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Abstract

This article presents a new approach for constructing connected operators for image processing and analysis. It relies
on a hierarchical Markovian unsupervised algorithm in order to classify the nodes of the traditional Max-Tree. This
approach enables to naturally handle multivariate attributes in a robust non-local way. The technique is demonstrated
on several image analysis tasks: filtering, segmentation, and source detection, on astronomical and biomedical images.
The obtained results show that the method is competitive despite its general formulation. This article provides also a
new insight in the field of hierarchical Markovian image processing showing that morphological trees can advantageously
replace traditional quadtrees.
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1. Introduction

In image processing, connected operators are morpho-
logical operators that concentrate on the non deformation
of edges. In binary images, as their name suggests, their
very principle is to work on the connected components of5

an image, and the only allowed operation is the removal
of such components. Connected operators take their roots
in the notion of filters by reconstruction [1, 2]. They have
been studied in the context of binary image processing
in [3, 4] and their extension to gray-scale images appeared10

in [5, 6, 7, 8]. In this case, we say that an operator is con-
nected if it is connected at all thresholding levels of the
image.

Gray-scale connected operators started to become pop-
ular when a powerful framework and an efficient algorithm15

were proposed in order to compute connected operators by
Salembier et al. [9]. This framework relies on a hierarchical
representation of the image called the Max-Tree (also com-
monly known as the (connected) component tree). This
representation is a tree where each node corresponds to a20

connected component of a threshold of the image and the
parent relation is given by the inclusion relation among
the connected components. This representation can then
be used in the following 4-steps process (see Fig. 1) to de-
fine connected operators: 1) compute the Max-Tree of the25
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image, 2) equip each node of the tree with some relevant
attributes (area, compactness, moments, entropy. . . ), 3)
select nodes in the tree according to their attribute val-
ues, and finally 4) reconstruct an image from the filtered
tree. The last reconstruction step consists in assigning30

a new value to each pixel of the image using the con-
tent of the nodes selected during the previous step. Con-
nected operators have since been applied to various types
of images: document images [10, 11, 12], biomedical imag-
ing [13, 14, 15, 16], remote sensing [17, 18], or astronomical35

imaging [19, 20]. Although the primary aim of connected
operators was to perform image filtering [9], they have now
been implied in various image analysis tasks such as seg-
mentation [8, 21, 22], retrieval [23], classification [24] or
registration [25].40

It is also noteworthy that several connected operators
(morphological reconstruction, flooding, region growing. . . )
can be formulated in the framework of the Image Forest-
ing Transform (IFT) [26]. The IFT relies on an efficient
and versatile formulation based on the classical shortest45

path problem and provides a unified framework for a wide
variety of image operators. On the other hand it has also
been observed that connected operators share deep links
with the TV-L1 optimization scheme [27].

1.1. Related works50

Researches have been carried out in order to improve
the capacity or the efficiency at each step of the method.

About the construction of the representation, a first
category of works concentrates on the definition of the con-
nected components: connections [28], second-generation55
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Figure 1: The general 4 step process used to construct a connected operator: 1) construct the Max-Tree representing the image, 2) compute
node attributes, i.e., attach features to each node, 3) select nodes based on their attribute value: the selected nodes form a new tree, and 4)
reconstruct an image from the new tree, i.e., assign a value to each pixel based on the remaining nodes in the filtered tree.

connections [29, 30, 14, 31], hyperconnections [12], or di-
rected connections [32]. The relations among various def-
initions of connections have been studied in [33].

Other works proposed to replace the Max-Tree by other
representations, generally designated bymorphological trees :60

binary partition trees [34], hierarchies induced by con-
strained connectivities [35], hierarchies of minimum span-
ning forests [36], the tree of shapes [37, 38], the connectiv-
ity tree [39], the alpha-tree [40]. . . One can note that the
relations among some of these representations have been65

studied in [41, 42].
The use and definition of relevant node attributes have

also been studied in various works. Among the proposed
attributes, we find: area [43, 44], dynamic [45], simplicity
and entropy [9], various geometrical moments and tensors70

[13, 21], multispectral volume and color [20], contrast [10],
Mumford-Shah energy [46] and so on.

While most connected operators designed so far rely
on a simple thresholding on the attribute values – i.e.,
a node is selected if its attribute value is larger than a75

specified threshold – it has immediately been noted that
such a purely local strategy tends to to be sensitive to noise
whenever the attributes is not increasing: i.e., when the
attribute value does not vary monotonically along a branch
of the tree. In the seminal work of Salembier et al. [9] the80

authors proposed several regularization strategies that all
rely on the idea that the selection process should realize
a pruning of the tree. The three proposed strategies were
the followings:

• max: a branch is pruned at its highest selected node;85

• min: a branch is pruned at its lowest selected node;

• Viterbi: an energy criterion is optimized in order to
determine the best pruning level.

Recently, Xu et al. proposed in [16, 47] to apply an-
other connected filter on the tree representation seen as90

an image whose adjacency relation is given by the parent-
children relation in the tree, and whose pixel values are
the attribute values. This approach provides a non local
strategy to detect relevant changes in the attribute values.

Another difficulty of the node selection process is the95

handling of multiple or multivariate attributes. In [48]

Urbach et al. proposed two strategies to handle multi-
variate attributes: the direct extension of the threshold-
ing approach where a node is selected if each of its at-
tributes is greater than a particular threshold (equivalent100

to a marginal ordering of the attribute space), or using a
distance to a reference attribute vector where a node is
selected if the distance from its attribute vector to a refer-
ence vector is lower than a given threshold (equivalent to
a reduced ordering of the attribute space). In both cases,105

there is a need to define a vector ordering which is a non
trivial problem. In [49], the authors proposed to learn
the distance function used to compare vector attributes
from the distribution of the attributes of the nodes of in-
terest. They modeled this distribution as a multivariate110

Gaussian, then learn the parameters of the distribution
using a ground truth, and finally select the nodes with
a threshold on the Mahalanobis distance defined by the
model parameters. Although this approach was a first at-
tempt to introduce some learning on multivariate data in115

the construction of connected operators, the node selection
process still remained purely local.

Finally, the reconstruction step has been initially stud-
ied in [9] which defines a natural reconstruction: a pixel
is valued with the level of the smallest selected node that120

contains it. Urbach et al. proposed in [24] to alleviate
the problem of non increasing attributes by modifying the
reconstruction process with the subtractive rule. In this
strategy, whenever a node is removed, the level of its de-
scendants are lowered by the height of the deleted node.125

This strategy has been used for the production of shape-
size pattern spectra. Finally, in [11] the authors proposed a
reconstruction process based on the notion of hyperconnec-
tion that enables the preservation of texture details during
the reconstruction process.130

1.2. Contributions

In this article, we propose a novel approach in order
to select nodes in the Max-Tree. Our idea is to perform
an unsupervised Bayesian classification of the nodes using
a hierarchical Markovian model. This approach provides135

several benefits:

• a natural handling of multiple or multivariate at-
tributes through the use of multivariate probability
density functions;
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• a robust global process for the classification of the140

nodes;

• an unsupervised approach that learns the model from
each image without any ground truth.

Hierarchical Markovian models exist for about two decades
now [50]. The advantage of these models compared to tra-145

ditional hidden Markov random fields [51, 52] is the pos-
sibly of computing exact inference without iterative algo-
rithms. They have since been extensively applied to quad-
trees [53, 54] or similar structures [55]. In the same way,
Hidden Markov Chains (HMC) allow an exact inference150

based on Maximum of Posterior Marginal (MPM) criterion
and both approaches on chains [56, 57] and quadtrees [58]
have been refined through pairwise or triplet models in
the past decade. Indeed, Markovian chains share similar
properties with Markovian quadtrees than can be seen as155

hierarchical Markov chains [59].
In the proposed scheme, we use the Max-Tree to de-

fine a hierarchical Markovian probabilistic model. The
attribute values of the nodes serve as observations, and
we aim at finding the most probable hidden label value160

of each node of the tree. The existing iterative unsuper-
vised classification algorithms for quadtree-like structures
remain adapted to this model.

We propose several experiments in order to demon-
strate how this approach can be used in different image165

analysis tasks: shape separation in artificial images, source
detections in astronomical images, and vessel network seg-
mentation in eye fundus images are some examples given
in this paper to show the generic ability of this model. In
those experiments, we study the use and combination of170

various node attributes and how to exploit the classifica-
tion results in order to obtain a filtering, a segmentation,
or extract sources. The results obtained on source detec-
tion are compared to those obtained with existing methods
and the vessel network segmentation method is evaluated175

on two standard image databases.
The contribution of this article can also be considered

from the field of hierarchical Markovian image processing
where the replacement of the usual quadtree model by a
morphological tree provides several benefits:180

• morphological trees are naturally adapted to each
image, removing the presence of the block artifacts
of the quadtree [54];

• they are more compact than quadtrees (less nodes in
the tree) and can easily be preprocessed in order to185

drastically decrease the number of nodes which leads
to better computation time;

• they offer the possibility to integrate various node
attributes as multivariate observations. More specif-
ically, all the shape descriptors that have no meaning190

in a quadtree are now usable; and

• observations are naturally present at every level of
the tree, whereas we usually only have data at the
leave level in a quadtree in practice.

This manuscript is organized as follows. Section 2195

presents the Max-Tree, gives the definition of several node
attributes, and explains how to reconstruct an image from
the tree. Section 3 describes the probabilistic model used
to classify the nodes of the tree, and the unsupervised
classification algorithm (given in AppendixA). The neces-200

sary pre-processing of the data is explained in Section 4
whereas some experiments and results are detailed in Sec-
tion 5. Finally, Section 6 concludes this work.

2. Max-Tree

We first give some basic notations and definitions that205

will be used throughout the article.
We represent the image domain by a non empty finite

subset E of Z2. An element of E is called a pixel, or a
point. A gray-scale image f is a function from the domain
E to the set of real numbers R. The value of the gray-scale210

image f at pixel x, denoted by f(x), is called the level of
x in f .

2.1. Definition of the tree

The Max-Tree of an image is based on the decompo-
sition of every possible threshold of the image into con-215

nected components. Connected components may be de-
fined by any appropriate mean: e.g., by path connectivity
in a graph or a general connection on the set of all sub-
sets of E. In this article, all the examples are based on a
classical 8 neighborhood on a regular square grid.220

LetX ⊆ E be a set of points, we denote by CCx(X) the
connected component of X that contains the pixel x. We
denote by CC(X) the set of connected components of X:
CC(X) = {CCx(X), x ∈ X}. Moreover, we assume that
E is connected: i.e., for any x in E, we have CCx(E) = E.225

Given an image f , the level set of f at level k in
R, denoted by Levelk(f), is the set of pixels where the
value of f is larger than or equal to k: i.e., Levelk(f) =
{x ∈ E | f(x) ≥ k}. We denoted by CC(f) the set of all
connected components of all level sets of f : i.e., CC(f) is230

equal to
⋃

k∈R
CC(Levelk(f)). It is well known that any

two elements of CC(f) are either disjoint or comparable:
i.e., for any A and B in CC(f), A ∩ B 6= ∅ implies either
A ⊆ B or B ⊆ A.

Then, we can define the parent mapping on CC(f),235

denoted by parCC(f), that associates to any element n of

CC(f) its parent parCC(f)(n), also denoted by n−, and
defined as the smallest element of CC(f) that is strictly
larger than n if it exists or undefined otherwise. For
the sake of concision, we will simply write par instead of240

parCC(f) when no confusion is possible. TheMax-Tree of f
is then the tree defined by the set of nodes CC(f) and the
parent mapping parCC(f). In this context, the elements of
CC(f) are called nodes. The single node n in CC(f) such
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Level1
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(a) 1d image f (b) Max-Tree of f

Figure 2: (a) represents a 1d image f with 4 levels. (b) is the Max-

Tree of the image f . Cj
i denotes the j-th connected component of the

i-th level set of f (components in a given level are arbitrarily num-
bered from left to right). The arrows represent the parent relation
on the elements of CC(f). One can note that the two components
C1

2 and C1
3 are equal and are thus represented by a single node in

the tree.

that n− is equal to undefined is the root of the tree. This245

construction is illustrated in Fig. 2.
Several efficient data-structures and algorithms (O(n)

or O(n log(n)) time complexity depending on the type of
data processed) have been proposed to compute the Max-
Tree of an image: see [9, 60] and [61] for a survey of the250

different algorithms.
Let n and m be two nodes in CC(f). If the node n is

the parent of the node m then we say that m is a child
of n, and we denote by n+, the set of all children of n. If
there exists a positive integer k such that n = park(m) =255

par(. . . (par
︸ ︷︷ ︸

k times

(m) . . .)), i.e., if n is the parent of the parent

of. . . of m, we say that n is an ancestor of m and that m is
a descendant of n. Given a node n, the set of descendants
of n is denoted n >.

One can note that any non empty subset of nodes of260

any Max-Tree still verifies the disjoint or comparable prop-
erty and defines thus a sub-tree of (or a forest). In the
following, given a subset of A of CC(f), we define the tree
induced by A by the tree whose set of nodes if A and whose
parent relation is parA. Indeed, one can show that the tree265

induced by A is the Max-Tree of a filtered version of f : this
tree can be processed as any other Max-Tree.

2.2. Node attributes

The nodes of the Max-Tree of an image are usually
equipped with attributes, i.e., features that are relevant270

for a given application. For example, if one is looking
for vessels in a medical image, a feature measuring the
elongation of the node may be a good point to start with.

We define hereafter some node attributes that will be
used in the following of this article. Let f be a gray-scale275

image, and let n ⊆ E be a node in CC(f).

Area(n) is the number of pixels in n: Area(n) = card(n);

Level(n) the level of n is the largest level k in R such that
n belongs to the level set of f at level k: Level(n) =
max {ℓ ∈ R |n ∈ Levelℓ(f)}. By extension, we set280

Level(undefined) equals min {f(x), x ∈ E}.

Highest(n) is the level of the highest node in the branch
rooted in n:

Highest(n) = max{Level(m),m ∈ CC(f) |

n is an ancestor of m};

Depth(n) is the difference between the level of the highest
node in the branch rooted in n and the level of the
parent of n: Depth(n) = Highest(n)− Level(n−);

Perimeter(n) is the number of pixels of E\n that are ad-285

jacent to n;

Circularity(n) is the ratio of the area of n and the square
of its perimeter:

Circularity(n) = Area(n)/(Perimeter(n))2.

The circularity measure is translation, rotation, and
scale invariant (up to the quantization effects). It is
equal to 1/(4π) for a circle which is the most com-
pact shape, and it decreases as the shape goes off the290

perfect circle;

x̄(n) and ȳ(n) are the x and y coordinate of the centroid
of the shape n: x̄(n) is equal to (

∑

(x,y)∈n x)/ card(n)

and ȳ(n) is equal to (
∑

(x,y)∈n y)/ card(n);

µpq(n) the central moment of order pq: µpq(n) is equal to295

∑

(x,y)∈n(x− x̄(n))p(y − ȳ(n))q;

Elongation(n) the elongation of n obtained from the cen-
tral moments: Elongation(n) is equal to

√

λ2/λ1

with

λi = µ20(n) + µ02(n)

±
√

4µ2
11(n) + (µ20(n)− µ02(n))2;

Hu1(n) : the first moment of Hu [62] of the shape n
equivalent to a moment of inertia, it is translation,
rotation, and scale invariant: Hu1(n) is equal to
(µ20(n) + µ02(n))/ card

2(n).300

All these attributes can be computed efficiently either dur-
ing the construction of the tree or as a linear post-processing.

2.3. Filtering and tree reconstruction

In order to filter an image using the Max-Tree, one
must be able to map a tree back into the image space:305

this step is called a reconstruction. The reconstruction
procedure involves: 1) to define the nodes of the tree that
will be reconstructed: this is given by a selection crite-
rion, and 2) to define which value will be assigned to the
reconstructed nodes: this is a valuation function.310

Formally, a criterion σ on CC(f) is a function that
associates the value true or false to each node in CC(f).
Given a node n, we say that n satisfies σ if σ(n) = true.
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For example, given a size threshold t ∈ R
+, a simple crite-

rion is σa defined for any node n ∈ CC(f) by σa(n) = true315

if Area(n) > t and false otherwise. This criterion is satis-
fied by the nodes whose area is larger than t. By abuse of
notation, we also denote by true (resp. false), the criterion
that associates the value true (resp. false) to every node
in CC(f).320
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Figure 3: (a) represents a 4× 4 image f with 3 levels. The contours
of the connected components of the different levels of f are depicted
with different colors. (b) is the Max-Tree of the image f . Each

component Cj
i (the j-th connected component of the i-th level of f)

is depicted with the same color as the one used to draw its contour
in (a). The values of the two attributes Area and Level are also
indicated in each component. (c) represents the reconstruction of
the attribute Area (R [CC(f), true,Area ]): the value of each pixel
has been replaced by the area of the smallest component containing
this pixel. (d) represents the reconstruction of the attribute Level
of the nodes larger than 2 pixels (R [CC(f),Area > 2,Level ]): the
value of each pixel has been replaced by the level of the smallest
component containing this pixel and larger than 2 pixels.

A valuation v on CC(f) is a function that associates
a value to each node in CC(f): i.e., v maps CC(f) to R

d

with d a strictly positive integer. The mapping Level that
associates its level to any node is a natural valuation, but
any attribute value can be used.325

Finally, the reconstruction of the Max-Tree constrained
by the criterion σ for the valuation v, is an image from E
to R

d denoted by R[CC(f), σ, v]. Given a pixel x of E, the
value of R[CC(f), σ, v] at pixel x is the valuation of the
smallest node in CC(f) that contains x and that satisfies
σ:

R[CC(f), σ, v](x) = v(min{n ∈ CC(f) |x ∈ n

and σ(n) = true}). (1)

Two examples of reconstructions are given in Fig. 3. It
can be shown that the reconstruction of the whole (using
the criterion true) Max-Tree of the function f with the
valuation Level is equal to f itself: R[CC(f), true,Level] =
f . In other words, if we reconstruct the tree without any330

filtering using the initial level values of the components we
get the original image back. Also note that the root node
must satisfy σ in order to guaranty that Eq.(1) is always
correctly defined.

3. Bayesian tree classification335

In the following, given an image f from E to R, we
consider the problem of classifying the nodes of the Max-
Tree of f into K classes using a Bayesian approach. In this
context, we consider that each node owns two values: an
observation and a label value. The label value is hidden340

and we want to determine its more probable value accord-
ing to a probabilist model that defines how observations
are linked to label values (likelihood) and the assumptions
we have on the distribution of the labels (prior). Note that
in the context of Bayesian classification the nodes of the345

tree are usually called sites.
The labels are represented by the mapping X from the

set of nodes CC(f) to the set of labels ΩX = 1, . . . ,K.
The observations are represented by the mapping Y from
the set of nodes CC(f) to R

d. Our goal is then, for each
node n in CC(f), to find the label ℓn that maximizes the
marginal posterior probability of having X(n) equals ℓn
knowing Y:

ℓn = argmax
k∈ΩX

P (X(n) = k | Y) (2)

(a) Max-Tree

node

parent

(b) Hidden markov model

Figure 4: (a) The Max-Tree of the Figure 2. (b) The associated
hierarchical hidden Markov model. The structure of the Markovian
model is exactly the one of the Max-Tree. To each node n of the tree
corresponds a pair composed of a hidden label X(n) (gray circle) and
an observation Y(n) (white circle). The probability of observing the
data Y(n) on the node n depends of its label value X(n). The
probability of having the label X(n) at the node n depends of the
label of its parent X(n−).

To simplify notation, we denote the discrete probability
and the probability density function with the same symbol
P . Whenever the situation is not ambiguous we write
P (X) for P (X = x).350
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3.1. Hierarchical Markov model

The idea is to use the Max-Tree of f to define a hierar-
chical Markov model on the nodes CC(f). This construc-
tion is illustrated in Fig. 4. In such a model:

• the probability of observing the data y on the node355

n only depends of the label of n: P (Y(n) = y | X) =
P (Y(n) = y | X(n));

• the probability of having the label k on the non root
node n conditional on all forefathers of n only de-
pends of the label of the father of n: P (X(n) =360

k | X) = P (X(n) = k | X(n−)); and

• for the root node r, we have P (X(r) = k | X) =
P (X(r) = k).

This model provides a hierarchical Markovian regulariza-
tion in the classification process as the label of a node only365

depends of the label of its parent.
Under these hypothesis, the joint probability of X and

Y can be factorized as:

P (X,Y) = P (X(r))×
∏

n∈CC(f)
n6=r

P (X(n) | X(n−))

×
∏

n∈CC(f)

P (Y(n) | X(n)) (3)

with r the root node.
It is well known that in such an acyclic model, the

posterior marginal probabilities (2), and thus the label of
each node, can be computed with a deterministic belief370

message passing algorithm [63]. This algorithm requires
two traversals of the tree:

• the top-down pass, where the tree is browsed from
the leaves to the root, computes for each node n in
CC(f), the posterior probability of the label X(n)375

conditionally to the observations available in the de-
scendants of n: P (X(n) | Y(m),m is a descendant of n);

• the bottom-up pass, where the tree is browsed from
the root to the leaves, computes for each node n in
CC(f), the posterior probability of the label X(n)380

conditionally to the observations Y: P (X(n) | Y).

The detailed procedure is given in Algorithm 1 in ap-
pendix. One can note that in the context of quadtree
processing, trees being represented with the root at the
top, the ”top-down pass” is called ”bottom-up pass” (and385

conversely).
However, this in-scale procedure assumes that the model

parameters (root probabilities, transition probabilities, and
data-driven likelihoods) are known and a more complex
iterative algorithm, presented in the next section, must390

be used in order to obtain an unsupervised classification
strategy when those parameters also have to be estimated.

3.2. Unsupervised classification algorithm

In this section, we present an unsupervised classifica-
tion algorithm which is a direct adaptation of the algo-395

rithms described in [53, 54] and the reader can refer to
those articles for a detailed description.

We only consider the case of Gaussian likelihoods for
the data-driven term. Thus, for any n in CC(f) and any
class k, we have:

P (Y(n) | X(n) = k) = N (Y(n);µk,Σk) (4)

with N (·;µk,Σk) the multivariate Gaussian distribution
of mean µk in R

d and of d× d covariance matrix Σk.
Then, the transition probability from a label to another

one, i.e., the prior probability of having the label k of ΩX

on a non-root node in CC(f) knowing the label k′ of its
father, is the same for all nodes:

P (X(n) = k | X(n−) = k′) = tk′k (5)

with tk′k a real number in the interval [0, 1] such that400

∑

k∈ΩX
tk′k = 1. Usually, we have for any k in ΩX , that

tkk is close to 1 which means that, the prior probability
that a node has the same label that its parent is high.

Finally, for the root node r in CC(f) and any label k,
we set

P (X(r) = k) = πk (6)

in the interval [0, 1] with the constraint
∑

k∈ΩX
πk = 1.

The parameters of the model are thus:405

• K mean vectors µk of dimension d;

• K covariance matrices Σk of dimension d× d;

• K prior probabilities πk for the label of the root
node;

• one K ×K transition probability matrix (tk′k).410

The number of classes K is assumed to be constant and
will not be estimated by the algorithm.

The model parameters can be learned from the obser-
vations using a two steps iterative procedure:

1. Compute the label estimates with the message pass-415

ing algorithm according to the current model param-
eters;

2. Update the model parameters with the Expectation-
Maximization (EM) algorithm according to the la-
bels estimated in the previous step.420

This leads to a completely unsupervised classification pro-
cedure. One can note that this algorithm does not guar-
anty the optimality of the solution as the EM algorithm
may get trapped in a local maximum.

The overall procedure is described in Algorithm 2 in ap-425

pendix. The initialization of the model parameters with K
classes is based on the estimation of a Gaussian mixture
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(a) f (b) Observation

(c) Hidden labels (d) Estimated labels

Figure 5: (a) Validation of the segmentation process on the Max-
Tree of the image f . Figs (b) and (c) are respectively the recon-
struction of the observations and of the hidden labels obtained with
a simulation of the random process described in Section 3.1 on the
Max-Tree of f . Fig. (d) is the reconstruction of the estimated la-
bels with the unsupervised segmentation algorithm described in Sec-
tion 3.2 based on the observations (b).

model with K components on the whole set of observa-
tions.

One iteration of the algorithm runs in O(N×K3) time430

complexity, with N the number of nodes in the tree and K
the number of classes. In practice, the algorithm converges
in a few iterations (less than 10) which is coherent with the
convergence rate usually observed [53, 54, 59]. The Max-
Tree has at most as many nodes as the number of pixels435

in the image, and experiments suggest that, for natural
images, the number of nodes in the Max-Tree is of the
same order than the number of pixels.

In order to validate our implementation, we have sim-
ulated random labels and observations on a Max-Tree of440

an arbitrary image f according to the hierarchical Markov
process described in Section 3.1. The image f (Fig. 5(a))
is a traditional image of blood. Its Max-Tree has 17883
nodes. We have simulated a random process with 3 classes
and observations in R

3. Fig. 5(b) and 5(c) are respec-445

tively the reconstructed images of the sampled observa-
tions (R[CC(f), true,Y]) and labels (R[CC(f), true,X]).
Finally, Fig. 5(d) is the reconstruction of the estimated
labels given by the unsupervised procedure described in
Section 3.2. We see that the estimated labels are close to450

the original labels, there are indeed 799 misclassified nodes
(error rate of 4.44%).

The algorithm has been implemented in Java and was
executed on a 2GHz Core I7 processor. On the previous
simulated example, the algorithm converges in 2 iterations455

with a total running time of 500ms. The rapid convergence
here is not surprising as the data have been generated with
the direct model and thus they exactly fit the hypothesis
of the algorithm. On the more complex scenario of astro-
nomical image processing (Section 5.2), the 180 000 nodes460

of the tree are classified in 9 classes: in this case, 1 iteration
of the algorithm takes about 6 seconds and the algorithm
converges in 3 iterations.

4. Data Preparation

Processing the tree space is just like processing any465

signal and some pre-processing may be required. Never-
theless, in this case, pre-processing may be performed at
two different places: on the original image f or on its
Max-Tree (which can also be directly interpreted as a pre-
processing on the original image). A pre-processing of the470

input image f generally aims at enhancing the presence
of the object of interests in the Max-Tree and/or remov-
ing unwanted objects. Then, a pre-processing of the tree
may be required in order to ensure that the tree fulfills the
hypothesis used by the node classification algorithm.475
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(b) Filtered tree

Figure 6: Histograms of the attribute circularity before and after
Max-Tree filtering (deletion of nodes smaller than 20 pixels).

The main hypothesis of the algorithm is the Gaussian
likelihood which is flexible enough to handle most cases.
Nevertheless, it is known that the Gaussian model is par-
ticularly sensitive to outliers and it is thus important to
remove those outliers before running the classification al-480

gorithm.
In practice, outliers can be detected by observing the

histograms of the observations Y and searching for fea-
tures that would hardly fit in a Gaussian mixture model.
For example, Fig. 6(a) represents the histogram of the at-485

tribute Circularity on a Max-Tree of an image. We see
several peaks with large weights that do not fit the Gaus-
sian hypothesis. A careful inspection of the observations
through the reconstruction of the spurious nodes allows us
to see that those peaks indeed correspond to small nodes490

where the quantification effects are important: there are
many small nodes but only few possible shapes for them.
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One simple solution is then to remove the small nodes: this
gives a much smoother distribution (see Fig. 6(b)), and
the data can be safely injected into the classifier. One can495

note that the threshold value used to construct Fig. 6(b)
is not very sensitive: values between 10 and 30 pixels give
similar results. One can also note that the classification al-
gorithm is able to accommodate deviations from the Gaus-
sian model as the truncated distribution at 0 in Fig. 6(b).500

Another important question is the selection of the num-
ber of classes K. When the dimension of the observation
is small (1 or 2), that number can be visually estimated
from the histograms by evaluating the number of com-
ponents needed in a Gaussian mixture model to fit the505

distribution. In the ideal case, the number of classes K
will directly match the number of objects of interest and
the association between the twos will be trivial. For ex-
ample, in the experiment on retinal image segmentation
(see Sec. 5.3), we have K = 2 with one class for the vessels510

and the other one for the background. Unfortunately, in
some cases K will be larger than the number of objects
to identify. For example in an experiment below where
we want to separate squares from circles (see Sec. 5.1), we
need to introduce a third class to capture the noise (i.e.,515

everything that is neither a square nor a circle). Another
possible case is that the distribution of the observations
among the samples of a single object of interests is mul-
timodal or strongly asymmetric. It is then possible that
several classes will be necessary to correctly model this520

object. In the experiments on retinal image segmentation
we have observed that a model with 3 classes (2 for the
background and 1 for the vessels) give a better result on
some images.

One can note that if K is too large, then the algorithm525

is subject to numerical instabilities which are easily iden-
tified by their two possible manifestations: overflows in
numeric values or label switches which prevent the algo-
rithm from converging. The same phenomenon appears in
Gaussian mixture model estimation [64].530

5. Experiments

In order to evaluate the capacity of the proposed method,
we have performed three experiments. The first experi-
ment involves synthetic data and aims at showing the pos-
sibility of realizing a shape based classification of the nodes535

of the Max-Tree in order to separate simple shapes. In a
second experiment on astronomical images, we show that
our approach enables to reliably detect very faint sources
in noisy images and we compare it to two other methods.
Finally, in a third experiment on retinal image segmenta-540

tion, we show that the method can obtain good results on
standard benchmarks.

5.1. Multi-scale overlapping shapes classification

This experiment is a demonstration of the method ca-
pacity to separate different shapes appearing at various545

(a) Image

(b) Attribute circularity (c) Attribute Hu 1

(d) Estimated Labels (e) Filtered Labels

Figure 7: Multi-scale overlapping shapes classification (see text).

scales, luminosities, and occluding each others. The test
image f is represented in Fig. 7(a) and we aim at separat-
ing squares from circles.

In order to perform this separation we use two clas-
sical shapes attributes for the observations: the circu-550

larity and the first Hu moment. Formally, let n be a
node of the Max-Tree of f , the observation Y(n) in n
is equal to the pair (Circularity(n),Hu1(n)). Fig. 7(b)
and 7(c) are respectively the reconstruction of the tree
with the 2 attribute values (R[CC(f), true,Circularity],555

and R[CC(f), true,Hu1]). The tree is preprocessed by re-
moving the nodes n in CC(f) smaller than 5 pixels or hav-
ing a depth smaller than 25: this gives a new set CC′(f) de-
fined by {n ∈ CC(f) | Area(n) ≥ 5 and Depth(n) ≥ 25}.

The nodes of the induced by CC′(f) are classified in 3560

classes in order to obtain a first class for circles ω1, a second
class for the noise ω2, and a third class ω3 for squares. The
reconstruction R[CC′(f), true,X] of this first classification
corresponds to Fig. 7(d). The noise class is filtered out
using a simple criterion σ1 only satisfied if the estimated565
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node label is different from the label of the noise class ω2:
for each node n in CC′(f), σ1(n) = true if and only if
X(n) 6= ω2. The filtered reconstruction R[CC′(f), σ1,X]
is shown in Fig. 7(e): circles (in black) and squares (in
white) are well separated.570
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Figure 8: Empirical distributions (histograms) and estimated distri-
butions (Gaussian curves) of the attributes Circularity and Hu1 for
the 3 estimated classes (respectively in blue, green, and red).

Fig. 8 represents the histograms of the 3 estimated
classes for the two attributes – Circularity and Hu1 – and
their estimated probability density functions. It can be
seen that:

• the attribute Circularity enables to separate the noise575

from the two types of shapes, but it has a poor power
of separation between squares and circles; and

• the attribute Hu1 enables to separate squares from
circles, but it does not allow us to separate them
from noise.580

These observations explain the good behavior of the clas-
sification process.

5.2. Astronomical image segmentation and source detec-
tion

In this experiment, we compare our method to a more585

classical quadtree Markovian segmentation on astronomi-
cal images. In such images, the goal is to detect all the
sources that shine on a dark background (see Fig. 9(a)).
Despite the apparent simplicity of the problem, the dif-
ficulty here relies mainly on the large variations in scale590

(from few pixels to thousands of pixels) and in brightness
(from less than 0 dB to dozen of dB) of the various sources.
This leads mainly to two difficult cases: the extraction of
very faint sources drown in the background noise and the
separation of close or superposed sources. One can also595

note the presence of artifacts that should not be detected
as sources, like the diffraction spikes around the bright
stars that are caused by the support of the secondary mir-
ror of the telescope.

(a) Astronomical image

(b) Segmentation map

Figure 9: a) Astronomical image from the Sloan Digital Sky Sur-
vey (size: 2048 × 1489 pixels, 32 bits per pixels): the contrast has
been inverted and adjusted manually to emphasize faint sources. b)
Segmentation map obtained from the Max-Tree Markovian classifi-
cation.

First, a pre-processing of the original image f is per-
formed in order to compress its dynamic range (astronom-
ical images are stored in linear pixel scale). This gives the
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image f ′ defined by, for any pixel x in E:

f ′(x) =
f(x)

|f(x)|
log(1 + |f(x)|). (7)

Then, the Max-Tree of f ′ is pre-processed by removing600

very small and very large nodes in order to obtain the set
of nodes CC′(f ′) = {n ∈ CC(f ′) | 10 ≤ Area(n) ≤ 20 000}.

In this application we use the level of the nodes for the
observations: for each node n in CC′(f ′), Y(n) is equal to
Level(n). The nodes of the tree induced by CC′(f ′) are605

classified in 9 classes. A segmentation map is obtained by
reconstructing the estimated label values R[CC′(f ′), true,X]
(see Fig. 9(b), note that labels have been sorted so that
largest labels correspond to brightest objects). Finally, in
order to obtain a list of sources, we consider that each610

regional maximum of the segmentation map is a source
located on its centroid.

In order to compare our results, we have also run a
quadtree Markovian segmentation method – Marsiaa [54]1

– and a reference source extractor software in astronomy –615

SExtractor2 – on the same image. Marsiaa was configured
to behave as close as possible to our algorithm (Gaussian
likelihoods, EM optimization method, and 9 classes) such
that the main difference relies in the tree structure used
to represent the image. Default parameters were used for620

SExtractor. Our algorithm, Marsiaa and SExtractor ex-
tracted respectively 2157, 1742, and 1799 sources. For
comparison, the ninth SDSS Data Release [65] (SDR93)
which contains a catalog of sources compiled from several
frames taken in several wavelengths and analyzed by sev-625

eral source detection and deblending algorithms contains
roughly 3400 sources in the same area of the sky.

Fig. 10(a) is a close up view of Fig. 9(a) with the posi-
tion of the sources detected by the three algorithms. The
segmentation map obtained with our algorithm and Mar-630

siaa are depicted respectively in Fig. 10(b) and 10(c). It
can be seen that our algorithm is able to extract very faint
sources that were both missed by Marsiaa[54] and SEx-
tractor. Nevertheless, configurations where a faint source
is very close to a brighter one is difficult to disambiguate635

in our scheme as the faint object may not appear as a
maximum in the segmentation map: such objects are then
missed by the algorithm. A comparison of the two segmen-
tation maps clearly shows the two different tree structures
with noisy borders for the Max-Tree and a block effect for640

the quadtree.

5.3. Retinal image segmentation

In this last experiment, we propose a method to seg-
ment the vascular network in retinal images (see for ex-
ample Fig. 11(a)). The characteristics of this vascular645

network (length, width, organization. . . ) are markers of

1http://lsiit-miv.u-strasbg.fr/paseo/LSBdetection.php#MARSIAA
2http://www.astromatic.net/software/sextractor
3http://www.sdss3.org/dr9/

(a) Image 1 (b) Image 12

(c) Segmentation 1 (d) Segmentation 12

Figure 11: Fig. (a) and (b) are test images 1 and 12 of the
DRIVE [66] retinal image benchmark database. Fig. c) and d)
are the segmentation results for images (a) and (b) compared to
the ground truth. White pixels are true negatives, black pixels are
true positives, blue pixels are false positives, and red pixels are false
negatives.

several pathologies and its automatic segmentation is an
active research field (see [68, 69, 66] among others).

In the following, we consider only the green channel
of the retinal images. This image is pre-processed using650

a morphological opening with a flat cross structuring el-
ement of 3 pixels diameter in order to remove holes and
reconnect some faint vessels. Then, a black top-hat (dif-
ference between a closing and the original image) with a
circular structuring element of 5 pixels diameter is per-655

formed in order to remove large scale variations from the
image and to inverse the image: the vascular network now
appears as a bright structure over a mostly flat dark back-
ground. We denote this image by f ′. The Max-Tree of f ′ is
pre-processed by removing very small nodes in order to ob-660

tain the new set of nodes CC′(f ′) = {n ∈ CC(f ′) | Area(n) ≥ 5}.
Then we equip each node nin CC′(f ′) with a vecto-

rial observation composed of the level of the node, the
inverse of its first Hu moment and its elongation: i.e.,
Y(n) = (Level(n), 1/Hu1,Elongation(n)). The nodes in665

CC′(f ′) are then classified in 2 classes. Finally, a segmen-
tation map is obtained by reconstructing the estimated
label values R[CC′(f ′), true,X] (see Fig. 11 (c) an (d) and
Fig. 12 (c), (d), (e), and (f)).

This segmentation procedure is evaluated on two stan-670

dard retinal image databases: Digital Retinal Images for
Vessel Extraction (DRIVE [66]) and Structured Analysis
of the Retina (STARE [67]). DRIVE is made of 40 color
images divided equally in a training set and a test set.
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(a) Source detection

(b) Segmentation map (proposed algorithm)

(c) Segmentation map (Marsiaa).

Figure 10: Comparison of our algorithm used for source detection and segmentation in astronomical images with Marsiaa and SExtractor. (a)
Close up view of Fig. 9(a). Red crosses: sources extracted from the segmentation map (b), green triangles: sources extracted the segmentation
map (c), and blue circles: sources extracted by SExtractor. (b) Segmentation map obtained with the Max-Tree Markovian classification. (c)
Segmentation map obtained with a quadtree Markovian classification (Marsiaa).

As our method learns directly from each image, the train-675

ing set is not used. Each of the 20 images of the test
set measures 565×584 pixels. It comes with 2 manual seg-
mentations and a mask of the eye fundus (central region of
interest). The STARE image database contains 20 color
images, all used for tests (no training set). Each image680

measures 700×605 pixels and comes with 2 manual seg-
mentations. There is no official eye fundus mask for the
STARE database but they can be easily derived from the
results provided by the authors of the database [67].

Both databases use the same quality measures. For685

each image, we define:

• the total number of pixels inside the mask of the eye
fundus denoted by N ;

• the number of True Positives (TP): number of pixels
classified as vessel in the segmentation and in the690

ground truth;

• the number of True Negatives (TN): number of pixels
classified as background in the segmentation and in
the ground truth (inside the eye fundus mask);

• the True Positive Rate (TPR): the number of true695

positives (TP) divided by the number of pixels marked
as vessel in the ground truth;

• the True Negative Rate (TNR): the number of true
negatives (TN) divided by the number of pixels marked
as background in the ground truth;700

• the Accuracy: the number of true positives (TP)
plus the number of true negatives (TN) divided by
the total number of pixels N ;

In the case of DRIVE, the ground truth corresponds to
the first expert segmentation. For STARE, both experts705

ground truths are used and the results are averaged. Fi-
nally the score on each database is defined as the average
score obtained on each image of the base. The standard
deviation (σ) of the Accuracy is also computed in order to
measure the stability of the algorithm.710

The results are summarized in Table 1. It can be seen
that the method performs well on DRIVE were it places
third for the 3 performance measures. The results are
more contrasted on STARE where it can be seen that
also the method has a quite low TPR it outperforms the715

other methods in terms of TNR and Accuracy. One can
note that among the methods presented in Table 1 most
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DRIVE STARE
Method TPR TNR Accuracy (σ) TPR TNR Accuracy (σ)

2nd expert 0.7761 0.9725 0.9473 (0.0048) 0.8949 0.9390 0.9354 (0.0171)

Proposed method 0.7135 0.9778 0.9439 (0.0067) 0.6707 0.9816 0.9514 (0.0104)
Mendonça [69] 0.7344 0.9764 0.9452 (0.0062) 0.6996 0.9730 0.9440 (0.0142)

Staal [66] 0.7193 0.9773 0.9441 (0.0057) - - -
Niemeijer [70] 0.6793 0.9801 0.9416 (0.0065) - - -

Xu [16] 0.6924 0.9779 0.9413 (0.0078) 0.7149 0.9749 0.9471 (0.0114)
Zana [71] 0.6696 0.9769 0.9377 (0.0078) - - -
Al-Diri [68] - - 0.9258 (0.0126) - - -
Jiang [72] 0.6478 0.9625 0.9222 (0.0070) - - 0.9513
Perez [73] 0.7086 0.9496 0.9181 (0.0240) - - -
Hoover [67] - - - 0.6751 0.9567 0.9267 (0.0099)

Table 1: Segmentation results on the DRIVE and STARE retinal image databases.

are completely dedicated to the retinal vessel network ex-
traction with complicated pre-processings to enhance the
presence of faint vessels, while our method is just a simple720

specialization of the general classification procedure. On
the other hand, the method of Xu et al. [16] relies on a
morphological filtering of the Max-Tree of the image: the
image representation is thus the same as ours but the way
it is processed is different. The fact that we obtain quite725

similar results suggests that both methods seem able to ex-
tract the main structures of the Max-Tree with a slightly
better sensitivity for our statistical approach.

6. Conclusion

In this article, we have proposed a new way to construct730

connected filters for image processing and analysis using
multivariate attributes. The proposed strategy relies on
a hierarchical Markovian classification process. Up-to-our
knowledge, this is the first method that is able to handle
multivariate attributes in a global and unsupervised way735

for the construction of connected filters. This approach
allowed us to construct robust yet efficient unsupervised
algorithms for several image analysis tasks: filtering, seg-
mentation, and source detection. We have shown how to
use the method on different experiments involving different740

types of images, various attributes and several uses of the
classification results. Our results were compared to other
methods and evaluated on standard image databases.

The benefits of this work can also be seen from the
point of view of Markovian segmentation approaches. The745

use of the Max-Tree as an alternative for the quadtree of-
fers several advantages: better adaptation to the image
topology, possibility of using richer attributes as observa-
tions, and more compact model.

The possible developments of this works are numer-750

ous. Apart from the many possible applications in image
analysis, it would be interesting to test the method using
others morphological trees, constructed on the image or its
gradient, like the binary partition tree [34] or the tree of
shapes [37, 38]. From the point of view of the classification755

method, several developments are desirable: the automatic
optimization of the number of classes [74], the use of more
general multivariate probability density functions for the
modelization of the data driven term (like copula)[75], or
the automatic selection of the most relevant attributes for760

a given problem.
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(a) Image 3 (b) Image 77

(c) Segmentation 3 (d) Segmentation 77

(e) Segmentation 3 (f) Segmentation 77

Figure 12: Fig. (a) and (b) are test images 3 and 77 of the
STARE [67] retinal image benchmark database. Fig. (c) and (d)
(resp. (e) and (f)) are the segmentation results for images (a) and
(b) compared to the first (resp. second) ground truth of the base.
White pixels are true negatives, black pixels are true positives, blue
pixels are false positives, and red pixels are false negatives.
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Algorithm 1: Bottom-Up/Top-Down tree segmentation.

Input: The Max-Tree of the function f .
Input: The observation Y(n) on CC(f).
Input: Set of labels ΩX .
Input: Model transition probabilities tkk′ (5).
Input: Model root probabilities πk (6).
Input: Classes mean values µk and covariances matrices Σk (4).
Output: The label X(n) on CC(f).
/* Computation of priors */

for each node n in CC(f) from the root to the leaves do

if n is not the root then

for each label i in ΩX do

P (X(n) = i)←
∑

j∈ΩX

P (X(n−) = j)tji;

/* Top-Down pass */

for each node n in CC(f) from the leaves to the root do

for each label i in ΩX do

P (X(n) = i | Y(n >))←
1

Z
P (X(n) = i)

∏

c∈n+

∑

j∈ΩX

P (X(n) = i)P (X(c) = j | Y(c >))tij
P (X(c) = j)

;

/* Z is a normalization factor such that
∑

i∈ΩX
P (X(n) = i | Y(n >)) = 1 */

/* Note that for the root node r we have P (X(r) | Y(r >)) = P (X(r) | Y) */

/* Bottom-Up pass */

for each node n in CC(f) from the leaves to the root do

if n is not the root then

for each label i in ΩX do

for each label j in ΩX do

P (X(n) = i,X(n−) = j | Y)

← P (X(n−) = j | Y)
P (X(n) = i | Y(n >))P (X(n−) = j)tji/P (X(n) = i)∑

ℓ∈ΩX

P (X(n) = ℓ | Y(n >))P (X(n−) = j)tjℓ/P (X(n) = ℓ)

P (X(n) = i | Y) =
∑

j∈ΩX

P (X(n) = i,X(n−) = j | Y);

X(n)← argmax
i∈ΩX

P (X(n) = i | Y)
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Algorithm 2: Unsupervised EM/Markovian classification of the node of the tree.

Input: CC(f), a Max-Tree of the function f .
Input: The observation Y(n) for each node in CC(f).
Input: Set of K labels ΩX .
Output: The label X(n) of each node n in CC(f).
/* Initialization */

gmm← estimation on Y of a Gaussian Mixture Model with K components;
for each label i in ΩX do

/* All labels are equipossible at the root node. */

πi ←
1
K
;

/* There is a high probability that a child has the same label as its father. */

tii ← 0.75;
for each label j 6= i in ΩX do

tij ←
0.25
K−1

;

µi,Σi ← mean and covariance matrix of the i-th component of gmm;

/* Iterative unsupervised segmentation */

do

Bottom-Up/Top-Down tree segmentation (Algorithm 1);
/* Model update with EM */

r ← root node of CC(f);
for each label i in ΩX do

πi ← P (X(r) = i | Y);
for each label j 6= i in ΩX do

tij ←

∑
n∈CC(f)

n 6=r

P (X(n) = j,X(n−) = i | Y)

∑
n∈CC(f)

n 6=r

P (X(n−) = i | Y)
;

µi ←

∑

n∈CC(f)

Y(n)P (X(n)=i | Y)

∑

n∈CC(f)

P (X(n)=i | Y)
;

Σi ←

∑

n∈CC(f)

P (X(n)=i | Y)(Y(n)−µi)(Y(n)−µi)
T

∑

n∈CC(f)

P (X(n)=i | Y)
;

until less than 3% of the labels have changed between two iterations;
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