
HAL Id: hal-01071463
https://hal.science/hal-01071463

Preprint submitted on 14 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The fragmentation process of an infinite recursive tree
and Ornstein-Uhlenbeck type processes

Erich Baur, Jean Bertoin

To cite this version:
Erich Baur, Jean Bertoin. The fragmentation process of an infinite recursive tree and Ornstein-
Uhlenbeck type processes. 2014. �hal-01071463�

https://hal.science/hal-01071463
https://hal.archives-ouvertes.fr


The fragmentation process of an infinite recursive tree

and Ornstein-Uhlenbeck type processes

Erich Baur∗ and Jean Bertoin†

ENS Lyon and Universität Zürich
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Abstract

We consider a natural destruction process of an infinite recursive tree by removing each

edge after an independent exponential time. The destruction up to time t is encoded by a

partition Π(t) of N into blocks of connected vertices. Despite the lack of exchangeability,

just like for an exchangeable fragmentation process, the process Π is Markovian with

transitions determined by a splitting rates measure r. However, somewhat surprisingly, r

fails to fulfill the usual integrability condition for the dislocation measure of exchangeable

fragmentations. We further observe that a time-dependent normalization enables us to

define the weights of the blocks of Π(t). We study the process of these weights and point

at connections with Ornstein-Uhlenbeck type processes.

Key words: Random recursive tree, destruction of graphs, fragmentation process, cluster

sizes, Ornstein-Uhlenbeck type process.

1 Introduction

The purpose of this work is to investigate various aspects of a simple and natural fragmentation

process on an infinite tree, which turns out to exhibit nonetheless some rather unexpected

features.

Specifically, we first construct a tree T with set of vertices N = {1, . . .} by incorporating

vertices one after the other and uniformly at random. That is, 1 is the root, and for each
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vertex i ≥ 2, we pick its parent ui according to the uniform distribution in {1, . . . , i − 1},

independently of the other vertices. We call T an infinite (random) recursive tree. Recursive

trees are especially useful in computer science where they arise as data structures; see e.g. the

survey by Mahmoud and Smythe [14] for background.

We next destroy T progressively by removing each edge ei connecting i to its parent ui at time

ǫi, where the sequence (ǫi : i ≥ 2) consists of i.i.d. standard exponential variables, which are

further independent of T. Panholzer [16] investigated costs related to this destruction process,

whereas in a different direction, Goldschmidt and Martin [10] used it to provide a remarkable

construction of the Bolthausen-Sznitman coalescent. We also refer to Kuba and Panholzer [13]

for the study of a related algorithm for isolation of nodes, and to our survey [3] for further

applications and many more references.

Roughly speaking, we are interested here in the fragmentation process that results from the

destruction. We represent the destruction of T up to time t by a partition Π(t) of N into

blocks of connected vertices. In other words, if we view the fragmentation of T up to time t as

a Bernoulli bond-percolation with parameter e−t, then the blocks of Π(t) are the percolation

clusters. Clearly Π(t) gets finer as t increases, and it is easily seen from the fundamental

splitting property of random recursive trees that the process Π = (Π(t) : t ≥ 0) is Markovian.

In this direction, we also recall that Aldous and Pitman [1] have considered a similar logging of

the Continuum Random Tree that yields a notable fragmentation process, dual to the standard

additive coalescent. We further point at the very recent work [11] in which the effects of repeated

random removal of nodes (instead of edges) in a finite random recursive tree are analyzed.

It turns out that Π shares many features similar to homogeneous fragmentation processes

as defined in [4, 5]. In particular, the transition kernels of Π are very similar to those of a

homogeneous fragmentation; they are entirely determined by the so-called splitting rates r,

which define an infinite measure on the space of partitions of N. However, there are also

major differences: exchangeability, which is a key requirement for homogeneous fragmentation

processes, fails for Π, and perhaps more notably, the splitting rates measure r does not fulfill

the fundamental integral condition (6) which the splitting rates of homogeneous fragmentation

processes have to satisfy.

It is known from the work of Kingman [12] that exchangeability plays a fundamental role

in the study of random partitions, and more precisely, it lies at the heart of the connection

between exchangeable random partitions (which are discrete random variables), and random

mass-partitions (which are continuous random variables). In particular, the distribution of an

exchangeable random partition is determined by the law of the asymptotic frequencies of its

blocks B,

|B| = lim
n→∞

n−1#{i ≤ n : i ∈ B}. (1)
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Even though Π(t) is not exchangeable for t > 0, it is elementary to see that every block of

Π(t), say B(t), has an asymptotic frequency. However this asymptotic frequency is degenerate,

|B(t)| = 0 (note that if Π were exchangeable, this would imply that all the blocks of Π(t) would

be singletons). We shall obtain a finer result and show that the limit

lim
n→∞

n−e−t

#{i ≤ n : i ∈ B(t)} (2)

exists in (0,∞) almost surely. We shall refer to the latter as the weight of the block B(t)

(we stress that this definition depends on the time t at which the block is taken), and another

natural question about the destruction of T is thus to describe the process X of the weights of

the blocks of the partition-valued process Π.

Because Π resembles homogeneous fragmentations, but with splitting rate measure r which

does not fulfill the integral condition of the former, and because the notion (2) of the weight of

a block depends on the time t, one might expect that X should be an example of a so-called

compensated fragmentation which was recently introduced in [6]. Although this is not exactly

the case, we shall see that X fulfills closely related properties. Using well-known connections

between random recursive trees, Yule processes, and Pólya urns, cf. [3], we shall derive a number

of explicit results about its distribution. In particular, we shall show that upon a logarithmic

transform, X can be viewed as a branching Ornstein-Uhlenbeck process.

The rest of this paper is organized as follows. In Section 2, we study the structure of the

partition-valued process Π which stems from the destruction of T, stressing the resemblances

and the differences with exchangeable fragmentations. In Section 3, we observe that after a

suitable renormalization that depends on t, the blocks of the partition Π(t) possess a weight,

and we relate the process of these weights to Ornstein-Uhlenbeck type processes.

2 Destruction of T and fragmentation of partitions

The purpose of this section is to show that, despite the lack of exchangeability, the partition

valued process Π induced by the fragmentation of T can be analyzed much in the same way as

a homogeneous fragmentation. We shall present the main features and merely sketch proofs,

referring to Section 3.1 in [5] for details.

We start by recalling that a partition π of N is a sequence (πi : i ∈ N) of pairwise disjoint

blocks, indexed in the increasing order of their smallest elements, and such that ⊔i∈Nπi = N. We

write P for the space of partitions of N, which is a compact hypermetric space when endowed

with the distance

d(π, π′) = 1/max{n ∈ N : π|[n] = π′
|[n]},
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where π|B denotes the restriction of π to a subset B ⊆ N and [n] = {1, . . . , n} is the set of the

n first integers. The space PB of partitions of B is defined similarly.

We next introduce some spaces of functions on P. First, for every n ≥ 1, we write Dn for the

space of functions f : P → R which remain constant on balls with radius 1/n, that is such that

f(π) = f(η) whenever the restrictions π|[n] and η|[n] of the partitions π and η to [n] coincide.

Plainly, Dn ⊂ Dn+1, and we set

D∞ =
⋃

n≥1

Dn.

Observe that D∞ is a dense subset of the space C(P) of continuous functions on P.

In order to describe a family of transition kernels which appear naturally in this study, we

first need some notation. For every block B ⊆ N, write B(j) for the j-th smallest element of

B (whenever it makes sense), and then, for every partition π ∈ P, B ◦ π for the partition of B

generated by the blocks B(πi) = {B(j) : j ∈ πi} for i ∈ N. In other words, B ◦ π is simply the

partition of B induced by π when one enumerates the elements of B in their natural order. Of

course, if the cardinality of B is finite, say equal to k ∈ N, then B ◦ π does only depend on π

through π|[k], so that we may consider B ◦ π also for π ∈ P[k] (or π ∈ P[ℓ] for any ℓ ≥ k).

In the same vein, for partitions η ∈ PB and every integer i ≥ 1, we write η ◦
i
π for the

partition of B that results from fragmenting the i-th block of η by π, that is replacing the block

ηi in η by ηi ◦ π. Again, if k = #B <∞, we may also take π ∈ P[ℓ] for ℓ ≥ k.

Finally, for every k ≥ 2, we consider a random partition of N that arises from the following

Pólya urn. At the initial time, the urn contains k − 1 black balls labeled 1, . . . , k − 1 and a

single red ball labeled k. Balls with labels k + 1, k + 2, . . . are colored black or red at random

and then incorporated to the urn one after the other. More precisely, for n ≥ k, the color given

to the n+1-th ball is that of a ball picked uniformly at random when the urn contains n balls.

This yields a random binary partition of N; we write pk for its law. We set

r =

∞
∑

k=2

pk, (3)

which is thus an infinite measure on the set of binary partitions of N.

Recall that each edge of T is deleted at an exponentially distributed random time, indepen-

dently of the other edges. This induces, for every t ≥ 0, a random partition Π(t) of N into

blocks corresponding to the subsets of vertices which are still connected at time t. Observe

that, by construction and the very definition of the distance on P, the process Π has càdlàg

paths.

We are now able to state the main result of this section.
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Theorem 1 (i) The process Π = (Π(t) : t ≥ 0) is Markovian and has the Feller property. We

write G for its infinitesimal generator.

(ii) For every n ≥ 1, Dn is invariant and therefore D∞ is a core for G.

(iii) For every f ∈ D∞ and η ∈ P, we have

Gf(η) =

∫

π∈P

r(dπ)
∑

i

(

f(η ◦
i
π)− f(η)

)

.

We stress that this characterization of the law of the process Π is very close to that of a

homogeneous fragmentation. Indeed, one can rephrase well-known results (cf. Section 3.1.2

in [5]) on the latter as follows. Every homogeneous fragmentation process Γ = (Γt : t ≥ 0)

is a Feller process on P, such that the sub-spaces Dn are invariant (and hence D∞ is a core).

Further, its infinitesimal generator A is given in the form

Af(η) =

∫

π∈P

s(dπ)
∑

i

(

f(η ◦
i
π)− f(η)

)

for every f ∈ D∞ and η ∈ P, where s is some exchangeable measure on P. More precisely,

s({1N}) = 0, where for every block B ⊆ N, 1B ∈ PB denotes the neutral partition which has a

single non-empty block B, and

s
({

π ∈ P : π|[n] 6= 1[n]

})

<∞ for all n ≥ 2. (4)

Observe that the measure r fails to be exchangeable, but it fulfills (4); indeed, one has

r
({

π ∈ P : π|[n] 6= 1[n]

})

=

n
∑

k=2

pk(P) = n− 1.

We shall now prepare the proof of Theorem 1. In this direction, it is convenient to introduce

some further notation. Consider an arbitrary block B ⊆ N, a partition η ∈ PB and a sequence

π(·) = (π(i) : i ∈ N) in P. We write η ◦π(·) for the partition of B whose family of blocks is given

by those of η ◦
i
π(i) for i ∈ N. In words, for each i ∈ N, the i-th block of η is split according to

the partition π(i). Next, consider a probability measure q on P and a sequence (π(i) : i ∈ N) of

i.i.d. random partitions with common law q. We associate to q a probability kernel Fr(·,q) on

PB, by denoting the distribution of η ◦ π(·) by Fr(η,q) for every η ∈ PB. We point out that if

q is exchangeable, then η ◦π(·) has the same distribution as the random partition whose blocks

are given by the restrictions π
(i)
|ηi

of π(i) to ηi for i ∈ N, and Fr(·,q) thus coincides with the

fragmentation kernel that occurs for homogeneous fragmentations, see Definition 3.2 on page

119 in [5]. Of course, the assumption of exchangeability is crucial for this identification to hold.
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Note that the restriction of partitions of N to [n] is compatible with the fragmentation

operator Fr(·, ·), in the sense that

(

η ◦ π(·)
)

|[n]
= η|[n] ◦ π

(·)
|[n]. (5)

Proposition 1 For every n ∈ N, the process Π|[n] = (Π|[n](t) : t ≥ 0) obtained by restricting Π

to [n], is a continuous time Markov chain on P[n].

Its semigroup can be described as follows: for every s, t ≥ 0, the conditional distribution of

Π|[n](s+ t) given Π|[n](s) = η is Fr(η,qt), where qt denotes the distribution of Π(t).

Proof: The case n = 1 is clear since Π|[1](t) = ({1}, ∅, . . . ) for all times t ≥ 0. Assume now

n ≥ 2. The proof relies crucially on the so-called splitting property of random recursive trees

that we now recall (see, e.g. Section 2.2 of [3]). Given a subset B ⊆ N, the image of T by the

map j 7→ B(j) which enumerates the elements of B in the increasing order, is called a random

recursive tree on B and denoted by TB. In particular, for B = [n], the restriction of T to the

first n vertices is a random recursive tree on [n]. Imagine now that we remove k fixed edges

(i.e. edges with given indices, say i1, . . . , ik, where 2 ≤ i1 < . . . < ik ≤ n) from T[n]. Then,

conditionally on the induced partition of [n], say η = (η1, . . . , ηk+1), the resulting k+1 subtrees

are independent random recursive trees on their respective sets of vertices ηj, j = 1, . . . , k + 1.

It follows easily from the lack of memory of the exponential distribution and the compatibility

property (5) that the restricted process Π|[n] =
(

Π|[n](t) : t ≥ 0
)

is a continuous time Markov

chain. More precisely, the conditional distribution of Π|[n](s+ t) given Π|[n](s) = π is Fr(π,qt),

where Fr(·,qt) is here viewed as a probability kernel on P[n]. �

In order to describe the infinitesimal generator of the restricted processes Π|[n] for n ∈ N, we

consider its rates of jumps, which are defined by

rπ = lim
t→0+

t−1
P(Π|[n](t) = π),

where now π denotes a generic partition of [n] which has at least two (non-empty) blocks.

The rates of jumps rπ determine the infinitesimal generator Gn of the restricted chain Π|[n],

specifically we have for f : P[n] → R and η ∈ P[n]

Gnf(η) =
∑

π∈P[n]

∑

i

(

f(η ◦
i
π)− f(η)

)

rπ

(recall that η ◦
i
π denotes the partition that results from fragmenting the i-th block of η according

to π). This determines the distribution of the restricted chain Π|[n], and hence, letting n vary

in N, also characterizes the law of Π. Recall also that the measure r on P has been defined by

(3).
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Proposition 2 For every n ≥ 2 and every partition π of [n] with at least two (non-empty)

blocks, there is the identity

rπ = r(Pπ),

where Pπ = {η ∈ P : η|[n] = π}.

Proof: This should be intuitively straightforward from the connection between the construc-

tion of random recursive trees and the dynamics of Pólya urns. Specifically, fix n ≥ 2 and

consider a partition π ∈ P[n]. If π consists in three or more non-empty blocks, then we clearly

have

lim
t→0+

t−1
P(Π|[n](t) = π) = 0,

since at least two edges have to be removed from T|[n] in order to yield a partition with three or

more blocks. Assume now that π is binary with non-empty blocks π1 and π2, and let k = min π2.

Then only the removal of the edge ek may possibly induce the partition π, and more precisely, if

we write η for the random partition of [n] resulting from the removal of ek, then the probability

that η = π is precisely the probability that in a Pólya urn containing initially k− 1 black balls

labeled 1, . . . , k − 1 and a single red ball labeled k, after n− k steps, the red balls are exactly

those with labels in π2. Since the edge ek is removed at unit rate, this gives

lim
t→0+

t−1
P(Π|[n](t) = π) = rπ = pk(Pπ)

in the notation of the statement. Note that the right-hand side can be also written as r(Pπ),

since pℓ(Pπ) = 0 for all ℓ 6= k. �

Proposition 2 should be compared with Proposition 3.2 in [5]; we refer henceforth to r as

the splitting rate of Π.

We have now all the ingredients necessary to establish Theorem 1.

Proof of Theorem 1: From Proposition 1, we see that the transition semigroup of Π is

given by (Fr(·,qt) : t ≥ 0), and it is easily checked that the latter fulfills the Feller property;

cf. Proposition 3.1(i) in [5]. Point (ii) is immediate from the compatibility of restriction with

the fragmentation operator, see (5). Concerning (iii), let f ∈ Dn. Since f is constant on

{η ∈ P : η|[n] = π}, it can naturally be restricted to a function f : P[n] → R. By the

compatibility property (5), with rπ′ = r(Pπ′) for a partition π′ of [n] defined as in Proposition 2,

we obtain

∫

π∈P

r(dπ)
∑

i

(

f(η ◦
i
π)− f(η)

)

=
∑

π′∈P[n]

∑

i

(

f(η|[n] ◦
i
π′)− f(η|[n])

)

rπ′ = Gnf(η|[n]),

where Gn is the infinitesimal generator of the restricted chain Π|[n] found above. This readily
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yields (iii). �

Remark. It may be interesting to recall that the standard exponential law is invariant under

the map t 7→ − ln(1 − e−t), and thus, if we set ǫ̂i = − ln(1 − exp(−ǫi)) (recall that ǫi is the

instant at which the edge connecting the vertex i to its parent is removed), then (ǫ̂i)i≥2 is a

sequence of i.i.d. exponential variables. The time-reversal t 7→ − ln(1 − e−t) transforms the

destruction process of T into a construction process of T defined as follows. At each time

ǫ̂i, we create an edge between i ≥ 2 and its parent which is chosen uniformly at random in

{1, . . . , i − 1}. It follows that the time-reversed process Π̂(t) = Π(− ln(1 − e−t)−), t ≥ 0,

is a binary coalescent process such that the rate at which two blocks, say B and B′ with

minB < minB′, merge, is given by #{j ∈ B : j < minB′}. This can be viewed as a duality

relation between fragmentation and coalescent processes; see Dong, Goldschmidt and Martin [9]

and references therein.

Recall that for every k ≥ 2, a random binary partition with law pk resulting from the Pólya

urn construction possesses asymptotic frequencies in the sense of (1). This readily entails the

following result.

Proposition 3 For r-almost all binary partitions (B1, B2) ∈ P, the blocks B1 and B2 have

asymptotic frequencies, and more precisely, we have

∫

P

f(|B1|, |B2|)dr =

∫ 1

0

f(1− x, x)x−2dx,

where f : [0, 1]2 → R+ denotes a generic measurable function. In particular,

∫

P

(1− |B1|)dr = ∞.

Proof: Indeed, it is a well-known fact of Pólya urns that for each k ≥ 2, pk-almost every

partition (B1, B2) has asymptotic frequencies with |B1| + |B2| = 1 and |B2| has the beta

distribution with parameters (1, k−1), i.e. with density (k−1)(1−x)k−2 on (0, 1). Our claims

follow immediately since

∞
∑

k=2

(k − 1)(1− x)k−2 = x−2, x ∈ (0, 1).

�

It is interesting to recall that the splitting rates s of a homogeneous fragmentation must

fulfill the integrability condition
∫

P

(1− |B1|)ds <∞, (6)
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which thus fails for r !

We next turn our attention to the Poissonian structure of the process Π, which can be

rephrased in terms similar to those in Section 3.1 of [5]. In this direction, we introduce a

random point measure

M =
∞
∑

i=2

δ(ǫi,∆i,ki)

on R+ ×P ×N as follows. Recall that ǫi is the time at which the edge ei connecting the vertex

i ∈ N to its parent in T is removed. Immediately before time ǫi, the vertex i belongs to some

block of the partition Π(ǫi−), we denote the label of this block by ki (recall that Π is càdlàg

and that blocks of a partition are labeled in the increasing order of their smallest element).

Removing the edge ei yields a partition of that block B = Πki(ǫi−) into two sub-blocks, which

can be expressed (uniquely) in the form B ◦∆i. This defines the binary partition ∆i and hence

the point measureM unambiguously. The process Π can be recovered fromM , in a way similar

to that explained on pages 97-98 in [5]. Roughly speaking, for every atom of M , say (t,∆, k),

Π(t) results from partitioning the k-th block of Π(t−) using ∆, that is by replacing Πk(t−) by

Πk(t−) ◦∆. Adapting the arguments of Section 3.1.3 in [5], we have the following result:

Proposition 4 The random measure M is Poisson with intensity λ⊗ r⊗#, where λ denotes

the Lebesgue measure on R+ and # the counting measure on N.

Proof: Recall that we write 1[n] = ([n], ∅, . . .) for the partition of [n] which consists of a single

non-empty block. Consider a Poisson random measure M ′ with intensity λ ⊗ r ⊗# as in the

statement. Then M ′ has almost surely at most one atom in each fiber {t} ⊗ P ⊗ N, and the

discussion below (4) shows that for each t′ ≥ 0 and every n ∈ N, the number of atoms (t, π, k)

of M ′ with t ≤ t′, π|[n] 6= 1[n] and k ≤ n is finite. We may therefore define for fixed n ∈ N

a P[n]-valued continuous time Markov chain (Π′[n](t) : t ≥ 0) starting from Π′[n](0) = 1[n] as

follows: If t is a time at which the fiber {t} × P × N carries an atom (t, π, k) of M ′ such that

π|[n] 6= 1[n] and k ≤ n, then Π′[n](t) results from Π′[n](t−) by replacing its k-th block Π
′[n]
k (t−)

by Π
′[n]
k (t−) ◦ π|[n].

The sequence (Π′[n](t) : n ∈ N) is clearly compatible for every t ≥ 0, in the sense that

Π′[n]
|[m](t) = Π′[m](t) = for all integers n ≥ m. We deduce as in the proof of Lemma 3.3 in [5]

that there exists a unique P-valued càdlàg function (Π′(t) : t ≥ 0) such that Π′
|[n](t) = Π′[n](t).

Moreover, the i-th block Π′
i(t) of Π′(t) is given by the increasing union Π′

i(t) = ∪n∈NΠ
′[n]
i (t),

and it follows from the very construction of Π′[n](t) that the process Π′ can be recovered from

M ′ similarly to the description above the statement of the proposition. It remains to check that

Π′ and Π have the same law, which follows if we show that the restricted processes Π′
|[n] = Π′[n]

and Π|[n] have the same law for each n ∈ N. Fix n ≥ 2, and denote by π a partition of [n] with
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at least two non-empty blocks. From the Poissonian construction of Π′[n], with Pπ as in the

statement of Proposition 2, we first see that

lim
t→0+

t−1
P
(

Π′[n](t) = π
)

= r(Pπ).

Next, if π′ 6= π′′ ∈ P[n], the jump rate of Π′[n] from π′ to π′′ is non-zero only if π′′ can be

obtained from π′ by replacing one single block of π′, say the k-th block π′
k, by π

′
k ◦ π, where

π is some binary partition of [n]. This observation and the last display readily show that Π′[n]

and Π|[n] have the same generator, and hence their laws agree. �

3 The process of the weights

Even though the splitting rates measure r of the fragmentation process Π fails to fulfill the

integral condition (6), we shall see that we can nonetheless define the weights of its blocks. The

purpose of this section is to investigate the process of the weights as time passes.

3.1 The weight of the first block as an O.U. type process

In this section, we focus on the first block Π1(t), that is the cluster at time t which contains

the root 1 of T. The next statement gathers its key properties, and in particular stresses the

connection with an Ornstein-Uhlenbeck type process.

Theorem 2 (i) For every t ≥ 0, the following limit

lim
n→∞

n−e−t

#{j ≤ n : j ∈ Π1(t)} = X1(t)

exists in (0,∞) a.s. The variable X1(t) has the Mittag-Leffler distribution with parameter e−t,

P(X1(t) ∈ dx)/dx =
et

π

∞
∑

k=0

(−1)k+1

k!
Γ(ke−t + 1)xk−1 sin(πke−t);

equivalently, its Mellin transform is given by

E(Xq
1(t)) =

Γ(q + 1)

Γ(e−tq + 1)
, q ≥ 0.

(ii) The process (X1(t) : t ≥ 0) is Markovian; its semigroup Pt(x, ·) is given by

Pt(x, ·) = P(xe
−t

X1(t) ∈ ·).
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(iii) The process Y (t) = lnX1(t), t ≥ 0, is of Ornstein-Uhlenbeck type. More precisely,

L(t) = Y (t) +

∫ t

0

Y (s)ds, t ≥ 0,

is a spectrally negative Lévy process with cumulant-generating function

κ(q) = lnE(exp(qL(1))), q ≥ 0,

given by

κ(q) = qψ(q + 1),

where ψ denotes the digamma function, that is the logarithmic derivative of the gamma function.

In the sequel, we shall refer to X1(t) as the weight of the first block (or the root-cluster) at

time t. Before tackling the proof of Theorem 2, we make a couple of comments.

Firstly, observe from (i) that limt→∞ E(X1(t)
q) = Γ(q+1), so that as t→ ∞, Y (t) converges

in distribution to the logarithm of a standard exponential variable. On the other hand, it is well-

known that the weak limit at ∞ of an Ornstein-Uhlenbeck type process is self-decomposable;

cf. Section 17 in Sato [18]. So (iii) enables us to recover the fact that the log-exponential

distribution is self-decomposable; see Shanbhag and Sreehari [19].

Secondly, note that the Lévy-Khintchin formula for κ reads

κ(q) = −γq +

∫ 0

−∞

(eqx − 1− qx)
ex

(1− ex)2
dx,

where γ = 0.57721 . . . is the Euler-Mascheroni constant. Indeed, this follows readily from the

classical identity for the digamma function

ψ(q + 1) = −γ +

∫ 1

0

1− xq

1− x
dx.

In turn, this enables us to identify the Lévy measure of L as

Λ(dx) = ex(1− ex)−2dx, x ∈ (−∞, 0).

Since the jumps of L and of Y coincide, the Lévy-Itō decomposition entails that the jump process

of Y = lnX1 is a Poisson point process with characteristic measure Λ. In this direction, recall

from Proposition 3 that the distribution of the asymptotic frequency of the first block under

the measure r of the splitting rates of Π is (1− y)−2dy, y ∈ (0, 1), and observe that the image

of the latter by the map y 7→ ln y is precisely Λ. This should of course not come as a surprise.
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We shall present two proofs of Theorem 2(i); the first relies on the well-known connection

between random recursive trees and Yule processes and is based on arguments due to Pitman.

Indeed, #{j ≤ n : j ∈ Π1(t)} can be interpreted in terms of the two-type population system

considered in Section 3.4 of [17], as the number of novel individuals at time t when the birth

rate of novel offspring per novel individual is given by α = e−t, and conditioned that there are

n individuals in total in the population system at time t. Part (i) of the theorem then readily

follows from Proposition 3.14 in connection with Corollary 3.15 and Theorem 3.8 in [17]. For

the reader’s convenience, let us nonetheless give a self-contained proof which is specialized to

our situation. We further stress that variations of this argument will be used in the proofs of

Proposition 5 and Corollary 2.

First proof of Theorem 2(i): Consider a population model started from a single ancestor,

in which each individual gives birth a new child at rate one (in continuous time). If the ancestor

receives the label 1 and the next individuals are labeled 2, 3, . . . according to the order of their

birth times, then the genealogical tree of the entire population is a version of T. Further,

if we write Z(s) for the number of individuals in the population at time s, then the process

(Z(s) : s ≥ 0) is a Yule process, that is a pure birth process with birth rate n when the

population has size n. Moreover, it is readily seen that the Yule process Z and the genealogical

tree T are independent.

It is well-known that

lim
s→∞

e−sZ(s) =W almost surely,

where W has the standard exponential distribution. As a consequence, if we write τn = inf{s ≥

0 : Z(s) = n} for the birth-time of the individual with label n, then

lim
n→∞

ne−τn =W almost surely. (7)

Now we incorporate destruction of edges to this population model by killing merciless each

new-born child with probability 1−p ∈ (0, 1), independently of the other children. The resulting

population model is again a Yule process, say Z(p) = (Z(p)(s) : s ≥ 0), but now the rate of

birth per individual is p. Therefore, we have also

lim
s→∞

e−psZ(p)(s) =W (p) almost surely,

whereW (p) is another standard exponential variable. We stress thatW (p) is of course correlated

to W and not independent of T, in contrast to W .

In this framework, we identify for p = e−t

#{j ≤ n : j ∈ Π1(t)} = Z(p)(τn)

12



and therefore

lim
n→∞

e−pτn#{j ≤ n : j ∈ Π1(t)} =W (p) almost surely.

Combining with (7), we arrive at

lim
n→∞

n−p#{j ≤ n : j ∈ Π1(t)} =
W (p)

W p
almost surely,

which proves the first part of (i).

Now recall that the left-hand side above only depends on the genealogical tree T and the

exponential random variables ǫi attached to its edges. Therefore, it is independent of the Yule

process Z and a fortiori of W . Since both W and W (p) are standard exponentials, the second

part of (i) now follows from the moments of exponential random variables. �

The second proof of Theorem 2(i) relies on more advanced features on the destruction of

random recursive trees and Poisson-Dirichlet partitions.

Second proof of Theorem 2(i): It is known from the work of Goldschmidt and Martin [10]

that the destruction of T bears deep connections to the Bolthausen-Sznitman coalescent. In

this setting, the quantity

#{j ≤ n : j ∈ Π1(t)}

can be viewed as the number of blocks at time t in a Bolthausen-Sznitman coalescent on

[n] = {1, . . . , n} started from the partition into singletons. On the other hand, it is known that

the latter is a so-called (e−t, 0) partition; see Section 3.2 and Theorem 5.19 in Pitman [17]. Our

claims now follow from Theorem 3.8 in [17]. �

Proof of Theorem 2(ii): Let Π′
1 be an independent copy of the process Π1. Fix s, t ≥ 0 and

put B = Π1(s), C = Π′
1(t). Recall that B(j) denotes the j-th smallest element of B, and B(C)

stands for the block {B(j) : j ∈ C}. By Proposition 1, there is the equality in distribution

Π1(s+ t) = B(C). From (i) we deduce that

B(n) ∼ (n/X1(s))
es almost surely as n→ ∞,

and similarly C(n) ∼ (n/X ′
1(t))

et as n → ∞, where X ′
1(t) has the same law as X1(t) and is

further independent of (X1(r) : r ≥ 0). It follows that there are the identities

13



X1(s+ t) = lim
m→∞

m−e−(s+t)

#{j ≤ m : j ∈ Π1(s+ t)}

= lim
n→∞

(

(B(C)(n))−e−(s+t)

n
)

= lim
n→∞

(

(B(C(n)))−e−(s+t)

n
)

= Xe−t

1 (s)X ′
1(t).

Here, in the next to last equality we have used the fact that the n-th smallest element of B(C)

is given by the C(n)-th smallest element of B, and for the last equality we have plugged in the

asymptotic expressions for B(n) and C(n) that we found above. Our claim now follows easily.

�

We point out that, alternatively, the Markov property of X1 can also be derived from the

interpretation of #{j ≤ n : j ∈ Π1(t)} as the number of blocks at time t in a Bolthausen-

Sznitman coalescent on [n]; see the second proof of Theorem 2(i) above.

Proof of Theorem 2(iii): We first observe from (ii) that the process Y is Markovian with

semigroup Qt(y, ·) given by

Qt(y, ·) = P(e−ty + Y (t) ∈ ·).

Next, recall from the last remark made after Theorem 2 that the function q 7→ κ(q) = qψ(q+1)

is the cumulant-generating function of a spectrally negative Lévy process, say L = (L(t) : t ≥ 0).

Consider then the Ornstein-Uhlenbeck type process U = (U(t) : t ≥ 0) that solves the stochastic

differential equation

U(t) = L(t)−

∫ t

0

U(s)ds,

that is, equivalently, U(t) = e−t
∫ t

0
esdL(s). Then U is also Markovian with semigroup Rt(u, ·)

given by

Rt(u, ·) = P(e−tu+ U(t) ∈ ·).

So to check that the processes Y and U have the same law, it suffices to verify that they have

the same one-dimensional distribution.

The calculations of Section 17 in Sato [18] (see Equation (17.4) and Lemma 17.1 there) show

that for every q ≥ 0,

E (exp(qU(t))) = exp

(
∫ t

0

κ(e−sq)ds

)

.

Now observe that

∫ t

0

κ(e−sq)ds =

∫ t

0

e−sqψ(e−sq + 1)ds = lnΓ(q + 1)− ln Γ(e−tq + 1),
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and hence

E (exp(qU(t))) =
Γ(q + 1)

Γ(e−tq + 1)
= E (exp(qY (t))) ,

where the second identity stems from Theorem 2(i). �

Remark. It would be interesting to understand whether with probability 1, the block Π1(t)

has weights in the sense of Theorem 2(i) simultaneously for all t ≥ 0 (note that the asymptotic

frequencies are equal to zero on (0,∞) a.s.), and whether t 7→ X1(t) is càdlàg. In this direction,

we recall that each block of a standard homogeneous fragmentation process possesses asymptotic

frequencies simultaneously for all t ≥ 0 a.s., see Proposition 3.6 in [5]. Moreover, if B denotes a

block of such a process, then the process t 7→ |B(t)| is càdlàg. Here it should be observed that

the first block Π1 is the only block which is decreasing, in the sense that Π1(t
′) is contained

in Π1(t) a.s. whenever t′ ≥ t. This however does not imply monotonicity of X1(t) in t, which

is crucial ingredient for the proof of the mentioned properties in the case of a homogeneous

fragmentation.

3.2 Fragmentation of weights as a branching O.U. process

We next turn our interest to the other blocks of the partition Π(t); we shall see that they also

have a weight, in the same sense as for the first block. In this direction, it is convenient to

write first Ti for the subtree of T rooted at i ≥ 1; in particular T1 = T. Then for t ≥ 0, we

write Ti(t) the subtree of Ti consisting of vertices j ∈ Ti which are still connected to i after

the edges ek with ǫk ≤ t have been removed. Note that for i ≥ 2, Ti(t) is a cluster at time t if

and only if ǫi ≤ t, an event which has always probability 1− e−t and is further independent of

Ti(t). On that event, the vertex set of Ti(t) is a block of the partition Π(t), and all the blocks

of Π(t) arise in this form.

Lemma 1 For every t ≥ 0 and i ∈ N, the following limit

lim
n→∞

n−e−t

#{j ≤ n : j ∈ Ti(t)} = ρi(t)

exists in (0,∞) a.s. Moreover, the process

ρi = (ρi(t) : t ≥ 0)

has the same law as

(βe−t

i X1(t) : t ≥ 0),

where βi denotes a beta variable with parameter (1, i− 1) and is further independent of X1(t).
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In particular, the positive moments of ρi(t) are given by

E(ρqi (t)) =
Γ(q + 1)Γ(i)

Γ(e−tq + i)
, q ≥ 0.

Proof: The recursive construction of T and Ti has the same dynamics as a Pólya urn, and basic

properties of the latter entail that the proportion βi of vertices in Ti has the beta distribution

with parameter (1, i−1). Further, enumerating the vertices of Ti turns the latter into a random

recursive tree. Our claim then follows readily from Theorem 2. �

Lemma 1 entails that for every i ∈ N, the i-th block Πi(t) of Π(t) has a weight in the sense

of (2), a.s. We write Xi(t) for the latter and set X(t) = (X1(t), X2(t), . . .). We now investigate

the process X = (X(t) : t ≥ 0).

Firstly, using the functional equation of the gamma function, the integral representation of

the beta function and the expression for the moments of X1(t) from Theorem 2(i), an easy

calculation shows

E

(

∞
∑

i=1

Xq
i (t)

)

= E (Xq
1(t)) + E

(

∞
∑

i=2

11{ǫi≤t}ρ
q
i (t)

)

=
(q − 1)

(e−tq − 1)

Γ(q)

Γ(e−tq)
, (8)

provided q > et. In particular, for every t ≥ 0, the Xi(t) can be sorted in the decreasing order.

We write X↓(t) for the sequence obtained from X(t) by ranking the weights Xi(t) decreasingly,

where as usual elements are repeated according to their multiplicity. For q > 0, let

ℓq↓ =

{

x = (x1, . . . ) : x1 ≥ x2 ≥ · · · ≥ 0, and
∞
∑

i=1

xqi <∞

}

,

endowed with the ℓq-distance. Similarly, denote by ℓ∞↓ the space of ordered sequences of

positive reals, endowed with the ℓ∞-distance. For the process X↓, we obtain the following

characterization.

Corollary 1 Let T ∈ (0,∞], and set q = eT (with the convention e∞ = ∞). Then the process

X↓ = (X↓(t) : t < T ) takes its values in ℓq↓ and is Markovian. More specifically, its semigroup

can be described as follows. For s, t ≥ 0 with s + t < T , the law of X↓(s + t) conditioned on

X↓(s) = (x1, . . . ) is given by the distribution of the decreasing rearrangement of the sequence

(xe
−t

i x
(i)
j : i, j ∈ N), where ((x

(i)
1 , . . . ) : i ∈ N) is a sequence of independent random elements in

ℓq↓, each of them distributed as X↓(t).

Proof: The fact thatX↓(t) ∈ ℓq↓ for t < T follows from (8). The specific form of the semigroup

can be deduced from Theorem 1 and a variation of the arguments leading to Theorem 2(ii). �
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We now draw our attention to the logarithms of the weights. In this direction, recall that

for a homogeneous fragmentation, the process of the asymptotic frequencies of the blocks bears

close connections with branching random walks. More precisely, the random point process with

atoms at the logarithm of the asymptotic frequencies and observed, say at integer times, is

a branching random walk; see [8] and references therein. This means that at each step, each

atom, say y, is replaced by a random cloud of atoms located at y + z for z ∈ Z, independently

of the other atoms, and where the random point process Z has a fixed distribution which

does not depend on y nor on the step. In the same vein, we also point out that recently,

a natural extension of homogeneous fragmentations, called compensated fragmentations, has

been constructed in [7], and bears a similar connection with branching Lévy processes. Note

that compensated fragmentations are ℓ2↓-valued processes, in contrast to X↓.

Our observations incite us to introduce

Yt =
∞
∑

i=1

δlnXi(t), t ≥ 0.

Theorem 3 The process with values in the space of point measure Y = (Yt : t ≥ 0) is an

Ornstein-Uhlenbeck branching process, in the sense that it is Markovian and its transition prob-

abilities can be described as follows:

For every s, t ≥ 0, the conditional law of Ys+t given Ys =
∑∞

i=1 δyi is given by the distribution

of
∞
∑

i=1

∞
∑

j=1

δ
e−tyi+ζ

(i)
j

where the point measures

Z(i) =
∞
∑

j=1

δ
ζ
(i)
j

are independent and each has the same law as Yt.

Furthermore, the mean intensity of Yt is determined by

E

(
∫

eqyYt(dy)

)

=
(q − 1)

(e−tq − 1)

Γ(q)

Γ(e−tq)
, q > et.

Proof: The first claim follows from Theorem 1 and an adaption of the argument for Theo-

rem 2(iii). For the second, we note that

E

(
∫

eqyYt(dy)

)

= E

(

∞
∑

i=1

Xq
i (t)

)

,
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and the right hand side has already been evaluated in (8). �

Next we give a description of the finite dimensional laws of X(t) = (X1(t), X2(t), . . .) for

t > 0 fixed. In this direction, it is convenient to define two families of probability distributions.

The first family is indexed by j ∈ N and t > 0, and is defined as

µj,t(k) =

(

k − 2

k − j − 1

)

(e−t)k−j−1(1− e−t)j , k ≥ j + 1.

Note that the shifted distribution µ̃j,t(k) = µj,t(k + 1), k ≥ j, is sometimes called the negative

binomial distribution with parameters j and 1−e−t, that is the law of the number of independent

trials for j successes when the success probability is given by 1− e−t.

The second family is indexed by j ∈ N and k ≥ j, and can be described as follows. We

denote by θj,k the probability measure on the discrete simplex ∆k,j = {(k1, . . . , kj) ∈ N
j :

k1 + · · ·+ kj = k}, such that θj,k (k1, . . . , kj) is the probability that on a random recursive tree

of size k (that is on a random tree distributed as T|[k]), after j−1 of its edges chosen uniformly

at random have been removed, the sequence of the sizes of the j subtrees, ordered according to

the label of their root vertex, is given by (k1, . . . , kj).

Remark. The distribution θj,k is equal to δk for j = 1. For j = 2, Meir and Moon [15] found

the expression

θ2,k(k1, k2) =
k

k2(k2 + 1)(k − 1)
, k1, k2 ∈ N with k1 + k2 = k,

with θ2,k(k1, k2) = 0 for all other pairs (k1, k2). Generalizing the proof of this formula given

in [15] to higher j, we find (k ≥ j ≥ 3 and k1 + · · ·+ kj = k)

θj,k(k1, k2, . . . , kj) =
(k1 − 1)!(k2 − 1)! · · · (kj − 1)!

(k − 1)!(k − 1) · · · (k − (j − 1))

k−kj
∑

ℓj=j−1

(

k − ℓj
kj

)

×

(k−kj−kj−1)∧(ℓj−1)
∑

ℓj−1=j−2

(

k − kj − ℓj−1

kj−1

)

× · · · ×

(k−
∑j

i=2 ki)∧(ℓ3−1)
∑

ℓ2=1

(

k −
∑j

i=3 ki − ℓ2
k2

)

.

Proposition 5 Let j ∈ N, q1, . . . , qj+1 ≥ 0, and set kj+1 = 1. The Mellin transform of the

vector (X1(t), . . .Xj+1(t)) for fixed t > 0 is given by

E
(

Xq1
1 (t) · · ·X

qj+1

j+1 (t)
)

=
∞
∑

k=j+1

µj,t(k)
∑

k1,...,kj≥1,

k1+···+kj=k−1

θj,k−1 (k1, . . . , kj)
Γ(k)

Γ(qe−t + k)

j+1
∏

i=1

Γ(qi + ki)

Γ(ki)
.

Remark. By plugging in the definition of µj,t(k), one checks that the right hand side is finite.
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Proof: Fix t > 0, and set p = e−t. For ease of notation, we write Πi and Xi instead of Πi(t)

and Xi(t). Furthermore, fix an integer j ∈ N and numbers k1, . . . , kj ∈ N. For convenience, set

k = k1 + · · ·+ kj + kj+1, with kj+1 = 1. We first work conditionally on the event

Ak1,...,kj =
{

minΠj+1 = k, #(Π1 ∩ [k]) = k1, . . . ,#(Πj ∩ [k]) = kj
}

.

We shall adapt the first proof of Theorem 2(i). Here, we consider a multi-type Yule process

starting from k individuals in total such that ki of them are of type i, for each i = 1, . . . , j +1.

The individuals reproduce independently of each other at unit rate, and each child individual

adopts the type of its parent. Then, if Z(s) stands for the total number of individuals at time

s, we have that lims→∞ e−sZ(s) = γ(k) almost surely, where γ(k) is distributed as the sum of k

standard exponentials, i.e. follows the gamma law with parameters (k, 1). Now assume again

that each new-born child is killed with probability 1 − p ∈ (0, 1), independently of each other.

Writing Z(i,p)(s) for the size of the population of type i at time s (with killing), we obtain

lim
s→∞

e−psZ(i,p)(s) = γ(i,p)(ki), i = 1, . . . , j + 1,

where the γ(i,p)(ki) are independent gamma(ki, 1) random variables (they are however clearly

correlated to the asymptotic total population size γ(k)). From the arguments given in the first

proof of Theorem 2(i) it should be plain that conditionally on the event Ak1,...,kj , we have for

the weights Xi the representation

Xi =
γ(i,p)(ki)

γp(k)
, i = 1, . . . , j + 1,

and the Xi are independent of γ(k). Now let q1, . . . , qj+1 ≥ 0 and put q = q1+ · · ·+ qj+1. Using

the expression for the Xi and independence, we calculate

E (γ(k)qp)E
(

Xq1
1 · · ·X

qj+1

j+1 | Ak1,...,kj

)

=

j+1
∏

i=1

Γ(qi + ki)

Γ(ki)
. (9)

Therefore, again with kj+1 = 1,

E
(

Xq1
1 · · ·X

qj+1

j+1

)

=

∞
∑

k=j+1

Γ(k)

Γ(qp+ k)

∑

k1,...,kj≥1,

k1+···+kj=k−1

j+1
∏

i=1

Γ(qi + ki)

Γ(ki)
P
(

Ak1,...,kj

)

.

With k = k1 + · · ·+ kj+1 as above, we express the probability of Ak1,...,kj as

P
(

Ak1,...,kj

)

= P (#(Π1 ∩ [k]) = k1, . . . ,#(Πj ∩ [k]) = kj | minΠj+1 = k)P (minΠj+1 = k) .
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By induction on j we easily deduce that minΠj+1−1 is distributed as the sum of j independent

geometric random variables with success probability 1−p, i.e. minΠj+1−1 counts the number

of trials for j successes, so that P (minΠj+1 = k) = µt,j(k). Moreover, it follows from the very

definition of the blocks Πi and the fact that the exponentials attached to the edges of T|[k] are

i.i.d. that

P (#(Π1 ∩ [k]) = k1, . . . ,#(Πj ∩ [k]) = kj | minΠj+1 = k) = θj,k−1(k1, . . . , kj).

This proves the proposition. �

We finally look closer at the joint moments of X1(t) and X2(t) when t tends to zero. We

observe θ1,k = δk and µ1,t(k) = (e−t)k−2(1− e−t), so that

E (Xq1
1 (t)Xq2

2 (t)) = (1− e−t)Γ(q2 + 1)

∞
∑

k=2

(k − 1)(e−t)k−2 Γ(q1 + k − 1)

Γ((q1 + q2)e−t + k)
.

Now assume q2 > 1. From the last display we get

lim
t→0+

1

t
E (Xq1

1 (t)Xq2
2 (t)) =

∞
∑

k=1

k
Γ(q1 + k)Γ(q2 + 1)

Γ(q1 + q2 + k + 1)

=
∞
∑

k=1

k

∫ 1

0

(1− x)q1+k−1xq2dx =

∫ 1

0

(1− x)q1xq2−2dx,

which one could have already guessed from Proposition 3.

3.3 Asymptotic behaviors

We shall finally present some asymptotic properties of the process X of the weights. To start

with, we consider the large time behavior.

Corollary 2 As t→ ∞, there is the weak convergence

(Xi(t) : i ∈ N) =⇒ (Wi : i ∈ N),

where on the right-hand side, the Wi are i.i.d. standard exponential variables.

Remark. This result is a little bit surprising, as obviously Π(∞) is the partition into singletons.

That is Πi(∞) is reduced to {i} and hence has weight 1 if we apply (2) for t = ∞. In other

words, the limits n→ ∞ and t→ ∞ may not be interchanged.
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Proof: Fix j ∈ N arbitrarily and consider the event A(t) = {minΠj+1(t) = j + 1}. Recall

from the proof of Proposition 5 that P(A(t)) = µt,j(j+1) and note that this quantity converges

to 1 as t→ ∞. Further, on the event A(t), we have also Πi(t)∩[j+1] = {i} for all 1 ≤ i ≤ j+1,

that is A(t) = A1,...,1, again in the notation of the proof of Proposition 5.

Take q1, . . . , qj+1 ≥ 0. Applying (9), we get

lim
t→∞

E
(

Xq1
1 (t) · · ·X

qj+1

j+1 (t) | A(t)
)

=

j+1
∏

i=1

Γ(qi + 1),

which entails that (X1(t), . . . , Xj+1(t)) converge in distribution as t → ∞ towards a sequence

of j + 1 independent exponentially distributed random variables. �

We next consider for t > 0 fixed the behavior of Xn(t) as n→ ∞.

Corollary 3 Let t > 0. As n→ ∞, there is the weak convergence

ne−t

Xn(t) =⇒ V e−t

X1(t),

where V denotes an exponential random variable of parameter (1− e−t)−1 which is independent

of X1(t).

Proof: In the notation of Lemma 1, we have Xn(t) = ρi(n,t)(t), where (again with the conven-

tion ǫ1 = 0)

i(n, t) = min

{

j ≥ 1 :

j
∑

i=1

11{ǫi≤t} = n

}

.

From Lemma 1 we know that Xn(t) = βe−t

i(n,t)X1(t) in distribution, where i(n, t) and βi(n,t) are

both independent of X1(t). By the law of large numbers, i(n, t) ∼ n(1 − e−t)−1 almost surely.

Writing

βi(n,t) =
(

i(n, t)βi(n,t)
)

i(n, t)−1

and using the fact that kβk converges in distribution to a standard exponential random variable

as k → ∞, the claim follows. �

We finally look at the case t→ 0+. From Theorem 2(i) it follows that

lim
t→0+

X1(t) = 1 in probability. (10)

In fact, X1(t) tends to be the largest element of the sequence X when t approaches zero.

Corollary 4

lim
t→0+

P (X1(t) > Xi(t) for all i ≥ 2) = 1.

21



Proof: We consider the complementary event. We have

P (Xi(t) ≥ X1(t) for some i ≥ 2) ≤ P (Xi(t) ≥ 1/2 for some i ≥ 2) + P (X1(t) ≤ 1/2) ,

and the second probability on the right hand side converges to zero as t→ 0+ by (10). For the

first probability, we have by Lemma 1, with βi denoting a beta(1, i− 1) random variable,

P (Xi(t) ≥ 1/2 for some i ≥ 2) ≤ (1− e−t)
∞
∑

i=2

P

(

βiX
et

1 (t) ≥ (1/2)e
t
)

.

Using independence and the expression for the moments of X1(t) from Theorem 1, we obtain

for t ≥ 0 such that et ≤ 2, E(βiX
et

1 (t)) ≤ 2/i and Var(βiX
et

1 (t)) ≤ 24/i2. Therefore, for such t

and i ≥ 10, by Chebycheff’s inequality, with C = 104,

P

(

∣

∣βiX
et

1 (t)− E(βiX
et

1 (t))
∣

∣ ≥ (1/2)e
t

− 2/i
)

≤
C

i2
.

This shows

P (Xi(t) ≥ 1/2 for some i ≥ 2) ≤ (1− e−t)

(

8 + C

∞
∑

i=10

1

i2

)

= O(t) as t→ 0 + .

�

Concluding remark. As it should be plain from the introduction, the set of vertices

C
(n)
i (t) = {j ≤ n : j ∈ Πi(t)}

form the percolation clusters of a Bernoulli bond percolation with parameter p = e−t on a

random recursive tree of size n on the vertex set {1, . . . , n}. Our results of Section 3 can

therefore be understood as results on the asymptotic sizes of these clusters when n tends to

infinity.

Cluster sizes of random recursive trees were already studied in [6] when the percolation

parameter p satisfies p = p(n) = 1−s/ lnn+o(1/ lnn) for s > 0 fixed. The analysis was extended

in [2] to all regimes p(n) → 1. It shows that in these regimes, the root cluster containing 1 has

always the asymptotic size ∼ np(n), while the next largest cluster sizes, normalized by a factor

(1− p(n))−1n−p(n), are in the limit given by the (ranked) atoms of a Poisson random measure

on (0,∞) with intensity a−2da.

The regime of constant parameter p = e−t considered here deserves the name “critical”, since

in this regime, the root cluster and the next largest clusters have the same order of magnitude,

namely np. This is already apparent from Lemma 1. More precisely, Corollary 2 readily shows
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that in fact

lim
t↑∞

lim inf
n→∞

P

(

there exists i ≥ 2 such that #C
(n)
i (t) > #C

(n)
1 (t)

)

= 1.
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