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ABSTRACT strongly depends on initializations and the updates areemad

column-wise, which can be expensive. In the latter, the au-

The CanonlcaI.Ponad|c (CP.) tensor decomposition hafhors propose an interesting finite deflation algorithm thbist
become an attractive mathematical tool these last ten years

in various fields. Yet, efficient algorithms are still lacgin procedure only works when the rank of the tensor does not

" exceed the tensor dimensions. For both algorithms, no con-
to compute the full CP decomposition, whereas rank-one
vergence study has been performed.

approximations are rather easy to compute. We propose a -, A .
Since rank-one tensor approximations are easier to com-

new deflation-based iterative algorithm allowing to congput . :
the full CP decomposition, by resorting only to rank-one ap_pute, one can be tempted by a deflation procedure, which con-

proximations. An analysis of convergence issues is inaude zi\i dog Cglrjnbpt)ruélcr:%rs]sc_?_ﬁzsé\;em:zz;é%g? da:ar;lﬁ)a rt(i)grlmn\]/va:)tlrokzivfgll
as well as computer experiments. Our theoretical and ez— y i

perimental results show that the algorithm converges almo or matrices, but does nOI ge”er‘f"”y provide satlsfactgpy '
surely. sults for tensors, as pointed out in [12]. In [10], the hierar

chical algorithm is iterative and still based on deflatidng,
Index Terms— Deflation; rank-1 approximations; Canon- is implemented with care. The algorithm we proposed in this
ical Polyadic; CanDecomp ; Parafac ; tensor decompositiorpaper is based on similar ideas, and allows to exactly comput
convergence the CP decomposition by means of rank-one approximations
only. The core of the paper is the analysis of convergence,
1. INTRODUCTION showing that the CP decomposition is obtained almost surely
Our analysis is also corroborated by means of numerical ex-
Tensors play an important role in many applications such admples.
chemometrics [1], blind source separation [2], data mining The paper is organized as follows. In Section 2 several
[3] and telecommunications [4]. The interest in resorting t rank-one approximation algorithms are proposiedSection
tensors, Compared to more standard matrix-based appmachg, we describe our deflation algorithm. In Section 4 we dis-
lies in the uniqueness of their decomposition into rank-on&Uss some issues about global convergence. Finally, cemput
terms, now referred to as CP decomposition [5]. There extesults are reported in Section 5.
ist iterative algorithms allowing to compute the CP decom-  The notation employed is as follows: scalars are denoted
position, but none of them is entirely satisfactory. The mosby lowercase letters, we use calligraphic letters for tesso
widely used is the Alternating Least Squares (ALS) [1], whic boldface capital letters for matrices and boldface lowsgca
is a simple iterative method that updates alternately tbfa letters for vectors. Lastly, dimensions of tensors, magrior
matrices of the CP decomposition. Note that the local convectors are denoted with plain capitals.
vergence of ALS can be long, and that global convergence is
not guaranteed [6, 7, 8]. There exists other iterative meth- 2. RANK-ONE APPROXIMATION
ods, namely those based on all-at-once estimation of the fac
tor matices, such as the Conjugate Gradient and Levenberget K denote the real or the complex field, afiche a tensor
Marquardt methods [9, 8]. Hierarchical methods as desdribejn g/ *%2>*In = The best rank-one approximation is de-

in [10] and [11] can be also used. In the former, the authorgotedy(7), and is formulated by the optimization problem:
use a hierarchical ALS method only for decomposing non-

. . . 9
negative tensors. Moreover, the performance of the algaorit &(T) =arg min T —-X|% )
This work has been funded by the European Research Courdirun s.1. rank{X} =1
the 7th Framework Program FP7/2007-2013 Grant Agreemen820594, . .
and by the Conselho Nacional de Desenvolvimento Cientéifecnologico This problem always has a solution because the set of

(CNPQ) under the program Ciéncias sem Fronteiras. rank-one tensors is known to be closed [13]. However, there



is no algebraic method to find the exact solution to this probprojections of the rows oT'Y—"—1) ontowy_,. Reshape
lem, even if there exist efficient algorithms. For practipat- W —"*1 into a vectomw y_,,1.
poses, we shall now revue four possible ways to estimate thigtepN — 2: define the matriW () of sizel, x I, . . . Iy,whose

best rank-1 approximation. (i) First, the ALS algorithm s a rows are the orthogonal projections of the rowsIst) onto
option that guarantees global convergence for generiotens vy,

in this case [14]. (ii) Another way to obtain a good estimate  The matrixW (%) is the mode-1 unfolding of a suboptimal
of the best rank-one approximation is based on truncatinggnk-one approximatio®’ = (23(7') = W.
the higher order singular value decomposition (T-HOSVD); Aemarks

rank-one approximation is constructed from the first columrh In algorithms SeROA and SeROAP. dimensions can be per-
of each factor matrix [15]. In the case of rank-one approxima_’ g . L €p
muted before proceeding. In particular, it can be attradiiv

tions, rank and multilinear rank indeed coincide. (iii) Arth : : .
; : : . choosel; to be the largest dimension, and to sort them in de-
way is to compute the dominant singular triplet of a sequencé

of tensors of decreasing order. (iv) Lastly, one can im rovcreasing order.
the previous aoproach 8 also.com utin yiortho onal Fr)o'e 2. The computational complexity of SeROA is smaller than
ne p PP y &sC PULNG Ortnogonal prol€Gs v of the algorithm based on T-HOSVD, since the tensor
tions of a sequence of unfolding tensors of increasing order . : . X

. order, and hence the dimensions of the associated unfolding
The two latter procedures are described below. .

matrices, decrease at each step.

3. T-HOSVD, SeROA and SeROAP algorithms terminate af-
ter a finite number of steps, whereas the ALS algorithm ex-

hibits an unbounded complexity. For this reason, we do not
The algorithm proceeds iV — 1 steps, for aVth order ten-  cOnsider ALS in the remainder.

Ssor.

Step 1:unfold tensor7 into a matrix T™") of size I, x 3. COMPLETE EXACT CP DECOMPOSITION

LI ... Iy and compute its SVD &) = UMMV OT,

Set the dominant left singular vectas as thelst mode of In this section, we present the deflation-based CP decompo-
X. sition Algorithm (DCPD), which calculates the exact CP ten-
Stepn, 1 < n < N — 1: reshape the dominant right singular sor decomposition for general tensors. The algorithm fedlo
vector of T"—Vinto a matrixT(™ of sizel,, x I,41...Iy, (he idea behind the solution described in [10] with the dif-
and set the dominant left singular veciog of T(™ as the ference that each rank-one component is calculated djrectl

ALGORITHM SEROA
(Sequential Rank-One Approximation)

nth mode ofX. using rank-one approximation procedures (1).
StepN —1: reshape the dominant r|ght Singu|ar vector Of The algorithm WorkS as fO"OWS. In the initialization
T2 into aly_; x Iy matrix TV, Set the dominant phase, R rank-one componentst[1,1],..., X[R,1] are

computed by successive rank-one approximations and sub-

left and right singular vectors tay _; anduy, respectively. ' X ; .
9 9 Nl N b y tractions. Since subtraction of a best rank-one approximat

The output is a suboptimal rank-one approximatin=

2 . does not generally decrease tensor rank [12], there isduesi
T) =XV u,, with A = (T, @Y_,u,). g y
¢(T)=A-@p_ju (T’ ©n=ytn) denoted bye[R, 1.
ALGORITHM SEROAP Then an iterative process starts. A first rank-one com-

ponent is generated from the sum of that residue and tensor
X[1,1]. A new residue£]1,2], is then determined. These
The algorithm proceeds WV — 4 steps, for aVth order ten- ~ Operations are performed in first partwfiile loop.

sor. The secondor loop begins with the addition of the pre-

1. Order Reduction-Fitting Phase ceding residue with the second rank-one component. This
Stepn,1 <n < N —2: reshape the dominant right sin- procedure continues until all the remaining rank-one compo
gular vector of T™into a matrix T(*+1) of size I, 11 x nents are updated and a new residue®, _2] is gene_rated in
Inis ... Iy, and computeits SVD gE(+1) = U+ x(n+1) the enq of this loop. Thevhll_e loop continues until a stop-
V+DH ping criterionl = [,,,,, IS achieved. We have an exact tensor
StepN — 2: reshape the dominant right singular vector ofd€composition when(€| ~ 0. Note thate(-) will have
T2 into a Iy_; x Iy matrix T, and compute to be _replaped by.a suboptimal solutioft), as one of those
its SVD asTV-1) — UN-D(N-Dy(N-DH  Define described in Section 2.
wy_1 = Vy_1 ® uy_1 as the Kronecker product between
the dominant right and left singular vectorsBf¥ 1. 4. CONVERGENCE ANALYSIS

2. Order Increase-Projection Phase
Stepn,1 <n < N —2: define the matrixW(N—"+1) of  Some results on global convergence of DCPD using the best
sizely_n-1 X In_n ... 1IN, Whose rows are the orthogonal rank-one approximation can be delineated for general tsnso

(Sequential Rank-One Approximation and Projection)




input : 7~ € Kl *2XxIn- jnpyt data,
R: rank parameter.

output: XV x ) ¢ ghxl2xxIn: rank one
components, anfl € K/ *2xxIx: residue
tensor.

V(1,11 T;

forr=1t0R; [ =1 */

do

X[r, 1] = $(Y[r,1]);

Yir+1,1 = Y[r, 1] - X[r,1];
end
E[R, 1] =Y[R+1,1];
=2
while | < 1,4, do
YL+ X[1,l-1]+ E[R, 1 —1];
X[L1] + $(Y[L1);

Corollary 4.3 LetX be arank-one tensor ar€lany general
tensor. If||X +& — ¢(X +E)||r = ||E]|F, then(&, X) = 0.

Proof. By hypothesis, we hagX + & — (X +E)||r =
|X+E&—X| r. This means that reaches the same minimal
value of the objective ag(X + £). HenceX is a best rank-
one approximation, and Lemma 4.2 applies, which yields that
X + & — X = Eisorthogonal toX. ]

We are now ready to present the first important proposi-
tion about convergence. In the remainder, we shall denote by
2A the DCPD algorithm.

Proposition 4.4 In algorithm®L, if function¢ is a best rank-
one approximation, thes, = ||€[R,[]||» is a monotonically
decreasing sequence.

Proof. In the secondor loop of algorithmg2(, we have

EL] « Y[1,1]] — X[1,1];

for r =2to Rdo

Yir, 1]« X[r,l = 1]+ E[r — 1,1];

Xr,1] « $(Y[r.1));

Elr 1] « Y[r,1] — X[r1];

end

end 1€l Dllr < [[Elr =1, 1)

foreachr do
| X" — X[, Lnas) In particular,||E[R, ]| < ||E[R—1,1])|| 7. Similarly, in the

end beginning ofwhileloop, |€[1,1 + 1]||r < ||E[R, ]| r. Thus,

E + E[R, lmazl; itis easy to see that€[R,! + 1]||r < ||E[R, || F- |

Algorithm 1: DCPD algorithm Proposition 4.4 does not guarantee that the regjd{&, []||

convergesto zero. Even Whé&[R, ]| r < || E[R, ! + 1]||F,

for all I > 1, the sequencés;) could indeed converge to a

nonzero constant.

€L, U7 = Yr, 1] = X[r,1]|| 7
= X[, =1+ E[r =11 = p(X[r, I = 1]+ E[r —1L1])|F.
By Lemma 4.1, we conclude that

To start with, let’s state some basic theoretical results.

Lemma 4.1 Let X be a rank-one tensor anglthe best rank- Remark 4 Notice that wherrank(7) > R, the residue in
one approximation function. Then, for any tengor algorithm&l never converges to zero.

X +E—o(X+E)|r <|E|F- () In order to construct more complete results of conver-

o ] gence, we introduce the following definition:
Proof. By definition, (X + £) is a best rank-one ap-

proximation of X’ + £. In particular,X cannot be a strictly Definition 4.5 Given a tensor7T, 2 is (J, R)-convergent if
better rank-1 approximation thaii X’ + &), which means that there exist$), 0 < 6 < 1, such thatfor all > 1, ||E[R, [ +
[X +E—d(X+E)| <[|X+E—-X[=|E]. B r <OIER I

Let us look at the implications of equality in (2). To do

that. we need the lemma below. Remark 5 For 6 < 1, after! iterations of while loop irg(,

IER, 1+ 1]||r < 8'||E[R,1]||r- Hence||E[R, 1+ 1]||F — O
Lemma 4.2 Let¢(T) be a best rank-one approximation of a when,] — oc.
tensor7". Then|| T — ¢(T)I% = | TlIE — 6(T)l%- _ _ _
Let T be the set of all tensors with entrieskn Define the
Proof. The proof just needs the fact that the set of ranksets:T7(® = {7 € T: rank{7T} < R} andggR) ={T e
one tensors is a linear cone. Any rank-one tensor can be writF(%2) . 9( is (4, R)-convergent for7” }, for some0 < § < 1.
ten asy = \V wh_ere||v|\ = 1. The best rank-1 approxi- Notice thatng) C SESR) for 6, < 6, andSSR) — 7(R) due to
mate of 7 is a stationary point o' (\, V) = [T — AV||%.  Definition 4.5. :
The cancellation of the derivativeéY /0 yields A||V||? —
(T, V) = 0, and eventuall\ = (7", V). Now plug this back Proposition 4.6 Let tensors be distributed withifi(®®) ac-
in the produc{ 7 — AV, \V) and get\* (7, V)—A\*||V|> =  cording to an absolutely continuous probability measure.
0. HenceT —V andV are orthogonal, and the result follows. Then for anys > 0, there exist®), 0 < § < 1, such that
B algorithm®lis (4, R)-convergent with probabilityl — ¢).



Proof. By the continuity of the measure, for aay> 0, 5.3. Example 1:7" € R****3 rank(T) = 4.
there exist® < § < 1, such tha]u(Sf;R)) =1—c. |
In the example below, the Kruskal condition is not satisfied.
Remark 6 If the probability distribution is isotropic, an re- We take the example 3.1 from [11], whose mode-1 unfolding
lationship can be stated betweérand ¢, given by the ratio is given by
between the solid angle and the surface of the hypersphere.
1 0 0{0 1 0]0 0 O
5. COMPUTER RESULTS T =100 0[1 00000
0 0 0j]0 O 0|0 O 1

5.1. Performance of rank-one approximation functions

In this section, we compare the performance of three ramk-on  Here, for both T-HOSVD and SeROAP implementations
approximation functions, as described in Section 2. Thietab of ¢(-), the algorithm converges to an exact decomposition in
below shows the mean and variance of the rank-one approxe first iteration (€[4, 1]|| » = 0) in a few milliseconds. The

imation error for a sample of 10000 tensors in two differenffirst for loop in algorithm DCPD is enough to guarantee an
scenarios:3 x 3 x 3 rank3 tensors, and x 4 x 4 rank5  exact solution. Contrary to [11], we do not need a sophisti-

tensors. cated algorithm to decompose this tensor.
Scenario 1 Scenario 2
| Algorithm || mean | variance|| mean | variance
T-HOSVD || 0.8560] 0.1355 || 2.3950] 0.3733 5.4. Example 2:T € R°*%C rank(T") = 8.
SeROA | 1.6113| 0.2629 || 3.3500| 0.4848
SeROAP || 0.8226] 0.1121 || 2.2667| 0.2786 The residug|£[R, []||  is plotted in Figure 2 as a function of
iteration/. It illustrates the rate of convergence of DCPD for

5.2. Performance of DCPD Algorithm randomG x 6 x 6 tensors.

In order to produce satisfactory results with algorithm MCP
we have defined the following stopping criteria:|(J€ [R, | +
Uz — |EIR)lF] < 107 and (i) lypax = 10000.
For various ranges of tensors, we plot the estimation €

. ~ (k
Eest = maxllg0201 mina Zf:l ngk) - Xz(j(z

AW :
andX ., are the actual and estimateth rank-one compo . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
nent, ands(-) denotes a permutation. Iteration

Fig. 2. Convergence rate of @ x 6 x 6 rank- real random
tensor.

O sRoAP
-
10 O T-HOSVD
.
10 — [2x2x2,R=2] 3
— [333,R=3]

% o [4x4x4, R = 5]
@10 — [6x6x6,R=8] 3

= SROAP

E[R.MII

|l 7, wherex )

6. CONCLUSION

o We proposed a deflation algorithm (DCPD) delivering an

Fig. 1. Estimation error for DTD algorithm. exact CP decomposition of given rank, based on succes-

sive rank-one approximation. Best rank-one approxima-

Figure 1 shows the maximum errdf.,; calculated for tions are always well-posed and rather easy to compute; we
100 random tensors for the following real tensor scenariosalso proposed several algorithms with this purpose (SeROA,
2 x 2 x 2 rank2 tensors3 x 3 x 3 rank3 tensorsd x 4 x4  SeROAP) and compared them to T-HOSVD. Our main con-
rank5 tensors, and x 6 x 6 ranks8 tensors. The simula- tribution is a proof of convergence of algorithm DCPD, for
tions are performed with both rank-one approximations: Ta class of tensors of large measure. Computer experiments
HOSVD and SeROAP. Notice that in all scenarios the Kruskatun on random tensors of fixed rank have confirmed our
unigueness condition [16] is satisfied.. theoretical results.
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