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ABSTRACT

The Canonical Polyadic (CP) tensor decomposition has
become an attractive mathematical tool these last ten years
in various fields. Yet, efficient algorithms are still lacking
to compute the full CP decomposition, whereas rank-one
approximations are rather easy to compute. We propose a
new deflation-based iterative algorithm allowing to compute
the full CP decomposition, by resorting only to rank-one ap-
proximations. An analysis of convergence issues is included,
as well as computer experiments. Our theoretical and ex-
perimental results show that the algorithm converges almost
surely.

Index Terms— Deflation; rank-1 approximations; Canon-
ical Polyadic; CanDecomp ; Parafac ; tensor decomposition;
convergence

1. INTRODUCTION

Tensors play an important role in many applications such as
chemometrics [1], blind source separation [2], data mining
[3] and telecommunications [4]. The interest in resorting to
tensors, compared to more standard matrix-based approaches,
lies in the uniqueness of their decomposition into rank-one
terms, now referred to as CP decomposition [5]. There ex-
ist iterative algorithms allowing to compute the CP decom-
position, but none of them is entirely satisfactory. The most
widely used is the Alternating Least Squares (ALS) [1], which
is a simple iterative method that updates alternately the factor
matrices of the CP decomposition. Note that the local con-
vergence of ALS can be long, and that global convergence is
not guaranteed [6, 7, 8]. There exists other iterative meth-
ods, namely those based on all-at-once estimation of the fac-
tor matices, such as the Conjugate Gradient and Levenberg-
Marquardt methods [9, 8]. Hierarchical methods as described
in [10] and [11] can be also used. In the former, the authors
use a hierarchical ALS method only for decomposing non-
negative tensors. Moreover, the performance of the algorithm
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strongly depends on initializations and the updates are made
column-wise, which can be expensive. In the latter, the au-
thors propose an interesting finite deflation algorithm, butthis
procedure only works when the rank of the tensor does not
exceed the tensor dimensions. For both algorithms, no con-
vergence study has been performed.

Since rank-one tensor approximations are easier to com-
pute, one can be tempted by a deflation procedure, which con-
sists of computing successive rank-one approximations fol-
lowed by subtractions. The conventional deflation works well
for matrices, but does not generally provide satisfactory re-
sults for tensors, as pointed out in [12]. In [10], the hierar-
chical algorithm is iterative and still based on deflations,but
is implemented with care. The algorithm we proposed in this
paper is based on similar ideas, and allows to exactly compute
the CP decomposition by means of rank-one approximations
only. The core of the paper is the analysis of convergence,
showing that the CP decomposition is obtained almost surely.
Our analysis is also corroborated by means of numerical ex-
amples.

The paper is organized as follows. In Section 2 several
rank-one approximation algorithms are proposed.In Section
3, we describe our deflation algorithm. In Section 4 we dis-
cuss some issues about global convergence. Finally, computer
results are reported in Section 5.

The notation employed is as follows: scalars are denoted
by lowercase letters, we use calligraphic letters for tensors,
boldface capital letters for matrices and boldface lowercase
letters for vectors. Lastly, dimensions of tensors, matrices or
vectors are denoted with plain capitals.

2. RANK-ONE APPROXIMATION

LetK denote the real or the complex field, andT be a tensor
in K

I1×I2×···×IN . The best rank-one approximation is de-
notedφ(T ), and is formulated by the optimization problem:

φ(T ) = argmin
X

‖T −X‖2F

s.t. rank{X} = 1
(1)

This problem always has a solution because the set of
rank-one tensors is known to be closed [13]. However, there



is no algebraic method to find the exact solution to this prob-
lem, even if there exist efficient algorithms. For practicalpur-
poses, we shall now revue four possible ways to estimate the
best rank-1 approximation. (i) First, the ALS algorithm is an
option that guarantees global convergence for generic tensors
in this case [14]. (ii) Another way to obtain a good estimate
of the best rank-one approximation is based on truncating
the higher order singular value decomposition (T-HOSVD); a
rank-one approximation is constructed from the first column
of each factor matrix [15]. In the case of rank-one approxima-
tions, rank and multilinear rank indeed coincide. (iii) A third
way is to compute the dominant singular triplet of a sequence
of tensors of decreasing order. (iv) Lastly, one can improve
the previous approach by also computing orthogonal projec-
tions of a sequence of unfolding tensors of increasing order.
The two latter procedures are described below.

ALGORITHM SEROA
(Sequential Rank-One Approximation)

The algorithm proceeds inN − 1 steps, for aN th order ten-
sor.
Step 1:unfold tensorT into a matrix T

(1) of size I1 ×

I2I3 . . . IN and compute its SVD asT(1) = U
(1)

Σ
(1)

V
(1)T.

Set the dominant left singular vectoru1 as the1st mode of
X .
Stepn, 1 < n < N − 1: reshape the dominant right singular

vector ofT(n−1)into a matrixT(n) of sizeIn × In+1 . . . IN ,
and set the dominant left singular vectorun of T(n) as the
nth mode ofX .
StepN − 1: reshape the dominant right singular vector of

T
(N−2) into aIN−1 × IN matrixT(N−1). Set the dominant

left and right singular vectors touN−1 anduN , respectively.
The output is a suboptimal rank-one approximationX =

φ̂(T ) = λ · ⊗N
n=1un, with λ = 〈T ,⊗N

n=1un〉.

ALGORITHM SEROAP
(Sequential Rank-One Approximation and Projection)

The algorithm proceeds in2N − 4 steps, for aN th order ten-
sor.

1. Order Reduction-Fitting Phase:
Stepn, 1 ≤ n < N − 2: reshape the dominant right sin-

gular vector ofT(n)into a matrixT(n+1) of size In+1 ×
In+2 . . . IN , and compute its SVD asT(n+1) = U

(n+1)
Σ

(n+1)

V
(n+1)H.

StepN − 2: reshape the dominant right singular vector of

T
(N−2) into a IN−1 × IN matrix T

(N−1), and compute
its SVD asT(N−1) = U

(N−1)
Σ

(N−1)
V

(N−1)H. Define
wN−1 = vN−1 ⊗ uN−1 as the Kronecker product between
the dominant right and left singular vectors ofT

(N−1).
2. Order Increase-Projection Phase:

Stepn, 1 ≤ n < N − 2: define the matrixW(N−n+1) of
sizeIN−n−1 × IN−n . . . IN , whose rows are the orthogonal

projections of the rows ofT(N−n−1) ontowN−n. Reshape
W

(N−n+1) into a vectorwN−n+1.
StepN − 2: define the matrixW(1) of sizeI1×I2 . . . IN ,whose

rows are the orthogonal projections of the rows ofT
(1) onto

w2.
The matrixW(1) is the mode-1 unfolding of a suboptimal

rank-one approximationX = φ̂(T ) = W .

Remarks
1. In algorithms SeROA and SeROAP, dimensions can be per-
muted before proceeding. In particular, it can be attractive to
chooseI1 to be the largest dimension, and to sort them in de-
creasing order.
2. The computational complexity of SeROA is smaller than
that of the algorithm based on T-HOSVD, since the tensor
order, and hence the dimensions of the associated unfolding
matrices, decrease at each step.
3. T-HOSVD, SeROA and SeROAP algorithms terminate af-
ter a finite number of steps, whereas the ALS algorithm ex-
hibits an unbounded complexity. For this reason, we do not
consider ALS in the remainder.

3. COMPLETE EXACT CP DECOMPOSITION

In this section, we present the deflation-based CP decompo-
sition Algorithm (DCPD), which calculates the exact CP ten-
sor decomposition for general tensors. The algorithm follows
the idea behind the solution described in [10] with the dif-
ference that each rank-one component is calculated directly
using rank-one approximation procedures (1).

The algorithm works as follows. In the initialization
phase, R rank-one componentsX [1, 1], . . . ,X [R, 1] are
computed by successive rank-one approximations and sub-
tractions. Since subtraction of a best rank-one approximation
does not generally decrease tensor rank [12], there is a residue
denoted byE[R, 1].

Then an iterative process starts. A first rank-one com-
ponent is generated from the sum of that residue and tensor
X [1, 1]. A new residue,E[1, 2], is then determined. These
operations are performed in first part ofwhile loop.

The secondfor loop begins with the addition of the pre-
ceding residue with the second rank-one component. This
procedure continues until all the remaining rank-one compo-
nents are updated and a new residueE[R, 2] is generated in
the end of this loop. Thewhile loop continues until a stop-
ping criterionl = lmax is achieved. We have an exact tensor
decomposition when‖E‖F ≈ 0. Note thatφ(·) will have
to be replaced by a suboptimal solutionφ̂(·), as one of those
described in Section 2.

4. CONVERGENCE ANALYSIS

Some results on global convergence of DCPD using the best
rank-one approximation can be delineated for general tensors.



input : T ∈ K
I1×I2×···×IN : input data,

R: rank parameter.
output: X (1), . . . ,X (R) ∈ K

I1×I2×···×IN : rank one
components, andE ∈ K

I1×I2×···×IN : residue
tensor.

Y [1, 1]← T ;
for r = 1 to R ; /* l = 1 */
do

X [r, 1] = φ(Y [r, 1]);
Y [r + 1, 1] = Y [r, 1]−X [r, 1];

end
E[R, 1] = Y [R+ 1, 1];
l = 2;
while l ≤ lmax do

Y [1, l]← X [1, l− 1] + E [R, l− 1];
X [1, l]← φ(Y [1, l]);
E[1, l]← Y [1, l]−X [1, l];
for r = 2 to R do

Y [r, l]← X [r, l− 1] + E[r − 1, l];
X [r, l]← φ(Y [r, l]);
E[r, l]← Y [r, l]−X [r, l];

end
end
foreachr do

X (r) ← X [r, lmax]
end
E ← E [R, lmax];

Algorithm 1 : DCPD algorithm

To start with, let’s state some basic theoretical results.

Lemma 4.1 LetX be a rank-one tensor andφ the best rank-
one approximation function. Then, for any tensorE:

‖X + E − φ(X + E)‖F ≤ ‖E‖F . (2)

Proof. By definition,φ(X + E) is a best rank-one ap-
proximation ofX + E. In particular,X cannot be a strictly
better rank-1 approximation thanφ(X+E), which means that
‖X + E − φ(X + E)‖ ≤ ‖X + E −X‖ = ‖E‖.

Let us look at the implications of equality in (2). To do
that, we need the lemma below.

Lemma 4.2 Letφ(T ) be a best rank-one approximation of a
tensorT . Then‖T − φ(T )‖2

F
= ‖T ‖2

F
− ‖φ(T )‖2

F
.

Proof. The proof just needs the fact that the set of rank-
one tensors is a linear cone. Any rank-one tensor can be writ-
ten asV = λV̄ where‖V̄‖ = 1. The best rank-1 approxi-
mate ofT is a stationary point ofΥ(λ, V̄) = ‖T − λV̄‖2

F
.

The cancellation of the derivative∂Υ/∂λ yields λ‖V̄‖2 −
〈T , V̄〉 = 0, and eventuallyλ = 〈T , V̄〉. Now plug this back
in the product〈T −λV̄, λV̄〉 and getλ∗〈T , V̄〉−λλ∗‖V̄‖2 =
0. HenceT −V andV are orthogonal, and the result follows.

Corollary 4.3 LetX be a rank-one tensor andE any general
tensor. If‖X +E −φ(X +E)‖F = ‖E‖F , then〈E,X 〉 = 0.

Proof. By hypothesis, we have‖X +E−φ(X +E)‖F =
‖X+E−X‖F . This means thatX reaches the same minimal
value of the objective asφ(X + E). HenceX is a best rank-
one approximation, and Lemma 4.2 applies, which yields that
X + E −X = E is orthogonal toX .

We are now ready to present the first important proposi-
tion about convergence. In the remainder, we shall denote by
A the DCPD algorithm.

Proposition 4.4 In algorithmA, if functionφ is a best rank-
one approximation, thensl = ‖E[R, l]‖F is a monotonically
decreasing sequence.

Proof. In the secondfor loop of algorithmA, we have

‖E[r, l]‖F = ‖Y [r, l]−X [r, l]‖F

= ‖X [r, l− 1]+E[r− 1, l]−φ(X [r, l− 1]+E[r− 1, l])‖F .

By Lemma 4.1, we conclude that

‖E[r, l]‖F ≤ ‖E[r − 1, l])‖F .

In particular,‖E[R, l]‖F ≤ ‖E[R− 1, l])‖F . Similarly, in the
beginning ofwhile loop,‖E[1, l+ 1]‖F ≤ ‖E[R, l]‖F . Thus,
it is easy to see that‖E[R, l + 1]‖F ≤ ‖E[R, l]‖F .

Proposition 4.4 does not guarantee that the residue‖E[R, l]‖F
converges to zero. Even when‖E[R, l]‖F < ‖E[R, l + 1]‖F ,
for all l ≥ 1, the sequence(sl) could indeed converge to a
nonzero constant.

Remark 4 Notice that whenrank(T ) > R, the residue in
algorithmA never converges to zero.

In order to construct more complete results of conver-
gence, we introduce the following definition:

Definition 4.5 Given a tensorT , A is (δ, R)-convergent if
there existsδ, 0 ≤ δ ≤ 1, such that for alll > 1, ‖E[R, l +
1]‖F ≤ δ‖E[R, l]‖F .

Remark 5 For δ < 1, after l iterations of while loop inA,
‖E[R, l+ 1]‖F ≤ δl‖E[R, 1]‖F . Hence‖E[R, l+ 1]‖F → 0
when,l→∞.

LetT be the set of all tensors with entries inK. Define the
sets:T(R) = {T ∈ T : rank{T } ≤ R} andS(R)

δ
= {T ∈

T
(R) : A is (δ, R)-convergent forT }, for some0 ≤ δ ≤ 1.

Notice thatS(R)
δ1
⊆ S

(R)
δ2

for δ1 ≤ δ2 andS(R)
1 = T

(R) due to
Definition 4.5.

Proposition 4.6 Let tensors be distributed withinT(R) ac-
cording to an absolutely continuous probability measure.
Then for anyε > 0, there existsδ, 0 ≤ δ < 1, such that
algorithmA is (δ, R)-convergent with probability(1− ε).



Proof. By the continuity of the measure, for anyǫ > 0,
there exists0 ≤ δ < 1, such thatµ(S(R)

δ
) = 1− ǫ.

Remark 6 If the probability distribution is isotropic, an re-
lationship can be stated betweenδ andε, given by the ratio
between the solid angle and the surface of the hypersphere.

5. COMPUTER RESULTS

5.1. Performance of rank-one approximation functions

In this section, we compare the performance of three rank-one
approximation functions, as described in Section 2. The table
below shows the mean and variance of the rank-one approx-
imation error for a sample of 10000 tensors in two different
scenarios:3 × 3 × 3 rank-3 tensors, and4 × 4 × 4 rank-5
tensors.

Scenario 1 Scenario 2
Algorithm mean variance mean variance

T-HOSVD 0.8560 0.1355 2.3950 0.3733
SeROA 1.6113 0.2629 3.3500 0.4848
SeROAP 0.8226 0.1121 2.2667 0.2786

5.2. Performance of DCPD Algorithm

In order to produce satisfactory results with algorithm DCPD,
we have defined the following stopping criteria: (i)|‖E[R, l+
1]‖F − ‖E[R, l]‖F | < 10−10 and (ii) lmax = 10000.
For various ranges of tensors, we plot the estimation error

Eest = max100
k=1 minσ

∑R

r=1 ‖X
(k)
r − X̃

(k)

σ(r)‖F , whereX (k)
r

andX̃
(k)

σ(r) are the actual and estimatedrth rank-one compo-
nent, andσ(·) denotes a permutation.
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Fig. 1. Estimation error for DTD algorithm.

Figure 1 shows the maximum errorEest calculated for
100 random tensors for the following real tensor scenarios:
2× 2× 2 rank-2 tensors,3× 3× 3 rank-3 tensors,4× 4× 4
rank-5 tensors, and6 × 6 × 6 rank-8 tensors. The simula-
tions are performed with both rank-one approximations: T-
HOSVD and SeROAP. Notice that in all scenarios the Kruskal
uniqueness condition [16] is satisfied..

5.3. Example 1:T ∈ R
3×3×3, rank(T ) = 4.

In the example below, the Kruskal condition is not satisfied.
We take the example 3.1 from [11], whose mode-1 unfolding
is given by

T
(1) =




1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1



 .

Here, for both T-HOSVD and SeROAP implementations
of φ(·), the algorithm converges to an exact decomposition in
the first iteration (‖E[4, 1]‖F = 0) in a few milliseconds. The
first for loop in algorithm DCPD is enough to guarantee an
exact solution. Contrary to [11], we do not need a sophisti-
cated algorithm to decompose this tensor.

5.4. Example 2:T ∈ R
6×6×6, rank(T ) = 8.

The residue‖E[R, l]‖F is plotted in Figure 2 as a function of
iterationl. It illustrates the rate of convergence of DCPD for
random6× 6× 6 tensors.
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Fig. 2. Convergence rate of a6 × 6 × 6 rank-8 real random
tensor.

6. CONCLUSION

We proposed a deflation algorithm (DCPD) delivering an
exact CP decomposition of given rank, based on succes-
sive rank-one approximation. Best rank-one approxima-
tions are always well-posed and rather easy to compute; we
also proposed several algorithms with this purpose (SeROA,
SeROAP) and compared them to T-HOSVD. Our main con-
tribution is a proof of convergence of algorithm DCPD, for
a class of tensors of large measure. Computer experiments
run on random tensors of fixed rank have confirmed our
theoretical results.
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