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Abstract
K
We study the boundary behaviour of the of (E) —Au — Wu + g(u) =0, where 0 < K < % and
x
g is a continuous nonndecreasing function in a bounded convex domain of R". We first construct the
Martin kernel associated to the the linear operator £, = —A — d%(m) and give a general condition for

solving equation (E) with any Radon measure j for boundary data. When g(u) = |u|9~1u we show the
existence of a critical exponent g. = g.(N, k) > 1: when 0 < ¢ < ¢, any measure is eligible for solving
(E) with u for boundary data; if ¢ > gq., a necessary and sufficient condition is expressed in terms of
the absolute continuity of pwith respect to some Besov capacity. The same capacity characterizes the
removable compact boundary sets. At end any positive solution (F) —Au — d%(m)u + |u|?tu = 0 with
¢ > 1 admits a boundary trace T'rpq (u) which is a positive outer regular Borel measure iz ~ (S, 11) , with
compact singular set S C 952, and regular part x4 which is a positive Radon measure on R := 9Q \ S.
When 1 < ¢ < ¢, to any outer regular positive Borel (F,, 1), it is possible to construct a positive solution

u of (F) such that T'rpq(u) = &.
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1 Introduction

Let €2 be a bounded smooth domain in RY and d(z) = dist (x,Q¢). In this article we study several
aspects of the nonlinear boundary value associated to the equation

K 1 ,
—AU—WU—HUW u=0 in Q (1.1

where p > 1. The study of the boundary trace of solutions of (1.1) is a natural framework for a general
study of several nonlinear problems where the nonlinearity, the geometric properties of the domain and
the coefficient x interact. On this point of view, the case x = 0 has been thoroughly treated by Marcus

and Véron [18], [19], [21], [20], for example and the synthesis presented in [22]. The associated linear

Schrdinger operator
K

- "

plays an important role in functional analysis because of the particular singularity of is potential V' (x) :=
— %@c) The case < 0 and more generally of nonnegative potential has been studied by Ancona [2] who
has shown the existence of a Martin kernel which allows a general representation formula of nonnegative
solutions of

ur— Lou:=—Au (1.2)

L.u=0 in Q, (1.3)

This representation turned out to be the key ingredient of the full classification of positive solutions of

—Au+u?l=0 in (1.4)
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which was obtained by Marcus [17]. In a more general setting, Véron and Yarur [27] constructed a
capacitary theory associated to the linear equation

Lyu:=—-Au+V(x)u=0 in Q, (1.5)

where the potential V' is nonnegative and singular near 2. When V() := —% with K > 0, V' is
called a Hardy potential. There is a critical value kK = i. If £ > i, no positive solution of (1.3) exists.
When 0 < & < %, there exist positive solutions and the geometry of the domain plays a fundamental
role in the study of the mere linear equation (1.3). We define the constant cq, by

/|Vv|2dx
co= inf
veHL(Q)\{0} /dgj(zw)dx

Q

It is known that ¢, belongs to (0, i] If €2 is convex or if the distance function d is super harmonic in the
sense of distributions, then cq = i. Furthermore there holds ¢ = i if and only if problem (1.6) has
no minimizer. (see [16]). When 0 < xk < %, which is which is always assumed in the sequel and there
exists no minimizer to problem (1.6), it is possible to define the first eigenvalue A\, of the operator L.
If we define the two fundamental exponents «; and a— by

oy =1++vV1—-4x and a_=1-+v1-4k (1.7)

(1.6)

then the first eigenvalue is achieved by an eigenfunction ¢,; which satisfies ¢, (x) =~ d = (z) asd(z) —
0. Similarly, the Green kernel G, associated to £, inherits this type of boundary behaviour since there
holds

1 1 4% (0)dF () . 1 d=(2)d7 (y)
. { g2 fo e 2 [ S G B) S O e e
(1.8)

We show that £,; satisfies the maximum principle in the sense that if u € H} . N C(Q) is a subsolution
i.e. L,.u < 0 such that

(1) lim sup u(z) <0 if0<r<i
(i) lim sup __u@) <0 if =1

sy /d(x)|Ind(z)] ~ *

forall y € 99, thenu < 0. If £ € 9Q and > 0, we set A,.(§) = 92 N B,.(£). We prove that a positive
solution of £,,u = 0 which vanishes on a part of the boundary in the sense that

. u(z) ~ 1
(1) Jim do‘f(x)( =0 Yy € An(€) if0<rk <y w0
u\xr :
G e @) yeaE) itn=s
satisfies
u@) o, ) Va,y € As (6), (1.11)

¢n(m) - ¢K(y)
for some Cy = C1(Q2, k) > 0.
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For any h € C'(9)) we construct the unique solution v := vy, of the Dirichlet problem

L.v=0 in

v=~h on Of) (1.12)

Using this construction and estimates (1.9) we show the existence of the £,-measure, which is a Borel
measure w” with the property that for any h € C(92), the above function v, satisfies

vp(z) = [ h(y)dw®(y). (1.13)
o0

Because of Harnack inequality, the measures w® and w?® are mutually absolutely continuous for z, z € (2
and for any x € 2 we can define the Radon-Nikodym derivative

dw®
K(z,y) =

=T (y) forw®-almosty € IN. (1.14)

There exists ro := ro(€2) such that for any = € € such that d(x) < r¢, there exists a unique £ = &, € I
such that d(z) = |z — &;|. If we denote by ;. the set of 2 € 2 such that 0 < d(x) < ro, the mapping

IT from ﬁ;o to [0,7] x O defined by II(x) = (d(x),&,) is a C! diffeomorphism. If ¢ € 9 and
0 <r <rp, wesetz,.(§) =TI 1(r, &). Let W be defined in Q by
d= () if K<
W(zx) =
Vd(x)| Ind(x)] if k=

we prove that the £,-harmonic measure can be equivalently defined by

(1.15)

NN T

WP (E)=inf ¢ : ¢ € C (), L,;-superharmonic in 2 and s.t. lim inf V() >1 (1.16)

for any compact set ' C 0f) and then extended classically to Borel subsets of 0f2.
The L,.-harmonic measure is connected to the Green kernel of £, by the following estimates

Theorem A There exists Cs := C3(2) > 0 such that for any r € (0,7¢] and § € 9, there holds

VT T2G e (20(8),2) < w(A(E)) < CrNTe-"2GL, (2,(€),2) Vo € Q\ Byye) (1.17)

3
ifO</£<i,and

o T Ind(@)|Ge,y (20, 7) < w(Ar()) < Car™ Y Ind(2)| G (2r(),7) Vo € QN Barge).

(1.18)
As a consequence w” has the doubling property. The previous estimates allow to construct a kernel
function of L, in €2, prove its uniqueness up to an homothety. When normalized, the kernel function
denoted by K, is the Martin kernel, defined by

Kz, (2,€) = lim Gr (z,y)

vE € 0N 1.19
z—E G[;h_ (.’L‘,xo) f ( )

for some xo € 2. An important property of the Martin kernel is that it allows to represent a positive
L ;-harmonic function u by mean of a Poisson type formula which endows the form
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u(x) = Kp, (z,8)du(€) for w*-almost z € Q. (1.20)
9]

for some positive Radon measure 1 on 0€2. The measure p is called the boundary trace of u. Furthermore
K, satisfies the following two-side estimates

Theorem B There exists C5 := C5(Q, k) > 0 such that for any (x,&) € Q x OS2 there holds

L <o 47 (1.21)
Gip—grer— = K@ 8 s Gr—ama=: :

Thanks to these estimates we can adapt the approch developed in [13] to prove the existence of weak
solutions to the nonlinear boundary value problem

—Au—%u—i—g(u):y in Q
d*() (1.22)
u=p in 09,

where g is a continuous nondecreasing function such that g(0) > 0 and v and p are Radon measures on
Q and 99 respectively . We define the class X, () of test functions by

Xo(@) = { ne L) st V(@ Fn) € L, (@ and 6 Loy € L¥(Q) | (123)
and we prove

Theorem C Assume g satisfies

v o

) +la=ss T ds < o (124
1

Then for any Radon measures v on ) and such that fQ dwd|p] < 00 and p on ON) there exists a unique
u € L}, suchthat g(u) € L, which satisfies

/ (ulyn + g(u)n) de = / (ndv + K, [p]Lendz) Vi e X (). (1.25)
Q Q
()Li
When g(r) = |r|97r the critical value is q. = % and (1.24) is satisfied for 0 < g < ge.
2

When ¢ > ¢, not all the Radon measures are eligible for solving

K _ .
—Au—mu+|u|q =0 in Q
(1.26)
U= in 09,

. . . N-—-1 . .
We prove the following result in which statement Cf 1o, , denotes the Besov capacity associated
— oy 4

_24ay
to the Besov space B>~ 2 ¢ (RN 1),

Theorem D Assume q > q. and 1 is a positive Radon measure on 0S). Then problem (1.26) admits a
weak solution if and only if 1 vanishes on Borel sets E C 0S) such that Cfiv;:% v (E) =0.
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This capacity plays a fundamental for characterizing the removable compact boundary sets which
exist only in the supercritical range q > q..

Theorem E Assume q > q. and K C 02 is compact. Then any function u € C(Q2\ K) which satisfies

K
CAu— a1y = n Q
u d2(x)u—|—|u| u=0 in

(1.27)
u=20 in 00\ K,

is identically zero if and only ifoI\F (K)=0.

1
e g
We show that any positive solution u of (1.1) admits a boundary trace, and more precisely we prove
that the following dichotomy holds: et
Theorem F Let u be a positive solution of (1.1) in Q and a € OS). Then
(i) either for any ¢ > 0

lim udwsd = oo, 1.28
=0 JysnB.(a) 2 ( )

where Q5 = {x € Q : d(z) > ¢}, B5 = 09 and wé‘é is the harmonic measure in €0,

(ii) or there exists €g > 0 and a positive Radon measure X on 9Q N B, (a) such that for any Z € C(Q)
with support in QU (092 N By, (a)), there holds

lim Zudwg) :/ Zd. (1.29)
=0 JssnB.(a) s 99N B.(a)

The set of points a € 912 such that (i) (resp. (ii)) holds is closed (resp. relatively open) and genoted
by S, (resp R,. There exists a unique radon measure u, on R, such that, for any Z € C(Q)) with
support in 2 U R,, there holds

; o __
glir(l) Z(;Zudw% —/ Zduy,. (1.30)

The couple (S, ft,) is called the boundary trace of u and denoted by Traq(u).

If 1 < g < g. we denote by ugs, positive solution of (1.1) with p = kd, for some a € 0 and
k > 0. There exists limy_, o0 Uks, = Uoo,q- We prove the following

Theorem G Assume 1 < q < q. and a € OS). Then If u is a positive solution of (1.1) such that a € S,,
then u 2> Uso,q-

In order to go further in the study of boundary singularities, we construct separable solutions of (1.1)
inRY = {z = (¢/,2n) : a5y > 0} = {(r,0) € Ry x SY¥ '} which vanish on ORY \ {0} under the
form u(r, o) = r_q%lw(a), where r > 0, 0 € S¥ . They are solutions of

—Agn-1w — g nw — Lot w9 tw =0 in SY 1
eN.o . (1.31)
w=0 in09S, ™

where Agn -1 is the Laplace-Beltrami operator, e the unit vector pointing toward the North pole and
44, N is a positive constant. We prove that if 1 < ¢ < ¢, problem (1.31) admits a unique positive solution



Konstantinos T. Gkikas, Laurent Véron

wy, wWhile no such solution exists if ¢ > q.. To this phenomenon is associated a result of classification of
positive solutions of (1.1) in €2 which vanishes of 92 \ {0} (here we assume that 0 € 9S) and that the
tangent plane to 0Q at 0is {z : x.ey = 0} and that Q@ C {z : z.ey > 0})

Theorem H Assume 1 < q < q. and let u € C(Q \ {a} be a solution of (1.1) in Q which vanishes of
0N\ {a}. Then

(i) Either u = Uoo o and
lim, 0 FaT u(r,.) = wg (1.32)

locally uniformly in Sffl.
(ii) Or there exists k > 0 such that uw = uys, and

u(z) = kK¢, (z,a)(1 4 ol)) asx — 0 (1.33)

If 1 < g < g. we prove that to any couple (F,u) where F is a closed subset of 9 and u a
positive Radon measure on R = 9€) \ F we can associate a positive solution w of (1.1) in Q with

Troa(u) = (F, p).

2 The linear operator £, = —A — 57

Throughout this article ¢; (j=1,2,...) denote positive constants the value of which may change from one
occurrence to another. The notation  is reserved to the value of the coefficient of the Hardy potential

2.1 The eigenvalue problem

We recall some known results concerning the eigenvalue problem (see [9], [12]).

1- Since Q2 is convex, co = 1 and for any € (0, 1] there exists

\ . /Q (|Vu\2 - %u2) dx
k= 1 .

weH} () / W2d
Q

2-1f 0 < K <  the minimizer ¢,, belongs H (€2) and it satisfies

¢~ d T (2), @.1)

where oy (as well as a_) are defined by (1.7).
€ H}

loc

3-If k = %, there exists a non-negative minimizer ¢ (€2) such that

%
~ d? (z). (2.2)
Furthermore, the function 11 = d~2 belongs to HL(Q; d(x)dx)

4- Let H} (9, d*(z)dz) denote the closure of C§°(£2) functions under the norm

||u\|§{3(ﬂ7da($)dw) :/Q|Vu|2da(x)dx+/g|u\2do‘(x)dm. (2.3)
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If a > 1 there holds [12, Th. 2.11]

Hy(Q,d*(z)dx) = H (Q,d*(z)dx)  Va > 1. (2.4)

5-Let0 < r < %. Let H,(12) be the subset of functions of H}, () satisfying

/(IW\2 L )dz<oo (2.5)

Then the mapping

qm(/ (1o - 2 )dm)l 2.6)

is anorm on H,,(€2). The closure W, () of C§° () into H, (Q2) satisfies
1
W,.(Q) = H}(Q) Y0O<k< 7 and Wi(Q)c Wyl() V1<g<2, 2.7)

see [6, Th B]. As a consequence W . (2) is compactly imbedded into L"(2) for any r € [1,2*).

6- Let « > 0 and Q C RY be a bounded domain. There exists ¢* > 0 depending on diam(2), N and o
such that for any v € C§°(Q)

N4a—2

2 o N+toa
(/ ‘U‘J\§+: %do‘dar> < c*/\Vv|2d°‘da:. (2.8)
Q

For a proof see [12, Th. 2.9].

The boundary behaviour of the first eigenfunction yield two-side similar estimates of the Green
kernel for Schrodinger operators with a general Hardy type potentials [12, Corollary 1.9].

Proposition 2.1. Consider the operator E := —A — V, in Q where V- =V + V5, with

1 N
< P =
|V1|*4d2(x) and V5 € LP(Q), p > 5
We also assume that
/ (|Vuldz — Vu?) d
0< A := inf Q2

uwEHL(Q) / w2 ’
Q
and that to Ay is associated a positive eigenfunction ¢1. If, for some o > 1 and C1,Co > 0, there holds
c1d? (x) < ¢y (z) < cod? () Vo €,
then the Green kernel G associated to E in Q) satisfies

1 d@)di(y) ) |

Q - .
Bto) = comin (s [ e

(2.9)
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We set
Q={zeQ: dz)<d}, WU={zeQ: d(z)>d}tand ¥s ={z € Q: d(z) =45} (2.10)

Definition 2.2. Let G C Q and let H:(G) C HY(G) denote the subspace of functions with compact
support. A function h € Wﬁ)cl(G) is L.-harmonic in G if

Y _ 1
/GVh.Vz/;dm n/QdZ(x)hwdx 0  VoeHNG).

A function h € H} (G) N C(G) is L-subharmonic in G if

1
/ Vh.Vipds — m/ ——hpde <0 Vo€ HN(G), ¢ > 0.
G o d*(z)

We say that h is a local L -subharmonic function if there exists 6 > 0 such that h € H, lloC(Q(;) NC(2s)
is L,-subharmonic in Q. Similarly, (local) L-superharmonics h are defined with” > 7 in the above
inequality.

Note that £,;-harmonic functions are C*° in G by standard elliptic equations regularity theory. The
Phragmen-Lindelof principle yields the following alternative.

Proposition 2.3. Let k < %. If b is a local L,-subharmonic function, then the following alternative

holds:

(i) either for every local positive L,.-superharmonic function h

h(z)

limsup=——= > 0, (2.11)
d(z)—0 h(z)
(ii) or for every local positive L -superharmonic function h
h
lim sup ﬂ < 00. 2.12)
d(z)~0 h(z)

Definition 2.4. If a local L-subharmonic function h satisfies (i) (resp. (ii)) it is called a large L,-
subharmonic ((resp. a small L.-subharmonic).

The next statement is [3, Theorem 2.9].

Proposition 2.5. Let h be a small local L,.-subharmonic of L,..
() If k < % then the following alternative holds:

either limsup —— >0 or limsup —— < oo.
=00 d = z—00 d=

(ii) If k = % then the following alternative holds:

. . h : h
either  limsup ———— >0 or limsup — < oo.
z—00Q d? log(3) e—00 d2

Definition 2.6. Let fo € L? (). We say that a function u € H}

loc loc

Le.u = fo in Q (2.13)

(Q) is a solution of

if there holds

1 o0
/QVu.de:v—/{/Qmuwdx = /Qfowdx Y € C5°(9). (2.14)
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2.2 Preliminaries

In this part we study some regularity properties of solutions of linear equations involving L,;.
Lemma 2.7. (i) Ifa > land d=2u € HY(Q,d*(x)dz), then u € H} ().
(i) If o = 1 and d~2u € H*(Q, d(z)dz), then u € WyP(Q), ¥p < 2.

Proof. There exists 3y > 0 such that d € C?(Qp,) and set u = d=v. In the two cases (i)-(ii), our
assumptions imply
we L) and Vu — %ud—lvcl e L*(9). (2.15)

() Letd<e < g < %0 and 9. be a cut of function such that 1). = 0in Q2: UQgand ). = 1inQp \ Q..
2

Then u = d% (¢.v+ (1 —1).)v). Thus it is enough to prove that u. = d = 1).v remains bounded in H*(Q)
independently of €. Set v. = . v, then

/ |Vu.|?dx :/ |Vuc|?de < ¢4 (/ da|va|2dx+/ d("zv?dx> .
Q Qs Qs Qs

Note that & — 2 > —1. Now

o —

1 1
/ d* 22 dr = / v2div(d* *Vd)dr — / (d*" Y (Ad)vidz.
Qp a—1 Qp 1 Qp

Now since |Ad(z)| < ¢5, V& € Qg,, we have

1
a—1 Qp

dH(Ad)vidr
o —

a—1
53
<=0 / v2dx.
Qs

Also

/ v2div(d*~'Vd)dx :2/ v¥d2d%~Vd.Vu.dzx
Qg Qp

< g / d¥| Vv |?dx + 6 d* 2v2dz.
Q/—; Q[i
where ¢g = ¢6(d) > 0, and the result follows in this case, if we choose 5 and § small enough

(i1) By the same calculations we have
g
/ d= % |v.|Pdx < 07/ d% |V |Pdz < ¢r (/ d(x)dz) / d|Vv.|2dz.
Q Qs Q Qp

3
Proposition 2.8. Let fo € L*(Q). Then there exists a unique w € H, (Q) such that ¢, v € H' (Q, d*+ (z)dx),

satisfying (2.13). Furthermore, if fo € L9(2), q > N;‘“, then there exists 0 < 3 < 1 such that

In the following statement we prove regularity up to the boundary for the function

u(x)  uly)

_ B
e TS T e

z,Y€Q, z#Y

’ < esllfollze- 2.16)
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U

5 satisfies

Proof. 1If there exists a solution u, then ¢ =
—6, 2div($2VY) + Ath = 6. fo. 2.17)
and we recall that ¢ (z) ~ d= (x). We endow the space H' (2, ¢ dx) with the inner product
(a,b) = /Q(Va.Vb+ A.ab) ¢p2dx.

By a solution ¢ of (2.17) we mean that v € H} (), p2dx) satisfies

(Vi, VC) = /Q Vi.VC 2+ A /Q beo2dn = /Q foCouds V¢ € HY(S, ¢2dz).  (2.18)

By Riesz’s representation theorem we derive the existence and uniqueness of the solution in this space.
Since H'(Q, ¢2dx) = Hi (), ¢2dz) by [12, Th 2.11], any weak solution u of (2.13) such that ¢ 'u €
H'(Q, $2dz) is obtained by the above method.

Finally if f, € L9(Q2), where ¢ > ¥ ;“3‘, we can apply Moser’s approach thanks to (2.8) and prove
first the estimate

Y]l L @) < esllfollLan (2.19)
where cg = ¢s(£2, K, q), and then to derive the Holder regularity up to the boundary (see e.g. [12]). O

In the next results we make more precise the rate of convergence of a solution of (2.13) to its boundary
value.

Proposition 2.9. Assume r < §. If fo € L*() and h € H'(RQ) there exists a unique weak solution
w of (2.13) in € H} _(Q) and such that d_aTJr(u - daT_h) € HYQ, d*+(zx)dx). Furthermore, if

loc

fo € LI(Q), ¢ > £ and h € C*(0), then there exists 0 < 8 < 1 such that

fim M) hy) Yy e 09,
©€Q, 2—y€d (d(z)) T

uniformly with respect to y,

U
«
d=

< co (1Pl @y + 1 follLa@ ) »
L= (Q) ( e ( ))

and

sup |z —y|™”
z,Y€Q, T#Y

< C10- (2.20)

with cg and c1o depending on , N, g, and k.

Remark. By Lemma 2.7 we already know that u — d=he H} ().

Proof. Let 8 < By and n € C%() be a function such that n = daT_(as) in Qg and n(x) > ¢ > 0, if
S Q’ﬁ We set u = ¢,,v + nh. Then v is a weak solution of
div(¢2 V)
-

1
e

(fo+ (An+ )b +299.Vh+nAh) 2.21)

+ AU 2

11
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in the sense that
/ Vou. Vi ¢2da + )\K/ v pide = / (fo + (An + nd2 Yh + 2V1. Vh) Y Prdr
Q Q
— / Vh.Y (n o) dr Vb € C(Q). (2.22)
Q

Let ¢ € C§°(Q3). By an argument similar to the one in the proof of Lemma 2.7 we have

/de: dex:/ div(dVd)\w\Qdac—/ (dAdJ|?dz,
Q Qp

QB Qg

which implies

Vie <y | dP|VPde < ey [ dYH VY|P (2.23)
Qs Qg Qp

Now

/ ((A77+n Ly)h + 29, Vh)wﬁdx <ecwn | W2de,

Qg d Qﬂ
and

Vh.Y (n ¢) dx| < c13 (/ \Vh\Qd:v—&—// da+|V¢|2dx+// de:r>.
Qg Qg Qg Qp

By (2.23) we can take ¢ € H'(Q,d*+(x)dz) for test function. Thus we can easily obtain that there
exists a weak solution v € H*(Q, d*+ (x)dx) of (2.22).
To prove (2.20) we first obtain that if ¢» € C§° ()

/ Yda = — / AVd.Vpdz — / dAddz,
Q Qe Q

e

and since

/Q<(An+n )h + 2V, Vh—}—nAh)z/}qS,idx

< cullbllcaq [ olds
1 2
<3 d|Vi|dz + e15(Q)|[hl| o2 (m)-
QE
Using again (2.8) and Moser’s iterative scheeme as in Proposition 2.8, we obtain

ol < co (1IAll ez + lfollzoce) )

where ¢y = ¢9(£2, ¢, k) > 0, from which it follows again that v is Holder continuous up to the boundary
and the uniform convergence holds. O

Proposition 2.10. Assume k = i. If fo € L*(Q) and h € H'(Q), there exists a unique function u in
HL _(Q) weak solution of

loc

ﬁ%u:fo

12
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verifying == (u — dz|logd|h) € HY(Q, d(z)dx). Furthermore, if fo € Li(Q), q > 4l and h €
C?(R2), then there exists 0 < 3 < 1 such that

u

I " ) =h Yy € 99,
€, éfyeaﬁ d% | log d‘ (33) (y) Y

uniformly with respect to v,

< e1s (|Iblle= @ + Mfoll oo
L>(Q)

Vd|log 5|

where Dy = 2sup,cq, d(x). Finally there holds

u(z) B u(y)
V(@) log F2| \/d(y)|log L |

Proof. Using again Lemma 2.7, we know that u — d2 |logd|h € Wol’p(Q)7 Vp < 2. The proof is very

similar to the proof of Proposition 2.9. The only differences are we impose n = dz |log d| in 25 and we
use the fact that | log d| € LP(2),Vp > 1.

sup |z —y|?
z,YER, z#y

<t (|Ihllz + ollzu) ) - 224

In the next result we prove that the boundary Harnack inequality holds, provided the vanishing prop-
erty of a solution is understood in a an appropriate way.

Proposition 2.11. Let § > 0 be small enough, £ € 0Q and v € H, (Bs(€§) N Q) N C(Bs(€) N Q) be a
positive L1 -harmonic function in Bs (&) N Q vanishing on Q) N B; (&) in the sense that

im —_— =0 VK CoQNB , K compact. (2.25)
dist (z,K)—0 dz (z)|log d(x)| 5(&) p

Then there exists a constant c1g = c15(N, Q) > 0 such that

§018¢u((yy)) Va,y € QN B; (§).

1 1
1 1

Proof. We already know that u € C?(12). Let § < f3y such that Bs(£) N C Qs C Qg,.
By [3, Lemma 2.8] there exists a positive supersolution { € C? (Q25) of (1.3) in 25 with the following

behaviour
1 1 ! 7[3
((@xdﬂ@logm <1+ <IOgCO(Q)d($)> > ’

for some 3 € (0,1) and c19 = c19(Q) > 0. Set v = ¢~ lu, then it satisfies
—(2div(¢®*Vv) <0 in Bs(&) N Q. (2.26)

Letn € C§°(Bs(§)) suchthat 0 < np < landn = 1lin B%(g). We set v, = n?(v — s) Since by
assumption v has compact support in Bs(£) N €2, we can use it as a test function in (2.26) and we get

/ C*Vo.Vuydr = / V(v —8);.Vusdr <0, 2.27)
Bs(§)NQ Bs(§)NQ

13
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which yields
[ Ve-ssera e[ viPe- 93
B5(§)OQ Bg(f)ﬂﬂ

Letting s — 0 we derive

/ |Vo|?¢*nPde < 4/ | V0?2 da.
Bs(§)NQ Bs(£)NQ

Since
V(v —s)4 P02 1 [Vu*¢*n? ass — 0,

and convergence of V(v — s) to Vo holds a.e. in €, it follows by the monotone convergence theorem

lim / V(v — (v—5))|*¢*n*de =0, (2.28)
Bg(f)ﬂﬂ

s—0

and finally (v, — n?Cv in H(B;s(&) N Q), which yields in particular n?u = n?Cv € H}(Bs(£) N Q).

Step 2. By [3, Lemma 2.8] there exists a positive subsolution h € C2(€Qs) of (1.3) in Qs with the
following behaviour

1 1 1 7ﬂ
h(z) =~ dz (z)log aod(@) <1 - <1Og C20d($)> ) )

0,1) and cag = ¢20(Q) > 0. Set w = h~'u and ws = n*(w — s)4. Then wy — n*w in

where 8 € (
) N Q) by Step 1. Put ug = hws, thus, for 0 < s, s’, we have

H'(Bs(&

1 — ug|?
/ IV (us — ug)[Pdz — f/ Wsziu”dx - / 2|V (w, — wy )| 2d (2.29)
Bs(6)nQ 4 Jpse)  d*(x) Bs(6)nQ

1 h2lws — wy |2
! / VhI2 w, — wy Pz + / hVRY (us — ug)*de — - / Whws ~wel”
Feone Bs(O)na 4 Jpsena  d(2)
< / W2 |V (ws — wy)|?de,
Bs(£)N2

where, in the last inequality, we have performed by parts integration and then used the fact that & is a
subsolution. Thus we have by (2.28) that

I v )|2d 1/ [us —us® ) (2.30)
im Ug — Ug T — — ————dz =0. .
s,8’—0 Bs(€) 4 B; (&) d2($)

Let W(2) denote the closure of C§°(£2) in the space of functions ¢ satisfying

1 |2
2 = |2 —f/ .
16|17 /Q\V |“dx 1 Qd2(x)dx<oo

Thus n%u € W (L), which implies

Zif € HX(Q, d(z)dz).

5 (€),d(x)dr) and it satisfies

o

Next we set & = ¢ 'u; then v € H'(B:
4

#|

¢, 2div(¢3 VD) + A10 = 0.
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By the same approach based on Moser’ iterative scheeme applied to degenerate elliptic operators as
the in [12, Theorem 1.5], we see that v satisfies a Harnack inequality up to the boundary of 2. More
precisely there exists a constant c15 = ¢15(€2) > 0 such that

v(z) < e15v(y) Y,y € B%(f).

And the result follows. O

In the case K < i, the boundary Harnack inequality is the following,

Proposition 2.12. Let § > 0 be small enough & € Q, k < + andu € H} (B5(£) N Q) NC(Bs(£) NQ)
be a nonnegative L,-harmonic in Bs () vanishing on 0Q N B (&) in the sense that

lim — =0 VK C 002N Bs(§), K compact. (2.31)

dist (z,K)—0 (d(x)) =
Then there exists ca1 = c21(), k) > 0 such that

u(z) u(y)
e@) = P 0u)

Proof. The only difference with the preceding proof is that we take as subsolution and supersolution
(see [3, Lemma 2.8]) C?((2) the functions h and ( respectively with the boundary behaviour

v,y EﬁﬁBg(f).

had®=(1—cpd®)  (~xd* (14 co3d?),

where 8 € (0,1 — 4k ). O
Proposition 2.13. Letu € H} (Q) N C(Q2) be a L1 -subharmonic function such that

lim sup % <0.

d(x)—0 d2(z)|logd(z)|
Then u < 0.

Proof. We set v = max(u, 0) and we proceed as in Step 1 of the proof of Proposition 2.11 with = 1.
The result follows by letting s — 0. O

Similarly we have

Proposition 2.14. Let u € H}. () N C(Q) be a L,,-subharmonic function such that

u(x)

limsup ——%F— <

d(z)—0 (d(z))=
then u < 0.

The two next statements shows that comparison holds provided comparable boundary data are achieved
in way which takes into account the specific form of the £,-harmonic functions
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Proposition 2.15. Assume k < i and h; € HY(Q) (i=1,2). Let u; € HL () be two L-harmonic
functions such that d== (ul —d= hi) € HY(Q, d*+(z)dx). Then
If h1 < hg a.e. in (), there holds

up(z) < ug(x) Vx € Q.

Ifhy — hy € HE (), there holds
up(x) = uz(x) Vo € Q.
Proof. Setw = ¢ (u1 — ug), thenw € HY(Q, ¢2dz) and
—div(¢2Vw) + Aed?w = 0
Since H(Q, p2dz) = HL(Q, ¢2dx) by (2.4) we derive that w and w belongs to H} (2, ¢2dx) and,

integrating by part, we derive w4 = 0. The proof of the second statement is similar. O

In the same way we have in the case kK = i.
Proposition 2.16. Assume r = 3. Let h; € H'() (i=1,2) and let u; € H},, () be two L1 -harmonic
functions such that d=2 (u; — d2|log d|h;) € HY(Q, d(z)dz).
(i) If h1 < ho a.e. in §Q, then
ur(z) < ug(x) Vo € €.

(ii) If hi — ho € Hé (Q), then
up(x) = uz(x) Yo € Q.

We end with existence and uniqueness results for solving the Dirichlet problem associated to L.

Proposition 2.17. Assume k = i. For any h € C(0R) there exists a unique L 1 -harmonic function u
belonging to H}. .(Q) satisfying

u(z) .
— =} uniformly for y € 0f).
z€Q, YN d% (IE)| log %:2” (y) f yf Yy

Furthermore there exists a constant c16 = ¢16(€2) > 0> 0

u
< cullbl|can),

L>=(Q)

dz |log 7|
where Dy = 2sup,cq, d(z).

Proof. Uniqueness is a consequence of Proposition 2.13. For existence let m € N and &,, be smooth
functions such that h,,, — h in L>(92). Then we can find a function H,, € C?(Q) with trace h,,
on 09, and ||Hp || 1o () < ||hm|| £ 90)- By Lemma 2.10 there exists a unique weak solution u,, of
E%u = 0 satisfying

Um

: Floga ") = iformly for y € 2.
zeQ, wlglyeaﬂ d%|log d| (z) () uniformly for y
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By Proposition 2.10 we have

Um — U
—_— < c16llhm — hulloon)-

d2 | 1Og D | Loo(Q)

Thus there exists u such that

lim [ =0
mee | dz|log Bl | L g
and w is a solution of L%u =0.
Letz € Q, withd(z) < 1 and y € 99
U u U, Um,
——(z)—h < T) — z)| + | ——— () — hyp
X ogd] ") (y)‘ ‘déuogd( ) T ogd] ’ ‘d§|logd|( )
+ |h(y) - hm(y)|'

The result follows by letting successively * — y and m — oo. O

Similarly we have

Proposition 2.18. Assume k < %. Then for any h € C(0R) there exists a unique L,;-harmonic function

€ H} (Q) satisfying

veo, lggyeaﬂ o= (z) = h(y) uniformly fory € 0f2.

Furthermore there exists a constant cg = cg(Q2, &) > 0 such that

|7

A useful consequence of [3, Lemma 2.8] and Propositions 2.9 and 2.10 is the following local exis-
tence result.

< h .
de- HLoe(Q) &l HC(@Q)

Proposition 2.19. There exists a positive L,.-harmonic function Z,, € C(Qg,) N C*(Qg,) satisfying
Z1(x)

2.32
d(f)—>0 Vd |1nd (232
ifk = i, and

lim ———2— =0 (2.33)
if0<r<i

2.3 L,.-harmonic measure

Letzg € Q, h € C(9Q) and denote L,, ,,(h) := vp,(xg) where vy, is the solution of the Dirichlet problem
(see Lemmas 2.17 and 2.18)

L.v=0 in
v=~h in 09

17
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where v take the boundary data in the sense of Lemmas 2.17 and 2.18. By Lemma’s 2.14 and 2.13,
the mapping h +— L, ,,(h) is a linear positive functional on C(0€2). Thus there exists a unique Borel
measure on 0f2, called L -harmonic measure in €2, denoted by w®, such that

on(z0) = /8 b)),

Because of Harnack inequality the measures w” and w*°, zg, = € 2 are mutually absolutely continuous.
For every fixed = we denote the Radon-Nikodyn derivative by

dw®
K(z,y) = -

(y) for w”- almost all y € 0N2.

It is wellknown that the following formula is an equivalent definition of the £,-harmonic measure:
for any closed set £ C 02

W (E) = inf {¢ : Y € C4(Q), Ly-superhamornic in 2 s.t. lim inf ;‘/)/(x) > 1} )

where o
d= (z) if Kk < 1,
W(zx) = {
dz (z)|log d(z)] if K = 1.

The extension to open sets is standard. Let £ € 9Q. We set A,.(§) = 902N B,.(§) and z,. = () € Q,
such that d(z,) = |z, — §| = r. Also z,.(§) = { — rn, where n¢ is the unit outward normal vector to
00 at £. We recall that By = Bo(€2) > 0 has been defined in Lemma 2.20.

Lemma 2.20. There exists a constant co5 > 0 which depends only on ) and a such that if 0 < r < [y
and £ € 0f), there holds
w” (A (§))

W) > ca5 Vo € QN Bz (§). (2.34)

Proof. Let h € C(09) be a function with compact support in A (£),0 < h < land h =1on Az (§).
And let vy, vy the corresponding L ,-harmonic functions with A and 1 as boundary data respectively (in
the sense of Lemmas 2.17 and 2.18). Then v1(z) > v, (z) > 0 and

: vi(z) —wp(z)
e T W 0 0 €N By ().
By Lemmas 2.12 and 2.11, and ¢,; = da%7 there exists cog = c26(€2) > 0 such that

v1(y)a— v (y)
d= (y)

We consider first the case Kk = i. By Lemma 2.17, we have

1 (xl — vp(x)
d= (z)

< co6

) Va,y € QN Bz (§).

vi(y) —vn(y) _ vi(y)

0< < < co4|log d(y)|.
ST dw @ )
Thus, combining all above we have that
v1(z) |log d(y) vp ()

) |
o) logd(n)]  ZTogd(x)| = a3 (@)[logd(z)|

18
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Now by Lemma 2.10, there exists a 9 > 0 such that

vy ()
dz (x)|log d(z)|

Thus if we choose y such that d(y) = 7, there exists a constant co7 = c27(€2) > 0 such that

Vo € Q.

>1
2

|log d(y)| |log % [log 3| _ 1
T =Gt S G S o Ve eQr,
Tog d(x)| ~ “logd(z)] = “"[log 1] ~ 4
thus () )
Vp X -
> — Vx € Br NQ - . (2.35)
@) logd()] ~ 1 HON 85

In particular
oo () 1
Varrlloglarr)] = 4
where a* = (max{2, Do})~. If Dy < 2 we obtain the claim. If not, set k* = E[£2] + 1 (recall that
E[z] denotes the largest integer less or equal to z). If x € B?(g ) N € there exists a chain of at most 4k*
points {2;}7 =)0 such that z; € Bx =(§) N d(25) > a*r, 20 = 24+ (§), 2, = v and |zj — 2j41| < ar
By Harnack 1nequa11ty (applied jo -times)

O (Zawr(§)) < cogvn(x). (2.37)

(2.36)

Since
W@m«»z(gg W),

we obtain finally

1 wEar () (A 3 WA,
= Wi ANE) e () WHAE) e 0B (e). (2.38)
Va*r|log(a* 1")| W(x) 2
In the case k < %, the proof is simpler since no log term appears and we omit it. O

The next result is a Carleson type estimate valid for positive £,-harmonic functions.

Lemma 2.21. There exists a constant cog which depends only on Q such that for any £ € 9Q and
0<r<s <Py,

w® (A () xﬁw(m

Proof. By Propositions 2.17 and 2.18 there exists a constant c3g > 0 such that for 0 < r < g,

W(A(6) _ w(09)

W) = W) < c30 Vo € €. (2.40)

By Propositions 2.17 and 2.18, there holds

()
| =1
(l)rgo W (z) ’

(2.41)

19
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Vi ()
v1(x)

thus we can replace W by vy in (2.39). Since wy, = is Holder continuous in 2 and satisfies

—div(viVwy) =0 inQ\ B,(¢)
0<w, <1 in Q\ By(€) (2.42)

the maximum of wy, is achieved on € N 0B, (&), therefore it is sufficient to prove the Carleson estimate
wh(2) < caown(ws(§)) Vo € QN IB(E). (2.43)

If  such that |z — &| = s is "far" from OS2, wp(z) is "controled" by wy(xs(£)) thanks to Harnack
inequality, while if it is close to OS2, wy, () is "controled by the fact that it vanishes on 92 N 9B, ().

We also note that (2.34) can be written under the form
wp(x) > o5 Va € NBz (§). (2.44)

Step 1. : r < s < 4r. By Lemma 2.20 and the above inequality we have that

wh(wx(€) > Lwp(z)  VreQ
C30

Applying Harnack inequality to wy, in the balls B +)r (¢ 2+ (€)) for j = 0, ..., jo < 14 we obtain
4

4

wh(2 @i (§)) 2 Gwn(es(€))  forj=1,...,jo.

This implies
wp(x5(€) > csawp(x) Vo € Q. (2.45)

Step 2: By > s > 4r. We apply Propositions 2.11, 2.12 to wy, in By (§1) N2 where §; € 9 is such that
|€ — &1| = s and we get

wp(2) < crgwn (s (61)) Vo € Bs (&) NQ (2.46)
Then we apply six times Harnack inequality to wy, between z = (£1) and x5(£) and obtain

wn (73 (&1)) < cszwn(@s(61))- (2.47)

Combining (2.46) and (2.47) we derive (2.43).

Step 3. For e > 0, set 2z, = wy, — c33wp(25(£)) — €. Then 2 has compact support in  \ B;(¢) and
thus belongs to H} (2 \ Bs(€)). Integration by parts in (2.42) leads to

/ V1| V2 |Pdx = 0. (2.48)
O\B, (¢)

Then z,f[ = 0 by letting ¢ — 0. Combining with (2.45) and h 1 xa, (¢) implies (2.39). O

Theorem 2.22. There exists a constant cs4 which depends only on Q) such that, for any 0 < r < py and
& € 0N, there holds

aTN—ﬂlogHGL% (2-(&),x) <w®(A(€)) < C34TN_§‘logr‘G£% (z-(£),x) Va € Q\ By, ().
(2.49)
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Proof. Letn € C5°(Bar(§)) suchthat 0 < n < 1landn = 1in B,(§). We set
u=n(—Ind)Vd:=mp,

(we assume that 4 < 1), in order to have

. u(z
mlgglo w((x)) =nloa(xo) = ((z0)  Vzo € 01,
uniformly with respect to xg. Since
1 9 2+1Ind 24 1Ind
A= 2N = (N - 1) =K
VTiP@ T v W-D=a
where K is the mean curvature of 9€2, then u satisfies
1 wu 2+1Ind .
—Au— ——— = —pAn+ —— (2Vd.Vn — (N — 1)Kn) := in
120 YA 2\/g( n—( JKn) == f
u=_( on 0f2.

In

Then | f] < C35(—Tj) XN Ba. (¢) Since 1) vanishes outside By,.(£). We have by the representation for-
mula [12]

0=u(z) = / Gal(m,y)fder/ hy)dw®(y) Vo € Q\ By (S). (2.50)
Q 4 o0

By Lemma 2.1, we have that for any x € Q\ By,-(§) and y € Bo,(§)

GL'% (:c,y) < C3GGL% (xa xr(g))a

thus
W (A (6)) < / Ge, ()| f ()ldy
QﬂBzr(g) 4
< 037Ggl(x,xr(§))/ ‘lnd(y”dy (2.51)
a QnBa.(e) Vd(y)
< e3sGe, (2, a,(€))rV 7% |lnr,
since

Ind | Int|dt
/ o (y)‘dy < ngerl/ L < 20397’]\,7%|1n7"|-
0nB.. 6 V/d(y) 0o Vi

This implies the right-hand side part of (2.49). For the opposite inequality we observe that if z €
0By (§), there holds by (2.34)

PN log I 2 (6),2) < eaor™ = log | min { R ac ax L ClaL) }

[z =2 (OIN? | — 2 (N
< ca1y/d(z)|logr|

< ca2W(g)

< 22”5 (A, (€)).

We end the proof by Harnack inequality between w”$ () (A,.(€)) and w® (&) (A,.(€)). O

21
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Replacing, in the last proof, the function ¢ = \/E(— Ind) by )= d%, we obtain similarly.y

Theorem 2.23. Assume k < i. There exists a constant cqo which depends only on ) and k such that,
forany 0 < r < By and & € 082, there holds

JZTN*HQT*GLK(QJT(@@) < W (ANE)) < carVTIHT e (2,(6),0) V€ Q\ B().

As a consequence of Theorems 2.22 and 2.23 and the Harnack inequality, the harmonic measure for
L, possesses the doubling property.

Theorem 2.24. Let 0 < s < i. There exists a constant cqo which depends only on §, k such that for
any 0 < r < By, there holds
W (A2r(§)) < caaw®(Ar(£)) Vo € Q\ Bar(§).

Lemma 2.25. Let 0 < r < By and u be a positive L-harmonic function such that

(i) u € C(Q\ Br(€)),
(ii)

im u(x)
:cl—mo W(x)

=0 Vo€ Q\B.(8),

uniformy with respect to x.
Then

cp w(ar ()W (A(E)) < ulz) < capu(z, (€)W (AL(E)) Vo € Q\ Ba(6),
with cyo depends only on K and ).

Proof. The result follows by Theorems 2.22 and 2.23 and the Harnack inequality like in the proof of
Theorem 2.21. O

2.4 The Poisson kernel of £,
In this section we state some properties of the Poisson kernel associated to L,,.

Definition 2.26. Fix £ € 9. A function K defined in §Q is called a kernel function at & with pole at
To € Q if

(i) K(-, &) is L-harmonic in €,

(i) K(-,€) € C(Q\ {&}) and for any n € 99\ {£}

K@)
a—n W(z)

=0,

(iii) K(x,&) > 0 for each x € Q and K (x,€) = 1.

Proposition 2.27. There exists one and only one kernel function for L, at £ with pole at x.

Proof. The proof is the same as the one of Theorem 3.1 in [7]. O
Proposition 2.28. The kernel function K, (x,§), is continuous in & on the boundary of Q.

Proof. The proof is the same as the one of Corollary 3.2 in [7]. O
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We have proved the uniqueness of Poisson kernel. By (1.14), Theorems 2.22, 2.23 and Proposition
2.1 we have the following result.

Theorem 2.29. Assume 0 < k < %. There exists a positive constant c43 such that

d= (y)

1 de
) < Kg, (y,6) < 043W-

e _gVre2 = (2:32)

Remark 2.30. As in [15, Remark 3.9], the Martin kernel which is classical defined by

Re, (2,€) = lim S20).

Ve € 09,
z—E GL"K (.Z', CC()) 5

coincides with the Poisson kernel K ..

Theorem 2.31. Let u be a positive L,.-harmonic in the domain Q). Then u € L<1b~ (Q) and there exists a
unique Radon measure 1 on 02 such that

w@) = | K, (x,8)du(§).
o9

Proof. The proof is the same as the one of Theorem 4.3 in [15]. O

Actually the measure  is the boundary trace of u. This boundary trace can be achieved in a dynamic
way as in [?, Sect 2]. We consider a increasing sequence of bounded smooth domains {2,,} such that
Q. C i1, UpQy = Qand HY1(Q,,) — HV=1(Q). such a sequence is a smooth exhaustion of Q).
For each n the operator £5!» defined by

L = —Au — %u (2.53)

is uniformly elliptic and coercive in H}(€2,,) and its first eigenvalue A~ is larger than \,. If h €
C(09,,) the following problem

LSy =0 in Q,
v=~h on 0L, (254)
admits a unique solution which allows to define the £} -harmonic measure on 952,, by
v(zp) = / h(y)dwy’ (y)- (2.55)
OGw,
Thus the Poisson kernel of £ is
dw§
Koo (e,y) = - In(y) Yy e o, (2.56)
: “a,
Proposition 2.32. Assume 0 < k < % and let xo € Q. Then for every Z € C(Q),
lim Z(z)W(z)dwsy (x) = / Z(x)dw® (x). (2.57)
n—o0 Jaq, " 0
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Proof. We recall that d € C%(€.) for any 0 < ¢ < 3y and let ny € N be such that

dist(09,,00) < %, Vn > ng.

For n > ng let w,, be the solution of

L w, =0 in Q,

I on 09, (2.58)

It is straightforward to see that the proof of Propositions 2.17 and 2.18 it is inferred that there exists a
positive constant cqq4 = c44(€2, k) such that

|wn Lo (0,) < €44, VN> ng.

Furthermore

wp (x0) = ” W(z)dw (z) < ca5. (2.59)

We extend wy’ as a Borel measure on 2 by setting w;’ (Q \ ©,,) = 0, and keep the notation w,’ for

the extension. Because of (2.59) the sequence {Ww¢ } is bounded in the space 2,(€2) of bounded

Borel measures in £2. Thus there exists a subsequence (still denoted by {W (x)wg;’ } which converges
narrowly to some positive measure, say w which is clearly supported by 02 and satisfies ||0]|on, < cu5

as in (2.59). For every Z € C({2) there holds

lim Z(z)Wdwe = / Zdw.
=0 Jaq, " a9
Let ¢ := Z|pq and z := K,_[(]. Then

lim =( and z(xg) = dw™.
d(z)—0 W(x) ¢ (wo) mC

By Propositions 2.17 and 2.18, = € C(Q). Since % | s, converges uniformly to ¢, there holds

2(xz0) = / 2| a0, dwd = w2Loo dw® — [ Cdo as n— oo.
a0, " a0, w " 90
It follows
(dw = Cdw®, V(¢ e C(09Q).
a0 o0

Consequently w = dw®°. Because the limit does not depend on the subsequence it follows that the whole
sequence W (z)dw¢,, converges weakly to w. This implies (2.57). O

In the same way we have

Proposition 2.33. Let x € Q; and 1 € M(OQ). Put v := K _[u], then for every Z € C(Q),

lim Z(z)vdws :/ Z(x)dp. (2.60)
e Joq, " a0

Proof. The proof is same as the proof of Lemma 2.2 in [?] and we omit it. O
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The next result is an analogous of Green formula for positive £,.-harmonic functions.

Proposition 2.34. Let v be a positive L;-harmonic function in QX with boundary trace p. Let Z € C 2(Q)
and G € C'Q) which coincides with Gz, (2, .) in Qs for some 0 < § < o and some xo ¢ Qp,. Assume

IVG.VZ| < cis . (2.61)

Then, if we set { = Z G, there holds

/vﬁﬁgdx:/ Zdu. (2.62)
Q o0

Proof. Let {§2;} be a smooth exhaustion of © with Green kernel Ggi and Poisson kernel PZ] =
—anGﬁ-;. We assume that j > jo where ﬁ:; C ;. Set(; = Zéj, where the functions éj are
C* in Q;, coincide with Ggi (20,.) in Q; N Qs and satisfy G; — G in C?(Q)-loc and such that
VG,V Z| < chshe.

/ oL, Cidr = 7/ U%ds = 7/ UZ@dS = UZPZZ?' (z0,.)dS :/ vZdwy.
Q; oo, On oo, On o, " 09 !
By (2.60)
/ vZdwg — Z(x)dp as j — oo.

29, ’ Gle)
Next _ _ _

L. =72L.G;+ GJAZ +2VG;.VZ.
Since v € Ly, (92), the proof follows . O

Remark. In the statement of Proposition 2.34, it can be easier in some cases to replace Gand G by ¢
and (;5,?1' . The assumption (2.61) has to re replaced by

V. VZ| < ¢y, (2.63)

and the modification of the proof is straightforward.

3 The nonlinear problem with measures data

3.1 The linear boundary value problem with L' data

In the sequel we denote byw = w®° the L,-harmonic measure in €2, for some fixed zo € €2 and by
My, (2) be the space of Radon measures v in € such that ¢.d|v| is a bounded measure. We also denote
by M(912) the space of Radon measures on 92 with respective norms |[v{|ox,, (o) and ||i[lon(aq)- Their
respective positive cones are denoted by smj)ﬁ (Q) and 9T (99). By Fubini’s theorem and (2.9), for any
v € My, () we can define

Ge, [V)(@) = /Q Ge. (2,y)dv(y),

and we have
G, My (@) < casllvllon,, @) (3.1
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If u € M(ON), we set

Ke, [pl(x) = ” Ke, (z,y)du(y),

Kz, [mllley (@) < carllellomcan)- (3:2)

In the above inequalities c46 and c47 are positive constants depending on €2 and «.
For 0 < k < 1, we define the space of test functions X (£2) by

X(Q) = {77 € H}

loc

Q) : e € H'(Q,d*dz), (6s)""Lan € L”(Q)} . (3.3)

The next statement follows immediately from Propositions (2.9) and (2.10).

Lemma 3.1. Let 0 < x < L. Ifm € L>°(Q), the solution n,, of

‘Cnnm = m(,b;.g in Q)
Nm =0 on 0N 34
obtained by Propositions (2.9) and (2.10) with fo = m and h = 0 belongs to X (). Furthermore
[m L~ m || Lo (o
S g < S S, < g (35)
A Ak
In the next Proposition we give some key estimates for the weak solutions of
Lou=f in Q
u=~h on Of) (3.6)
Proposition 3.2. For any (f,h) € L (Q) x LY(082, dw) there exists a unique u := ugp, € L}% Q)
such that
/ ul ndr = / fndx + /Kcm [hw] L ndz Vn € X(92). 3.7
Q Q Q
There holds
u=Ge,[f] + K, [hw] (3.8)
and
”uHL;E(Q) < C46||fHL;K (@) + carllhll L1 00,dw)- (3.9

Furthermore, for any n € X(§2), n > 0, we have

[ luicends < [ fsgntaax-+ [ e, ()., (3.10)
Q Q Q

and
/u+£,.€17dac < /fnsgn+(u)dx+/Kﬁn[thw]L,{ndx, (3.11)
Q Q Q

Proof. Step 1: proof of estimate (3.9). Assume u satisfies (3.7). If = nygn (), We have

/g'u‘%dx:/QUL'mdx:/andx_F/QKc” [hw]sgn(u)d,dx.
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By (3.1), (3.2)
1
[ nde< 5 [ 7o
Q K JQ

/KLK, [hwlsgn(u)e,dx < c47/ |h|w]sgn(u)d,dx,
Q a0

which implies (3.9) and uniqueness.

Step 2: proof of existence. If f and h are bounded, existence follows from Propositions 2.9, 2.10. In
the general case let {(fy, h,)} be a sequence of bounded measurable functions in §2 and 92 which
converges to {(f, h)} in Lj (€2) x L'(99,dw). Let {un} = {uy, n,} be the sequence weak solutions
of (3.6). By estimate (3.9) it is a Cauchy sequence in qubﬂ (Q) which converges to u. Letting n — oo in
identity

/unﬁ,ind:c:/fnnd:c+/K£N[hnw]£nndx (3.12)
Q Q Q

where n € X(§2) implies that u = uy j.

Step 3: proof of estimates (3.10), (3.11). We first assume that f is bounded and h is C2. For € > 0 we set
Lie=—A— d%ﬁ. Let A, . be the first eigenvalue of £,; . in H}(2). Then A, . > A, the mapping € —
Ak, 18 increasing, and by Section 2.1-5 it converges to A, when € — 0. Furthermore the corresponding
eigenfunction ¢,; . normalized by sup ¢,, . = 1 converges to ¢, (with the same normalization) in C'7(£2),

for some 0 < v < 3. We denote by u, the solution of

Lycue=f in
U =h on O0f2. (3.13)
We write f = f* — f~,h =h" —h™ and ue = u, + — uc 4 where
Lo cUe+ = fjE in
Ue+ = hF on 09Q. (3-14)
Then we = Ue 4 — Ue,=, Ue+ T uy and uc — Tu_ ase — O0in CP(Q), where
Lour = f* in Q
uy = h* on 0N. (3.15)

Moreover d%ueyi —~dFug in HY(Q, d*+dx) weakly. Thus ue . — ue, — uy —u_ in C#(Q) and
A7 (et —te) — d 2 (uy —u_) weakly in H' (€, d*+da) which yields uy — u_ = ug.

Letn € X(Q),n > 0. Then L,n = m, ¢, with m, € L. By replacing m by m + 6 (J > 0), we
can always suppose that ) > §'¢,; for some §’ > 0. There exists 7. € C3(2) N W2P(Q) (1 < p < o)

solution of .
‘[-"K),E’nf = mn¢n in Q2

Ne =10 on Of). (3.16)

Since 1 — 7 satisfies

1 1
—_ = —_——— >
Ly,e(n—1ne) %<d2 d2+6)n_0

there holds > 7. By Propositions 2.9, 2.10, . 1 n in C7(2). We first assume that f and h are
bounded functions. Assuming 7. > 0, and since L,.n = L, 1. we have classicaly [26, Th 2.4]

/|u6\£,€ndxg/fnesgn(uﬁ)dx-l-/Kcm[
Q Q Q

h|w]Lndx, (3.17)
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Since K¢, . [|hlw] — K, [|h|w] uniformly in Q by Propositions 2.9 and 2.10, we derive (3.10) when
the data f and h are regular enough. In the general case we consider a sequence (f,, h,) C L°(Q) X
C?(092) which converges to (f, h) in L'(Q) x L'(9Q, dw). Since uy, n, converges to uyp, in L}, ()
we obtain (3.10) from the inequality verified by any n € X(2)

/|ufn7hn|£'§ndx§ /fnnsgn(u)dx+/Kcn[|hn|w]£ﬁndx
Q Q Q

The proof of (3.11) is similar. O

3.2 General nonlinearities

Throughout this section {2 is a smooth bounded domain and & a real number in (0, ﬂ Letg: R— R
be a nondecreasing continuous function, vanishing at 0 for simplicity. The problem unde consideration
is the following

K

—Au— —u+g(u)=v in Q

@ (3.18)
U= [ in 02
where v and 1 are Radon measures respectively in §2 and 0f).

Definition. Let v € My () and p € M(OQ). We say that u is a solution of (3.18) if u € L}M(Q),
g(u) € L, () and for any 77 € X(Q2) there holds

/ (ulyn + g(u)n) de = / (ndv + K, [u|Lwn) dz (3.19)
Q Q

Our main existence result forsubcritical nonlinearities is the following.
Theorem 3.3. Assume g satisfies

w2

/OO (g(s) —g(—=s))s N—>*5 ds < 0. (3.20)
1

Then for any (v, 1) € My, () x € M(IN) problem (3.18) admits a unique solution v = u,,,,. Fur-
thermore the mapping (v, ) — ., is increasing and stable in the sense that if {(vy, i)} converge to
(v, 1) in the weak sense of measures, {u,, ., } converges to u, , in Léﬂ ().

The proof is based upon estimates of M- and K _ into Marcinkiewicz spaces.

Lemma 3.4. Letv € Em;‘h(Q) € MT(ON) and for s > 0, Es(v) = {x € Q: G, [v](z) > s} and
Fi(p) ={z € Q: K¢, [u](x) > s}. If we denote

ES(V):/ ()qbﬁdx and ]—'S(u):/ ( )¢>de,
Es(v Fqs(p

etk
:

[¥llon,, @) + ||u|m(an)> N-2+ 5 (3.21)

there holds

S

Es(v) + Fs(p) < car (
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Proof. Step 1: estimate of Fs(v). By estimate (2.52), for any £ € 912,

- daTJr(a:) s
Fs(ég) C Fs(ég) = {J} eN: W Z 043} C B(%T‘i)e(g),

: _ 1
with 0 = ' From (2.1), (22)

ne

fﬁ(ag)g/ ¢Hd$§04g/ |xf£‘a7+dxzc5osiN72+aT+.
Besa o © Besis ©

Therefore, for any so > 0 and any Borel set G C 2

/Kgﬁ(at,«f)&@dx < so/ ¢de+/ Kr (x,8)¢dx
G G Fay (6¢)
< so/ ¢ﬁdx—/ sdFs(d¢)
G S0

oo
< 50/ ordr + 050/ s N-25 (g
G S0

T N—2t
< 80/ Prdr + c515
G

Next we choose s so that the two terms in the right part of the last inequality are equal and we get

/Kﬁﬁ(z,f)ﬁbndx < cxo (/ ¢de> N (3.22)
G G

Henceforth, for any p € 9t(9€2), there holds by Fubini’s theorem,

/&ﬂﬁmm://Kg@@m@MMM@s%ﬂmwm(/mm)“?.<M$
G QJG G

If we take in particular G = F(|u|), we derive

2
T

sFs(|ul) < esallpllmon) (Fallu)* =,

which yields to (3.21) with v = 0.
Step 2: estimate of Es(v). By estimate (2.9), for any y € €,

Es(5y)CEs(5y):{xEQ'd;(y)d;(x)Zs}ﬂ{IGQ:123}7

. ‘J} - y|N+a+—2 Cs € — y|N_2 Cq

A simple geometric verification shows that there exists an open domain © C O C ) such thaty € O,
dist (y, O°) > Mid(y), O C B, q(y)(y) for some 0 < A1 < A2 < 1 independent of y with the following

properties
A= (y)d = () 1
€0 = >
’ o=y T2 = oy
oy ot
o TEWAE @) 1

|z —y|NFes=2 7 o —y[N 2
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Notice that if @ = RY then O = B 5 () where d(j) = 2d(y). Set
2

E;(éy):{xeﬂzm_l>cs}ﬂ(9

N2 =
yl
S
CS
oy (N+50)

&5(0y) = / Prda < / bndz < cszs N (d(y)) PN
Es(6y) Eq(5,)

and

B2(6,) = {er\O |(|)N+a(2

Y

In Appendix 2, we prove

we

As in step 1, for any Borel subset © C (2, we write

/ G (e y)bede < 50 / budr + / G (2, y)pnda
S) C) 50(5 )

< 50/ qﬁnda?f/ sdEs(dy)
© S0

ar W) L
= SO/ ¢wdr + cs3(d(y)) N / s N3 (g
) o

@ _ 2
ot WH—-) =T o

< 80/ (bmdx + C54(d(y))mso

/@ Ge. (@, y)dnde < css(d(y) 5 < / qsndx) F Contnly ( / mdz) S o4

Thus, for any v € My, (), we have
2
047_'_
/GLN[|1/H¢>,{dw: //Ggﬁ(x,y)gzﬁﬁ(m)dxd\ﬂ(y) < C55||V||931¢K(Q) </ gbﬁdx) R (3.295)
S QJe e
Thus (3.21) holds. O]

Proof of Theorem 3.3. Step 1: existence and uniqueness. Let {(vy,, un)} C C(Q) x C1(9Q) which
converges to (v, 1) in the weak sense of measures in My, () x WM(ON) and J,, be the functional
defined in L?(£2) by the expression

1
Te(w) = / (‘Vw‘Q _ wa 420 (w )) dx — /l/nwgb,{dx 7/ finwdw (3.26)
2 Q 89
where J(w) = [ Owg(t)dt with domain

D(J,) = {w e H,(Q) : J(w) € L} ()},

(see definition in 2.1-5). By (2.7), J, is a convex lower semicontinuous and coercive functional over
L?(Q). Let u,, = u,, ,, be its minimum, it is the solution of

Lty + g(un) = vy, in Q

. 50 (3.27)
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and for any 7 € X(2), there holds

/Q (unLyxn + g(uy)n) de = /Q (vnn + Kz, [unw]Ln) dx. (3.28)

By Proposition 3.2 (3.10), there holds, with n = ¢,

/ Aeltn] + 19(un)]) dede < / (vl + Ko, [Jtn]e]) dudda
Q Q

< caollvallo,, (@) + carllpnlloncon) (3.29)
< cs7.
Moreover
G, vy ] = Ke, [ w] <up < Gg, [+ Ke, [ w]. (3.30)

By using the local L' regularity theory for elliptic equations we obtain that the sequence {u,,} is rela-
tively compact in the L'-local topology in € and that there exist a subsequence still denoted by {u,, }
and a function u € L}m (€2) such that u,, — u a.e. in 2. By (3.30)

l9(un)| < g (G, vyl + Ke, [pmw)) — g (=Ge, [vy] = Ke, [p,w]). (3.31)

We prove the convergence of {g(u,)} to g(u) in Léﬁ (€2) by the uniform integrability in the following
way: let G C 2 be a Borel subset. Then for any so > 0

Llstwlonds < [ (0(Ge. )+ (Re ) =9 (<G, 1) = 0 (Ke, ) .o
<sofoudet [ g@elioues [ g(e ) oute

Fy
- / 9 (=G, [v;]) puda — / 9 (=Kg, [p,]) drdx
B, (v™) Fy(p)

SSO/Gmd:E—/ 9(5)(d5s(1/i)+dfs(u$))+/ 9(=s)(dE(vy,) + dFs(py,)-

S0

But,

— [ oe)ae) = gl ) + [ Eutilagts

S0
N+a7+

2 oo
< 9(50)Euo (V) + car (03l ) ¥ 7 / s N F dg(s)
S0

o

NESE e
N EPGES PGS
< 212\771<O;;+C47(”VIHED%N(Q))N 25 / s N7t g(s)ds.
So

All the other terms yields similar estimates which finally yields to
N4+t N,1+QT+ (3.32)

Llstu)londs <o [ o

N
s (Il o + o) =57 [~ VT (g(s) — g(-)ds

S0
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Since [|vnllon,, (@) + lltnllon(aq) is bounded independently of n, we obtain easily, using (3.20) and
fixing s¢ first, that for any € > 0, there exists ¢ > 0 such that

/(ﬁmdm <= / lg(un)|prdr < e. (3.33)
G G

Since
[un| < Ge, [[vnl] + Ke, [|tn]w],

we have by (3.25), (3.25)

pom.c
/G\un|¢nd$€ < (esallunllomcon) + cssllvnllon,, @) (/Gﬁf)nda?> T (3.34)

This implies the uniform integrability of the sequence {u, }. Letting n — oo in identity (3.28), we
conclude that (3.19) holds. Uniqueness, as well as the monotonicity of the mapping (v, i) — u,, ,,, is an
immediate consequence of (3.10), (3.11) and the monotonicity of g.

Step 2: stability. The stability is a direct consequence of inequalities (3.32) and (3.34) which show the
uniform integrability of the sequence (un, g(uy)) in Ly () x L} (). O

The proof of the following result is similar as the one of [23, Lemma 3.2, Def. 3.3].

Proposition 3.5. Let (v, 1) € My, (Q)x € M(OQ) such that problem (3.18) admits a solution u,, .
Then

U = G [9(up)] + Ke, [ul. (3.35)

Conversely, if u € L}m (Q) such that g(u) € L*(Q)g, satisfies (3.35), it coincides with the solution u,, ,,
of problem (3.18).

3.3 The power case

In this section we study in particular the following boundary value problem with p € 201(92)

Lou+ [u|7lu=0 in Q
u=p in 0€) (3.36)
A Radon measure for which this problem has a solution (always unique) is called a good measure. The
solution, whenever it exists, is unique and denoted by u,,. For such a nonlinearity, the condition (3.20)
is fulfilled if and only if

N+

R e

(3.37)
On the contrary, in the supercritical case i.e. if ¢ > q., a continuity condition with respect to some
Besov capacity is needed in order a measure be good. We recall some notations concerning Besov
space. For 0 > 0, 1 < p < oo, we denote by WP (R?) the Sobolev space over R%. If ¢ is not an
integer the Besov space B7P(R?) coincides with W7?(R¢). When o is an integer we denote A, f =

flx+y)+ flx —y) —2f(x) and

BU(RY) = {f e L(RY); |A f;if e L/(R" Rd)}
y P
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with norm
Ly = P [Bay FI” dxd
e = (W1 + [ [ el y)
Then
B™P(RY) = {f e W™ 'P(RY) : DY f € BY?(R?) Voo € N* |o| =m0 — 1}
with norm

1

|Dg Ay fIP
fllzme = [ 1 I5mrm + // —L Y dxdy
e G

These spaces are fundamental because they are stable under the real interpolation method as it was
developed by Lions and Petree. For o € R we defined the Bessel kernel of order o by G,(§) =
F~Y1 +.J?)"2 F(¢), where F is the Fourier transform of moderate distributions in R?. The Bessel
space L, ,(RY) is defined by

Lop(RY) = {f =Gaxg: g€ LP(RY)},
with norm
1fllLa, = lgler = 1G—a * fllzr
It is known thatif 1 < p < co and a > 0, L, ,(R?) = W*P(R?) if o € N and L, ,(R?) = B*P(R?)
if ¢ N, always with equivalent norms. The Bessel capacity is defined for compact subset K C R by

Ch, = inf{|| £}, . f €S [RY), f>xk}

It is extended to open set and then any set by the fact that it is an outer measure. Our main result is the
following
Theorem 3.6. Assume 0 < Kk < . Then u € E))T"’((’?Q) is a good measure if and only if it is absolutely

continuous with respect to the Bessel capacity C ota,  Whereq' = %, that is
2 7 )

VE C 09, E Borel C’ 2+(,+ y (E)=0= pu(E)=0. (3.38)

The striking aspect of the proof is that it is based upon potential estimates which have been developed
by Marcus and Véron in the study of the supercritical boundary trace problem in polyhedral domains
[23]. Before proving this result we need a key potential estimate.

Theorem 3.7. Assume 0 < k < i and q > q.. There exists a constant csg > 1 dependning on (), q, and
K such that for any u € IMT(9NQ) there holds

1
=1 < [ (K a < e
CSQHMH NEITHg /Q( £, [1])? prdr < C59HMHB_2+225/+1Q (3.39)

2q’

Proof. Step 1: local estimates. Denote by & = (£1,¢’) the coordinates in RY, & > 0, & € RV !
The ball of radius R > 0 and center a in RV ! is denoted by B%(a) (by Bg: if a = 0). Let R > 0,
v € M (RY 1) with support in By and

_ dv({’)
K[v](¢) —/BIR @1l o (3.40)
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Then, by [23, Th 3.1],

q

R ag duv((!
%HMHQ oy < / / §§q+1) 3 / (C ) T dfldfl
B 2¢7 1 0 JB B'% (f% + |£’ — C’|2) )

/ _ T
R

(3.41)
< oo (14+ REDF ) |lu)?
B

24ay

+

There exists R > 0 such that for any yo € 99, there exists a C? diffeomorphism © := 0, from Br(yo)
into RY such that ©(yo) = 0, ©,,(Br(yo)) = Br and

O(2N Br(y)) = By, == BRNRY, (02N Bx(y)) = &> ©(02N Br(yo)) = Bj.

Moreover, © has bounded distortion, in the sense that since

du(z) b ool d(po® 1) ()
) o P = 462070 [ o oy

there holds

67 d(0©1)(C)
ce1 /B %

(6416~ CP2)

y (10 07)(Q)
< ¢5 0O (g)L% |@_1(§) . @—1(C)|N—2+a+
S (0 ©1)(0)

N—2+ta,

By (& + & — ')

24«
Since 1+ p10©~ 1 is a C? diffeomorphism between ™ (92N Bx (o)) NB 2" 2 (0N B (yo))
24«
and M+ (B, ) N B> et (B’r), we derive, using (2.52) and (3.41)
2 2

1 q ) < q < q
c@wyﬁmm_émmﬁ&mmmw_mmg%yu (3.42)

2q” 247 ¢

Clearly the left-hand side inequality (3.39) follows. Combining Harnack inequality and boundary Har-
nack inequality we obtain

/ (K, [1])1¢rndr < co3 / (Ke, 1)) ¢ndx (3.43)
Q QNBr(yo)

which implies the left-hand side inequality (3.39) when g has it support in a ball B 5.

Step 2: global estimates. We write © = g(’zl 5 where the 11 are positive measures on J€) with support
in some ball Bz (y;) with y; € 0€2 and such that

1
il e Sl mene S colll . zeas
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Then

—oy q

Jo 1 Jdo
1Ke [llr < MK, lsllley < clo - Il
Jj=1 Jj=1 B

1
oy, < ]00646529”#“3_%2;:# -

On the opposite side
K, [ulllLg, > maxicj<o [Ke, [1llleg

v

- maxi<j<j, ||

—2
q B
C59

LSl 2
jocég Z]_l ||,UJ||B,2+ fot g

|l

7 —2
C64Csq B

2+ay
+ g

Y

v

+ 2‘*2';"/+ '’
which ends the proof. O

Proof of Theorem 3.6: The condition is sufficient. Let y be a boundary measure such that K. [u] € LY.
For k > 0 set g;,(u) = sgn(w) min{|u|?, k7} and let uy, be the solution of

L.up + gk(uk) =0 in Q

Up = [ in 092, (3.44)

which exists a is unique by Theorem 3.3. Furthermore %k +— uy is decreasing,
0 <up <Kg, [p]

and
0 < gr(ur) < gu(Ke, [1]) < (Ke, (1),

and the first terms on the right of the two previous inequalities are integrable for the measure ¢,dz by
Theorem 3.7. Finally for any n € X;(£2), there holds

[ wtan+ gutwm) do = [ e, (L.,
Q Q
Since uy, and gy (uy,) converge respectively to v and g(u)a.e. and in L} (£2); we conclude that
/ (ulyn +uin)dx = | K, [plLondz.
Q Q

. . . . . N-1 .
If 1 is a positive measure which vanishes on Borel sets £ C 052 with Cf 2ta, -Capacity zero, there
- 2q”

24«
exists an increasing sequence of positive measures in B aTa 1(99Q) {p, } which converges to i (see
[8], [11]). Let u,,, be the solution of (3.36) with boundary data /i,,. The sequence {u,,, } is increasing
with limit u. Since, by taking ¢,; as test function, we obtain

/ ()‘Hultn + g(uun)) Pndr = AK/K»CN [ﬂn]¢nd$7
Q Q

it follows that u, g(u) € L}m. Thus

/ (ulwn + g(u)n) dr = /Kzzﬁ[ulﬁnndw Vn € X, (),
Q Q
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and therefore u = w,.

Definition A smooth lifting is a continuous linear operator R[.] from C2(92) to C2() satisfying satis-

fying
(i) 0<n<1=0<R[n <1, Rlsa=n

(44) Vo VR[]l < co5¢x

where cg5 depends on the C'*-norm of 7.

(3.45)

Our proof are based upon modification of an argument developed by Marcus and Véron in [18].

Lemma 3.8. Assume there exists a solution u,, of (3.36) with 1 > 0. Forn € CQ(Q), 0<n<1set
¢ = ¢ (R[n))? where R is a smooth lifting. Then

</65277dlu> q/ = Cﬁ?/&lqudI et (llqudx> % <</§2¢de)

where

1
7

"y ( /Q (L[n])q’dmy) (3.46)

Lin) = (Rln)" ™" <2¢; Vo VR + ¢ |AR[nH) (3.47)
and cg7 depends on || p]|on(o0)-

Proof. There holds
L. = Me(B)7 ¢ —24 (R[)? "'V . VR —q (R 2w (RINJAR[] — (¢ — 1)|VR[]?) .
Then ¢ € X, () because of (3.45)-(ii) and
q q
066/8977 du S/Q(UE,QC—&—u () dx.

Since

ulC <wu ()\N(R[U])q/% + 2ql(R[an/_l|v¢m~VR[77]| + CI/(R[U])QI_1¢H|AR[77]|)

foors (s’ ()

where L[n] is defined by (3.47).

we obtain

1
7

i (/Qw[nnq’dx)é) ,

O
g 2tet
Lemma 3.9. There exist a smooth lifting R such that n) — L|n)] is continuous from B~~ 24 1 (9Q)
into LY (Q)). Furthermore,
q -1

||L[77]HL4’(Q) < 6/66||77||Loc(39)”77|| o, 2tey . (3.48)
B> 2 7 (aq)
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Proof. The construction of the lifting is originated into [21, Sect 1]. For 0 < 6 < Sy, we set X5 = {z €
Q: d(xz) = ¢} and we identify 0Q with ¥ := X. The set {5 }o<s<g, is a smooth foliation of 9. For
each & € (0, fy] there exists a unique o(x) € X5 such that d(z) = ¢ and |z — o(x)| = J. The set of
couples (d, o) defines a system of coordinates in €23, called the flow coordinates. The Laplacian obtain
the following expression in this system

0? 0

A= b +A 3.49

75z Thogs tAs (3.49)
where Ay, is a linear second-order elliptic operator on ¥ with C! coefficients. Furthermore by — K
and Ay — Ay, where K is the mean curvature of > and Ay, the Laplace-Beltrami operator on X. If

24«
n c B—2+T/+ »d (89)’ we denote by H = H[?’]] the solution of
OH
L AsH =0 in (0,00) x &
Os (3.50)
H(0,)=n inY

Let h € C°(Ry) suchthat0 < h < 1, < 0,h = 1on [0,2], h = 0 on [B, oc]. The lifting we
consider is expressed by

L LI =

with z = (4, 0) := (d(z), o(x). Mutatis mutandis, we perform the same computation as the one in [18,
Lemma 1.2], using local coordinates {¢;} on ¥ and obtain

(3.51)

aH

VRIn) = 25h(8) 55 (

N-1
1 2
o)V + ]; h(s 607 6%,0)Va; + B (8)H(6%,0)V6
In Q g, there holds

N-1
12096095+ 3 1(6) 2L (52, 0)V 0,96 (3.52)
j=1

VRI)-V 6, = 20h(8) 5 ao—J

oy @ e

Moreover ¢,.(z) < c2(d(z)) 5 = ¢35 and |V, ()| < cy(d(x)) 5 L = 46> ~L. Similarly as in
[18. (1.13)]

90, N~ 9
%5 n+ : (6%,0)Va;,

V¢n =
1 aO'j

thus oy
|Vé..Voj| < cesd 2,

OH —oH

N
1 oy
G VR[NV di| < co620" | | (6%, 0)| + ——
00 — do

(62,0)‘ — W (§)H (6% 0)
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Thus /
—L/ ’ @ 8H a
/qb,.; “|IVR[n].Vou|? de < 070/ 5= —(6%,0)| dx
Q Qﬁ 06
q/
+ ¢70 Z / 62,0)| dx
Qp,
+C70/ 5TH‘1 (5 ,o)dz
Qp,\02
Then ’
_d , « q
/@ T|VR[N].Vé,|?dx < cn = | |[Z==(62,0)| dSds
Q 0 ot
82 2ha ¢
< C71/ 0/ i (t7') dt (3.53)
L))
< C72||77|| _2Hay
B 2 ()
by using the classical real interpolation identity
’ ’ 2 2toy
W2 (), L ()], =BT (D). (3.54)
~Taq’ ,q’
Similarly (see [18, (1.17),(1.19)])
N*l + q, a+ ,
Z/ 0% |~ 2 0) d:r+/ 0% HY (5, 0)dz < epallnl® | oea, - (3.59)
j=1 790 J Qp,\2 wo oz ()

Next we consider the second term. Adapting in a straightforward manner the computation in [18, p.
886-887 | we obtain the following instead of [18, (1.21)]

/
q

52t PHn]|" o
qb,g ‘AR |q dx < Cr2 052 ((5 ,O’)dO’d(S
(3.56)
Fo H[ , ,
+C72/ / +|H|q +|Aa — As|? | (62,0)dx
Then
B[ s B2 AR e T T
/ / " o o)dodd = o | %
o /x (3.57)
gmmw S
P =)
by using the real interpolation identity
4.4 / 2 2toy
W), 17 ()] sy =B (), 6.5%)
87{1/7(11

The other term in the right-hand side of (3.56) yields to the same inequality as in (3.55). O
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Proof of Theorem 3.6: The condition is necessary. Let K C 0f be a compact set and 7 € C29S such
that 0 <7 < 1andn = 1on K. Then, by (3.46)

(W) < cor / w9 (R)) fodli+

Q

L 3 (3.59)
(/ uQ(Rm)q’mdx) (( sz) + eIl , 2oy )
Q Q B®” 27 7 (aq)

From this inequality, we obtain classically the result since if C 2t ok g (K) = 0 there exists a sequence

{nn} in CZ(0Q) with the following properties:

0<m, <1, n,=1inaneighborhood of K and 7,, — 01in B>~ Al (09) asn — oo, (3.60)

This implies that u9(R[7,])? — 0 in Ly, (92). Therefore the right-hand side of (3.59) tends to 0 if we
substitute 7,, to 1 and thus p(K) = 0 for any K compact with zero capacity and this relation holds for
any Borel subset. O

Definition. We say that a compact set K C 92 is removable if any positive solution v € C(Q2\ K) of
Liu+ ullu=0 inQ (3.61)

such that
/ (ulyn + |u|tun)dz =0 Vn € XE(Q) (3.62)
Q

where XX (Q) = {n € X,.(Q) : n = 0 in a neighborhood of K}, is identically zero.

Theorem 3.10. Assume 0 < xk < % and q > 1. A compact set K C 0S) is removable if and only if

CRNZJM‘ (K) = 0.

g

Proof. The condition is clearly necessary since, if a compact boundary set K has positive capacity, there

24«
exists a capacitary measure i, € 9, (9Q) N BT 2 "1(9Q) with support in K (see e.g. [1]). For
such a measure there exists a solution u,, . of (3.36) with 4 = px by Theorem 3.6. Next we assume that

C’;RN;(, . q(K ) = 0. Then there exists a sequence {1,, } in C3(9Q) satisfying (3.60). In particular, there
2q’
exists a decreasing sequence {O,,} of relatively open subsets of 92, containing K such that 7,, = 1 on

O, and thus ,, = 1 on K, :== O,,. We set 7j,, = 1 — n,, and Co = du(R [ﬁn])Qq where R is defined by
(3.51). Then0 <17, <1 and n, = 0 on K,,. Therefore

Cn(x) < ¢n min {1’ 674(d(x))17N67(4d(z))—2(dist (I,K;))2} (363)
Furthermore

(i) IVR[7,]| < ¢75 min {1, (d(z))~2~Ne~(d(@)*dist (=, K1)
. (3.64)
(i) [AR[ja]] < ers min {1, (d(a)) - Ne~ (i) dist i)}
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Step 1. We claim that

/ (uﬂngzn n uqén) dz = 0. (3.65)
Q
By Proposition ?? there exists c74 > 0 such that
(i) u(z) < erg(d(x)) = (dist (¢, K)) 7177 (3.:66)
(i) V()| < erg(d(z)) =~ (dist (z, K)) 71~ 2 '

for all x € €. As in the proof of Lemma 3.8,

[uLCn| < crr(R[70])27 ~2u (¢ R2[iin) + Rlitn]|V .V R[]

(3.67)
+¢w(Rli]|AR[T]| + [VR[7]|?)) -

Let O be a relatively open neighborhood of K such that O C O,,. We set Go g, = {z € Qpg, :
o(z) € O} and Goe g, = Qp, \ Go. If x € Go, dist (z, K;) > 7 > 0. Then, by (3.66)-(i) and (3.63),
w9, € LY(Gp). Since u(zx) = o(W(z)) in G- it follows that ui¢, € L'(Qg,) and thus u9(, is
integrable in Q . Similarly, using (N22-1)-(i) and (ii), uL,.C, € L'(Q). Since ¢, does not vanish in a
neighborhood of K, we introduce a cut-off function §, € C?(Q) for 0 < € < %, with the following
properties,

0<6.<1,0.(x)=0Vz € Go,., O(r) =1Vz € Q s.t. dist(z,Go.) > ¢
V0| < e8¢ 'XGo, N\Go.. and |D?0| < cr8e *XGo. \Go..s
where we have taken e small enough so that
Go.e ={xeQ:dist(x,Go,) <€} C Gk, 2 ={x € Qe : 0(x) € K, }.
Clearly 6.¢,, € XX(9), thus
/Q (uzﬁ(eeén) n uQGGEn) da = 0.

Next
/ (U[fm(eeén) + uqeegn) dx = / (UEN(gn) + uqé:n) dx + / (u‘cn(eeén) + uqeeén) dz
Q Q\Gos‘F GOE,E
=1+ 11
Clearly
. _ It q -
lim I, = /Q (ucngn +u gn) da
and

lim uqﬁefndx =0.

e—0 Go, .c

Finally, since EK(Hefn) = 0.LCn + (oAb, + 2V0,..VC,,, 0. is constant outside Go.. \ Go, and
dist (Go, e \ Go.e, FS) > 7 > 0, independent of e there holds, by (3.63)

1£,:(0:Cn)| < croe NTte™ 22,
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Using by (3.66)-(i) we derive

e—0 Go. .
which yields to (3.65).
Step 2. We claim that

/qubmdx < 00. (3.68)
Q

Using the expression of £, in (3.65) where replace 7,, by 7,,, we derive
/ wiCnde = / (MBI 6+ Aq' (Rlin] 1~V 6.V R+
Q Q

2¢'(R[iin))* ~2¢ (R[iin] R[] +(2¢' — 1)|VR[iin]|?)) udz (3 69)

1

<en (] uqéndm); ([ Emias)”.

where we have set

Lln] = (6x)” 7 VeV R[] + (65) 7 |AR[)| + (6) 7 |V R[] (3.70)

By Lemma 3.9 we know that

B~ 2d 7(0Q)

/Q(%)’%IV%VR[%]W’ + Gul AR dz < (cr + crg) 0| ey | - (3.71)

The last term is estimated in the following way

o OH
/¢H|VR 7771 |2q dx < 080/ / ++2 [ ] dS*
(3.72)
0 oy +2 ’ ’ ds
+080/ /5 £ (‘VEH[%H% +(H[nn])2q>d5;,
o Jx
where V' denotes the covariant gradient on 3. Since the following interpolation identity holds
' ' 1- 2432 o/
[Wz,zq (%), L% (z)} 1t g = B'" W P(x)
we obtain
% 4ot 8H[77n]
/ / 7<Cl”nnH 7a++2 ,
S B 1q7 024 )
By the Gagliardo-Nirenberg inequality
2q’ 4 ’
Il ™ aive  Sesollmall s HUHLm(g csollmnll® aisa (3.73)
B T (m) B 20 (%) BT 2 T (x)

By the same inequality

[ (10sH 0P + (i) ) S < csall Hlnl s, [ (|A2Hmn]|q’+<H[nn]>q’)dz74)
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Using the estimates on L[n] in Lemma 3.9 and the fact that 0 < H|[n,] < 1, we conclude that

[ (Vs P+ @) dS < sl e
by B™ 24 T (;)

It follows from (3.69)

/ wI(R[77,))%9 dx < cg4 / (L) do < cssllmall”, oo (3.75)
g 2, B (x)

Letting n — oo and using the fact that n,, — 0, we obtain by Fatou’s lemma that

/ ule,, = 0.
Qg

2o
2

Combined with the fact that u is bounded in £, we obtain (3.68). Notice that ||u|| L (€2) is bounded
T K

0
independently of u.
Step 3. End of the proof. Since u? € L}m (€2), by Proposition 3.2 there exists a unique weak solution
v e Lj (Q)of
L.v=ul in Q
v=20 in 09,
and v > 0. Then w = u + v is L,-harmonic in €2, and by Theorem 2.31 there exists a unique positive

Radon measure 7 on €2 such that w = K, [7]. Since v and u vanish respectively on on 02 and 02\ K,
it follows from Propositions 2.33 and 2.34 that the support of 7 is included in K. By Theorem 3.6, 7

(3.76)

vanishes on Borel subsets with zero CfN;a . /—capacity. Since CfN; ja N /( K) =0, 7 = 0. This
Ty »q Ty »q
implies that u is a weak solution of
Lou+ul=0 in Q 3.77)
u=0 in 09, '
and therefore u = 0. O

Remark. Using the fact that u™ and u_ are subsolutions of (3.61), it is easy to check that Theorem 3.10
remains valid for any signed solution of (3.61).

Remark. If 1 < ¢ < ¢, (see (3.37)) it follows from Sobolev imbedding theorem that only the empty set

has zero CfN;rla . ,-capacity. only the empty set As a consequence of the previous result, if ¢ > ¢. any
T Tagl
isolated boundaqry singularity of a solution of (3.61) is removable.

4 Isolated boundary singularities

We denote by {e, , ..., e, } the canonical basis in RN = {z = (2/,xx) € R¥~! x R} and by (r, o) the
spherical coordinates therein. Then RY = {= (2/,zy) :,2’ € R¥~1, 2y > 0} . We although denote
by SN~! and S~ the unit sphere and the upper hemisphere of RY, i.e. S¥~! : NRY. In this section
we study the behavior near 0 of solutions of

K

—Au — Zut lu|? 1w =0 (4.1)
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in a bounded convex domain € of R with a smooth boundary containing 0 where d is the distance
function to the boundary, » a constant in (0, i] and ¢ > 1. Although it is not bounded, the model case is
Q=RY ={= (¢/,zn) ,2’ € R¥"!, 2x > 0} which is represented by (r,0), r > 0,0 € Sf_l in
spherical coordinates. Then

N -1 1
Up — ﬁAsN—lu -

Lot = —Upp — u+ |u|9 . (4.2)

M
r r2(ey.0)?

We also denote by V' the covariant gradient on SV ! in the metric of SV ! obtained by the imbedding
into RV,

4.1 The spherical £,-harmonic problem

It is straightforward to check that the Poisson kernel K, of £, in Rﬂf has the following expression

047_*_
x 2
Kp (x,6) = cN,K—|x — €|%+a+_2. (4.3)

In spherical coordinates

K, (x,0) = cN,,JQ_N_aTJrz/J(U) r>0,0¢ Siv_l

a

where 9. (0) = zn LSTN—lz (ez\wa)%r
+

solves

K . _
—Agn-1th = prey — an =0 mn Siv '
) Ye=0 inosN ! 4
k= +
and o o
=~ (N+ =5 —2) 4.5)

Notice that equation (4.4) admits a unique positive solution with supremum 1. We could have defined
the first eigenvalue p,, of the operator

! = —Agn_1 — L
o= Low GN—1W (eN.J)Zw
by
Jon—1 (|Vw]? — k(ey.0)2w?) dS
/in:inf{ - oo 208 :weH&(Sfl),w;éO}. (4.6)
syt

By [?] the infimum exists since p(0) = xn|gv-1= e,.0 is the first eigenfunction of —Agn-1 in
+

H}(SY ™). The minimizer 1), belongs to H(SY ") only if 1 < k < +. Furthermore
Ve € Y(SYT) = {p € HL(SVY) : p T g e HY(SY L, poh)). 4.7)
We can also define py, by

Joy-1 IV (p~Fw)Pp+ds
2
fsi\_]—l w dS

s = inf cweY(SY )\ {0}y (4.8)
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We can use the symmetry of the operator to obtain the second eigenvalue and eigenfunction of £/,
on Sf‘l. We first notice that for j = 1,..., N — 1, the function
=5
IN Zj

is £,.-harmonic in Rf‘l, positive (resp. negative) on {z = (x1,...,znx @ x; > 0,zx > 0} (resp.
{z = (21,....,on5 : ¢; <0,zx > 0}) and vanishes on {z = (z1,...,zn5 : &; = 0,zny = 0}.

Proposition 4.1. Forany j = 1,.., N — 1 the function

oYy i(0) =(en.0)2 ej.0

satisfies
£n¢ﬁ,j = (p% +N-—-1+ a—&-)pn,j (4.10)

in Siv_l. It is positive (resp. negative) on Siv_l N{z = (z1,....,xn) = x; > 0} (resp. Siv_l N{z =
(1, ..., xn) = x; < 0}) and it vanishes on 9SY ' N {x = (v1,...,xn) = x; = 0}. The real number

[0 (6]
/’LK,QZI‘LK+N71+C¥+:(7++]‘)(N+ 2+71)

is the second eigenvalue of L. in Y(Siv_l).
Proof. There holds

[:,Q’(ﬂ,@,j = ej.aﬁ,@w,,” + wﬁAstlej.U + 2V’1/),.€.V’ej.a
= (s + N = D)oo — ap(en.0) 2 V' (e;.0).V'(en.0).

Now 1 1 1
Tiy_ Ty Ty By~ (P = te,
V() = ()24 ov(H) = Svi(H) = sey - Ta,
thus 1 .
Tiysg(ENy = TN L Ty g (PN — v (e '
V( . ).V( - ) o r2v ( . ).V( . ) r2v (ej.0).V'(en.0)
which implies
o T;TN o (ej.o')(eN.a)
V'(e;.0).V'(ey.c) = — = 2
and finally
[%1/)&,]‘ = (/.»LK; +N -1 +O(+)’(/),§7j. (411)

Since SY ! = {(0’sind,cosf) : o’ € SN2.0 € [0, 51}, en.oc = cost, ej.0 = e;.0’sinf and
dS = (sin §)N~2dS’df where dS and dS’ are the volume element of S™V~! and SV 2 respectively, we
derive from the fact that ¢’ — e;.0” is an odd function on S N-2

/ ¢n,j¢mds = / (eN.O')a+ej_adS
st SN -1

- / i ( / ej.U’dS’> (cos 0)*+ (sin 6)N~d8
0 SN-2

=0.
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Hence 1), ; is an eigenvalue of £/, in Y(Sfrv ~1) with two nodal domains and the space the Pr,j Span is
(N-1)-dimensional and any linear combination of the p,, ; has exactely two nodal domains since

N-1 ., N-1
Z Yy = (eN.U)T(Z a;e;).o.
j=1 j=1

This implies that p,; o is the second eigenvalue. O

4.2 The nonlinear eigenvalue problem
If we look for separable solutions under the form
u(z) = u(r,o) = rw(o)

2

then necessarily @ = — and w is a solution of

q—1
—AsN—IOJ—[quOJ—%W‘i“(ﬂ'q_lw:o in Sy !
(ey.0) (4.12)
w=0 inasy !,
2 2
byy=——|—+2-N 4.13
and (4.6) is transformed accordingly. We denote by
En={weY(SY H)nLr SV s t. (4.12) holds} (4.14)
2N
and by £ the set of the nonnegative ones. We also recall that ¢, := _cVtay and we define a
2N — 4 =+ Oé+
second critical value ¢, := WWF2tay
©=oN " 21a,

The following result holds

Theorem 4.2. Assume 0 < r < 1 and q > 1, then
()Ifq > qe, Ex = {0}.

(ii) If 1 < q < qe, ET is contains exactly two elements: 0 and w,,. Furthermore w,, depends only on the
azimuthal angle 6.

(iii) If ¢¢ < q < q., Ex contains three elements: 0, w, and —wy.

Proof. We recall that ¢ > q. <= {4, v < (. Then non-existence follows by multiplying by w and
integrating on S f ~L. For existence, we consider the functional

2
auw) = [ (IR + o e+ 2w uas, @19
n

defined in H*(SY ', 2dS) N LI+ (SN 1 4pa+1dS). Since ., — £yn < O, there exists a nontrivial
minimum wk > 0, which satisfies

—div(Y2V'w,) + (e — Ly N )20, + DT 0l = 0 (4.16)
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If we set w,, = ¥, wy, then w,, satisfies
Lhw, — Ly nwi + wl =0 in Sf_l. 4.17)

By monotonicity we derive that w,, € LP(S f 1) forany 1 < p < oo and finally, that w, satisfies the
regularity estimates of Lemma 2.9 and Lemma 2.10. Moreover w,, > 0 by the maximum principle.

In the case ¢ > ¢, or equivalently i, — £, v > 0, nonexistence of nontrivial solution is clear from
(4.16).

Uniqueness. By Proposition 2.8 w,(x) < cgg(p(x))

% and by standard scaling techniques |Vw,(z)| <
cs7(p(x)) %=1, Assume now two different positive solutions of (4.12) w,; and w/, exist. Since max{w,;, w. }
and w,; +w/, are respectively a subsolution and a supersolution and they are ordered, we can assume that
Wl < w, < cwl, for some ¢ > 1. Lete > 0 and € = ¢ ¢, then ew/, > €/w,. Set

(wp +€)? = (we +€)*)+ 9. = (Wt €)? — (we + )+

195: ’ /
Wy t € w;. te€

3

and S = {0 € 5571 :wl, + € > w, + €}. The assume that S, - # () for any € > 0. Then

/ <Vw;.V19€/ — Vw,. Ve — (bg n + %)(w;.ﬂe/ — weVe) + wilde — w,‘iﬂe) dS =0
S o P
The first integrand on the Lh. side is equal to

/ / 2
/ (‘vw;—“’”“vwn >d5>0
S, . Wy + €

Since ew!, < €'w, and (w], + €')? > (w, + €)?the second integrand on the Lh. side is equal to

2
Wy + €
/ !
k€

/
Vw,,

+ ‘an—

K w; Wk 2 2
_/S ,(Eq’N * ﬁ) (w,’{ + € B wy + 6) ((w; " 6/) - (wﬁ * 6) a5 = 0.

€,€

At end, the last integrand is

/s< o >((w;+e’)2—(wn+e)2)ds

/ !
wy, + € wyg + €

If we let € — 0, we derive
[t ) @ —wd)ds <o
syt

This yields a contradiction. Therefore uniqueness holds.

Case g. < q < g.. Assume w,, is a solution. Using the representation of .S iv ~! already introduced in the
proof of Proposition 4.1, with o = (¢’, §) and

L0
(sin@)N—-2 96

1
Agn-1wy, = ((Sil’l G)N_Q awn) + ——Agr-2wy

00 sin? 6
where Agn 2 is the Laplace-Beltrami operator on SV =2, we set

1

©r(6) = 1ov=2] J

wy(o’,0)dS (a").
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Then @, is independent of o/ € SV ~2 and furthermore

— @ = : _ / : N-2 5o
/S iHm D) bedS /O ( [3 (e w,g)dS)(smﬁ) (cos®) Fdf =0,

thus @, is the projection of w,, onto the first eigenspace of £,; and
/ (Wi — @) Lw(wg — @xdS > ,u,g,g/ (we — @, )2dS.
syt syt

At end, noting that
/ (Jq ©Wr — gq © @) (wy — @, )dS" =0
SN72

+

with g, o u = |u|? u,
El
/N_l(gq O Wy — Jg O W) (W — @y)dS = / /N_2(gq 0 Wy — g 0 Wr)(wy — @y )dS' (sin )N ~2d0
sy o Js¥
2
_ /0 /SNﬂ(gq 0 W) — g 0 @) (wr — Bx)dS! (sin )N 240
+
> 21*'1/ lwe — @, |?TLdS,
SN—]
i
we derive that w = w,, — @,,, satisfies
\/SN” (2 — ng) (Wi — @)% 4+ 27w, — @,]771) dS, < 0
iy

which implies w,, = W, and it satisfies

1 d

. o dwy K
W@ ((sme)N 2> + (&LN—f— m) Wi — gq 0wy = 0. (4.18)

db

Since p.1 < €y N < pig,2, by [4, Th. 4, Corol. 1] this equation admits three solutions, w,,, —w,, and
0. O

Remark. For ¢ > 0 small enough the function €1}, is a subsolution for problem (4.12). This implies

wi(o) > e (o)  Voe Sy (4.19)

4.3 Isolated boundary singularities

Throughout this section we assume that 2 C RY, 0 € 9 the tangent plane to 92 at 0 is aRf and that
1 <q<qe.
Lemma 4.3. There holds

G, [(Ke, (0))](x)

K, (,0) - #20

lim|,) 0
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Proof. We recall the following estimates (??), (2.52)

1 <d<x>>”‘?<d<y>>°‘?}

i G, (x,y) < c3min ,
(4) co(@,y) <cs {x_y|N—2 |z — y|[NFto+—2

(!+ ()4+
_1 (d(z)) = (d(z)) =
(#4) C3 W < K (2,0) < CBW.
Then
(g+1 )
Gﬁ [Kl:( 0)](-1‘) < q+1|x‘N+a+ 92 (d(y)) +dy
K¢, (z,0) - |z — y|NFter—2jyls(N+ay—2)

dn
_ T]‘N+o¢+72‘n|q(N+a+72)

< Cg+1|m‘N+aT+fq(N+QT+f2)/ |
RN |€x

where e, = |z|*1:v. This last integral is finite and independent of z. Since q < g, (4.20) follows. O

Corollary 4.4. Let uys, be the unique solution of

Lou+ |u|9™tu =0 in )
u = kb in 9G). “.21)
Then ks
li 2 =
S Kz (2) (4.22)
Proof. This is a consequence of (4.20) and the inequality
kK, [00](z) — KIG[(Kz, [60]))(2) < ursy (2) < KK, [60]().
O
Proposition 4.5. There exists oo 0 = limy o s, and there holds
. 2
oo el e 0(7) = wil0), (4.23)

zlz|™! = o
) N-1
uniformly on compact subsets of ST ™.

Proof. The correspondence k — uygs, is increasing and by the Keller-Osserman estimate, it converges,
when k£ — oo to some smooth function 1., ¢ defined in €2 where it satisfies (1.1). By Proposition 6.1, for
any 0 < R < Ry, uys,. and therefore u o, vanishes on any compact subset of 9Q\ {0} and furthermore

ckaw(dist(z, K))T Vye (5, %) if0<k<;
uooA,O(x) S
cxc/dist (2, K [In () ith =1

for all compact set K’ C 9§\ {0}. Combining this estimate with Propositions 6.3, 7.5 and 7.6, we obtain

cord(@)]z| " 7T < v 0(7) < Uoo,0(w) < 090(61(55))&%Wﬁg%lf%r Vz €, (4.24)
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and
[Vtioo0(7)] < coo(d(z)) F Yo 1" 2  VoeQ (4.25)

For ¢ > 0, we put Ty[v](x) = E%v(ﬁx), Qp = £71Q, dy(y) = dist (y,0Q). If v satisfies (4.1) in Q
and vanishes on 92 \ {0}, T;[v] vanishes on 09, \ {0} and satisfies

—ATy[v] - dz Ty[v] + T[] Telo] =0 € Q. (4.26)
In order to avoid ambiguity, we set ugs, = u%o, Vksy = vkéo, Uoo 0 = uSZ oand v o = voo o» then
Tylugl,] = u™, and Ty[v} ] = v, o . Since inequalities (4.24) and (4.25)

o +
2 -N42-F 2 —N42-—F
a1 NPT s pa—1 Nt

2 kS
are invariant under the scahng transformation, the standard elhpt1c equations regularity theory yields the

following estimates

o _2 o4
cosde(y)lyl T <0 o(y) S ulo(y) < cor(de()) Tyl TTT 2 Wy e,  (427)
and .
@ 2 [e3
Vus o)) < conlde(y) = Myl 717> Wy eQy (4.28)
valid for any ¢ > 1. If we let K — oo, we obtain T,[u}, ol = uQ’ and because of the group property

of the transformation Ty, Tgl[ Uyl Lol = uld ’” for any £, é’ > 0. Estimates (4.27) and (4.28) imply that
{uQ" } is relatively compact for the topology of convergence on compact subsets of RN Therefore

there exists a sequence {/, } tending to 0 and a function U such that {u '} converges to U uniformly
on any compact subset of Rﬂ\_' . Therefore U is a weak solution of

AU -2 U4U1=0  inRY (4.29)
Yn
Furthermore
RY o2 %t
cosynlyl T < v o(y) < uglo(y) < coay lyl T vy € RY. (4.30)
By Proposition 7.5, voo 0( ) = |y\_q%w:(ﬁ) Since Tg/[ o 0] = ugf'é" we derive Ty [U] = U for
any ¢’ > 0, thus U is self similar. Set w(%) =U( \yl) If we set o = ‘ ; then there holds
cozwi(0) < w(o) < coaty(0) Vo e SY 1 4.31)

Therefore w satisfies (4.12) and it coincides with the unique positive element w,, of £,. Thus u&eo

converges to U on compact subsets of Rf . In particular (4.23) holds on compact subsets of .S iv Lo

5 The boundary trace of positive solutions
As before we assume that 0 < k < 1 ,q > 1 and © is a bounded smooth domain, convex if Kk = %.
Although the construction of the boundary trace can be made in a more general framework, we restrict
ourselves to the class U, (€2) of positive smooth functions w satisfying

Lou+ |[ulTtu=0 (5.1)
in Q.
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Lemma 5.1. Let f € Lé (Q). If u is a nonnegative solution of
Leou=f in Q (5.2)
there exists i € M (0N) such that v admits 1 for boundary trace and
u=Ge,[f]+Ke, [1] (5.3)
Proof. Letv = G, [f], then v — v is £-harmonic and positive thus the result follows. O

Definition Let G C 2 be a domain. A function v € L} (G) is a supersolution (resp. subsolution) of
(5.1)if

Lou+ |ulTtu>0 (resp. Lpou+|ul?tu<0) (5.4)
in the sense of distributions in G.
The following comparison principle holds [3, Lemma 3.2]

Proposition 5.2. Let G C Q be a smooth domain and 6, a pair of nonnegative supersolution and
subsolution respectively in G.

(i) If there holds

e 60—k <o, 5
then u < uin G.
(ii) Assume G C ) and i and u belong to H'(G) N C(Q). If u < i in OG, then u < u in G.

5.1 Construction of the boundary trace
We use the notations of [20]

Proposition 5.3. Let v be a non-negative function in C(SQ).

(i) If v is a subsolution of (5.1), there exists a minimal solution u, dominating v, i.e. v < uy, < U for
any solution U > v.

(ii) If v is a supersolution of (5.1), there exists a maximal solution u* dominated by v, i.e. U < u* < v
for any solution U < v.

Proof. (i) Let {Q,, } be a smooth exhaustion €2 and for each n € N, w,, the positive solution of

Lou+ |ulTlu=0 inQ,
U=v in 0€,,. (5.6)

By the comparison principle w,, > v, which implies u,+1(x) > un(z) Vo € Q,. Since {u,} is
uniformly bounded on compact subsets of (2 and thus in C? by standard regularity arguments that w,, 1
u, Which is a positive solution of (5.1). Furthermore, if U is any solution of (5.1) dominating v, it
dominates u,, in £2,, and thus u, < U.

The proof of (ii) is similar: we construct a decreasing sequence {u/, } of nonnegative solutions of (5.1) in
Q,, coinciding with v on 0€2,, and dominated by v. It converges to some u* which satisfies U < u* < v

for any solution U dominated by v. O
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Proposition 5.4. Ler 0 < u,v € C(Q).

(i) If uw and v are subsolutions (resp. supersolutions) then max(u,v) is a subsolution (resp. min(u, v) is
a supersolution).

(ii) If u and v are supersolutions then u + v is a supersolution.

(iii) If w is a subsolution and v is a supersolution then (u — v) 4 is a subsolution.

Proof. The first two statements follow Kato’s inequality. The last statement is verified using that
—signy (u —v)(uP —ovP) + /f(z;&);

—(u—v)i 4k “;;&*.

—A(u— )4 < signs(u—v)(=A(u—v))

<
<

Notation 5.5. Let u, v be nonnegative continuous functions in Q.

(a) If w is a subsolution, [u]; denotes the smallest solution dominating u.

(b) If u is a supersolution, [u]T denotes the largest solution dominated by u.
(c) If u, v are subsolutions then v\ v := [max(u, v)};.

(d) If u, v are supersolutions then u A v := [inf(u,v)]" and u ® v = [u + v].
(e) If u is a subsolution and v is a supersolution then v S v = [(u — v) 1 [;.

The next result based upon local uniform estimates is due to Dynkin [10].

Proposition 5.6. (i) Let {ur} C C(Q2) be a sequence of positive subsolutions (resp. supersolutions) of
(5.1). Then U := sup uy, (resp. U := inf uy) is a subsolution (resp. supersolution).

(ii) Let T C C(Q) be a family of positive solutions of (5.1). Suppose that, for every pair uy,us € T
there exists v € T such that

max(uy, uz) < v resp. min(uy, uz) > v.
Then there exists a monotone sequence {u,} C T such that
u, Tsup T resp. Uy | inf 7.

Furthermore sup T (resp. inf T) is a solution.

Definition 5.7. Let F' C 052 be a closed set. We set

o i M)
Ur .—sup{uEZ/l+(Q). ilgéW(x)_O’ er&Q\F}, (5.7)

and

. v(x)
= ceUL(): v<u, 1
fu] - = sup { (@) v < i )
Notice that F' — Up and F' — [u]F are increasing with respect to the inclusion order relation in 9€2,
[u]F = u A Up. As a consequence of Proposition 6.3, Ur satisfies

lim Ur(x)

Proposition 5.8. Let E, F' C OS2 be closed sets. Then
(i) Ug NUp = UgnrF.
(ii) If F,, C 0N) is a decreasing sequence of closed sets there holds

=0, V€ €00\ F} (5.8)

=0, V€ 0O\ K. (5.9)

lim Up, = Urp where F =NEF,.

n—o0
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Proof. (i) Ug A Up is the largest solution dominated by inf(Ug, Ur) and therefore, by definition, it is
the largest solution which vanishes outside £ N F.
() IV :=1limUg, then Up < V. Butsupp (V') C F,, foreach n € N and consequently V < Up. [

For 8 > 0, we recall that {25, X5 and the mapping = — (d(z), o(x)) have been defined in the proof
of Lemma 3.9. We also set Q3 = Q\ Qg and, if Q C 99, ¥4(Q) = {z € Qs : o(z) € Q}.

Proposition 5.9. Leru € U(Q).
(i) If A, B C 09 are closed sets. Then

[[ulals = [[u]B]a = [u]anB. (5.10)

(ii) If { F\. } is a decreasing sequence of closed subsets of 0 and F = NF,, then

[u] 7, I [u]p-
(iii) If A, B C 0N be closed sets. Then
[u]a < [u]ans + [ul 5z (5.11)
Proof. (i) It follows directly from definition that,
[[ulalp < inf(u,Ua,Ug).
The largest solution dominated by « and vanishing on AU B€ is [u] anp. Thus

[[u]ale < [u]ans-

On the other hand
[u]ans = [[ulanB]B < [[u]a]B,

this proves (5.10).
(ii) If F,, | F, it follows by Proposition 5.8-(ii) that U, — Up, thus

[ulp < lim [u]p, = lim u AUp, < lim inf(u,Up,) < inf(u, Up).

n—oo n— oo n—oo

Since [u]p is the largest solution dominated by inf(u, Ur), [u]p, is the largest solution dominated by
inf(u, Up, ) and Up, | Up by Proposition 5.8, the function v = lim,,_,[u]F, is a solution of (5.1)
dominated by inf(u, Ur), thus v < [u]r and the proof of (ii) is complete.

(iil) Without loss of generality we assume that AN B # 0. Let O, 0" C 0N be a relatively open set such
that AN B C O and AN Be C O’ Setv = [u] 4 and let v; be the solution of

Low + |w|Ttw =0 in
W= X5, )Y on Yg.

Also we denote by v/% and vg the solutions of the above problem with respective boundary data Xz 01V
and x5 (0¢nore)v. Then vé < vL% < vé + v% + vg, i=1,2,3. Let now {3, } be a decreasing sequence
converging to 0 and such that

fuf,j — v <v <ol 402+ 03, i = 1,2,3 locally uniformly in €.
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By definition of v* and Proposition 6.1, we have that v* < [v]5, v? < [v]gr and v* < [v]geqore. But by
(i) we have
[v]oenore = [[u]alocnore = [u]anoenore = 0.
Thus
v < g+ [lor
We can consider decreasing sequences {O,,} and {O’,} such that NO,, = AN B and NO!, = AN Be.
By (ii) we obtain
v < [ulalans + [[u]alzape < [u]ans + [ulzape
which is (). 0
Remark. Since any u € U () is dominated by uagq, it follows from (iii) that for any set A C 912, there
holds

Proposition 5.10. Let u be a positive solution of (5.1). If u € L‘dlm (Q) it possesses a boundary trace
w € M(ON), i.e., uis the solution of the boundary value problem (3.36) with this measure .

Proof. Ifv:= G, [u?] thenv € L}% (©) and u + v is a positive L,;-harmonic function. Hence u + v €
Léﬁ (€2) and there exists a non-negative measure p € 9(0€) such that u + v = K, [n]. By Proposition

3.5 this implies the result. O
Proposition 5.11. Let u be a positive solution of (5.1) and p € IM(ON). If for an exhaustion {Q,,} of
Q, we have

lim Z(z)udwsy = / Z(x)dp, VZ e C(Q),

n=oo Jaq, " a9

where wg‘i is the L -harmonic measure of ), relative to a point xo € 1, then u and |u|P belong to
L}bﬂ (Q). Furthermore u possesses the boundary trace p € IM(ON), i.e., w is the solution of the boundary
value problem (3.36) with this measure (.

Proof. Let G} be the green function of £,; in {2,,, then
Gt (z,y) <G (z,y), Va,ye,

and
GZN 1 Gg,.

Since

/ udwl, = u(xo) + / G, (z,20)(u(x))Pdz,
9, " Qn
we derive, as n — o0,
1(09) = u(xo) +/ Ge, (z,z0)|u(x)|Pdx.
Qp
By Proposition 2.1 this implies |ul? € qubn (Q), and the result follows by Proposition 5.10. O

Proposition 5.12. If F C 0N is a closed set and w a positive solution of (5.1) with boundary trace
w € M(IN), then [u]p has boundary trace |1 F.
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Proof. The function [u]r belongs to U, (£2) and is dominated by w which satisfies (5.1), thus [u]F €
L, () and [u] p admits a boundary trace pr < p by Proposition 5.10. Let v be the solution of (3.36)
with boundary data px . Let O C 02 relatively open such that I C O. By 5.12 we have

v < [ulg + [vlge

Let A be an open set such that F ¢ A C A C O, and for exhaustion we take €2,, = 2, which is smooth
for n large enough, and 0€2,, = X1 . Then '

1
n

| e = [ ploedet + [ lolpedety,
oy, 1(4) 00 \X 1

But

/ [v]gedws) < / vdws? — 0
1 (4) BRI

and

/ [v]gedwy’ S/ Ugedwe — 0,
992,\S 1 (A) " Jo0.\B 1 (4) "

as n — o0, thus [v]5z = 0 by Proposition 5.11 and therefore v < [v]5 < [u]5. Since O be an arbitrary

open set, take a sequence of open set {O,,} such that F C O,, € O,, C O,,_1 and NO,, = F. Using
Proposition 5.9 we derive
v < [ulp,

and thus pxr < pup. Conversely, let Z € C(Q), Z > 0,

/ Zlu]pdusy = / Zlu]pduss + / Z[u] pdesio
o9, " Joqanz (4) " Jeaas. () ’

§/ Zudwg +/ ZUpdw
09,N% 1 (A) " 99,\X 1 (A) !
<I,+1I,.

Because of (5.9), I1,, — 0 as n — oo, thus

/ Zdpp < / Zxpdp <= pr < pX0,
o o0

and the result follow by regularity since O is arbitrary. O

The next result shows that the boundary trace has a local character.

Proposition 5.13. Ler u € U4 () and & € O9). We assume that there exists p > 0 such that

/ (u(x)) 16, () < 0.
B, ()N

(i) Then
[ulf € Ly, () VF C QN B,(€), F closed.

Thus [u]p possesses a boundary trace pip € IM(ON), and supp (ur) C F.
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(ii) There exists a nonnegative Radon measure 1, on B, (&) such that for any closed set F' C B, (&) N0

HE = ,upXF'v

and for any exhaustion {2, } of Q and any Z € C () such that supp(Z) N 9L C 9N B,(€)

lim u(z)Z(r)dwg = /aﬂ u(x)Z(x)dp,. (5.13)

n—roo o0,
Proof. (i) Let F be a closed set and 0 < p’ < p be such that
F coQnB,(f).

Since [u]r < inf(u, Ur) and Ur € C(Q2\ F), we have

O\B,(§)

/ [u]hpp (x)dx < / |u|P ¢ (x)dx +/ |Up|Pow(z)dz < oco.
Q B, ()N

(i) Let 0 < p1 < p2 < p, then

<u<]|

[U]EPQ (£)Non U]§p2 ©non t U;}Q\EM &)

The function [u]§p2 (©)nog Which belongs LY (€2) admits a boundary trace v € 9(9€2) and

. o _
A L, Vst .00 @), =0

forany Z € C(Q) such that supp(Z) N 92 C 9NN By, (£). Combined with Proposition 5.12 it follows
identity (5.13) and finally statement (ii). O]

Definition 5.14. The set R, of boundary points a such that there exists v > 0 such that (5.13) holds is
relatively open. Using a partition of unity there exists a positive Radon measure i, on R, such that

lim u(z)Z(x)dwg’ :/ u(x) Zdpy, (5.14)
a0

n—oo [0,

forany Z € C(Q) such that supp(Z)NOQ C Ry,. The set Sy, := I\ R, is closed. The couple (S, piv,)
is the boundary trace of u, denoted by Traq (u). The measure p.,, is the regular part of Traq(u), the set
(Su) is its singular part.

Proposition 5.15. Let u be a positive solution in ) and let {€2,,} be an exhaustion of Q. If y € S, then
for every nonnegative Z € C(Q) such that Z(y) # 0 we have

lim Zudwd = 0.
n—o0o a0, "

Proof. Let Z € C(Q), Z > 0, such that Z(y) # 0 and

n—oo

lim inf/ Zudw < 0.
90, n
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There exists a subsequence n; such that

lim Zudwd =M < oco.
7= Jon "
nj

Let r be such that Z(z) > @, Vz € B,.(y) NQ, then for any ' < r we have that

lim sup /& . (5 mreadva, < oo
nj

j—o0

In view of the proposition of 5.11 the last fact implies that \[u]mV’ € Ly, (22), which implies that
|ulP € Ly, (B (y)) Vr'" <r'.

Which is clearly a contradiction, by Proposition 5.13. O

Proposition 5.16. Let u be a positive solution of (5.1) in ) with boundary trace (S, ti.,). Then

/ (WLl + ul)de = / Ke, [juxrlLoCd,
Q Q

forany ¢ € X () such that supp({) N 92 C F.

Proof. Consider the function ¢ € X(€2) such that supp(¢) N9 C F. Set K = supp((),
0. = {z e RY : dist(z, K) < ¢}

and g9 > 0 small enough such that
0.NON C Ry, Y0 <e<ep.

Let ¢ < < and 7 be a cut off function such that n € C§°(0:), 0 < n < landn = 1on Oc=. For

0 < B < By, let vg be the solution of

%
Low+ |w]?lw =0 in
w=nu on Xg.
Then there exists a sequence {/3;} decreasing to 0 such that vg, — v locally uniformly, and
v [u]aﬂm@'
Thus v has boundary trace g such that
Mo < Muxagnd'

Let v}; and U123 be the solutions of

Low+ |w|tw =0 in Q)
w = 1ulyonp,, on Xg.
and
Low+ |w]iw =0 in Q)

w = nUaa\0,. on Xg,
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respectively. Notice that u < [u]y5,. + Usa\0,. We have that
1,2 2
vp < vg + v < [ulyonp,, + V5

Since [u] € L, (). By (6.20) we have that

p
6(20625
n(x)Ugan0,. (7) < cood? (z) Vi € Q.

where cgp > 0 depends on N, ¢, s and dist (supp(77), 92 \ O). Thus v3(x) < cood T (z) and

v < [u]pgnp,. + 090da7+($), Vo € Q. (5.15)
Let wg be the solution of
Low+ |w|/tw=0 in Qf
w = Xzﬁ(iaﬂ\og)[u]F on Xg.

Then
[ulp <vg+wg  inQj.

We have that wg, — 0 locally uniformly in €2 which implies that

[u]Fp < w.
Thus we have
HuXF < po < fuXoono;- (5.16)
Set Z = (3 where (g is the solution of
Low=L.C in Q/B
w=0 on ¥g.

Since ¢ € X(12), there exists a constant cg; such that (g < cg1¢,; in Q/B Thus there exists a decreasing
sequence {/3;} converging to 0 such that {5, — ¢ locally uniformly. Now,

J

A
ul,Zdxr + / wiZdr = — a—udS
Q o, on

= 7/ %nuds.
oa, On

= / UQ,CHngl‘+/ U%Cﬁdlﬁ
Q Q,

B B
k

We note here that in view of the proof of (6.22), we have

’ ’
B B

vgﬁﬁCde’+/Q, vg,ng:c, 5.17)

’
B B

V(5] < copd ™, Vi €,
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where the constant cgo > 0 does not depend on 3. Also by remark ?? and our assumptions we have

o4
|
/ [“]émmogsd 2~ dxr < oco.
QNO2c

By (6.20)
Q%

/ UaQ\O3€d “ldz < 0.
QNO2e

The last two inequalities above implies that

o4 ot ot
/ ud? “ldz < / Uso\0,.d72 1dx—|—/ [“]6(20635‘1 > ~lde < o0.
QNOs. QNOs. N0z, ’

Combining all above we can choose a decreasing subsequence {3, } to the origin such that if we take the
limit in (5.17) to obtain

/Q ul, Cdr + /Q witde = /Q oL, Cdz + /Q vi¢dr = /Q Kz, [ LnCdn

Be (5.16) we have the desired result if we send ¢ to zero. O

5.2 Subcritical case

We recall that N e
_ 2
N+ 5~
is the critical exponent for the equation. If 1 < ¢ < ¢., we have seen in section 4 that for any a € 0f2 and
k > 0 there exists uys, and limy_, oo Uks, = Uco,q- Furthermore, by Proposition 5.15, Traq(teo,a) =

({a},0).

Theorem 5.17. Assume 1 < q < q. and a € S,. Then

dc

U(T) > Uoo,a(x), Vel (5.18)

For proof of the above uses some ideas of the proof of Theorem 7.1 in [19] and needs several inter-
mediate lemmas.

Lemma 5.18. Assume 1 < q < q.. Let {£™} be a sequence of points in Q2 converging to a € 9 and let
1 € (0,1). we define the sets

Q,, = Qfmn) ={xeQ: dx)>d&")} and %, :=0Q,. (5.19)
Let xy € Q) and denote by w,, := wg‘l the L,.-harmonic measure in §,, relative to xq. Put
Vn - Blrn (gn) N aQn: n = d(gn)
Let h,, € L>*(3,) n = 1,2, ..., and suppose that there exist numbers ¢ and k such that

N-2F 42

supp (hp) CV,, and 0 < h, <crn, (5.20)

and
lim hnqﬁdwé‘l =k¢(a), Vo€ C(ﬁ)
)

n—oo
n
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Let wy, be the solution of the problem

Lowy + w7 w, =0 in Q,

Wy, = hy on 0%,.

Then
Wy, — Ug,q locally uniformly in Q).

Proof. Letn™ € 0N be such that d(§™) = €™ — n™|. By Corollary 2.29 we have

ho(z), Vo € S, (5.21)

wy(x), Vo € Q,. (5.22)

Moreover
ay

2 (x)dx < e(q), V1<q<qe

/ K% (z,y)d
Q

where ¢(q) is a constant independent of 3. Since ¢ is subcritical, it follows that the sequences {K%. (-,7")}
and {K.,_ (-,n™} are uniformly integrable in L}% (Q). Let w,, denotes the extension of w,, to ) defined
by W, = 0in 2\ Q,,. In view of (5.21) we conclude that the sequences {w? } and {w,, } are uniformly
integrable in L<1bm (), and locally uniformly bounded in €2 By regularity results for elliptic equations
there exists a subsequence of {w, }, say again {w, } that converges locally uniformly in € to a solution
w of (5.1). This fact and the uniform integrability mentioned above imply that

wy, —w in L ()N Ly ().

Since w € L () by Proposition 5.10 there exists 1 € 9(€2) such that

/w[ﬂ,mdx—!—/ |w|?T  wndz = —/Kgm[p]ﬁ,mdx Vn € X(2).
Q Q Q

Furthermore, using (5.21) we prove below that measure p is concentrated at a. Let ¢, ,, be the first
eigenfunction of £, in ©,, normalized by ¢y, »,(z) = 1 for some o € Q5. Letn € X(2) be nonnegative
function and let 7,, be the solution of the problem

‘C&nn = ¢(;:z ‘CRT] in Qn

Then 7,, € C?*(Q,,) and since ¢y, — Py,
L — Len and 1, — 10 as n — oo.

Then we have

/ wnﬁ,mnder/ |w7,,\q71w77dx:—/ U Lgnnde, (5.23)
Qn Q Q
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where v,, solves

L.v, =0 in Q,
Up = hy, on 0%,.

By the same arguments as above there exists a subsequence of {v,xq, }, for simplicity {v,XxGw, }
converging in L}m (Q) to a a nonnegative L, -harmonic function v. By (5.21) we have

ceasKie, (z,a) > v(x), Ve (5.24)
Thus there exists a measure v € 9T(JS2), concentrated at a such that v solves

L.v=0 in Q

v=v on 0N.
But
T To __ 712 _ —
k= nh_)rrgo o hpdwey = nh_)rr;o vp(z0) = v(xg) = /89 dv,
the results follows if we sent n to oo in (5.23). O]

Lemma 5.19. For everyl € (0, 1) there exists a constant ¢; = ¢(N, k, q,1) such that, for every positive
solution u of (5.1) in Q and every z( € (Q,

u(z) < qu(y), Va,y € Byy(x0), 10 =d(z0). (5.25)
Proof. Putry = %”lro. Then u satisfies

Lou+u?=0, € B, (o).

Denote by 2, the domain
Oy ={y € R" : 1oy € Q}.

Set v(y) = u(roy), and yo = %2, then v(y) satisfies
v
—Av—h————— 472" v =0, €B .
distz(y, aQyO) 0| | ITH (yO)
Now note that 1 4
< , YyeB
dis?(y,00,) ~ 01— Y 15 (o)

and by Keller Osserman condition

1
o)l = rdfuron)l*! < O m N s

<C(Q,k,N)B: .
Toy) —C( s Ry ) #(yO)

Thus by Harnack inequality there exists a constant ¢; > 0 such that

’U(Z) < Cl’U(y)7 Vzﬁl} € Bl(yo)a

and the results follows. O

60



Konstantinos T. Gkikas, Laurent Véron

For the proof of the next lemma we need some notations. Let 3 > 0 and § € X = 0. We set
AL(&) = XN Br(§) and, for 0 < r < 8 < 2r, 2} = 27(¢) € Qg, such that d(z,) = |2f —&| =r.
Also we denote by wgl% the £,;-harmonic measure in 23 := 2\ Qg relative to x

Lemma 5.20. Ler ro = r9(2) > 0 be small enough and 0 < r < %U. Then there exists a constant cgs
which depends only on Q), N such that

wé;} (Ar(f)) > C95 Ve e QN B% (f) (5.26)

Proof. Since = +— wg, is a positive £,-harmonic in 2, it is a positive superharmonic function (relative
B
to the Laplacian) in {2j;. Thus
Wy, 2 UGy, Vo € 05,
where v§, is the standard harmonic measure in Qb relative to x € Q% The result follows by Lemma 2.1

B
in [7]. O

Lemma 5.21. Let k = 1, e € (0,1) and zo € Q4. Let {"} be a sequence of points in ) converging to
a € 0N). Then there exist ng = no(e, Q) € Nand cos = co6(2, N, €) such that

W’ (Bggeny(€") N 0Yy,) > cosd(€M)N T2 (—logd(£™))' ¢ Vn > ng. (5.27)

Proof. We recall that for any n € N ,, is defined by (5.19), G%’; < Gg, = G%l , and for a fixed
1 B 1

point yo €
(z,90), locally uniformly in 2\ yo. (5.28)

1
1

Gy xa,(x) 1 G

Set z(™) = a2 (&™), with 7, = d(gn) . By (2.9) we have

1
-~ ’[731 (z,z(&")) < cg7, VreN,NIB,, (&),

n

To

and by Lemma 5.20 there exists 79 = r¢(€2) > 0 such that for any r,, < 72

1
=5 G2 (3, 2(67)) < coswd, (02, N By, (€7)), Vo € QN OB, ().

n 4

Since if | — y| > € > 0 there holds

G (2,y) ~ cog(e, Q) dist(z, 9, )dist(y, I,).
4

Thus we have by maximum principle and properties of Green function

1

ﬁag; (z,2(€")) < cro0wd, (0 N By, (€M), Vz € Q. \ By, (£"). (5.29)

By [3, Lemma 2.8] there exists Sy = S (£2, €) > 0 such that the function

ha(2) = ¥ (@)(~ log d(x)) (1 + (~ log () ).

is a supersolution in {23, and the function

(2)(~log d(x)) (1~ (~logd(x)) ).

[

hg(l’) =d
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is a subsolution in Q3. Set
1 — (—logd(én)) "
1+ (= logd(&n)) ™"

Ci01 =

and

H(x) = hg(.’L‘) — ClOlhl (l‘)
Let ng € N such that r, < %, Vn > ng. then the function H(z) is a nonnegative subsolution in
Q, \ Q,, and H(x) = 0, Vo € 0Q,. By (5.28) we can choose n; € N such that

Ge, (wo,) > B2, Vo€ oW,

1
4
Thus we can find a constant c192 = ¢192(8o) > 0 such that

CIOQH(x) < GL',% (3)071'), Vo € 89,/80

Since H vanishes on 952, it follows by the by maximum principle that

cr2H (z) < G, (z0,2), Vo e\ Q. (5.30)
1
But N+3-2
H(2(£") > c103(Bo) > c104(Q,N)ry 27 (—logr,)' ¢
and the result follows by the above inequality and inequalities (5.30) and (5.29). ]

Lemma 5.22. Let k < 1, ¢ € (0,v/1—4r) and xg € Q. Let {£"} be a sequence of points in

converging to a € 0N). Then there exists ng = no(e, Q) € N such that
wéi (Bd(ﬁ")(gn) N 89;1) 2 0105(97 N, g, E)d(fn)N+%+5_2a Yn > ng,
where (), is defined by (5.19)

Proof. The proof is same as in Lemma 5.21. The only difference is that we use d*~ (1 — d¢) and the
supersolution d“~ (1 + d°) as a subsolution. O

Proof of Theorem 5.17. Step 1 if

lim sup (d(w))NJra%_Qu(x) < 00, (5.31)
zEQN, r—a

then a € R,,. Thus we have to prove that there exists 7o > 0 such that u € L{ (2N By, (a)). By (5.31)
there exists 1 > 0 such that

sup dN+Q7+_2(x)u(9c) =M < 0.
z€QN By, (a)

Let U be a smooth open domain such that
QN By (a) CUC QN By (a),

and
UNnoN coNn B, (a).
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For 3 > 0, set
dy(z) =dist(z,0U) Ve e U, Ug={zxeU: dy(z)>p}, Vz=U\Us.

Let By > 0 be small enough such that diy € C%(Upg, ). Let 0 < 8 < By and ((z) = dy(z) — B. Then u
satisfies 9

/ udS = (uLrC + ulC)da — / U eds.
Vs Vs\Viq Vs, on

ou
—(dS
/avﬂo 3n C

Now

< ci06(Bo — ),

where c¢1g depends on g, k, €2, B9,

/ ul,(dr < —/ uwAldx < 0107/ udx.
Vs\Vso Vs\ V3, Va\Vs,

and by (5.31)
ut ™} (@) < er8(d(@))"@TINFF D) < oo (dy ()" @INHF D v e UL

Combining the above inequalities, we derive

Bo o
/ udS < ¢109 / (01_(’1_1)(N+T+_2) + 1)/ w(z)dSdo + 1] .
oV B Vs,

Multiplying the above inequality by ﬁa% we get

ay Bo o o4
/ ud? dS < cig9 ( / (o1 (e DN+57=2) 4 q) / di? (z)u(z)dSdo + 1) .
oVg B oV,

Set o

U(o) = di? (z)u(z)ds,

V.
Then we have
Bo o
U(B) < c110 ( / (o~ @DNHE2) L 1)U (o) do + 1) : (5.32)
B
Set 5
W(B) = / (o=@ DN D 4 U (0)do + 1,

B

then

W/(8) = —(8'==DINFF = L 1)U (8) = —h(B)U(B).
Thus inequality (5.32) becomes
~W'(B) < crioh(B)W (B) <= (H(B)W(8))" > 0,

where 5
H(B) = e=ovo J5® s,
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Thus we have

1
< — .
W(B) = H(ﬁ) W(ﬁo), V0 < ﬁ < BO
But
L _ 60110 f;o h(S)dS o 80110 fgo 01*(4*1)(N+a%72)+1d8 < o0
H(B)
if and only if
aq

2—(q—1)(N—|—7—2)>0<:>q<qc.
Thus we have proved that
/ uq(dU(x))aTerx < 00,
U

which implies the existence of a o > 0 such that
/ uq(d(:c))a%dm < 00,
QN B, (a)

ie. a € R, which is the claim.
Step 2. Since a € S, the previous statement implies that there exists a sequence {{"} C € such that

€ s a and  limsup(d(€"))N T "2u(E") = oo (5.33)

n— oo

By Lemma 5.19, there exists a constant c; such that

u(r) < qu(y), Va,y € Bra(€"), r=d(£"). (5.34)
Put Vn := ( ") N oSy, , and, for k >0, by, g = bLUXV .
Case 1. k = i By (5.34) and Lemma 5.21 there exists a constant ¢111 > 0 such that
1_
bn = / udS Z 61111477,7”712/'4_E 2(_10g rn)l_av An = Sup ’U,(IIT)
n J,EBm(fn)
2
Then
k 22+ N
hprdS =k, hpr<—rn > Xxv,, Yn2>ng. (5.35)
o0, C2
By (5.33),
b, — o0, 1 — 0. (5.36)
Hence, for every k& > 0 there exists ny such that
U > hy g on 9, Vn > ng. (5.37)

Let wy, ; be defined as in Lemma 5.18 with h,, replaced by h,, ;. By (5.35) and (5.36), the sequence
{hn i }52; satisfies (5.20) for every fixed k > 0. Therefore by Lemma 5.18

lim wy, ; = ugs, locally uniformly in €.
n—oo

By (5. 37) u > wpinz € Q:d(x) > r,. Hence u > ugs, for every k > 0. The proof in the case
O<kr<+ 1s similar but for the definition of by, O

As a consequence we provide a full classification of positive solution of (4.1) with a boundary iso-
lated singularity.
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Theorem 5.23. Assume 1 < q < g. and u € C(Q\ {0}) is a positive solution of (4.1) in Q which
vanishes on 90 \ {0}. Then the following alternative holds

(i) Either there exists k > 0 such that

. N+%E—2 _
i alé,nzle o |z] u(z) = kip1 (o) (5.38)

zlz|”! > o

and u solves

—Au—%u—&-uqzo in )
(5.39)
(ii) Or
. 2
m ) = (@) (5.40)
zlz| 7" —» o

locally uniformly on Sjrv*l.

The result is a consequence of the following result

Lemma 5.24. Assume 1 < g < g, a € 0Q and F.(a) = 0Q N Be(a). Then

lim U, (a) = oo ,a- (5.41)
Proof. Without loss of generality, we can assume a = 0. Clearly, Uyqy := lime 0 UF, (g) is a solution
of (5.1) which satisfies

Uy _

locally uniformly on 92 \ {0}. By (6.20) it verifies

o4
—_ 2 (d(z 2
Upoy (x) < cla| 7T (|<7‘>> (5.42)
O
Using (4.24) we see that there exists ¢ = ¢112(N, &, ¢) > 1 such that
Utoy () < ctoo0(x) Vo € Q. (5.43)
Assume Ugg} # Uoo,0, thus Ugoy () > tieoo(z) for all z € Q and put @ = tso,0 — 5= (Ugo} — Uso,0)-
By convexity « is a supersolution of (5.1) which is smaller than u 0. Now %uw,o is a subsolution,
thus there exists a solution u of (5.1) in 2 which satisfies
c+1 -
Tum,o(x) <wu(z) < a(x) < Uso,0(x) Vo € Q. (5.44)
c

This implies that Trpq(u) = ({0}, 0), and by Theorem 5.17, u > 1,0, Which is a contradiction.

Proof of Theorem 5.23 Assume a = 0 without loss of generality. If « € S,, then for any ¢ > 0,
u < U, (o) which is a maximal solution which vanishes on 92 \ F.(0). Thus, using (5.41)

< 1i = = .
u < im Ur, o) = U0} = too,0

If 0 € R, this implies that Troq(u) = (0, ko) for some k > 0 and we conclude with Corollary 4.4. O

The next result can be proven by using the same approximation methods as in [19, Th 9.6].
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Theorem 5.25. . Assume S C 0N is closed and v is a positive Radon measure on R = 0Q \ S. Then
there exists a positive solution of (4.1) in Q with boundary trace (S, ).

6 Appendix I: barriers and a priori estimates

6.1 Barriers

Following a localization principle introduced in [19] we the following lemma is at the core of the a priori
estimates construction

Proposition 6.1. Let Q C RY be a C? domain 0 < k < i and p > 1.Then there exists Ry > 0 such
that for any z € 0 and 0 < R < Ry, there exists a super solution f := fr , of (4.1) in QN Bg(z) such
that f € C(QN Bgr(2)), f(z) — oo when dist (z, K) — 0, for any compact subset K C Q2N OBg(z)
and which vanishes on Q2 N Bgr(z), and more precisely

Commg(R2—|x—22)Pd(z) Vvye (5.%) ifo<k< i

f(x) = iam (61)
vl = | = ) /) fn (552 :

for 8 > max{qf—1 + 7, %, 1}

Proof. We assume z = 0

Step 1: k < 1. Set f(z) = A(R? — |z|>)7?(d(x))” where 3,7 > 0 to be chosen later on. Then, with
r=lzl,

AL, f

=—(R? —r?) P (Ad" + kd"?) — dVA(R* — r?)~F — 2V(R? — r?) =PV d"

Since Ad(z) = (N—1)H, where H, is the mean curvature of the foliated set X4 := {z € Q : d(z) = d}
and |Vd|? = 1,
AdY = (N — 1)yHgd" =t +v(y — 1)d' 2
Ad" + kd"™? = (N — V)yHad" ™" + (y(y = 1) + k) 72
Vd" = ~y¢] "'V,
V(R? —r?)"? =28(R* — %) P g,
thus

V(R? = r?)7PVd" = 2Byd” "' (R* = r?) " '2Vd

AR —r2)P = ONB(R? — )01 4 45(8 + 1)(R? — r2) 2>

=28(R* —r*) 772 (NR*+ (28 4+ 2 — N)r?)
Then
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AL f = —(R?—r?) P22 [(R? — r?)2 (N — 1)yHad + (v — 1) + k)

+28d? (NR* + (28 + 2 — N)r?) + 48vd(R?* — r?)2Vd
Therefore
Lof + f1=AR2—r2)=B-2q12 [Aq—l(R2 _ T2)—(q—1)5+2d(q—1)’)’+2

—(R? = r?)? (N = 1)yHad + (v — 1) + K) (6.2)

—2Bd? (NR? + (28 + 2 — N)r?) + 48yd(R? — r*)aVd }
If we fix 8 > max{qz—1 + 7, %, 1}, there holds

28d* (NR® + (28 +2 — N)r?) + 4Bvd(R? — r*)2Vd < 4d*B(8 + 1)NR® + 4BdR(R* — 1)
We choose %~ < v < 5 so that y(y — 1) + & < 0. There exist dy, €9 > 0 such that
(N—1DyHgd+~v(v—1)+r<—e < —1

provided d(x) < dy. We set

GO(R2 - 7”2)

— : <
A {xEQﬂBR d(z) < 167E

} and B::AQ{IGQOBR:d(x) §50}
Then, if x € B, there holds
—(R* = r?)? (N = 1)vHad + v(y — 1) + k) — 2Bd* (NR* + (28 + 2 — N)r?)

2 _.2\2
+4Byd(R? — r?)aVd > H =) e

Finally, assume = € A°N {x €EOQNBg:d(x) < 60} and thus

R2 _ 7,2
d > C1 R
In order to have
() ATH(R? — p2)2-(a-DBgla—1)7+2 > 2 R2
6.3
(i) AT1(R2 — ¢2)2=(a=Dgla=D7+2 > JR(R? — 12) ©6.3)
or equivalently
(i) < Avd > (R? —r?)7
g—1 1 (a—1)B—1 (6.4)
(i1) <= AT@=D>F1d > RG=17%1 (R? — p2) =D+
it is sufficient to have, for (i)
i R2 _ 7”'2 2 2 £ 28—
1Ay > (R?—r%)" Vre(0,R) <= A>cyR*7 (6.5)
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and for (ii)

2

R% — 2

(g=1)B—1
(q—1)v+1

ClA(q—qﬁifl > RGDAF1 (R? —1r?) Vr e (0,R)
= A>R¥ i

where ¢o = co(N,~,8) > 0since 8 > v+ qffl
Atend, in the set C := {x € Q : d(z) > dp}, it suffices that

A > ¢3max {R2ﬂ, Rzﬁ—ﬁ}

for some ¢3 = c3(N,, 8, max |Hy|,do) > 0 in order to insure

(Z) Aq_l(R2 — r2)_(q—1)5+2d(q—1)"/+2 > (RQ _ T2)2(N - 1)’7|Hd|d
(i)  ATN(R? — ¢2)~(a=DF+20=17+2 > 442 3(3 + 1)NR?
(ii)  NITH(R? = p?)" (@022 > 4BAR(R? — 1),

Noticing that 23 > 25 — ﬁ, 28—y > 28—~ — q%l, we conclude that there exists a co
cqg = c4(N, 7, B, max |Hyl|,dg) > 0 such that if

A > C4maX{R25,R2ﬁ*7*qf31}
there holds
Lo(f)+f1>0 in Q.
Step 2: k= L. Set f(x) = A(R? — r?)~PV/d(In )3 for some A, 3 to be fixed. Then
AV gt = & (e — S sf)~t) ad
+ 2 (- - dan 1)
= 2L (3n ) — L(n<B)F) H
+ % (—%(ln%)% - i(m%)—%)
Thus
AVA(n ) + FVan St = Y (L) - L) ~F) Ho— Lp(ns)—3
= di%(ln%)*% (N —1)dHg (3(In€2)? — L(In <)) — 1)]
Further
V(R? - r2)AUVd(In R )s = BEZ ) TE (g emy ) pyg
r n = 73 n T
Therefore
AL f = —(R*—r?) P24~ 2 (In<B)~3
(R* = 1%)? [(N —1)dHg (3(In <8)% — I(In <)) — 1]

eR

+2B(R? —r?)d [(In <£)? — (In &)] 2Vd + 28d*(In <E)2 [NR? + (28 + 2 — N)r?]

(6.6)

6.7)

(6.8)

nstant

(6.9)

(6.10)
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Finally

—2B(R? —12)d [(ln %)2 — (In %)] 2Vd — 2Bd*(In %)2 [NR2 +(28+2- N)rQ] } .

6.11)

Notice that <2 > e thus —% < (In %) — (In <) < (In <)2 If 3 is large enough, as in Step 1, there

holds
|28(R? — r?)d [(In £2)? — (In )] .Vd + 28d*(In <2)? [NR? + (28 + 2 — N)r?]|
<ANB(B+1)(In )% (R* - r*)dR + d°R?) .
There exists dp > 0 such that
(N—1)dHg (3(In<)? —t(n<dt)) -1 <1 <1
if d(z) < do. If we define A, B by

2 _ .2
A:{erﬂBR:d(z)< €o(R" 1)

there holdsif x € B
—2B(R* —r?)d [(In ££)% — (In )] 2.Vd — 28d*(In <2)2 [NR? + (28 + 2 — N)r?]

2_p2)2
(nf)* = 3 &) — 3] = -

- (R2 - 7“2)2 [(N —1)dHq ( d 16

1
2

Ifre AN{zeQnNQ:d(x) <do}, then

d(z) > CIRR(IQH_%; (6.12)
In order to have
(i) AIY(R? —r2)(1-08+2¢° (In £8) 572 > (In £8)2(R? — r2)dR 613
(i7) AITH(R? —r?)(1-0F+2¢"5 (In <) 5 > (In <)2q2R? '
or equivalently o . R
(i) AT d(In )i > (R —92) e Rt 6.14)

(u) A2d1In % > Rﬁ (RQ _ r2)2ﬁ*ﬁ
Up to taking ¢; small enough, (6.12) is fulfilled if

eR R?
— <
d — R2—7r

s () = a > 6(323_ " (in(zfa) (6.15)
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Inequality (6.13)-(i) will be insured if

AT > L(R2 = p2)2 T T Ra ) (In( R ) 7
which holds if, for any ¢ > 0, we have for any r € (0, R)
AT > C(R? — p2)2 S TIRatt! (RQR_Z r2>€.
A sufficient condition for such a task is, with the help of (6.15),
A > ey R¥P 7T (6.16)
As for (6.13)-(ii), it will be insured if
A> e, R¥P- 712 (6.17)
Thus, if
A > csmax{R* 7172 R3-aT) (6.18)
for some ¢5 > 0 = ¢5(N, 7, B3, do, | Hal), the function f satisfies (6.10). O

6.2 A priori estimates
By the Keller-Osserman estimate, it is clear that any solution u of 4.1 in 2 satisfies

w(z) < C(q,Q, N)d w1 (z), Vae. (6.19)
This estimate is also a consequence of the following result [3, Prop 3.4]

Proposition 6.2. Let ¢, be the first positive eigenfunction of —A in H} (). For ¢ > 1, there exists

~v > 0 and ey > 0 such that for any 0 < € < ¢ the function hye = (P, — 6)7% is a supersolution of
4.1inQy, =={z € Q: g (x) > €}

We recall here that
d= (x) if Kk <
W(z) = {

dz ()] log d(z)| if k=

=

N

Proposition 6.3. Let Q be a bounded open domain uniformly of class C? and let F be a compact subset
of the boundary. Let u be a nonnegative solution of 5.1 in ) such that

o u@)
e Ty~ 0 VEEOONE

locally uniformly in O\ F. Then there exists a constant C depending only on q, k and Q) such that,

lu(z)| < Cd% (2) (dist(z, F)) T1~ 2, VoeQ, (6.20)
- Ex) - Ey) | < Clz — ylf (dist(z, F)) 77 "7 W(z,y) € QxQ 6.21)
2 (x) d= ( )
such that dls‘c(x7 F) < dist(y, F),

a1

Vu(z)| < Cds () (dist(z, F)) 71 2, Vre (6.22)
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Proof. The proof is based on the proof of Proposition 3.4.3 in [22]. Let{ € 9Q\ F and put dp(§) =
1dist(¢, F'). Denote by Q¢ the domain

Qf ={ycR": dp(&)y € Q).

If u is a positive solution of (5.1) in €2, denote by u¢ the function

u(y) = |dr (&) T Tuldr(€)y), Yy € QF.

Then,

—Aut + ’uﬂq =0 in QF.

U
e

[dist(y, 0262
Let Ry be the constant in Proposition 6.1. First, we assume that

1

dist(&, F) < .
ls(é-))fl_‘_Ro

Setrg = %, then the solution W,.; . mentioned in Proposition 6.1 satisfies
us(y) < Wroe(y), Vy € Barg (§) N QF.

Thus u is bounded in Bsr, (€) N Q¢ by a constant C' > 0 depending only on n,q, s and the C?

characteristic of Q%. As dp(£) < 1 a C? characteristic of ) is also a C? characteristic of 2 therefore
the constant C' can be taken to be independent of £. We note here that the constant 0 < Ry < 1 depends
on C? characteristic of (2.

Now we note that

ut (y)
1m
yeQs, y—P W(.’IJ)

=0, VP €90 N Bsnr, (€.
5
Thus in view of the proof of Lemmas 2.11 and 2.12, by the above inequality and in view of the proof of
Theorem 2.12 in [12], we have that there exists C' > 0 depending only on n, p, x such that
ot

ut (y) < |dist(y, 9Q8)| * , ¥y € By (€) N QL. (6.23)

2

Hence - . oy
u(z) <dz2 (z)dp(§) 1 2, Vre de(g)%(f) N e

Letz € Q 2y and assume that
d(z) < %dF(x).
Let & be the unique point in 92 \ F such that |z — &| = d(x). Then we have
dp(§) < d(x) +dp(z) < (14 Ro)dp(z) <1

and
oy

lu(z)| < CdT (x) (1 + Ro)dist(w, F)) 71~ =
If d(z) > Bedp(x), then by (6.19) we have that

71
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Thus (6.20) holds for every = € Qx, such that dist(z, F) < 175

2
Now we assume that z € ) r, and
2

1
i F) > .
dist(x, F) > T R

Let £ be the unique point in 92 \ F' such that |z — £| = d(x). Similarly with the proof of 6.23 we can
prove that

o

u(z) < CdF (z) < dF (2)C (1 + Ro)dist(z, F)) 71 2, Vae By (€)NQ.

Now if x € Q \ Q &, , the proof of (6.20) follows by (6.19).
2
(i) Let x¢ € . Set
Q% ={y e R": d(zo)y € 0},

o

and d, (y) = dist(y, 00%). If € Bag) (zo) then y = Tz belongs to B (yo), where yo = d(zg)
2

1

2
Also we have that 5 < dy,(y) < 3 foreach y € By (yo). Setnow v(y) = u(d(zo)y), ¥y € By (yo)-
Then v satisfies

u
—AV — ks + d%(20) Jv|T = 0 in Bi(yo)-
|dao (y)]2 2

By standard elliptic estimate we have

sup [Vol<C | swp o[+ sup d(wo)lo]?
yEB%(yo) yGB%(yo) yEB%(yo)

Now since Vu(y) = d(zo)Vu(d(zo)y), by above inequality and (6.20) we have that

o4 __2_ 24
-1

|V“(‘”0)|§C(d (wo) (dist(zo, F))" 77~ 7 +d =+ (x0) (dist(xO,F))*Q(ﬁ—T)).

Using % = .27 + 2 and the fact that z is arbitrary the result follows. O

Proposition 6.4. Let O C 9N be a relatively open subset and F' = O. Let U be defined by (5.7) be the
maximal solution of (5.1) which vanishes on 92\ F. Then for any compact set K C O, there holds

lim (d(€)) 7T Up(£) = £, =

E—a

(2((] +1)
(g—1)?

Proof. Step 1. We claim that for any e > 0 there exists C¢, 7e > 0 such that for any z € O such that
Bs._(z) C O, there holds

1
T
+ /1) uniformly with respect to x € K. (6.24)

u(@) < (e + L4~ V)TTr TT 4 C, Ve (0,7, Va € S,(B,.(2)). (6.25)

72

Werecall that - (B, (2)) = {z € Q, z ~ (d(2),0(2)),d(z) = 7,0(z) € B-.(2)}. Setg(z) = Kd_ﬁ(m),

then
2q

Log+ g = ded_% + (pa=1 — pa-1) d a—1 (6.26)
q_ 1 K )
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where H, is the mean curvature of >;. If € is convex we take { = /,; and g is a supersolution for

1 2
d(z) < Ry for some Ry. In the general case, we take £ = £(e) = (e+£4~1)aT,and g = g. = l(e)d 71
is a supersolution in the set {2, where

Ry 2(N -1
Tezmax{7:0<7'§ 20’(q—1)||HTHL°O(Z’)+€>O}'

Then fa,, , + g is a supersolution of (5.1) in B-_(z) N which tends to infinity on 9(Ba-, (z) N Q) =
00N By, (2)UQNOBs,_(z). Since we can replace ge(x) by g () = £(d(z) — 7)74%1 for r € (0, pe),
any positive solution u of (5.1) in €2 is bounded from above by fa,_ . + ge -~ and therefore by for_ . + ge.
This implies (6.25) with C. = max{far. .(y) : |y — 2| < 7}, and it can be made explicit thanks to
6.1).

Step 2. With the same constants as in step 1, we claim that

Up(z) > (107 — )77 a1 = C. V7€ (0,7, Vo € 3,(By. (2)). (6.27)

If in the definition of the function g, we take ¢ = £(e) = (¢47! — e)ﬁ, then g is a subsolution in the
same set 2. Since Up + far. . is a supersolution of (5.1) in Ba,_(z) N which tends to infinity on the

boundary, it dominates the subsolution g. _, = ¢(d(.) + T)_q%l for 7 € (0, p.) and thus , as 7 — 0,
ge(z) < Up(z) + f2r..(z). This implies (6.27) with the same constant C.

Step 3. End of the proof. Since K C O is precompact, for any € > 0, there exists a finite number of
points z;, j = 1,..., k such that K C U;?:lBTE (zj) with Bar_(2;) C O. Therefore

(ea-1 — 6)41%17'74%1 —Ce <Up(x) < (e +€z_1)47117'7% +C. V7 e (0,7], Vz € I, (K).

(6.28)
Since ¢ is arbitrary, it yields to
lim, 0 |77 U — €ul| oo (s, (56)) = 0 (6.29)
which is (6.24). O
Corollary 6.5. Let Uyq be the maximal solution of (5.1) in €, then
lim (d(z)) 7T Upq(x) = L. (6.30)

d(z)—0

7 Appendix II: The associated semilinear equation with singular
potential

In the section we consider the following operator

v Mivi= —Av— —v (7.1)
|z[?
defined in a bounded C? domain such that 0 € 02, and the associated semilinear equation
Mow + |w|Trw =0 (7.2)

in . The study of this operator is straightforward and we refer to [14] and [?] for verifications of the
.. . 2 . 2 . . 2
next statements. The critical value of & is NT and since NT > % we will always impose x < NT.
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Proposition 7.1. Assume r < sz, then there exist a positive solution vy € C*(\{}) of the following
problem

M., =0 inQ
vy = b in 99 (7:3)
satisfying i(2) (@)
1 T x
Ca1 = < vs(2) < C‘”W' (7.4)
X 2 x 2

We notice that v, (x) = o(K ., (z,0) as x — 0. The associated semilinear problem with a singularity
at 0

Mew + |w|Tw =0 in Q
w=20 in 99 (7.5)
N+2++VN2—4k

admits a critical value g.x = If we assume that the tangent plane to 90X at 0 is 8Rf =

N—24vVN?—4r"
{z = (¢/,xn) : xny = 0} and the normal unit outward normal vector at 0 is —e, then we can look for

solutions of (7.2) in RY vanishing on ORY \ {0} under the form v(r, o) = r_q%lw(a). Then w satisfies
—Agn-1w — (bgn + K)w + w7 lw =0 in Siv_l a6
w=20 in 35_?/_1, .

where ¢, n is given by (4.13). The following result is straightforward.
Proposition 7.2. If1 < q < q.* there exists a unique positive function w € C? (gffl) solution of (7.6).
We denote it by w;.

The set F,; of the solutions of (7.6) has the following structure

Proposition 7.3. Assume k < NT2 and q > 1, then

I'Ifquk*y]:ﬁ = {0}

II-If 1 < q < qex, then F.F = {0,w}.

N+2+4+/(N+2)2 -4k
N—2+4,/(N+2)2—4x’

HI- If gex < q < qe, Fre = {0, 2w}, where qox =

The next two results characterize the solutions of

Proposition 7.4. Assume x < NTQ and q > q.*, then any function v € C?(Q\ {0}) which satisfies (7.5)
is identically zero.

Proposition 7.5. Assume k < N72 and 1 < q < q*. Ifv € C*(Q\ {0}) is a positive solution of problem
(7.5), then the following alternative holds.

(i) Either . -
lim [z|7=To(z) = wi(m) (7.7)
(ii) Or there exist k > 0 such that
lim o] 5 u(a) = K7 (.8

and v = vy, is the unique solution of

Mv+ o] =0 in

v = cn,kkdo in 0€). (7.9)
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Remark. Notice that in the above statement, the limit when k — oo of a solution vy, is the unique

positive solution v, o satisfying (7.7). Actually v, o is the unique positive solution of (7.5) such that

N—2+4+v/N2_4x
2 v

limsup,_,q || () = 0.

Any positive solution of (7.5) is a subsolution for (3.61). Therefore the next comparison result which
follows from the maximum principle, (7.4) and (2.52) provides a useful estimate from below of positive
solutions of (3.61) with a boundary isolated singularities.

Proposition 7.6. Assume k < i and 1 < q < q.. Then there exists ¢ = c(a2) > 0 depending on Q, q
and K such that vis, < Ucgs, for any k > 0, and voo,0 < Uoo 0.
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