
of (3.6). By estimate (3.9) it is a Cauchy sequence in Lém (©) which converges to u. Letting n — oo in
identity

/ upLyndr = | fondz + /KLR [hnw]Lindz, (3.12)

Q Q Q

where n € X () implies that u = wuy .

Step 3: proof of estimates (3.10), (3.11). We first assume that f is bounded and h is C?(Q). Set
Q, = Q) , Let u, be the unique solution of

Loun = f in Q,
v, = Wh on 09),. (3.13)
Then u,, can be written in the form
un = G, [f1(x) + wn,
where w,, satisfies
Lv=0 in Q,
v=Wh on 90, (.14)
and
G, 11)e) = [ G, () )y,
)
where G denotes the Green Kernel of £, in €2,,. Now note that G (x,y) < Gy, (z,y) :== G% ,
1 1 1
and forany x,y € Q,z #y ' !
GE, (2,y) T Gey (2,y). (3.15)
4

Also, in view of the proof of Proposition 2.32, there exists ¢o > 0 which depends on Q, N, &, ||h|| c2(@)
such that

sup |wy| < ¢p, Vn €N,

z€Qy
and w, — K, [hw]. Thus by the properties of Green kernel that we described above, there exists a
constant cg; 2, N, k, ||h||02(§), || f]| Lo (c2), such that

sup |un| < co, Vn €N,
TE€Q,
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and
up = u =G, [f] + K, [hw].

Let 7 € X(£2) be nonnegative function and let 7,, be the solution of the problem

Lev=Lyxn in Q,
v=20 on 0€,,.

Then there exists co = co(||An||L~ (), &, N, Q) such that |1, | < co¢, and

LN — Legn, Mo — 1.

Let z,, be the solution of
L0 =sgn(n,)Ln on 99,
v=20 on 0€2,,.

Then z,, > max(n,,0) since
Ly || < sgn(nn)Lunn = sgn(nn) Len,

and |Zn| < CO(bm
Lyzn — Legn, Zn — 1.

Now note that z,, > 0 and z,, € C! (ﬁn) Also, the following inequality holds (see eg. [32]),

Ozp
/ [tin| Leyzndr < / fznsgn(uy) — i|h|de

Q Q a0 OV

= / fznsgn(uy) +/ W Ly 2nde, (3.16)
Q Q
where w,, is the solution of
L.v=0 in Q,

v=WIh| on 0%Q,. (.17

In view of the proof of Proposition 2.32 there exists co2 > 0 which dependson (2, N, &, [|h|| 2 g, such
that

sup |Wn| < ¢p, Vn €N,

zeEN,
and w,, — K, [|h|w] as n — oo. Thus combining all above and taking the limit in (3.16) we have the
proof of (3.10) in the case that f is bounded and h € C2(£2). We note here that for any h € C?(9) there
exists H,, € C%(Q), such that || H,,,| lc2@) < cosl|hl| L= (a0), for some constant co3 which depends only
on €, and H,,, — h in L*°(9Q). Thus it is not hard to prove that (2.32) is valid if f is bounded and
h € C?(99). In the general case we consider a sequence (f,,, hy,) C L°°(Q) x C?(9S2) which converges
to (f,h)in L'(Q) x L' (99, dw). Since uy, p, converges to uyy in L, (€2) we obtain (3.10) from the
inequality verified by any n € X(Q)

/|Ufmhn|£,md:c§ /fnnsgn(u)dXJr/Kgn[hnku]ﬁ,{ndx.
Q Q Q

The proof of (3.11) is follows by adding (3.7) and (3.10).
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3.2 General nonlinearities

Throughout this section 2 is a smooth bounded domain and « a real number in the interval (0, i] Let
g : R — R be a nondecreasing continuous function, vanishing at 0 for simplicity. The problem under
consideration is the following

R

—Au— —u+gu)=v in Q

d? (3.18)
U= in 012,
where v and p are Radon measures respectively in €2 and 0f2.

Definition. Let v € My, (Q) and p € M(IQ). We say that u is a solution of (3.18) if u € L} (1),
g(u) € L} () and for any 1 € X(9) there holds

/ (ulxn + g(u)n) de = / (ndv + K, [1] L) dx (3.19)
Q Q

Our main existence result for subcritical nonlinearities is the following.
Theorem 3.3. Assume g satisfies

vt

/OO (g(s) —g(—s))s N2t ds < cc. (3.20)
1

Then for any (v, ) € My, (Q)x € M(ON) problem (3.18) admits a unique solution w = u,, . Fur-
thermore the mapping (v, 1) — ., is increasing and stable in the sense that if {(vy, tin)} converge to
(v, p) in the weak sense of measures, {u,, ,., } converges to uy,,, in L ().

The proof is based upon estimates of Mz and K., into Marcinkiewicz spaces.

Lemma 34. Let v € im;» (Q), p € MT(OQ) and for s > 0, Es(v) = {z € Q: Gg, [v](z) > s} and
Fs(p) ={z € Q: K¢, [u](x) > s}. If we denote

SS(V):/E ( )(b,{dx and fs(u):/ Prdx,

Fy(p)

there holds

L

v llom,,, () + ||N||zm<asz)> N-z+ S (3.21)
S

)+ Fli) < e
Proof. Step 1: estimate of Fs(v). By estimate (2.57), for any £ € 09,

- da%(ac) s

with 6 = m From (2.2), (2.3)

W

Fs(de) = / Prdr < C49/ |z — §|a7+dx — csos N HE
Beaayo (€) B ea yo (€)
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Therefore, for any so > 0 and any Borel set G C (2

/ Ko, (2,€)bndz < 5o / budar + / K, (2,)dnda
G G Fsq(d¢)

< so/ qﬁmdx—/ sdFs(d¢)
G S0

N+it

0o _ p)
< SQ/ ordr + 050/ S N-24 55 ds
G so

2
24

T N—2+
< 50/ Prdx + C515¢ 2.
G

Next we choose sg so that the two terms in the right part of the last inequality are equal and we get

/Km(x,ﬁ)%dx < cso (/ qﬁndx) N (3.22)
G G

Henceforth, for any p € 9(92), there holds by Fubini’s theorem,

/G Ke,[

If we take in particular G = F;(|u|), we derive

2

pliéncs = [ [ K, (0. €06, (2)dzdlul(€) < callnloncon ( / %dz) E e

2

sFs(|pl) < esallptllomcany (Fs(lul) V7=,

which yields to (3.21) with v = 0.
Step 2: estimate of E;(v). By estimate (2.10), for any y € (2,

Es(éy)cEs((Sy)::{xeﬂ-wzg}ﬂ{xeﬂz%sz

- yNtes

A simple geometric verification shows that there exists an open domain @ C O C Q such thaty € O,
dist (y, O°) > Mid(y), O C Bj,q(y)(y) forsome 0 < A; < A2 < 1 independent of y with the following
properties

A= (y)d=(a) 1

c0 =
’ o — y[NFar=2 = [y — [N -2

A (d= @ 1
o — [N Fer =2 = o —y V-2

Notice that if @ = RY then O = B 5 () where d(§) = 2d(y). Set
2

re (0=

and
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We can easily prove

Es(éy) ES(‘Sy)
N

Bl ap (V45
< /~ Prd +/ Ordr < c538 N=—2+—5- (d(y)) 2N—dtay
E1(8y)

E2(5y)

As in step 1, for any Borel subset © C (2, we write

/ng(x,y)gb,ﬂd:c < so/ ¢de+/ Ge, (z,y)prdx
e e Esq(6y)

< 50/ gb,idzf/ sdEs(dy)
© S0
N+

o (V+E) oo ol
< oo [ ducde +esald) F [T
© so

2
=
—2+ 58

oy (N+7gh) —

S)

Then

/ng(ac,y)qﬁ,gdx < C55(d(y))a7+ </ qb,.idac> Nt ok < ¢560n(Y) (/ qﬁndac) N ) (3.24)
o) G G

Thus, for any v € My, (), we have

/@ Ge,[

Thus (3.21) holds. O

2

N+ZE
l/”(ﬁ,{;dl'/Q/OGLH(SC,y)(b,{(x)d$d|l/|(y) < essllVllom, () </O¢,€d:c) 2 (3.25)

Proof of Theorem 3.3. Step 1: existence and uniqueness. Let {(vn, 1n)} C C(Q) x C*(9€) which
converges to (v, i) in the weak sense of measures in My, () x M(9N). Set v, = K, [unw], then v, €

L>(Q) and it is £,-harmonic. Set §(t,z) = g(t + v (2)) — g(vn(z)) and f(z) = vp(z) — g(vn(z)).
Let J,; be the functional defined in L?(2) by the expression

1

B _
To(w) = 5/Q (|Vw|2 -’ + 2J(w)) dz — /waqﬁ,gdac, (3.26)

where J(w) = [ g(t)dt with domain
D(J.) = {w € Hy(Q) : J(w) € L'(Q)},

(see definition in 2.1-5). By (2.8), J, is a convex lower semicontinuous and coercive functional over
L2(2). Let wy, = wy,, ,,, be its minimum, then w,, = w,, ., = Wy, + v, is the solution of

Lt + g(un) = vy in Q

Up = ln in 09, (3.27)
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and for any ) € X(£2), there holds

/Q (n Ly + 9t )) di = A (vn + Ko [tnw] o) da. (3.28)

By Proposition 3.2 (3.10), there holds, with = ¢,

/l (Alun] + |g(un)|) drudz < /( (lvn] + Kz, [|pn|w]) ¢rdz
¢ 2
< casllvallon,, (@) + carllpnlloncon) (3.29)
< ¢s7.
Moreover
—Gr, [vy] = Ke, [paw] S un < G, [f] + Ke, [ w]. (3.30)

By using the local L! regularity theory for elliptic equations we obtain that the sequence {u,,} is rela-
tively compact in the L!-local topology in 2 and that there exist a subsequence still denoted by {u,,}
and a function u € L, () such that u, — u a.e. in €. By (3.30)

lg(un)l < g (Cr, i)+ Ke, [pgw)) — g (=Ge.[v] = Ke, [p, @) (3.31)

We prove the convergence of {g(un)} to g(u) in L}, () by the uniform integrability in the following
way: let G C ) be a Borel subset. Then for any sg > 0

/Ig(un)l%dw S/ (9(Ge, [vf]) + 9 (Ke, [wfw]) = g (=Ge, v, ]) — 9 (—Ke, [p, w])) ¢rd
G G

< 56 /G bodz + [E L9 Ee i bt / g (Ke, (1)) bude

Fs(pt)
= 9 (~Ge, [v7]) bud — 9 (~Ke, [u5]) budz
Ego(uf) FS(HZX?
< 50 /G bodr — / 9(5)(dEa(vt) + dFa(u)) + / o(—5)(dEx(v) + dFa(uy)).

But

S0

[ a1 = 505 + [ €l )

% e

< 9(50)Es () + a7 (17 om,, ) 7 / s N dg(s)
50

«
N+

oo
2N+ o or - .ot
< v ear ([ llmy, ) ¥ 22 / s N2 g(s)ds.
s0

W

All the other terms yields similar estimates which finally yields to

/Ig(un)lmdw < 80/ drda
G G
s N1yt (3.32)

+ s ([vallom, () + lnllonn)) ¥ 2= / s N (g(s) — g(—s))ds.
s0
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Since [[vnlon,, (@) + Iltinllan(oe) is bounded independently of 7, we obtain easily, using (3.20) and
fixing s first, that for any € > 0, there exists § > 0 such that

/ bud < 6 —> / 19(n) | nder < e. (3.33)
G G

Since
lun| < G, [vnl] + Ke, [|pn |w],

we have by (3.23), (3.25)

2
b
/|un|¢,€dx < (CszH/Lanm(aQ) +655H1/n|\9n%(9)) (/ ¢nd$) N+ (3.34)
G G

This implies the uniform integrability of the sequence {u,}. Letting n — oo in identity (3.28), we
conclude that (3.19) holds. Uniqueness, as well as the monotonicity of the mapping (v, i) — u,,,, is an
immediate consequence of (3.10), (3.11) and the monotonicity of g.

Step 2: stability. The stability is a direct consequence of inequalities (3.32) and (3.34) which show the
uniform integrability of the sequence (un, g(u,)) in L} () x L} (). O

Because of the uniqueness of the solution u,, ,, of problem (3.18) and the fact that g(u,, ) € Léﬁ Q)
the following representation statement is valid, and its proof is obtained by approximation of the mea-
sures as is [29, Lemma 3.2, Def. 3.3].

Proposition 3.5. Let (v, 1) € My, (Q)x € M(OQ) such that problem (3.18) admits a solution u,, ,.
Then

uu,l/ = _GL‘,» [g(uu,l/)] + KL‘% [,U,] (335)

Conversely, ifu € Ly, (Q) such that g(u) € Ly, () satisfies (3.35), it coincides with the solution u,,,,
of problem (3.18).

3.3 The power case

In this section we study in particular the following boundary value problem with p € 9(92)

Lou+ |ulf™lu=0 in Q

U= in 0€2. (3.36)

A Radon measure for which this problem has a solution (always unique) is called a good measure. The
solution, whenever it exists, is unique and denoted by u,,. For such a nonlinearity, the condition (3.20)
is fulfilled if and only if

N+ 5

R T R

(3.37)
On the contrary, in the supercritical case i.e. if ¢ > ¢., a continuity condition with respect to some
Besov capacity is needed in order a measure be good. We recall some notations concerning Besov
space. For ¢ > 0,1 < p < 0o, we denote by WP (R9) the Sobolev space over R%. If & is not an
integer the Besov space B??(R?) coincides with W77 (R%). When ¢ is an integer we denote A, , f =

flea+y)+ f(x —y) —2f(x) and

B"“P(R?)

|
—N—

—

m

~
=

=
N
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with norm )
A,y fIP B
_ P |Azy
p = » T dxd .
s = (W [ [ 2oy

B™P(RY) = {f e W 'P(R?Y): D f € BY?(RY) Voo € N* || =m — 1},

Then

with norm )

DI A, 1P
mp = P | =Ty 1 d d
L L Sl s

loe|=m—

These spaces are fundamental because they are stable under the real interpolation method developed by
Lions and Petree. For o € R we defined the Bessel kernel of order a by G, (¢) = F~1(1+].]2) =2 F(¢),
where F is the Fourier transform of moderate distributions in R%. The Bessel space L, ,(R?) is defined
by
Lop(RY) ={f=Gys*g:g€ PR},
with norm
[fLa, = lgllzr = 1G—a * fllLr-

It is known thatif 1 < p < co and a > 0, L, ,(R?) = W*P(R?) if o € N and L, ,(R?) = B*P(R?)
if ¢ N, always with equivalent norms. The Bessel capacity is defined for compact subset K C R? by

=inf{||f|} ., f €S8R, f>xx}

It is extended to open set and then any set by the fact that it is an outer measure. Our main result is the
following

Theorem 3.6. Assume 0 < K < . Then p € fm*(@ﬂ) is a good measure if and only if it is absolutely

continuous with respect to the Bessel capacity C2 2pa, , Whereq = q_il, that is
24 »q

VE C 09, E Borel C 2+a+ (E)=0= u(E)=0. (3.38)

_z/aq

The striking aspect of the proof is that it is based upon potential estimates which have been developed
by Marcus and Véron in the study of the supercritical boundary trace problem in polyhedral domains
[29]. Before proving this result we need a key potential estimate.

Theorem 3.7. Assume 0 < k < i and q > q.. There exists a constant csg9 > 1 dependning on (), q, and
K such that for any . € 9T (ON) there holds

Sl s, < / (Ke, 1) dude < crollil?  ave, - (339)
B d Q 372+ 2" 1

Proof. Step 1: local estimates. Denote by £ = (£1,£’) the coordinates in Rf, & > 0,¢ € RV-1
The ball of radius R > 0 and center a in RV =1 is denoted by B/;(a) (by By if a = 0). Let R > 0,
v € M+ (RY 1) with support in B’; and

B dv(¢')
K[v](§) —/HR @l o) (3.40)
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Then, by [29, Th 3.1],

q
R /
+1)% dv({’)
Al ey = [ — | €
e o S, vy (€ + 16— )

< oo (14+ RODF) |lu)?
B

(3.41)

2+a+

+ BrY ,q

There exists B > 0 such that for any yo € 99, there exists a C? diffeomorphism © := ©,,, from Br (o)
into RY such that ©(yo) = 0, ©,,(Br(yo)) = Br and

©(2N Br(y)) = By == BRNRY, ©(02N Bx(yo)) = By , ©(02N Br(y)) = Bp.

Moreover, © has bounded distortion, in the sense that since

du(z) — % 0o-! d(po© 1)
¢N($)/6(ZOBR(yU) | =00 (5)/

o=V L [871(O — O T e

there holds

& [ —dweomg
C61 B/% (E% + |€/ _§I|2)% 1
_ d(po©1)(¢)
<¢po00 1(5)/3 16-1(¢) — O-1(¢)[N—2+ax

ay 001
§061§1T/B/ ( d(po©71)(()

/
R
2

g+lg—cp) T
24«
Since 1 — po®~is a C* diffeomorphism between M* (9N Bz (yo)) AB ™2t 2 (0N B (yo))

24«
and M+ (B,) N B~ " e (B’ ), we derive, using (2.57) and (3.41),

1 q
el

2q

o S [ Re ) s < conlll | s, (3.42)
d QNBr(yo) B + 2q¢" 1

Clearly the left-hand side inequality (3.39) follows. Combining Harnack inequality and boundary Har-
nack inequality we obtain

/ (K, [1]) pndr < co3 / (Ke, (1)) d, (3.43)
Q QNBr(yo)

which implies the left-hand side inequality (3.39) when p has it support in a ball B B (yo) N O

Step 2: global estimates. We write (1 = Zi“zl 5 where the 11 are positive measures on 9€2 with support
in some ball B x (y;) with y; € O and such that

1
ol msme, Sl e ol e
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Then
1 1
K, [ulllzs <Z|\Kc pilllzs < s ZHM;H prtes <J0664Cé’9||u||3,2+2;;+,q
Jj=1

On the opposite side
IKe, plllpg = maxi<j<go K, [nillls

2 11 maxi<j<jo ||NJ|| 2y 2ot
cl 2¢"
59

> TRl e
30‘359 2

>l nse
0640519 2

which ends the proof. O

Proof of Theorem 3.6: The condition is sufficient. Let u be a boundary measure such that K., [u]|? €
Léﬁ (Q). For k > 0 set g (u) = sgn(u) min{|u|?, k7} and let uy, be the solution of

Liug + gr(ug) =0 in Q

U = in 002, (3.44)

which exists a is unique by Theorem 3.3. Furthermore k — wy is decreasing,
0 <up <K, [u],

and
0 < gr(ur) < gu(Ke, [1]) < (Kg, [1])?,

and the first terms on the right of the two previous inequalities are integrable for the measure ¢, dz by
Theorem 3.7. Finally for any n € X;(2), there holds

[ tun+ gutwim de = [ Ke, ..
Q Q
Since uy, and gy (ug) converge respectively to u and g(u) a.e. and in Léﬁ (Q); we conclude that

/ (ulyn + u'n) dz = / Ke, [u]Lindz.
Q Q

If p is a positive measure which vanishes on Borel sets £ C 952 with 02 2y, -Capacity zero, there
2 7 k)

24«
exists an increasing sequence of positive measures in B 1(09Q) {pn } which converges to 1 (see
[10], [13]). Let u,,, be the solution of (3.36) with boundary data .,,. The sequence {u#n} is increasing
with limit u. Since, by taking ¢, as test function, we obtain

/ wt, + 9(tp,)) Sl = A / Ko, [jn] bnda,
Q Q

it follows that u, g(u) € Ly, (). Thus

/ (ulwn + gy de = [ Ke, [jlLunds Vi € Xu(),
Q Q
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and therefore u = u,,.

Definition A smooth lifting is a continuous linear operator R[.] from C2(992) to CZ(Q) satisfying

(i) 0<n<1=0<R[ <1, Rhllsa=n,

(3.45)
(i) IVor. VR[] < co5br,

where cg5 depends on the C'*-norm of 7.
Our proof are based upon a modification of an argument developed by Marcus and Véron in [24].

Lemma 3.8. Assume there exists a solution u,, of (3.36) with u > 0. Forn € C?(Q), 0 <n < 1 set
¢ = ¢ (R[n))? where R is a smooth lifting. Then

y :
q q
()" v s (focae)” (o)

where

1
7

" 4q (/Q(L[n])qldw);) , (3.46)

b = (R (202196, TR + o2 ARG ) (347)
and cg7 depends on 2, A\, q, K, N.

Proof. There holds

L.¢ = Me(RIN)T 6 —2¢' (RI)T " V. VR[N —q' (RI) 2w (RIARR] — (¢ — 1)|VRR)) .

Then ¢ € X,;(2) because of (3.45)-(ii) and by Proposition 2.36

coo [l d < [ (w4 i)
o0 Q
Since

ulx( <u (AK(R[U])QI b + 24 (R[n)? |V VR[] + q’(R[n])q"lcanAR[n]l) ,

/Quﬁ,ngx < (/Qquclx)é <( Q%dx) ‘ +4q (/Q(L[n])qldx) 31) ,

where L[n] is defined by (3.47).

we obtain

O
9 2+a+ ’
Lemma 3.9. There exist a smooth lifting R such that n — L[n)] is continuous from B~~ 2a 1 (9Q)
into L9 (Q). Furthermore,
q' -1

L Lo () < C%6||77||Loo(asz) ||77||BZ, 2o o o) (3.48)
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Proof. The construction of the lifting is originated into [27, Sect 1]. For 0 < § < Sy, we set X5 = {x €
Q : d(x) = §} and we identify 002 with 3 := . The set {Xs}o<s<s, is a smooth foliation of 9. For
each § € (0, fy] there exists a unique o(z) € Xs such that d(x) = § and |z — o(x)| = . The set of
couples (d, o) defines a system of coordinates in €23, called the flow coordinates. The Laplacian obtain
the following expression in this system

0? 0

+bo— + Ay, (3.49)

A =5 Thgs

where Ay, is a linear second-order elliptic operator on ¥ with C coefficients. Furthermore by — K
and Ay, — Ay, where K is the mean curvature of ¥ and Ay, the Laplace-Beltrami operator on 3. If

24«
ne B*2+T’+’q(89), we denote by H := H [n] the solution of

H

6—+A2H=o in (0,00) X

ds (3.50)
HO,)=n in Y.

Leth € C*°(Ry)suchthat0 < h < 1,h <0,h =1on]0, 5—2"], h = 0 on [By, oo]. The lifting we
consider is expressed by

Rln)(z) = { é{m(éz’ 7(@)Ald) iﬁi c g" (3.51)

with z = (§,0) := (d(z), o(z). Mutatis mutandis, we perform the same computation as the one in [24,
Lemma 1.2], using local coordinates {o; } on X and obtain

0H

VR[] = 20h(6) 5=

N-1
(6%, 0)Vo+ > h(&)a—H((s?, 0)Vo, + h'(8)H(82,0)V6.
=1 80]-

Then there holds in Q s, ,

2

VR[n].Vé, = 26h(6)6—H(62 o)V V5+Nz_:1h(6)a—H(62 0)Vo,; No. +h (8)H(6%,0)Vi.V
77 . K 85 I K- = 80]- ) g K ) . K-

(3.52)
Moreover ¢, () < ca(d(z)) 2 = 262 and [V, (z)| < cy(d(x))= ! = ¢46= ~1. Similarly as in
[24, (1.13)]

thus -
|V¢H.Vaj| S 668577

N-1

OH
‘%(5 ,o)‘ + Z

j=1

o
80]-

(%)

_1 oy
(bf'i ! |VR[77]V¢H| < 6696 24/ (627 0)’ B 1) H(627 0)
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Thus ,
_d , o OH q
/¢K " |VR[n].Vé,|? dz < cqo 52 ’—(52,0) dx
Q Qg o))
N-1 /
OH 1
+cro / —(0%,0)| dx
jz:; Qp, doj
+C70/ 55 HY (82, 0)da
(250\9%l
Then ,
_d , o q
/ or * [VR[N].Vi|T dz < cn > | |==(62,0)| dSds
Q 0 ) o))
52 24a ¢
< (:71/ / £ (t, ) dt (3.53)
L))
<enlnll’ ae,
B 2 ()
by using the classical real interpolation identity
’ ’ 2_2+‘1+ ’
W@, ®)] | s, =BT, (3.54)
Y 2’
Similarly (see [24, (1.17),(1.19)])
N-1 /
OH “ - ,
Z/ ——(6%,0) dz+/ 57 HY (62,0)de < cralln|? e, - (3.55)
j=1 780 gj Qg \ Q2 w7 (x)

Next we consider the second term. Adapting in a straightforward manner the computation in [24, p.
886-887 ] we obtain the following instead of [24, (1.21)]

/
5250 O*H[n|"

/¢I€|AR |q dx < C72/ / 952 (52,J)d0d5
5 J (3.56)
0 « H ’ ’
ben [ /5(86—(@\ + | +|AAAE|q>(62,o>dz.
0o Jx
Furthermore
Bo o 92H Bs _4d *O‘+ 2\ 92H / dt
/ / 52t T = = ] o)dods = ) at2[77] daT
(3.57)
S073|\n|\q2 e,
B 2t (x)
as a consequence of the real interpolation identity
’ ’ +“ ’
(WA (), 17 (5)| sy, =B (D). (3.58)
AL

The other term in the right-hand side of (3.56) yields to the same inequality as in (3.55). O
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Proof of Theorem 3.6: The condition is necessary. Let K C 0) be a compact set and 7 € CZ(92) such
that 0 < n < 1andn =1 on K. Then, by (3.46)

(W(K))? < cor / I (R duda+

Q

cor [l onae)” (( mdx)q +ehod Il , 2t ,qm))

From this inequality, we obtain classically the result since if CR" 24ay (K') = 0 there exists a sequence
T »q

(3.59)

{nn} in C2(0Q) with the following properties:

0<m, <1, n, =1in aneighborhood of K and 5, — 0 in B>~ il (09) asn — oo.  (3.60)

This implies that u¢(R[n,])? — 0 in L}, (92). Therefore the right-hand side of (3.59) tends to 0 if we
substitute 7,, to  and thus u(K) = 0 for any K compact with zero capacity and this relation holds for
any Borel subset. O

Definition. We say that a compact set K C 95 is removable if any positive solution u € C(Q \ K) of
Lou+ |ullu=0 in Q, (3.61)

such that
/ (ulwn + || tun)dz =0  Vne XK(Q), (3.62)
Q

where XX (Q) = {n € X,.(Q) : s.t. p = 0 in a neighborhood of K}, is identically zero.

Theorem 3.10. Assume 0 < k < i and q¢ > 1. A compact set K C 02 is removable if and only if

cfﬂju (K) = 0.

2q7 4

Proof. The condition is clearly necessary since, if a compact boundary set K has positive capacity, there

24«
exists a capacitary measure ju, € 04 (0Q) N B~ 2 "1(99Q) with support in K (see e.g. [1]). For
such a measure there exists a solution u,, . of (3.36) with 4 = px by Theorem 3.6. Next we assume that
C]RNHIQ+ q(K) = 0. Then there exists a sequence {n,, } in C3(99) satisfying (3.60). In particular, there

2q 7 )
exists a decreasing sequence {O,, } of relatively open subsets of 92, containing K such that ,, = 1 on

O,, and thus 7, = 1 on K,, := O,,. We set 7j,, = 1 — 1, and , = b (R[71,])?¢ where R is defined by
(3.51). Then 0 < 7, < 1 and 7,, = 0 on K,,. Therefore

Ga(@) < g min {1, era(d(w)) =N e (i) (dist i) (3.63)
Furthermore

(i (VR[] < e7s min {1, (d(z)) 2N e~ (o) *dist 1)
_ (3.64)
() AR < ers min {1, (d(a)) 4N e () dist e
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Step 1. We claim that

/Q (ulnln +utly) do =0, (3.65)
By Proposition 6.3 there exists c74 > 0 such that
(0 u(e) < erold(x) ¥ (dist (, K) 7T 7, 66
() [Vu(@)| < ers(d(@) E  (dist (o, K)) "7 '
for all z € Q2. As in the proof of Lemma 3.8,
[ulscCal < err(Rliin])* =2 (¢ R [ijn] + Rlifa) |V 5.V Rl G67)

+¢w(Rliin]| AR[7]| + [VR[7]|?)) -

Let O be a relatively open neighborhood of K such that O C O,,. We set Go g, = {x € Qp, :
o(z) € O} and Goe g, = Qp, \ Go. If x € Go, dist (z, K) > 7 > 0. Then, by (3.66)-(i) and (3.63),
u(, € LY(Go). Since u(x) = o(W(z)) in Gee. it follows that u?(, € L'(Qga,) and thus u9(, is

integrable in ) . Similarly, using (N22-1)-(i) and (ii), u[,,ifn € LY(Q). Since ¢,, does not vanish in a
neighborhood of K, we introduce a cut-off function 6, € C’Q(Q) for0 < e < 5—2" with the following
properties,

0<0.<1,0(x)=0 Vo €Gor, O(xr)=1 Vo € Q st dist(z,Go.) > €
IVO| < crs€ ' XGo, N\Go.. and |D*0c| < c78¢ *XGo, N\Go..»
where we have taken e small enough so that
Go. e ={reQ:dist(x,Go,) <€} C Gk, 2 = {x € Qe : 0(x) € K, }.
Clearly 0.C, € XX (Q), thus
/Q (uﬁn(eeg}) + uq95§n) dz = 0.

Next
/ (Uﬁn(eegn) + uqeegn) dx = / (UEH(C’@) + qun) dz + / (u‘cn(eeén) + uqeeén) dz
Q Q\Goe,g Goe,g
=I1.+11..

Clearly
. — ot q =
21_{% I /Q (U’EHC’H +u Cn) dx,
and
lim uqﬁefndz =0.

e—0 Go. .

Finally, since 55(965,,) = 0.LCn + CuAO, + 2V0,..VC,,, 0. is constant outside Go. e\ Go, and
dist (Go, e \ Go.e, FY) > 7 > 0, independent of e there holds, by (3.63)

|£’l<a (96571)| < C79€7N+4€_€L2 .



Konstantinos T. Gkikas, Laurent Véron

Using (3.66)-(i) we derive

e—0 Go, e
which yields to (3.65).
Step 2. We claim that

/uqqﬁndx < 00. (3.68)
Q

Using the expression of £,(, in (3.65) where replace 7,, by 7,,, we derive
/ uiCyda = / (‘M(R[ﬁn])” Sn + 44 (R[71a])* 71 V6.V R+
Q Q

2¢'(R[71])*® ¢ (Rl ARn] +(2¢ — DIVR[A]?)) udz  (3.69)

1

<o /Quqindz)l’ ([ @mpra)”.

where we have set

L) = (65)" 1 Vew. VR[] + (6) 7 | AR + (60) 7 |V R[] |- (3.70)

By Lemma 3.9 we know that

/Q (¢0)” 7 [Vn-VRINJIY + $ul AR[)|" dz < (cr2 + cra)llmall sy . - (37D)
B~ 24 T(89)

The last term is estimated in the following way

’ Bg ’ o
/ Gu| VR[] do < cxo / / s+
Q 0 >

ﬁg @ 2 ’ ’ d
b [ [T (1 H P+ () ) dS%
0 b S

where Vs denotes the covariant gradient on 3. Since the following interpolation identity holds

OH [n,] [**

ds
ds—
0s Ss

(3.72)

w22 (), 124 ()]

ﬂg +2
/ / Sq’+—a+4
0o Jz

By the Gagliardo-Nirenberg inequality

oy +2

1— 8q’

2q’

we obtain /
2
7 ds

2q’
? < C81||77n|| et L,

OH [nn]

Js

B 4q”

=)

/
o Scsallmall?

ayt2 H77HqLoo(z;) :CS2H77an27a++2 , - (3.73)
(=) B™ 24" (%) B™ 24

’
||77n||2q17a++2 .
44 T ®

B

By the same inequality

/E (IVsHm] 2+ (] ) dS < csall H Bl s, / (|A2Hw|q’+<H[nn1>q’)di .
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Using the estimates on L[n] in Lemma 3.9 and the fact that 0 < H{[n,] < 1, we conclude that

Bg oyt2 , ’ dS ’
[ [ (st + ()2 ) asZ < cxalpml” o
L s B 2 Y ()

It follows from (3.69)

/ “q(R[ﬁn])Qq/%dfCS‘/’“/ (Li)? do < essllmul? | wrvo , - (3.75)
Qsa Qs B 2T (m)

Letting n — oo and using the fact that n,, — 0, we obtain by Fatou’s lemma that

/ ulp.dr = 0.
S

259
2

Combining this with the fact that u is bounded in Q’%O we obtain (3.68). Notice that ||u|| Ly, (Q) is
bounded independently of w.
Step 3. End of the proof. Since u? € Lém (), by Proposition 3.2 there exists a unique weak solution
v e Ly (Q)of
L.v=ul in Q
v=20 in 09,
and v > 0. Then w = u + v is L-harmonic in {2, and by Theorem 2.33 there exists a unique positive

Radon measure 7 on 92 such that w = K, [7]. Since v and w vanish respectively on on 02 and 002\ K,
it follows from Propositions 2.34 and 2.35 that the support of 7 is included in K. By Theorem 3.6, 7

(3.76)

vanishes on Borel subsets with zero CfN;a+ /—capacity. Since CfN;a+ /(K) = 0,7 = 0. This
o7 4 o7 4
implies that u is a weak solution of ! !
L.ou+ul=0 in )
" , (3.77)
u=20 in 09,
and therefore v = 0. O

Remark. Using the fact that u™ and u_ are subsolutions of (3.61), it is easy to check that Theorem 3.10
remains valid for any signed solution of (3.61).

Remark. If 1 < g < ¢, (see (3.37)) it follows from Sobolev imbedding theorem that only the empty set

N-—-1 . . . .
has zero Cf 2ta, -Capacity. As a consequence of the previous result, if ¢ > ¢ any isolated boundary
Ty »q

singularity of a solution of (3.61) is removable.

4 Isolated boundary singularities

We denote by {e, ..., e, } the canonical basis in RY = {z = (2/,zx) € R¥~! x R} and by (r, o) the
spherical coordinates therein. Then RY = {= (2/,zy) :,2/ € R¥~1 2y > 0} . We although denote
by SNV~! and SY " the unit sphere and the upper hemisphere of RY, i.e. S¥~! : NRY. In this section
we study the behavior near 0 of solutions of

K _
—Au — ﬁu+|u|q =0 “4.1)
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in a bounded convex domain € of RY with a smooth boundary containing 0 where d is the distance
function to the boundary,  a constant in (0, i] and ¢ > 1. Although it is not bounded, the model case is
Q=RY ={= (2/,2n) 1,2 € R¥"L zx > 0} which is represented by (r,0), 7 > 0,0 € SY ' in
spherical coordinates. Then

N -1 1
Uy — ﬁAstlu —

Lot = —Upp — SUu+ |u|9 . 4.2)

K
r2(en.o)

We also denote by V' the covariant gradient on S™V 1 in the metric of SV~ obtained by the imbedding
into RV,

r

4.1 The spherical £,-harmonic problem

It is straightforward to check that the Poisson kernel K, of £ in Rf has the following expression

oy
TN
Ke, (z,8) =cnw |z — ENFar -2 4.3)
In spherical coordinates
K., (z,0) :cN,HTQ_N_Q%w(U) >0, UESiV*l
k3 ay
where 9, (0) = % Lsf\,,lz (ey.0)2 solves
+
_ASN*”/JH - ann - Llﬁn =0 in SiVil
(ey.0)? (4.4)
Ye=0  indoSY
and o o
[ = —(N + —= —2). (4.5)

2 2

Notice that equation (4.4) admits a unique positive solution with supremum 1. We could have defined
the first eigenvalue 1., of the operator

L= —Agyw — ——
¢ — Low SN—1W (eN.J)Qw
by
Jon—1 ([Vw|* — k(ey.0)"2w?) dS
MK:inf{ & T 49 cw € HYy(SY M, w#05. (4.6)
syt

By [2, Th 6.1] the infimum exists since p(0) = xn[gv-1= e, .0 is the first eigenfunction of —Agn-1
+

in H}(SY™"). The minimizer v, belongs to Hi(SY ') only if 1 < k < 1. Furthermore

be €Y(SN ) = {p e HL(SN V) pm 2 e HY(SY Y, po)}. @.7)

We can also define uj by

fix = inf {/ |V/(Pia%w)|2pa+d5 tw € Y(S_Ji_v_l)v/
SN71

w?dS = 1} ) 4.8)
B sy
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We can use the symmetry of the operator to obtain the second eigenvalue and eigenfunction of £/,
on Sivfl. We first notice that for j = 1, ..., N — 1, the function
5
IN Ty

T _|£C|N+a+7

4.9

is L,-harmonic in Rffl, positive (resp. negative) on {z = (z1,...,zn : x; > 0,zx > 0} (resp.
{z = (21,....,on5 : ; <0,2zx5 > 0}) and vanishes on {z = (z1,...,zn : &; = 0,zy = 0}.

Proposition 4.1. Forany j =1,.., N — 1 the function

oy
2

o (o) =(en.0)2 ej.0,

satisfies
Lot = (s + N =14 ay)ps (4.10)
in SN~ It is positive (resp. negative) on SY ' N {x = (x1,....,x5) = x; > 0} (resp. SY ' N{z =

(21, ...,xn) = 2; < 0}) and it vanishes on S} "' N {z = (21, ...,an) = x; = 0}. The real number

« «
prp =g+ N =1+ap = (- + DN+ = 1)

is the second eigenvalue of L/, in Y(Sivfl).
Proof. There holds
E;"/}N-j = ej.O'ﬁ,{i/},{ + ’I/JKASN—lej.O' + QV/’I/),Q.V/GJ'.O'

o

= (s + N — 1)) ; —ar(ey.0)2 "1V (ej.0).V (en.0).

Now 1 ) )
V—]:—jr— V(L) = V(2L = Ze, — 2L
()= (Z) 24 V() = -V(H) = —e; -
thus i 1
Zj IN - TjTN - Zj IN o
V(7)V(T) = — T4 = ﬁV’(7)V'(T) = ﬁV’(ej.o).V'(eN.a),
which implies
V'(ej.0).V'(en.0) = —xJ:;N = —(e;.0)(en.0),
and finally
Lot = (e + N =1+ ap)e ;. 4.11)

Since SY ! = {(0’sin6,cosf) : o’ € SN72,0 € [0,Z]}, ex.0 = cosb, ej.0 = e;.0’sinf and
dS = (sin0)N~2dS’df where dS and dS’ are the volume elements of S™V—! and S™¥ 2 respectively, we
derive from the fact that ¢’ — e;.¢’ is an odd function on S N-2

/ wn,ji/}nds :/ (eN.O')O‘+ej,o'dS
Si’*l gN-1

+

= /2 (/ ej.a'dS') (cos 0)+ (sin )N ~1df
0 SN-2

=0.
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Hence 1), ; is an eigenvalue of £, in Y (S iv ~1) with two nodal domains and the space the 1, j span is
(N-1)-dimensional and any linear combination of the v, ; has exactely two nodal domains since

N-1 oy N—-1
Z a]—w,@u_’j = (eN.O')T(Z ajej).a.
j=1 7j=1

This implies that y,, o is the second eigenvalue. (|

4.2 The nonlinear eigenvalue problem

If we look for separable solutions under the form

u(x) = u(r,o) = rw(o),

then necessarily o = —% and w is a solution of
7ASN—1W7EQ7N(U* %w+|w|q*1w:0 in S_J,’_v_l
(ey-0) (4.12)
w=0 in 35_];]71,
2 2
byn=——|—+2-N 4.13
oN ql(q1+ ) (4.13)
and (4.6) is transformed accordingly. We denote by
En={weY(SY HnL(SY") s t. (4.12) holds} (4.14)
2N
and by &£ the set of the nonnegative ones. We also recall that q. := ¥ toy and we define a
2N — 4 + a4
2N +2
second critical value ¢, := ﬂ.
2N — 2 + a4

The following result holds

Theorem 4.2. Assume 0 < k < i and q > 1, then

(D)Ifq>qe, Ex = {0}
(ii)) If 1 < q < qe, ET is contains exactly two elements: 0 and w,,. Furthermore w,; depends only on the
azimuthal angle 6.

(iii) If g¢ < q < q., Ex contains three elements: 0, w, and —wy.

Proof. We recall that ¢ > g. <= {4~ < p,. Then non-existence follows by multiplying by w and
integrating on Sf ~1. For existence, we consider the functional

2
Je(w) = /SNA <|V’(w)|2 + (e — g N)W* + m1/)gl|w|q+1> Y2dS, (4.15)
+

defined in H(SY ', ¢2dS) N LI+ (ST~ a+1dS). Since i, — £g,n < 0, there exists a nontrivial
minimum w,, > 0, which satisfies

—div(¥2V'wy) + (e — g N)V2ws + YL = 0. (4.16)
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If we set w, = ¥, wy, then w,, satisfies
Llwy — g nwe +wl =0 inSY L 4.17)

By monotonicity we derive that w,, € Lp(Siv_l) for any 1 < p < oo and finally, that w,, satisfies the
regularity estimates of Lemma 2.9 and Lemma 2.10. Moreover w,, > 0 by the maximum principle.
In the case ¢ > q. or equivalently ;1. — ¢4 x > 0, the nonexistence of nontrivial solution is clear

from (4.16).

Uniqueness. By Proposition 2.8 w,. () < css(p(2)) 2 and by standard scaling techniques |Vew,(z)| <
c87(p(:v))7+_1. Assume now that two different positive solutions of (4.12) w,, and w/, exist. Since
max{w,;,w, } and w, + w!, are respectively a subsolution and a supersolution and they are ordered, we
can assume that w/, < w,, < cw/, forsome ¢ > 1. Lete > 0 and ¢ = ¢~ !¢, then ew!, > €'w,. Set

(Wet @2 =4+ 5 _ (W +€)? — (Wit
Wi + € roe wy, + €

9 =

and Sc o = {0 € Sf‘l w4+ € > w, + €}. The assume that S, » # () for any € > 0. Then

/ (vw;.we, — Vw,. VO — (U n + %)(w;.ﬂg —wiVe) + W — wgﬂg) ds = 0.
S, o p

€,€

The first integrand on the Lh. side is equal to

/ / 2
/ Qw;w”“ Voo )dszo.
S, Wy + €

Since ew!, < €'wy; and (W, + €')? > (w,; + €)% the second integrand on the Lh. side is equal to

2
Wy + €
V!

/ / K
w, t€

+ ‘Vw,i

K c,u,/i W 2 2
7\/3 /(€q1N+?) <w,{€+€/ B wh‘,—i_e) ((w;+el) 7(w’i+€) )dszo

€,€

At end, the last integrand is

J

If we let € — 0, we derive

wd wi ’ N2 2
g oo ) (€ et s

e, e’

/ (wid=! —wi™) (w)? —w?)4+dS < 0.
syt

This yields a contradiction. Therefore uniqueness holds.

Case q. < q < q.. Assume wy, is a solution. Using the representation of .S iv -1 already introduced in the
proof of Proposition 4.1, with o = (¢”, 0) and

1 0

Agnawn = (sin)N-2 96

Oow 1
i N—277r —_— N-—2
((Sm " 5 ) T g s e

where Agn —» is the Laplace-Beltrami operator on S™V =2, we set

1

r0) = 1on=2] J

wi(a’,0)dS" (o).
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Then &, is independent of o’ € S =2 and furthermore

/SN*I( K )PrdS = / (/SN ] —wﬁ)dS') (sin @)V 2(cos0) = df = 0,

thus @, is the projection of w,; onto the first eigenspace of L,; and

/ (Wi — @0k) Lo (Wi — @,dS > M,g,g/ (Wi — @, )2dS.
SN71 SN71

+
At end, noting that
/ (gqownfgqown)(wﬁiaﬁ)dsl =0,
sy?

where we have set g, o u = |u|?"1u for brevity, and thus
/ (gq 0wk — Jq 0 wg)(wy — @y )dS = / / 4 O Wi — g 0 Wr) (Wi — @y )dS’ (sin )N ~2d0
SN—l SN 2
/ / 20 W) — o © @) (e — @)dS (sin )N 240
SN 2

> / lws — @x]9T1dS,
SN 1

we derive that w = w,, — Wy, satisfies
/N (2 = Ong) (Wi = @) + 21w — @4 771) dS <0,
N -

which implies w, = w,; and it satisfies

1 d . o dw, K
W@ ((SIHQ)N 2 a0 )+(€q7N+m)w,{gqow,€O. (418)

Because 1,1 < €q,N < fiw,2, by [6, Th. 4, Corol. 1], this equation admits the three solutions, wy, —w
and 0. O

Remark. For € > 0 small enough the function €),; is a subsolution for problem (4.12). This implies

we(0) > ehu(0)  VYoe SYL (4.19)

4.3 Isolated boundary singularities

Throughout this section we assume that 2 C RY, 0 € 9 the tangent plane to 9 at 0 is ORY and that
1 <q<qe.

Lemma 4.3. There holds
Ge, [(Ke, (-,0)(x)

=0. (4.20)

lim)z| 0
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Proof. 'We recall the following estimates (1.9), (2.57)

1 (d(x) = (d(y) = }

(2) GL‘%(.I',y) S C3 mln{ |$77J|N72, |IE*’IJ|N+O‘+72

- -~
g —1 (d(z)) = (d(z))=
(i) [pVFar =2 S Ke, (2,0) < C3 a2
Then
(g+1 )
Ge, [KZ (,0)](2) < P2 |N a2 (d(y)" = dy
K, (x,0) - olz —y[Nter—2jyla(N+ar=2)

dn
eq — n|NFes—2|pla(N+ag =2)7

< q+2|x|N+a%*q(N+a%*2)/
N RV |

where e, = |z|’1z. This last integral is finite and independent of x. Since g < ¢, (4.20) follows. O

Corollary 4.4. Let uys, be the unique solution of

q=1y — i
ok, a2
Then ; e,
Jm Ke (@) (4.22)
Proof. This is a consequence of (4.20) and the inequality
kK, [60](x) — KIG[(Kz, [60) ) (z) < ups, (z) < kK, [00](z). (4.23)
O
Proposition 4.5. There exists Uoo,0 = limy_s o0 Ugs, and there holds
lim ] s o) = wi(o), “424)

zlz|™! > o
uniformly on compact subsets of S iv -1

Proof. The correspondence k — uys, is increasing and, by the Keller-Osserman estimate, it converges,
when k£ — oo to some smooth function u o defined in 2 where it satisfies (1.1). By Proposition 6.1,
for any R € (0, Ry), the function uys,, and also u« o, vanishes on any compact subset of 92 \ {0}.
Furthermore

ckqe(dist(z, K)) Wy e (S5,%) if0<k<i,
ci+/dist (z, K)4/In (iﬁr& (I?)) ifk =

for all compact set K C 9\ {0}. Combining this estimate with Propositions 6.3 we obtain

Uso,0(2) <

=

oo () < oo(d(2) TlaTFT T vreq (4.25)
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and
Vit o(z)| < coo(d(x)) = Ya| TT-F  VzeQ (4.26)

Let ¢y > 0 be small enough such that fe € Q forany 0 < ¢ < £y, where e = (0, ..., 0, 1). Then by (1.9),
(2.57) and (4.23) we can easily prove that there exist positive constants cg; and cgo such that

2 2 N_%+ _ o4 2
ﬁqfluoo,o(ge) > corkla-T N==+2 _ Coqu€2 AN+ =2)+35 vk > 0.
Now we set k = ———L—~—— then there holds
Mea=T N—= *2
Co1 Co2
(7T le) > — — —
wolle) 2 3 = 37

Thus if we choose M big enough, we can easily show that there exists cp3 > 0 which depends on
k,$2, g, N such that
2
(aTus o(le) > co3 >0 V0 < £ < {y. 4.27)

For ¢ > 0, we put Ty[v](x) = E%U(fx), Qp = 0719, dy(y) = dist (y, 08). If v satisfies (4.1) in
and vanishes on 92 \ {0}, T;[v] vanishes on 09, \ {0} and satisfies

—ATv] = 5 Tofv] + [ T[] Tefo] =0 in Q. (4.28)

d2
In order to avoid ambiguity, we set urs, = Uy . Vks, = Uiy, Uoo,0 = USs o and v o = v . Since
inequalities (4.25) and (4.26) are invariant under the scaling transformation 7%, the standard elliptic
equations regularity theory yields the following estimates

USo(y) < corlde(y) Tyl " Wy ey, (4.29)
and
o4 _ 2 _ 24
Vg o) < coa(dely)) = “Hyl"o17 = Wy e, (4.30)
valid for any 0 < ¢ < 1. If we let K — oo, we obtain Ty[u} o = uQ o and because of the group

2 ol = u ¢ for any ¢,¢' > 0. Estimates

property of the transformations {1} ¢>¢, there holds Ty [
(4.29) and (4.30) imply that {uoo 0} is relatively compact for the topology of convergence on compact
subsets of RY. Therefore there exist a sequence {/,} tending to 0 and a function U such that {u_ z’“]"

converges to U uniformly on any compact subset of RN . By (4.27) this function is identically equal to

zero. Therefore U is a weak solution of

YN
Furthermore N ..
R 2 o
U o(y) < coayy’ |yl a1 2 vy € RY. (4.32)

Since Ty [u?j"o] = (;fjé”, we derive Ty [U] = U for any ¢’ > 0, thus U is self similar. Set w(;) =

U(-%). If we set o = £, there holds
ly] lyl

w(o) < coathi(0) Vo e SY (4.33)

Therefore w satisfies (4.12) and it coincides with the unique positive element w,; of &, since by (4.27)
U(e) > co3 > 0. Thus ugfﬁo converges to U on compact subsets of Rf . In particular (4.24) holds on

compact subsets of Sfrv -1 O
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S The boundary trace of positive solutions

As before we assume that 0 < k < %, q > 1 and €2 is a bounded smooth domain, convex if x = i.
Although the construction of the boundary trace can be made in a more general framework, we restrict
ourselves to the class U, (2) of positive smooth functions u satisfying

Lou+ |ulttu =0 (5.1)
in €.
Lemma 5.1. Let f € Lém (Q). If u is a nonnegative solution of
Leu=f in Q (5.2)
there exists € M (ON) such that v admits p for boundary trace and
u=Ge,[f]+Ke,[n]- (5.3)
Proof. Letv = G, [f], then uw — v is L,-harmonic and positive thus the result follows. O

Definition Let G C  be a domain. A function v € L{

1be(G) is a supersolution (resp. subsolution) of
(5.1)if

Lou+ [ulTtu >0 (resp. Lpou+|u/t"tu<0) (5.4
in the sense of distributions in G.
The following comparison principle holds [4, Lemma 3.2]
Proposition 5.2. Let G C () be a smooth domain and u,u a pair of nonnegative supersolution and

subsolution respectively in G.

(i) If there holds
limsup (a(z) —u(x)) <0,
dist (z,6G)—0 (5-3)
thenu < uin G.
(ii) Assume G C Q and @ and u belong to H'(G) N C(Q). If u < 1 in OG, then u < 1 in G.

5.1 Construction of the boundary trace

We use the notations of [26]

Proposition 5.3. Ler v be a non-negative function in C(§2).

(i) If v is a subsolution of (5.1), there exists a minimal solution u, dominating v, i.e. v < u, < U for
any solution U > v.

(ii) If v is a supersolution of (5.1), there exists a maximal solution u* dominated by v, i.e. U < u* < v
for any solution U < v.

Proof. (i) Let {€2,,} be a smooth exhaustion 2 and for each n € N, u,, the positive solution of

Lou+ |ulTlu=0 in Q,

u="v in 99),,. (5.6)

By the comparison principle u, > v, which implies u,11(x) > un(x) Vo € Q,. Since {u,} is
uniformly bounded on compact subsets of € and thus in C? by standard regularity arguments that wu,, T
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u, which is a positive solution of (5.1). Furthermore, if U is any solution of (5.1) dominating v, it
dominates u,, in §2,, and thus u, < U.

The proof of (ii) is similar: we construct a decreasing sequence {u/, } of nonnegative solutions of (5.1) in
Q,, coinciding with v on 02,, and dominated by v. It converges to some v* which satisfies U < u* < v
for any solution U dominated by v. O

Proposition 5.4. Ler 0 < u,v € C(Q).

(i) If uw and v are subsolutions (resp. supersolutions) then max(u,v) is a subsolution (resp. min(u, v) is
a supersolution).

(ii) If u and v are supersolutions then u + v is a supersolution.

(iii) If w is a subsolution and v is a supersolution then (u — v) 4 is a subsolution.

Proof. The first two statements follow Kato’s inequality. The last statement is verified using that

(u—v)s+

—Alu —v)y < signi(u—v)(—A(u —v)) < —signy(u—v)(ul —v?) + HW

(u—v)+

S T

Notation 5.5. Let u, v be nonnegative continuous functions in Q.
(a) If u is a subsolution, [u]; denotes the smallest solution dominating u.
(b) If u is a supersolution, [u]" denotes the largest solution dominated by .

(c) If u, v are subsolutions then uw V v := [max(u, v)};.
(d) If u, v are supersolutions then u A\ v := [inf(u,v)]" and u © v = [u + v] .
(e) If w is a subsolution and v is a supersolution then u © v := [(u — v)4];.

The next result based upon local uniform estimates is due to Dynkin [12].

Proposition 5.6. (i) Let {ur} C C(Q) be a sequence of positive subsolutions (resp. supersolutions) of
(5.1). Then U := sup uyg (resp. U := inf uy) is a subsolution (resp. supersolution).

(ii) Let T C C(Q) be a family of positive solutions of (5.1). Suppose that, for every pair uy,us € T
there exists v € T such that

max(ug, uz) < v (resp. min(u1,ug) > v).
Then there exists a monotone sequence {u,} C T such that
U, Tsup T (resp. uy,  inf T').

Furthermore sup T (resp. inf T) is a solution.

Definition 5.7. Let F' C 0fQ be a closed set. We set

Up :=sup {u €U+ () : lim u(z)

lim 7oy = 0, V&€ € 00\ F} , (5.7)

and

[u]F = sup {v ceUL () : v < u, ilgé IZI)/((?) =0, V¢ € 8Q\F}. (5.8)
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Notice that F' — Up and F' — [u]p are increasing with respect to the inclusion order relation in 952,
[u]F = u A Up. As a consequence of Proposition 6.3, Ur satisfies

11m UF (:r)

=0, V£ €00\ K. (5.9)

Proposition 5.8. Let E, F' C 02 be closed sets. Then
(i) Ug NUp = Upnp.
(ii) If Fy, C 0N) is a decreasing sequence of closed sets there holds

lim Up, = Urp where F =NF,.

n—oo

Proof. (i) Ug A U is the largest solution dominated by inf(Ug, Ur) and therefore, by definition, it is
the largest solution which vanishes outside £ N F.
(i) f V :=lim Up, then Up < V. Butsupp (V) C F, foreachn € N and consequently V < Up. O

For 3 > 0, we recall that 5, ¥5 and the mapping x — (d(x), o(z)) have been defined in the proof
of Lemma 3.9. We also set Q3 = Q \ Qg and, if Q C 0Q, X5(Q) = {z € Qs : o(z) € Q}.

Proposition 5.9. Ler u € U(9).
(i) If A, B C 092 are closed sets. Then

[[u]a]ls = [[u]B]a = [u]anB. (5.10)

(ii) If { F1. } is a decreasing sequence of closed subsets of 9Q) and F = NF,, then

[u]p, | [ulp.
(iii) If A, B C 0X) are closed sets. Then
[u]a < [u]ans + [ulzg (5.11)
Proof. (i) It follows directly from definition that,
[[ulalp < inf(u,Ua,Up).
The largest solution dominated by « and vanishing on A¢ U B€ is [u] anp. Thus

[[u]alp < [u]ans.

On the other hand
[u]ans = [[ulanB]B < [[u]alB,

this proves (5.10).
(i) If F,, | F, it follows by Proposition 5.8-(ii) that U, — U, thus

[ulp < lim [u]p, = lim uAUg, < lim inf(u,Up,) < inf(u, Up).
n—00 n—00 n—r00
Since [u]F is the largest solution dominated by inf(u, Ur), [u]F, is the largest solution dominated by
inf(u,Up,) and Ug, | U by Proposition 5.8, the function v = lim,_,c[u]F, is a solution of (5.1)
dominated by inf(u, Ur), thus v < [u]r and the proof of (ii) is complete.
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(iii) Without loss of generality we assume that AN B # (). Let O, O’ C 99 be a relatively open set such
that AN B C O and AN B¢ C O’ Setv = [u] 4 and let v} be the solution of

Low+ |w]lw =0 in Q)
W= Xy, (0)? on Xg.

Also we denote by v% and vg the solutions of the above problem with respective boundary data xy, (oY
and xx(0cnore)v. Then vjy < vl < vg + 03 +vj, i = 1,2,3. Letnow {3} be a decreasing sequence
converging to 0 and such that

Ufaj — vt <v <ol 402403, i =1,2,3 locally uniformly in Q.

By definition of v* and Proposition 6.1, we have that v! < [v]g, v* < [v]g7 and v® < [v]penore. But by
(i) we have
[v]oenore = [[u]a]oenore = [u]anoenore = 0.
Thus
v < vlg + [l
We can consider decreasing sequences {O,,} and {O/,} such that NO,, = AN B and NO,, = AN Be.
By (ii) we obtain
v < [[u]a]ans + [[W]alza5e < [Wlans + [ulzr5=

which is (iii). O
Remark. Since any u € U (2) is dominated by uggq, it follows from (iii) that for any set A C 912, there
holds

u = [ulog < [ulz + [ul;g < [ulz + [ulaara (5.12)

Proposition 5.10. Let u be a positive solution of (5.1). If u € Lq (Q) it possesses a boundary trace
€ M(IN), i.e., u is the solution of the boundary value problem (3 36) with this measure [i.

Proof. 1fv:= Gy, [u9] thenv € L} () and u + v is a positive L,-harmonic function. Hence u + v €

Ly, (2) and there exists a non-negative measure 1 € 9(9Q2) such that u +v = K, [u]. By Proposition
3.5 this implies the result. |

Proposition 5.11. Let u be a positive solution of (5.1) and p € IM(IN). If for an exhaustion {2, } of
Q, we have

lim Z(z)udwy’ :/ Z(x)du VZ € C(Q),
' o0

n—00 o0,

where wQ is the L,.-harmonic measure of Q,, relative to a point xg € Q1, then u and |u|P belong to

Ly, (). Furthermore u possesses the boundary trace p € 9(9), i.e. w is the solution of the boundary
value problem (3.36) with this measure .

Proof. Let G} be the green function of £, in §2,,, then
Gp (wy) <Gz (zy)  Vr,y ey

and
GZN TG,
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Since

/ udwyy = u(xo) +/ Gz, (%, 20)|u(x)|!dx,
21979

n

we derive, as n — oo,

1(0) = u(xo) Jr/ Ge, (x,z0)|u(z)|?dz.

Qn
By Proposition 2.1 this implies |u|? € Lém (), and the result follows by Proposition 5.10. O

Proposition 5.12. If ' C 0N is a closed set and u a positive solution of (5.1) with boundary trace
€ M(ON), then [u]p has boundary trace |1xF .

Proof. The function [u]r belongs to U, (2) and is dominated by w which satisfies (5.1), thus [u]p €
L, () and [u] admits a boundary trace 1 < p by Proposition 5.10. Let v be the solution of (3.36)
with boundary data px . Let O C 02 relatively open such that I C O. By 5.12 we have

v < vl + [vlge

Let A be an open set such that F C A C A C O, and for exhaustion we take €2, = €, which is smooth

n

for n large enough, and 0€2,, = ¥ 1. Then

| ottt = [ oloedet [ foledety
o9, 1 (A) 80 \Z 1 (4)

1
n

But

/ [v]gedwe? §/ vdwy? — 0
S1(4) BN Y !

1
n

and

/ [v]gedwe S/ Ugedwsy — 0,
92\ 1 (A) " 90, \ 1 (A) "

as n — 00, thus [v]5z = 0 by Proposition 5.11 and therefore v < |
open set, take a sequence of open set {O,,} such that F C O,, C
Proposition 5.9 we derive

[u]g. Since O be an arbitrary

<
C Op—1 and NO,, = F. Using

o
On

IN

U]Fa

v
and thus pxr < pup. Conversely,let Z € C(Q), Z > 0,

/ Zulpdwg? :/ Zu]pdwg’ +/ Zu]lpdwg?
o, " 20,NT 1 (A) " o0 \Z 1 (A) "

< / Zudwy + / ZUpdwd
o0,NX 1 (A) " 0\ 1 (A) !

<I,+1I,.

Because of (5.9), I1,, — 0 as n — oo, thus

/ Zdpr S/ Zxrpdp = pr < pxo,
o0 o0

and the result follow by regularity since O is arbitrary. O
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The next result shows that the boundary trace has a local character.

Proposition 5.13. Ler u € U4 () and & € O). We assume that there exists p > 0 such that

/ ul(z) o, (z)dr < oco. (5.13)
B,(£)NQ

(i) Then
[ul% € Lém Q) VF C 00N B,(§), F closed.

Thus [u] p possesses a boundary trace pp € M(IN), and supp (ur) C F.
(ii) There exists a nonnegative Radon measure p,, on B, (&) such that for any closed set F' C B, (&) N0

HFE = HpXF,
and for any exhaustion {Q,} of Q and any Z € C(Q) such that supp(Z) N 92 C 0Q N B, (&)

lim u(z)Z(r)dwy’ = /(mu(x)Z(x)dup. (5.14)

oo Joq,
Proof. (i) Let F be a closed set and 0 < p’ < p be such that
F CoQnBy(§).
Since [u]r < inf(u,Ur) and Ur € C(Q \ F), we have

/ )% () dar < / ([P () der + / U p [P ()dz < oo.
Q B,(£)NQ Q\B, (&)

(i1) Let 0 < p1 < p2 < p, then

IN

[, ©non < v < Uz, roe T Usaiz, (o

The function [u]Ep2 (€)nas Which belongs LY, () admits a boundary trace v € 2(IS2) and

lim U-

_72 ZTo —
n—00 Joq  ONBp(©) (z)dwg’ =0,

for any Z € C(9) such that supp(Z) N 9N C 92 N B, (€). Combined with Proposition 5.12 it follows
identity (5.14) and finally statement (ii). O

Using a partition of unity it is easy to prove the following extension of the previous result.

Proposition 5.14. The set R, of points & such that there exists v > 0 such that (5.14) holds is relatively
open. For any compact set F C R, and any open set G C RY such that F ¢ GNoQ C G NIN C Ry,
there holds

/ ul(x) g (x)dx < oo. (5.15)
GNQ

Then [u]p € Ly (), [u]r possesses a boundary trace pp € () with support in F. There exists a
unique positive Radon measure (1, on R, such that

HF = [luXF; (5.16)
and for any Z € C(Q) such that supp (Z) N O C R, there holds

lim u(z)Z(x)dwy’ :/ u(x)Z(x)dpy,. (5.17)
[219)

n—o0 [0,
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Definition 5.15. The set S, := 9Q \ Ry, is closed. The couple (S, iv,) is the boundary trace of u,
denoted by Traq(u). The measure i, is the regular part of Troa(u), the set (Sy,) is its singular part.

Proposition 5.16. Let u be a positive solution in Q) and let {€2,,} be an exhaustion of Q. If y € S, then
for every nonnegative Z € C(Q) such that Z(y) > 0 we have

lim Zudw = oo.
n—oo o0, n

Proof. Let Z € C(Q), Z > 0, such that Z(y) # 0 and
lim inf/ Zudwg? < oo.
n—oo o0, n

There exists a subsequence n; such that

lim Zudwy =M < oo.
170 JoQ,, . "
"]

Let r be such that Z(x) > @ Va € B,.(y) N, then for any 7’ < r we have that

thup/al [u]mdwg‘; < 00.
Qo
J

Jj—o0
In view of the proposition of 5.11 the last fact implies that [u]qB o € Ly, (), which implies that
u € LY (B (y)) forall " < 7/, which is clearly a contradiction, by Proposition 5.13. O

Proposition 5.17. Let u be a positive solution of (5.1) in Q with boundary trace (S, p,). If F is a
closed subset of R, then

/ (WLl + ut)da = / Ko, [faxr) CnCda,
Q Q

Sor any ¢ € X() such that supp ({) N O C F.

Proof. The proof is an adaptation to our situation of [27, Th 4.6]. Consider the function ¢ € X(2) such
that supp(¢) N9 C F. For e > 0, set

0. = {zx e RY : dist(z, F) < €},
and let g > 0 be small enough such that
0-.NON C R, V0 <e<eg.

Let ¢ < <2 and 7 be a cut off function such that n € C§°(0.), 0 < n < landn = 1 on O:. For

4
0 < B < By, let vg be the solution of

Lew + |w|?Ttw =0 in Q)
w = nu on Xg.

Since vg remains eventually locally uniformly bounded in (2, there exists a sequence {3, } decreasing to
0 such that vg, — v locally uniformly, and

v < [u]gonos
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Thus v has boundary trace pg such that

Ho < HuXpono; -

Let v}; and v% be the solutions of

Low+ w9 tw =0 in €
w = 77[“]6(20525 on X3.
and
Low+ |w|Ttw =0 in Q)
w = nUso)\0,. on Xg,

respectively. Since u < [u]y05,. + Usa\0,. We have that
1,2 2
v < vg + 05 < [ulpgnp,. + V5
Notice that [u]qam@k € Lém (€2). From estimate (6.20) we derive

oy
n(@)Uson0,. () < cgod 2 () Vo e,

where cgp > 0 depends on N, ¢, s and dist (supp(n), 92 \ O). Thus v () < cond > (x) and

vs < lulpano,, + cood = (z), Vo € Q. (5.18)
Let wg be the solution of
Low+ |w]?lw =0 in Q)
w = ng(iaQ\Og)[“]F on Xg.

Then
[ulp < vg+wg in Q.

We have that wg;, — 0 locally uniformly in €2, which implies that

[u]p < w.
Thus we have
HuXF < o < fuXpono; - (5.19)
Let (3 be the solution of
Leyw = LC in Q’ﬂ
w=20 on Xg.

Since ¢ € X(£2), there exists a constant cg; such that (g < €919, in Q’ﬁ Thus there exists a decreasing
sequence {/3;} converging to 0 such that (g, — ( locally uniformly. For simplicity we will denote it by

{B}. Now,
/ (ulyCs +uiCs)dx = —/ %nudS
l/

on
Q) o9,

= // (vgﬁ,{gﬁ + Uggg)dsc

Qp

(5.20)
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which yields, by the definition of (3 and vg,

J{/(uﬁné4*uq9ﬂdx::tl;(vaEnCA%vZQﬁdx (5.21)
B

B

Since supp (¢)NIQ C F, then for 3 small enoughu € L§ (2NO,). Furthermore vg < u|qy,, therefore,
it follows the following convergence relations by the dommated convergence theorem, (5.17) and (3.5):

lim uq(gdx:/uq(dx and hm vﬂ(gdzf/vq(dx,
Q) Q Q

B—0

and

lim uwl(dr = / ul,(dr and hm vl Cdx = / vLgC.

A=0Jay Q Q Q
This implies

/(uﬁmc + ui)dx = /(’U,CHC +v9¢)dx = / Kz, [1o]LxCde.
Q Q Q

by (3.19). Letting € — 0 we have the desired result from (5.19). ([l

5.2 Subcritical case

We recall that
N+
TNy -

is the critical exponent for the equation. If 1 < ¢ < ¢., we have seen in section 4 that for any a € OS2 and
kE > 0 there exists ugs, and limy_,oc Uks, = Uco,q- Furthermore, by Proposition 5.16, Trsq (Ueo,a) =

({a},0).

Theorem 5.18. Assume 1 < q < q. and a € S,,. Then
w(T) > Uoo,q(x) Vo € Q. (5.22)

For proof of the above inequality uses some ideas of the proof of Theorem 7.1 in [25] and needs
several intermediate lemmas.

Lemma 5.19. Assume 1 < q < q.. Let {£™} be a sequence of points in Q) converging to a € 9 and let
1 €(0,1). We define the sets

Q= Qld(gn) ={ze€eQ: dlz)>d(E")} and X, :=0Q,. (5.23)
Let xo € Q) and denote by w,, := wé“n the L,.-harmonic measure in §),, relative to xo. Put
V=B, (§")NoQ, with r, =d(&,).
Let hy, € L*™°(X,,), n = 1,2, ..., and suppose that there exist numbers ¢ and k such that
N_

o4
= 12

supp (hy) CV,, and 0< h, <crp , (5.24)

and

lim hnpdws = kd(a) Yo € C(Q).

n—oo En
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Let w,, be the solution of the problem

Lowy + w9 w, =0 in Q,

Wy = hy on 0%,.

Then
Wy, — Uk,a locally uniformly in €.

Proof. Letn™ € 02 be such that d(§") = |£™ — n™|. By Corollary 2.30 we have

1 _ny_°%+ 1
K (z,0") > —rn " 2 72> —hu(z), Vo€, (5.25)
C43 C43

by the maximum principle,

1
Ke, (2,n") > —wn(x) Vo € Q. (5.26)

C43
/ K. (z,y)d
Q

where c(qg, 2) is a constant independent of . Since g is subcritical, it follows that the sequences {K7. (-,7")}
and {K, (-, 7"} are uniformly integrable in Lj (). Let w,, denotes the extension of w, to Q2 defined

by W, = 0in Q\ Q,. In view of (5.25) we conclude that the sequences {w? } and {w, } are uniformly
integrable in Léﬁ (Q), and locally uniformly bounded in 2 By regularity results for elliptic equations
there exists a subsequence of {w, }, say again {w, } that converges locally uniformly in 2 to a solution

w of (5.1). This fact and the uniform integrability mentioned above imply that

Moreover
ot
2

(v)dr < c(q,Q?)  V1<q<ugq.,

wy, —w in LY (Q)N L ().
Since w € LY, () by Proposition 5.10 there exists y € () such that
/ wlndx +/ |w|?  wndx = / Kz, [u]Lndx Vn € X(92).
Q Q Q
Furthermore, using (5.25) we prove below that measure p is concentrated at a. Let ¢, ,, be the first

eigenfunction of £,; in §2,, normalized by ¢,. ,(xo) = 1 for some zy € ;. Letn € X(2) be nonnegative
function and let 7,, be the solution of the problem

LyNn = (;: L in Q,,
N =10 in 99),,.

Then n,, € C2(€2,,) and since ¢y n — P,
LN — Lgn and 1, — 1 as n — oo.
Then we have
/ Wy LNndx +/ |wy, [T wndr = / O Lxnndr, (5.27)
Qn Q Q
where v,, solves

L.v, =0 in Q,
Up = hp, on 0%,.
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By the same arguments as above there exists a subsequence of {v,, xq,, }, that we still denote by {v,, xq,, }
converging to a a nonnegative £,.-harmonic function v in Lém (Q). By (5.25) we have

ccasKre, (xz,a) > v(x) Vo e Q. (5.28)
Thus there exists a measure v € 9(I), concentrated at a such that v solves

L.v=0 in Q

V=V on 0f).

But
k= lim hpdwd? = lim v, (x0) = v(xo) :/ dv,
n=oo Je, - nmoo P
the results follows if we let n tend to oo in (5.27). ([l

Lemma 5.20. For everyl € (0, 1) there exists a constant ¢; = ¢(N, &, q,1) such that, for every positive
solution u of (5.1) in Q and every xy € €,
u(z) < qu(y) Vax,y € B (xo) 10 = d(z0). (5.29)

Proof. Putry = %lro. Then u satisfies

Lou+u?=0 in By (x0).
Denote by (2, the domain

Q, ={y eR" : roy € Q}.
Set v(y) = u(roy), and yo = %2, then v(y) satisfies

—Av — +rglv|?tv =0 in Biu(yo).

v
v
dist®(y, 0Q,,) T

Now note that
1 < 4
Qis?(y,00,,) (1 -1

and by Keller Osserman condition

Vy € Bz (yo),

1
(roy)

ralo()|™ = rglu(roy)| "t < C(Q, K, N)rg P < C(Q, 5, N)Bugi (yo)-

Thus, by Harnack inequality, there exists a constant ¢; > 0 such that
U(Z) < Cl’U(y) VZ,yE Bl(y0)7
and the results follows. O

For the proof of the next lemma we need some notations. Let 3 > 0 and { € X5 := 0Qj. We set
AZ(&) = XN B.(€) and, for 0 < r < B < 2r, xf = x£(£) € Qp, such that d(zf) = |2 —&| = r.
Also we denote by wg% the £,.-harmonic measure in 2 := 2\ Qg relative to =
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Lemma 5.21. Let rq = 1(2) > 0 be small enough and 0 < r < 2. Then there exists a constant cys
which depends only on Q, N such that

wék (Ar(f)) > Cos Ve e QN Bg (f) (5.30)

Proof. Since x +— wg, is positive and L,.-harmonic in €, it is a positive superharmonic function
B

(relative to the Laplacian) in QQ, Thus
The result follows by [9, Lemma 2.1]. O

Lemma 5.22. Let k = %, e € (0,1) and xg € Q. Let {£™} be a sequence of points in () converging to
a € 9. Then there exist ng = no(e, ) € N and cos = co6(2, N, &) such that

W& (Bagen)(€") N 0Q) > copd(€")N+272(~logd(€")' ™5 ¥n > ny. (5.31)

Proof. We recall that for any n € N €, is defined by (5.23), Gg; < G% = G%%, and for a fixed

point yp €
G%*{ xa, () TGz, (z,90) locally uniformly in © \ yo. (5.32)
a 4

Set (") = 2%y (€"), with v, = 4ET) By (2.10) we have
r,JlV*QGZ% (x,2(E")) < cor Vo € Q, NOB,, ("),
and by Lemma 5.21 there exists g = ro(€2) > 0 such that for any r,, < 72
ra TG (2, w(€Y) < coswy, (02, N By, (€7)) Vo € 2, N OB, (€).
Since if |z — y| > € > 0 there holds
G(LZZ (x,y) = cog(e, Uy )dist(z, 00, )dist(y, 0Qy,),
1
thus we have by the maximum principle and properties of the Green function
ra 2GR (w,2(€M)) < croow, (00 N By, (€7)) Vo € Qu\ By, (€7). (5.33)
By [4, Lemma 2.8] there exists Sy = 5(£2, ) > 0 such that the function
h(z) = di (2)(~ Tog () (1 + (~ logd(x)) ).
is a supersolution in (g, and the function
ha(w) = di (2)(~ Tog () (1 — (~ logd(x)) ™)) .

is a subsolution in Q3. Set
_ 11— (—logd(n))”"
1+ (—logd(¢n)) ™"

Ci01 =



Konstantinos T. Gkikas, Laurent Véron

and
) = hg(w) — 0101h1($).

H(z
Let ng € N such that r, < %, Vn > ng. then the function H(z) is a nonnegative subsolution in
Q, \ Qf ,and H(x) = 0, Yz € 0. By (5.32) we can choose n; € N such that

G (zo,x) > (U N, K)B Yz € 09,
a
Thus we can find a constant ¢102 = ¢102(80) > 0 such that
cro2H(z) < G (wo,x) Vo € 99,
Fy

Since H vanishes on 952, it follows by the maximum principle that

cr02H (z) < Ggi (%o, T) Vo € Q,\ - (5.34)
But L
H(z(£")) > c103(Bo) = c104(Q, N)ri (—logry)' e,
thus the result follows by the above inequality combined with inequalities (5.34) and (5.33). O

Lemma 5.23. Let k < i, € € (0, v1-— 4&) and xg € Qq. Let {"} be a sequence of points in

converging to a € 0. Then there exists ng = no(e, Q) € N such that
wé‘; (Bd(gn)(fn) n 69;) Z C105 (Q, ]\f7 R, E)d(fn)N+%+E_2 Vn Z no,
where )y, is defined by (5.23)

Proof. The proof is similar as the one of Lemma 5.22. The only difference is that we use d*- (1 — d°)
and the supersolution d®~ (1 + d°) as a subsolution. O

Proof of Theorem 5.18. Step 1: if

lim sup (cl(a:))NJraT
z€Q, z—a

u(z) < o0, (5.35)

then a € R,,. Thus we have to prove that there exists 7o > 0 such that u € L'fm (Q2N By, (a)). By (5.35)
there exists 1 > 0 such that

sup dN+QT+_2(x)u(ac) =M < 0.
z€QNBy, (a)

Let U be a smooth open domain such that

QN Br(a) CU C QN By (a),

and .
UNnoQ Con By (a).

For 3 > 0, set

dy(z) =dist(z,0U) Ve e U, Ug={zxeU: dy(z)>p}, Vz=U\Us.
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Let By > 0 be small enough such that diy € C%(Upg, ). Let 0 < 8 < fp and ((x) = dy(z) — B. Then u

satisfies 5
/ udS = / (WLl + uC)dz — / 2eas.
Vs V5\Va, Vs, on

Now

< c106(Bo — ),

ou
U ds
/‘9‘/130 an

where c19g depends on g, s, €2, Bo,

/ ulCdr < —/ uwAldz < c107/ udz,
Vs\ Vs, Vs\ V3, Vs\ Vs,

and by (5.35)
w™H(z) < c108(d(ﬂc))f(qil)(]\”ra%72) < C108(dU(-T))7(q71)(N+aT+72) Yz € U.

Combining the above inequalities, we derive

Bo a
/ udS < c109 / (017(,;71)(N+T+72) + 1)/ u(z)dSdo +1 ] .
oV; 3 av,

Multiplying the above inequality by 3 = we get

oy Bo oy ot
/ ud;? dS < cio9 / (ot~ DIN+="-2) 4 1)/ di? (x)u(z)dSdo +1 ] .
BVL—) ﬂ BVO‘

Set
Uo) = /6 ) 47 (¢)u(z)ds,

Then we have

Bo «
U(B) < 110 </ (o@D =2) L U (o)do + 1) , (5.36)
B

Set 4 .
W () = / ('@ DNVHE D) 4 1T (0)do + 1,
B
then -
W(B) = —(8'~ DD £ U (B) = ~h(B)U(B).
Thus inequality (5.36) becomes
~W'(B) < crioh(B)W (B) == (H(B)W(8))" > 0,

where 5
H() = e~eno J3° s

Thus we have
W(B) < ——=W(B) V0 < B < Bo.
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But

C(g— e
— gC110 f:o h(s)ds — ef110 f;o otTlamDINF 2)+1d8

H(p)

< o0

if and only if

2_(q_1)(N+0‘7+—2)>0<:>q<qc.

Thus we have proved that
/ uq(dU(z))%dz < 00,
U

which implies the existence of a ro > 0 such that
ai
/ u?(d(z)) 2 dz < oo,
QNB, (a)

i.e. a € R,, which is the claim.
Step 2. Since a € S, the previous statement implies that there exists a sequence {£"} C € such that

€ > a and limsup(d(€™))N+T ~2u(e") = . (5.37)

n—oo

By Lemma 5.20, there exists a constant ¢; such that

u(z) < qu(y) Vr,y € Bra ("), mn=d(£"). (5.38)
Put V,, := Brp (€") N O, and, for k > 0, hn 1, := -uxv, .
Case I: k = i. By (5.38) and Lemma 5.22 there exists a constant c11; > 0 such that
b, ;:/ udS > culAnrf:H%d(— logr,)'™¢, A,:= sup u(z).
n zEBrn (§7)
2
Then &
I
/ hokdS =k, hop < —ra 2 “xv.  ¥n>no. (5.39)
o, C2
By (5.37),
by, = o0, 1y — 0. (5.40)

Hence, for every k > 0 there exists ny such that
w> by on 99, Vn > ng. (5.41)

Let wy, , be defined as in Lemma 5.19 with h,, replaced by h,, ;. By (5.39) and (5.40), the sequence
{hn,1}22, satisfies (5.24) for every fixed k& > 0. Therefore by Lemma 5.19

lim wy, 1, = ugs, locally uniformly in Q.
n—oo

By 5.41), u > wp inz € Q:d(x) > ry. Hence u > ugs, for every k > 0. The proof in the case
0< k< i is similar. O

As a consequence we provide a full classification of positive solution of (4.1) with a boundary iso-
lated singularity.
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Theorem 5.24. Assume 1 < q < q. andu € C(Q\ {0}) is a positive solution of (4.1) which satisfies

. (@)
1
e W (z)

=0 Veean\ {0}

Then the following alternative holds:
(i) either there exists k > 0 such that

. N+ZE_2 _
" ﬁléyrge Q |$| u(‘r) - klﬂl(U) (542)
zlz|”! > o
and u solves e
—Au— —u+u?=0 in Q
d (5.43)
u = kdo in 09,
(ii) or
 tm felTu(@) = walo) (5.44)
zlz| "t > o
locally uniformly on Siv_l.
The result is a consequence of the following result
Lemma 5.25. Assume 1 < ¢ < g, a € 0Q and F.(a) = 0Q N B(a). Then
lim UFe(a) = Uco,a- (545)

e—0

Proof. Without loss of generality, we can assume a = 0. Clearly, Uygy := lime—0 U, (o) is a solution
of (5.1) which satisfies

Uy _
lim =0 ve€ 02\ {0)

locally uniformly on 9 \ {0}. By (6.20) it verifies

o4

2+
Ugoy(2) < claf =77 (422) * . (5.46)

||

By Proposition 4.5 and (6.24), we can follow the same argument like in the proof of Theorem 3.4.6-
(ii) in [28] to prove that: there exists ¢ = c112(N, K, ¢) > 1 such that

ot ot
1, _ =2 [fdz)\? _2 (dz)\*
— 2| 7T (=) <uso(@) < U < =1 (=2
Which implies
Utoy (%) < cuoo0(T) Vo € Q, (5.47)

where ¢ = ¢122(V, K, q) > 1.
Assume Uygy # Uso,0, thus Ugoy () > teo,0(z) forall z € Q and put i = teo,0 — 5= (Ugo} — Uso,0)-
By convexity « is a supersolution of (5.1) which is smaller than u 9. Now %
thus there exists a solution u of (5.1) in €2 which satisfies
c+1

Tuoo,o(x) <wu(x) < a(z) < Uoo,o(x) Vo € Q. (5.48)

Uoo,0 1S @ subsolution,
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This implies that Trapq(u) = ({0}, 0), and by Theorem 5.18, u > u« o, Which is a contradiction.
Proof of Theorem 5.24 Assume a = 0 without loss of generality. If a € S, then for any ¢ > 0,
u < Up, (o) which is a maximal solution which vanishes on 92 \ F(0). Thus, using (5.45)

<1li = = .
u < im Up, (o) = Ufo} = Uoo,0

If 0 € R,, this implies that Traoq(u) = (0, kdp) for some k& > 0 and we conclude with Corollary
4.4. O

The next result can be proven by using the same approximation methods as in [25, Th 9.6].

Theorem 5.26. . Assume S C 0N) is closed and v is a positive Radon measure on R = 0Q\ S. Then
there exists a positive solution of (4.1) in Q with boundary trace (S, 11).

6 Appendix I: barriers and a priori estimates

6.1 Barriers

Following a localization principle introduced in [25] we the following lemma is at the core of the a priori
estimates construction

Proposition 6.1. Let Q C RY be a C? domain 0 < k < i and p > 1.Then there exists Ry > 0 such
that for any z € 0Q and 0 < R < Ry, there exists a super solution f := fr . of (4.1) in QN Br(z) such
that f € C(Q2N Bgr(2)), f(z) — oo when dist (z, K) — 0, for any compact subset K C QN Br(z)
and which vanishes on 00 N Br(z), and more precisely

Coymg(R2 — o —22)7Pd)(z) Vye(5,%) ifo<k<i
f(x) - iam . (6])
T RRCONNC - BV

for 8 > max{% + 7, #, 1}

Proof. We assume z = 0

Step 1: k < 1. Set f(z) = A(R* — |z|>)7#(d(x))” where 3,7 > 0 to be chosen later on. Then, with
r=|x

AL f
=—(R?—1r?)"P (Ad" + kd""2) — dVA(R* — r?)7F —2V(R? — 1?) .V

Since Ad(z)
and |Vd|? =

= (N—1)H, where H, is the mean curvature of the foliated set ¥4 := {x € Q : d(x) = d}
1’
AdY = (N — 1)yHad" =t + ~(y — 1)d" 2
Ad" 4+ kd"™? = (N — D)yHyd" ™' + (y(y = 1) + w)d" 2
Vd' =~d"~1Vd,
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V(R? —r?)7# = 28(R? — r?) P~ 1z,

thus
V(R? = r?)" P vd" = 2Byd" " (R* —r*) P~ 'aVd
A(R? —r?)™F =2NB(R? — r?)" P~ + 4B(B + 1)(R? — r?)=F =22
=28(R*—r*) P72 (NR*+ (28 +2— N)r?)
Then
ALy f = —(R? = r?) P22 [(R? = 12)? (N — 1)yHad +7(y = 1) + k)
2B (NR? + (2B+2 — N)r2) + 4Byd(R? — r2)a.Vd }
Therefore

Lof +f1=AR?—r?)"P2q7—2 [Aqfl(RZ — r2)~(a=DF+2gla=1)7+2
—(R? =) (N = 1)yHad +v(y — 1) + &) 6.2)
—2B8d? (NR*+ (28 + 2 — N)r?) + 4Bvyd(R* — r*)2.Vd
If we fix 8 > maX{qT21 + 7, %, 1}, there holds
2Bd* (NR* + (28 + 2 — N)r?) + 4B~vd(R? — r*)2.Vd < 4d*B(B + 1)NR? + 48vdR(R* — 1?)
We choose % < 7 < %+ so that y(y — 1) 4+ & < 0. There exist dg, €g > 0 such that
(N—-1)yHyd+~v(v—1)+r<—e<—1
provided d(x) < do. We set

eo(R? —1?)

A= QNBp: <
{xe N Bpg :d(x) < 169R

} andB::Aﬂ{erﬂBR:d(x)géo}

Then, if x € B, there holds
—(R?2 —r*)? ((N = 1)yHqd + v(y — 1) + £) — 28d*> (NR* 4+ (28 + 2 — N)r?)

R2 _ 2)2
4GB — 2)gva > T r)
Finally, assume x € A° N {:c €QNBr:d(z) < 50} and thus
R2 _ T2
d Z C1 R
In order to have
(’L) Aq—l(RQ _ T2)2—(q—1)5d(q—1)w+2 > d2R2

6.3
(Zl) Aq*l(R2 — TQ)Q*(Qfl)ﬁd(qfl)'H? > dR(R2 _ TQ) (6.3)
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or equivalently

2w

(i) <= A7d > (R% — r?)

q—1 1 (g—1)B—1 (64)
(u) = A©@Driid > Rla—Dr+1 (R2 — r2) (q—D)~v+1
it is sufficient to have, for (i)
1 R? — 2 9 N 23—
A~ > (R* —r)~ Vr € (0,R) <= A > caR*~7 (6.5)
and for (ii)
a1 R%Z g2 1 (a=1)8-1
ci AT@DrF1 > R@—1Dy+1 (R2 — r2) (a—Dv+1 Vr e (O, R)
(6.6)
e A>cR¥
where ¢o = co(N,~,8) > 0since 8 > v+ %.
Atend, in the set C := {z € Q : d(z) > Jp}, it suffices that
A > c3 max {R?ﬂ, R2ﬂ—q+1} (6.7)

for some ¢35 = ¢5(N, v, 8, max |Hg|, d9) > 0 in order to insure
(i) ATHR? —2) DA > (R? — ¢2)2(N — 1)y|Hald
()  AIY(R? — )@= DB+2q(a=D+2 > 4428(B + 1) N R? (6.8)
(i4i) AI"Y(R? —r?)~(a=DF+2q(a=1)7+2 > 4BdR(R? — r?).

Noticing that 23 > 23 — q+1’ 28—~ > 28—~ — qfll, we conclude that there exists a constant
cqg = c4(N, 7y, B, max |Hgyl|, d9) > 0 such that if

A > ¢y max {RQB R¥V—7 } (6.9)

there holds
L.(f)+f1>0 in . (6.10)

Step 2: k = 1. Set f(x) = A(R? — r?)~Fv/d(In £2)3 for some A, J to be fixed. Then

Thus

AVA(n <)} + V(I )t = XL (

U
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Further
1
V(R? —r?)"P.VVd(In )3 = 7

Therefore

AL, f = —(R?—

i) — (In )] 2.Vd + 2Bd*(In &) [NR? + (28 4+ 2 — N)r?]

Finally
Lof + f1=AR2—12)"F=24=3 (In <B)=5 | Ae=1(R2 — p2)(1-0)B+2¢ "% (In <R )5 (a-1)+2
—(R? —1?)? [(N — 1)dHg (3(In <2)? — 1(In <)) — 1]
—2B(R? = r?)d [(In <)% — (In )] 2.Vd — 28d*(In <&)? [NR? + (28 + 2 — N)r?]
(6.11)

Notice that % > ethus —1 < (In ef)2 _ (In %) < (In %)2 If 3 is large enough, as in Step 1, there
holds

|2B8(R? — r?)d [(In €)? — (In )] .Vd + 28d?(In <) [NR? + (28 4+ 2 — N)r?]|
<

]
ANB(B+1)(In £)2 ((R? — r?)dR + d*R?) .

There exists dg > 0 such that
(N = 1)ty (4(n )7 ~ Hn )~

if d(x) < d. If we define A, B by
eo(R% —1?)
A= €eQNBgr:d —_— d B:=An €eQNBgr:d(z) <4
{x R d(@) < 168Rm L)z [ " {w rid(@) < 0}

there holds if x € B

—2B(R? —r?)d [(In )% — (In <£})] 2.Vd — 28d*(In <£)2 [NR? + (28 + 2 — N)r?]

2_ 232
— (B =2 [(N = 1)dHq (30 ) — 3(In 1)) — 1] > g5
Ifre AN{zeQnNQ:d(x) <do}, then
R2 _ 7"2
d(z) > A R(in ) Ty (6.12)
In order to have
(i) ATH(R? - ><1 W (1n ef%? > (In €R>2<R2 —r?)dR (6.13)

(i) ATH(R?
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or equivalently

78

(i) AW d(n )i > (R —¢2) " Rt (6.14)
() A2dIn <R > R7T(R2 — r2)?P =71
Up to taking ¢; small enough, (6.12) is fulfilled if
eR R? 2 2 e(R? —r?) 2 -2
< (1n(R2R_T2)) —d> T (m(Rﬁ_Tz)) : (6.15)
Inequality (6.13)-(i) will be insured if
AT > L(R? = r2)2 S T RAT (In(f ) 7T
which holds if, for any ¢ > 0, we have for any r € (0, R)
2-2 G@-1p-1 g 2 R? \°
N 2 o - P ()
A sufficient condition for such a task is, with the help of (6.15),
A > 3R 7T (6.16)
As for (6.13)-(ii), it will be insured if
A> e R (6.17)
Thus, if
A > csmax{R*~ 7172 R¥-7T1} (6.18)
for some ¢5 > 0 = ¢5(N, 7, 3, do, | Hal), the function f satisfies (6.10). O
6.2 A priori estimates
By the Keller-Osserman estimate, it is clear that any solution « of 4.1 in 2 satisfies
w(z) < C(q,Q,N)d 71(z) Vaeq. (6.19)

This estimate is also a consequence of the following result [4, Prop 3.4]

Proposition 6.2. Let ¢, be the first positive eigenfunction of —A in H} (). For q > 1, there exists
~v > 0and €y > 0 such that for any 0 < € < € the function hye = (s — e)_qi_l is a supersolution of

4.1inQcy, :={x € Q: d.(r) > €}

‘We recall here that

if kK <

N

N

if kK =
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Proposition 6.3. Let Q) be a bounded open domain uniformly of class C? and let F be a compact subset
of the boundary. Let u be a nonnegative solution of 5.1 in ) such that

o )
11m
T€Q, r—E& W (l’)

=0 VE€on\F,

locally uniformly in 00\ F. Then there exists a constant C depending only on q, k and ) such that,

lu(z)| < CdF (z) (dist(z, F)) 7T % VoreQ, (6.20)

|d§z) — dgﬁg < Cla —y|? (dist(z, F)) 7777 V(z,y) € 2 xQ 6.21)

such that dist(z, F) < dist(y, F),

a

\Vu(z)| < CdF () (dist(z, F)) 77 2 VoeQ. (6.22)

Proof. The proof is based on the proof of Proposition 3.4.3 in [28]. Let £ € 90\ F and put dp(§) =
1dist(¢, F'). Denote by ¢ the domain

Qf ={ycR": dp(&)y € Q).

If u is a positive solution of (5.1) in €2, denote by u¢ the function

u(y) = |drp ()| 7T u(dr(€)y), Yy € QF.

Then,

—Aut + |uf‘q =0 in QF.

]
—_

|dist (y, 9Q°)[?
Let Ry be the constant in Proposition 6.1. First, we assume that

1

dist(&, F) < .
18(57)—1+R0

Set 79 = 3Ho then the solution W, ¢ mentioned in Proposition 6.1 satisfies
us(y) < Wroe(y) Yy € Barg (§) N QF

Thus u¢ is bounded in Bsr, (€) N Q¢ by a constant C' > 0 depending only on n,q, s and the C?

characteristic of Q€. As dp ) <1la C? characteristic of € is also a C? characteristic of Q¢ therefore
the constant C' can be taken to be independent of £. We note here that the constant 0 < Ry < 1 depends
on C? characteristic of .

Now we note that

ut(y)
11m
yeQs, y—P W(ZC)

=0 VP e€d N Bsx(§)

Thus in view of the proof of Lemmas 2.11 and 2.12, by the above inequality and in view of the proof of
Theorem 2.12 in [14], we have that there exists C' > 0 depending only on n, p, x such that

ot
2

ut(y) < |dist(y, 09°)| Yy € Br, (£) NOS. (6.23)

2
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wy) o w@) Va,y € Bry (€) N QS

= =

dist(y, Q€)= |dist(z, 9Q8)| = B

Hence

o o4

ut(z) S AT (@)dp(§) 7T 7 Vr € B, o me (§) N

u(y) u®(z)
ez (y) _Cd(¥T+ " Vx,yEBdF(g)%(«f)ﬂQ. (6.24)
Let z € Q r, and assume that
2
R
d(z) < TOdF( ).

Let & be the unique point in 92 \ F such that |z — &| = d(«). Then we have
dp(§) < d(z) +dp(z) < (14 Ro)dp(z) <1

and
lu(z)| < Cd= (x) (1 + Ro)dist(z, F)) 71 2 .

If d(z) > B2dp(z), then by (6.19) we have that

lu(z)| < Cd™ a1 (z) < Cd > (x) <%dist(z,F)>ql2 .

Thus (6.20) holds for every 2 € Q r, such that dist(x, F) < —1=—
Now we assume that = € ) r, and

1
14+ Ry

dist(z, F) >

Let ¢ be the unique point in 92 \ F such that | — &| = d(x). Similarly with the proof of 6.23 we can
prove that

o

(x)C((l+R0)diSt($,F>)_"’%_T+ YV € BTO(E) neQ.

u(z) < Cda%(ac) < da%
Now if 2z € Q \ Q &, , the proof of (6.20) follows by (6.19).
2
(ii) Let xo € Q2. Set
Q% ={y e R": d(zo)y € 0},
and dg, (y) = dist(y, 002%°). If € By (7o) theny = T(rgy belongs to B (y ) where yo = d(mzoo).
2

1
Also we have that 5 < dy,(y) < § foreachy € By (yo). Set now v(y) = u(d(zo)y), Yy € By (yo)-
Then v satisfies

u
—Av— k————— 4+ d*(x0) |v|? = 0 in Bi1(yo).
|dz0(y)|2 ( 0)| | 2( 0)

By standard elliptic estimate we have

sup  [Vo| <C| sup ||+ sup d*(zo)|v]? |,
yeB%(yo) yeB%(yo) yeB%(yo)
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Now since Vu(y) = d(zo)Vu(d(zo)y), by above inequality and (6.20) we have that
[Vu(zo)| ( d=-! dls‘c(J:O,F))_qz_l_T+ +dan++1(x0) (dist(xo,F))_q(q%_%)) .
Usmg = 23 + 2 and the fact that z is arbitrary the result follows. O

Proposition 6.4. Let O C OS2 be a relatively open subset and F = O. Let Uy be defined by (5.7) be the
maximal solution of (5.1) which vanishes on OQ \ F. Then for any compact set K C O, there holds

2 2(q+ 1 w1
gli_rg(d(«f))qflUF(g) =/{, = (% + /i) uniformly with respect to x € K. (6.25)

Proof. Step 1. We claim that for any € > 0 there exists Ce, e > 0 such that for any z € O such that
Bs-_(z) C O, there holds

w(z) < (e+ L Y11 4+ C. Vre (0,7, Vo € 5.(B (2)). (6.26)
Werecall that ¥ (B, (2)) = {z € Q, z = (d(z),0(z)),d(z) = 7,0(z) € B-.(2)}. Setg(z) = gd*q%(x)’
then
2q
2(N —1 a+1 i
L.g+ g7 = (71)Hdd*q%1 + (et — g 4 1 (6.27)
q—

where H, is the mean curvature of 4. If € is convex we take ¢ = /,, and g is a supersolution for

1 2
d(z) < Ry for some Ry. In the general case, we take £ = £(e) = (e+/£4"1)aT,andg = g. = l(e)d a1
is a supersolution in the set {2, where

Ry 2(N —1
TemaX{T 0<7‘<—0 gHHTHLW(E )+e>0}.
27 g-1 T

Then far. ., + g is a supersolution of (5.1) in Ba-_(z) N £ which tends to infinity on (B2, (z) N Q) =

0NN By, (2)UNNIBa, (z). Since we can replace g (x) by ge - () = £(d(x) —T)W%l for7 € (0, pe),
any positive solution u of (5.1) in €2 is bounded from above by fo. . + gc - and therefore by for_ . + ge.
This implies (6.26) with C. = max{fa-. .(y) : |y — 2| < 7}, and it can be made explicit thanks to
(6.1).

Step 2. With the same constants as in step 1, we claim that
Up(z) > (97 —e)air o1 —C. V1€ (0,7, Vo € 2, (B (2)). (6.28)

If in the definition of the function g, we take £ = £(e) = (¢4~ — e)q%l, then ¢ is a subsolution in the
same set 2. Since Up + far.  is a supersolution of (5.1) in Bz, (z) N Q which tends to infinity on the

boundary, it dominates the subsolution g. _, = £(d(.) + T)*q%l for 7 € (0, p.) and thus , as 7 — 0,
ge(z) < Up(z) + far. (). This implies (6.28) with the same constant C.

Step 3. End of the proof. Since K C O is precompact, for any € > 0, there exists a finite number of
points z;, j = 1, ..., k such that K C U¥_, B, (z;) with By, (z;) C O. Therefore

1

(e~ — )i T — C. < Up(z) < (e+ 4 V)oir a1 +C. Vr e (0,7], Vo € ,.(K).
(6.29)
Since € is arbitrary, it yields to

hm.,-ﬁo ||T‘1*L1 UF - gn”LOO(Z,.(K)) =0 (630)
which is (6.25). O



Konstantinos T. Gkikas, Laurent Véron

Corollary 6.5. Let Upq be the maximal solution of (5.1) in €Q, then

d(l;)nio(d(x)) =1 Upq(x) = {y. (6.31)

6.3 Moser Iteration

In this subsection we always assume that {2 is a bounded smooth convex domain, D = 2sup,, , cq [T —y|

and fo € L1(Q), ¢ > N;”J‘. The main goal of this subsection is to prove Boundary Harnack inequality
for positive solutions of the problem

div(¢2Vv)  f .
Lyvi= 2OV Ty, (6.32)
¢ 2 On
where d(a)
|log =57

(@) < e

for some positive constant ¢y > 0.

+ fo(z)ps Vo eQ, (6.33)

In the sequel we will use the following local representation of the boundary of 2. There exists a
finite number m of coordinate systems (y., yn) € 9, v = (Y1, .-, Yin—1) and the same number m of
functions a;(y;) defined on the closure cubs, A; := {z € R™ : |y;; —a;| < b, for j =1,...,n, and
i € {1,..,m} so that for each point x € 02 there is at least ¢ such that z = (2}, a;(z})). The function a;
satisfies the Lipschitz condition on A; with constant A > 0, that is

lai(y;) — ai(z) < Aly; — 2,
for y/, 2/ € A,. Moreover there exists a positive constant b < 1 such that the set B; is defined for
any ¢ € {1,..,m} by the relation B, = {(v},%in) : ¥i € Ai, a;(¥}) < yin < a;(y}) + b} and
i = BN = {(y}, yin) : ¥; € Ai, yin = a;(y;)}. Furthermore, let us observe for any y € B; where
someone can make the following inequality on the distance function
(L4 A) ™ (Yin — ai(y)) < d(y) < yin — aiy))-
Finally let z € 0B; and v € C3(Q). Set z; = y; fori = 1,...,n — 1 and z, = y, + a;(y’) then
Vyv =Vuv+ vy, Vyai(z') and vy, = v, , thus
C(A)|Vav| < |Vyv| < ¢(A)|Vau]. (6.34)
Let us now define the "balls" which we will use to prove some Poincaré, weighted Poincaré and

Moser inequalities. More precisely we have the following definition

Definition 6.6. Let v € (1,2). For any x € Q and for any 0 < r < %{i‘”b}, we define the ball
centered at x and having radius r as follows.
(i) If d(x) < r then

Bz, r) = {(Wi yin) : lyi — 2i| < 7.d(2) =7 < yin — ai(y;) <7 +d(2)},

where i € {1,...,m} is uniquely defined by the point T € O such that |x — T| = d(x), that is by the
projection of the center x onto 0f).

(ii) If d(x) > ~yr then B(z,r) = B(x,r) the Euclidean ball centered at .

We also define by

Vie,r) = / &2 (y)dy,
B (z,r)NQ

the volume of the "ball" centered at x and having radius 7.
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We first recall some known results the proofs of which are in [14]. The first one [14, Lemma 2.2]. is
a two-sided estimates of V' (x, 7).
Proposition 6.7. There exist positive constants dy and ds such that for any v € Q and 0 < r <

min{Cy,b}

5 we have

dy max{d®(z),r*}rN < V(x,r) < do max{d*(zx),r*}r". (6.35)

From the previous lemma it follows the Doubling property satisfied by V' (z, .).

Corollary 6.8. Let N > 2, o > 0 and ) be a smooth bounded domain. Then there exist positive
constants C(N,~,Q, «) and (82, ) such that for any x € Q and 0 < r < 3 we have

V(z,2r) < CV(x,r).

The Local Poincaré inequality is proved in [14, Theorem 2.5]).

Proposition 6.9. There exist positive constants C(N,~,Q, ay) and 3(S2,7) such that for any xy € Q
and r < 8 we have

inf / Fly) — €262dy < 0r2/ VF)PeRdy VT € C(B(wo,r) N0,
€eR B (zg,r)NQ B (zo,r)NQ

As a consquence there holds a local weighted Moser inequality which is proved in [14, Th 2.6]

Proposition 6.10. There exist positive constants Car (N, Q, ay) and 5(2) such that for any v > N +«,
zo € Q,r < Band f € C§°(B(xg,7) N Q) we have

/% Py
xo,r)N

< Corr?V(z,r) 2 /% ( m|Vf<y>|2¢i<y>dy( /% |f<y>|2¢i<y>dy>”

(xo,r)NQ

Let us now make precise the notion of a weak solution.

Definition 6.11. We will say that v € H (B (x,r) N Q) is a weak solution of Ly, v = f in B(x,r) N,
if for each ® € C§°(B(x,r) N Q), we have

/ Vu.Vodm = f®dm,
B (z,r)NQ B (z,r)NQ

where dm = ¢2dx and o > 0.

We denote here by H (B (x,r) N Q) the space of all functions u € L3 (B(z,r) N Q) such that
Vu € L7 (B(x,r) NQ), endowed with the norm

1
2

||U||H;, (B(z,r)NQ) = (/ |VU|2¢id$+/ U2¢id9€>
" B(z,r)NQ B (z,r)NQ

Then we have the following Harnack inequality up to the boundary
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Theorem 6.12. Let v be a non-negative solution of Ly v = f in () where f satisfies (6.33). Then there
exists a constant A > 0 such that the following estimate holds,

v(y) < Av(x) Vx,y € Q.

In order to prove Theorem 6.12 we use the Moser iteration technique as it is adapted to degenerate
elliptic operators in [17], [18] and [31]. In this approach one inserts in the weak form of the equation
Ly, v = f suitable test functions ®. One of the key ideas is to use test functions ® of the form n?v? ,
where v is the weak solution of the equation, 7 is a cut off function and ¢ € R. To this end one has to
check that n?v7 is in the right space of test function. In this direction the following density theorem is
crucial, the proof of which is [14, Th 2.11].

Theorem 6.13. Let N > 2, a > 1 and U C R"™ be a smooth bounded domain. Then we have
Hy(U,d*(y)dy) = H' (U, d*(y)dy)

where we have set

(O 0)y) = {o = o) : ol = [ (Tl + o)y < oo}

We note here the above theorem allows us to take the cut of function n € C§°(B(z,r)) instead of
it as a usual taking in n € C§°(B(z,r) N N). Clearly the two function spaces differ only if the “ball”
intersects the boundary of €.

To explain what are the appropriate modifications of the standard iteration argument by Moser, we
now present in detail the first step, which is the LP ; p > 2 mean value inequality for any positive local
subsolution of Ly v < f. Similarly with Definition 6.11, we call a function v € Hj(B(z,r) N Q)
subsolution of Ly v < fin B(z,r) NQ, if foreach 0 < & € C§°(B(z,r) N ) we have

/ VoV 2 dr < / f du. (6.36)
B (z,r)NQ B (z,r)NQ

Theorem 6.14. Let v € (1,2) and p > 2. Then there exist positive constants c¢o(Q2) and C(Q,p, k, ¢p)
such that for any x € Q, R < ¢q and for any positive subsolution of Ly, v < f in B(x,r) N Q, we have
the estimate

C
sup |v|P < —/ vl §2da
Qs(x,aR)mszl | (1—-0)"V(z,R) %(I,R)mszl |

1

22— 2— Ntoq q 42 !
+C R (log R)ey + R a | folloy dx
B (z,R)NQ

foreachO < o < 1.

Proof. Lety € (1,2) and o € Q. First we assume that d(xg) < YR, in other case the proof is standard
and we omit it. Let R < min(co, 1) we denote by Q% the domain

Qf = (£ eR": R¢ Q).



Konstantinos T. Gkikas, Laurent Véron

Set g = Ry, ;5:1 (y) = ¢n (Ry)

XN/(y,r) = / q?i(m)dm,
B (y,r)NQE

d(y) = dist(y, Q) = @

As R < 1 a C? characteristic of € is also a C? characteristic of ? therefore the constant C' can be

taken to be independent of y. We note here that the constant 0 < ¢y < 1 depends on C? characteristic of
Q.

Set (y) = v(Ry), cf = 2R*~*+(log R)ey, f(y) = R*f(Ry). foly) = R*fo(Ry) u = T + k,

where k = ¢+ ||%||LQ(QR,$§dz) . Then u is bounded away from zero. Thus by (6.36) we have for any
P € Cg°(B(y, 1) NQF)

2 d
/ Vu.Voep2dr < / ® fob dz+c]7/ |log R—(z)@dz
B(y0,1)NQ B (yo,1)NQR B(yo,1)NQR D

Let 5 > 0, we set

) u u<k+m
tm = k4+m u>k+m

and ® = 9)%u? u. Due to Theorem 6.13 there exists a sequence of functions ®;, in C™(B(yg, 1) N QF)
having compact support in €2 such that &, — ® in H!(B(yo, 1) N QF, d+dy). Since ¢ ~ d =, we
have that @), — @ in Hj_(B(yo,1)NQ"). Hence for any ¥ ¢ € C5°(B(yo, 1)) and m > 1 the function
o = 1/)2uﬁlu is an admissible test function, that is, the following holds true:

/ Vu.V( 2uglu)q~ﬁidx§/ 2ul ufod?da
B (yo,1)NOQE B (yo,1)NQE

d
+ co / [log d(z) [?ul uda
B (yo,1)NOQR D
1 -~
<t/ Wl ol de
k B(yo,1)NOQE
cy d
+-L / |log ﬂ|1/12u75nu2d30.
k Js(yo.1)n0r D
Thus by straightforward calculations and Holder inequality we have
1 ~ ~
= / |Vul*ulp?¢2dr + B |Vt |2l 02 2 da
2 B (yo,1)NQE

B (yo,1)NOQE
~ 1 .
<cf VoPubdas+ g | Wb fodde
B (yo,1)N2R k Js(yo,1)nar

°F d(x)

f/ 2 8.2
+ = |log —=|v=u,, u“dz.
k B (yo0,1)NQER D
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Bl

Now we have by Holder inequality
g—1

/ u2w2u5f0q~ﬁ,€dx
B (yo,1)NQE

1 - E .~ a
< < / |fo|%id:c> ( / |u&u2w2|al¢idx>
B (yo,1)NQE B (yo,1)NQR

2(N+oy)

Since > >2ifg> & +0‘ , we have by interpolation inequality and (2.9)

N+oay—2 q— 1
q—1 Ntay —2
q o N+a
(/ |uf u21/12|qqlq~52dx> <e (/ |u? u2w2|Nﬁz+t2 q?dac) .
Byo,HNQE " - Byo, DR "
_ Nitoy ~
+CNay, e [ julu?y? 2 do
B (yo,1)NOQE
H 272
< IV () PR
B (yo,1)NQE
_ Ntey ~
—|—C(N,a+,q)€ 2q—N+a+/ |’u,§n’u,2’¢2|¢id$
B (yo,1)NQE
Also
/ |log ()|1/12u5 ulde = — / |log ()|dVdV(w2 B u?)dx
B (yo,1)NNE B (yo,1)NQE

- / - | log %MA@?G(W)udz
B (yo,1)N

+ / wQUf@quac.
B (y0,1)NQE

Let0 < 0 < ¢’ < 1, we choose a function ¢ = £(|y(, — 2'|)€ (|xn —a(z') = d(yo)|), where £ € COO( )

and satisfies 0 < £ < 1,{(s) = 1ifs < g and £(s) = 0if s > o’. Then clearly we have |[V1)| <

d C dlz) ~
|log d(z) |d|Vep|ul u’dx < |log d(x) |dipu? u?da
D m ! D m
B (yo,1)NQE 0" = 0 JB(yo,1)NQE

C / 2T J(;p) B8 .2
= - d“Vd.V(|log —=|vuy,u”)dx
L ( . (11og " jwufu?)

- ,C / J2Ad(|log@|wu%u2)dx .
o' =0 \ Jsyo,1)n0r D

/ V2|Vt |2l d*+ dae
%(’yg 1 nQEe

/ _d(:c) |2¢’iv?70‘+1/)2uﬁ uldz.
(yo, 1)QQR D "

0’70

d(x)
5 / log 1)
B (yo,1)NQE | D

A~

|dp? |Vt |02 uda <
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Working as the last two inequalities and using the fact that g,i ~ d%, we can prove that there exists
e € (0,2 — ay), such that

d -
/ o A 20 200 < V|V Pu, B
B (yo,1)NQE B (yo,1)NQE
1 -
+ —/ V2| Vul|?ub ¢ da
4 B (yo,1)NQR
C(B+1)?

+ 7/ 2uf@u2q~ﬁid$.
(OJ - 0)2 B(y,0’)NQE

Let 8 > 2, combining all above there exist 6 = §(N, ay,q) > 0and C = C(N,a4,q) > 0 such
that

/ |Vul?ul? 62 du + / |Vt [Puf) ? G < / ulu? ¢l dz.
B (yo,1)NQE B (yo,1)NQTR (R—) B (y,0’)NQR

8
Set now w = us,, then

[ Vet

B (yo,1)NOQE

<O +1) / VPl R + / Vet [Pub B |
B (yo,1)NQE B (yo,1)NQE

Thus we get

o+1 "
/ |V (ypw)|*dz < C’LQ/ w? P2 dx (6.37)
B (yo0,1)NQER (R—r) B (yo,1)NQR

Using the above inequality Proposition 6.10 we obtain

/ WPt e < [ [l F2da
B (yo,0)NQT B (yo,1)NQR
< E< / |v<ww>|2;£idz> ( / wa&Fidz)
B (yo,1)NQE B (yo,1)NQR

1 —  \'TF
< Bopt ( — 1 / lw|? 32 da
(U/ - 0)2 B (z,0')NQ

where £ = Oy V=% (yo, 1) is the constant in Proposition 6.10.
Set 5 = p and let m — oo, then we have by (6.38) and the definition of w,

- 541 B 1+2
J N e T (R iy i T
% (30,010 (0’ 0') B(z,0")

where A = EC the constant in (6.38).

(6.38)
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2
We note that by iteration with pg = p, p1 = p(1 + %)7 N p<1 + %) ,

/ upiggidzdt <oo Vi>0and o” <7’
B (yo,0’)NQ

Thus by the same argument as before we have

_ 541 - 1+2
B (2,0)NQ (0" = 0)? Jo(a,0nn0

Now setrg = o’ and r; = 0/ — (0/ — o) Z;Zl 277, Thenr; —rivq = (8 —8)27" Land pjy1 =

pi(l+ %), thus inequality (6.39) becomes

- 92(i+1) o\
e o)
B (yo,ri+1)NNE (J - U) B (yo,ri)NQE

1 1

1 .
) ~ Pi41 1 22(14'1) Pi41 o~ y2rs
(/ up"“(bidz) < Aritr </72 pf""l upld)id:c
%(yo,Ti+1)ﬁ(2R (U - U) ‘B(yo,’l“i)ﬁQR

1 1 1

— . ) 5+1 -
A Piy1 | pg 204D 4 2i HL 0FL ~, Pi—1

- - P Pi—1 i 2
: <( " —o)2 27 T ript pily u’tgde
g o %(yo,’l“ifl)ﬁQR

A 1 >, e 7 1
P = 15 oo j4l 5+1 oo o-—i =Y - o
< (,72) 4P 24j=0 o7 e 2 2j=0 O 'log(po®7) (/ ul’oqﬁidx) )
(J - J) B (yo,r0)NQLE

where © = 1+ 2. Observe now thatr; — § as i — 0o, all sum above are finite and Z;‘io 077 =%+1.
Hence we have,

v 1 ~
sup [ul? < Af = | WP dide  Vp=2.
B (yo,0)NNE (o) — o) B (yo,0’)NQR

where A = Cp/ V% (z,1).

Thus we have

sup  [O]P < A22Y / PP da + k Vp>2,
B (yo,3)NQR B(yo,1)NQR

which implies

1
sup |l < / lv[P2dx + k Vp>2,
B (yo, & )NQR V(x,R) B (yo,1)NQE

The estimate in B(yg, o R) N2 can be obtained by applying the above result to B(y, (1 —o)R) N
forany y € B(y,oR) N Q. O

Using Moser’s iterative scheme we are now in situation to prove
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Proposition 6.15. Let u be a weak solution of (6.32). Then there exist two constants C' > 0 and
a € (0,1], depending on Q, N and & such that

1

sup Mgc cr + / | fol 162 dux
eyeQary T Yl B (z,R)NS
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