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Abstract

The in�uence of a time-periodic forcing on stochastic processes can

essentially be emphasized in the large time behaviour of their paths. The

statistics of transition in a simple Markov chain model permits to quan-

tify this in�uence. In particular a functional Central Limit Theorem can

be proven for the number of transitions between two states chosen in

the whole �nite state space of the Markov chain. An application to the

stochastic resonance is presented.
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Introduction

The description of natural phenomenon sometimes requires to introduce stochas-
tic models with periodic forcing. The simplest model used to interpret for in-
stance the abrupt changes between cold and warm ages in paleoclimatic data is
a one-dimensional di�usion process with time-periodic drift [6]. This periodic
forcing is directly related to the variation of the solar constant (Milankovitch cy-
cles). In the neuroscience framework, such periodic forced model is also of prime
importance: the �ring of a single neuron stimulated by a periodic input signal
can be represented by the �rst passage time of a periodically driven Ornstein-
Uhlenbeck process [19] or other extended models [14]. Moreover let us note that
seasonal autoregressive moving average models have been introduced in order to
analyse and forecast statistical time series with periodic forcing. Recently the
time dependence of the volatility in �nancial time series leaded to emphasize
periodic autoregressive conditional heteroscedastic models. Whereas several sta-
tistical models permit to deal with time series, the in�uence of periodic forcing
on time-continuous stochastic processes concerns only few mathematical studies.
Let us note a nice reference in the physics literature dealing with this research
subject [13].

Therefore we propose to study a simple Markov chain model evolving in
a time-periodic environment (already introduced in the stochastic resonance
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context [12] and [9]) and in particular to focus our attention to its large time
asymptotic behaviour. Since the dynamics of the Markov chain is not time-
homogeneous, the classical convergence towards the invariant measure and the
related convergence rate cannot be used.

Description of the model. Let us consider a time-continuous irreducible
Markov chain evolving in the state space S = {s1, s2, . . . , sd} with d ≥ 2. The
transition rate from state si to state sj is denoted by ϕ0

i,j , for i 6= j. We assume

that ϕ0
i,j ≥ c for some positive constant c and for any i 6= j. We perturb this ini-

tial process by a periodic forcing of period T ; it means that the transition rates
ϕ0
i,j are increased using additional non negative periodic functions ϕpi,j . The

obtained Markov chain is denoted by (Xt)t≥0 and its in�nitesimal generator is
given by

Qt =


−ϕ1,1(t) ϕ2,1(t) . . . ϕd,1(t)
ϕ1,2(t) −ϕ2,2(t) ϕd,2(t)

...
...

. . .
...

ϕ1,d(t) ϕ2,d(t) . . . −ϕd,d(t)

 , (0.1)

Here ϕi,j = ϕ0
i,j + ϕpi,j are T -periodic functions representing the transition rate

from state si to sj . In particular, the transitions rates satisfy:

ϕi,j(t) ≥ c > 0 for any (i, j) ∈ S2. (H)

We also assume that ϕi,j are càdlàg functions.
In order to describe precisely the paths of the chain (Xt), we de�ne transi-

tions statistics: N i,j
t corresponds to the number of switching from state si to sj

up to time t. For notational convenience, we focus our attention on Nt := N 1,2
t .

Obviously knowing the processes (N i,j
t ) for any 1 ≤ i, j ≤ d is equivalent to

know the behaviour of (Xt).
Main result. Let us �rst note that, in the higher dimensional space [0, T ]×S,

we can de�ne a Markov process (t mod T,Xt)t≥0 which is time-homogeneous
and admits a unique invariant measure µ = (µi(t))1≤i≤d, t∈[0,T [. The main
results can then be stated. The periodic forcing implies that the distribution of
the Markov chain (Xt) converges as time elapses toward the unique invariant
measure µ (the sense of this convergence is made precise in Section 1). Moreover
the �rst moments of the statistics Nt satisfy:

lim
t→∞

1

t
E[Nt] =

1

T

∫ T

0

ϕ1,2(s)µ1(s) ds,

and there exists a constant κϕ > 0 such that limt→∞Var(Nt)/t = κϕ. The
explicit value of the constant κϕ is emphasized in Section 2.1. Using these two
moment asymptotics, we can prove a Central Limit Theorem: the number of
transitions between two given states during n periods is asymptotically gaussian
distributed: the process (

NntT − E[NntT ]√
Var(NntT )

)
0≤t≤1

converges in distribution towards the standard Brownian motion as n tends to
in�nity (Theorem 2.6).
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Application. The explicit expression of the mean number of transition be-
tween two states before time t permits to deal with particular optimization
problems appearing in the stochastic resonance framework (see, for instance,
[8]). Let us reduce the study to a 2-state space: S = {s1, s2} and to the corre-
sponding Markov chain whose transition rates correspond to ϕ1,2 respectively
ϕ2,1, the exit rate of the state s1 resp. s2. Let us consider a family of periodic
forcing having all the same period T and being parametrized by a variable ε,
then it is possible to choose in this family the perturbation which has the most
in�uence on the stochastic process, just by minimizing the following quality
measure:

M(ε) :=

∣∣∣∣∣
∫ T

0

ϕε1,2(s)µε1(s)ds− 1

∣∣∣∣∣ .
Indeed this expression intuitively means that the asymptotic number of transi-
tions from state s1 to state s2 is close to 1. In Section 3 we shall compare this
quality measure (already introduced in [21]) to other measures usually used in
the physics literature [12].

1 Periodic stationary measure for Markov chains

Before focusing our attention on the paths behaviour of the Markov chain, we
describe, in this preliminary section, the �xed time distribution of the random
process and, in particular, analyse the existence of a so-called periodic stationary
probability measure � PSPM (we shall precise this terminology in the following).
The marginal law of the Markov chain (Xt)t≥0 starting from the initial distri-
bution ν0 and evolving in the state space S = {s1, . . . , sd} is given by

νi(t) = Pν0(Xt = si), 1 ≤ i ≤ d.

This probability measure ν = (ν1, . . . , νd)
∗ (the symbol ∗ stands for the trans-

pose) constitutes a solution to the following ODE:

ν̇(t) = Qtν(t) and ν(0) = ν0, (1.1)

where the generator Qt is de�ned in (0.1). Let us just note that

P(Xt+h = sj |Xt = si) = ϕi,j(t)h+ o(h)

for i 6= j. Moreover the following relation holds

ϕi,i =

d∑
j=1,j 6=i

ϕi,j , ∀1 ≤ i ≤ d. (1.2)

Floquet's theory dealing with linear di�erential equation with periodic coe�-
cients can thus be applied. In particular we shall prove that ν(t) converges
exponentially fast towards a periodic solution of (1.1), the convergence rate
being related to the Floquet multipliers (see Section 2.4 in [4]).

De�nition 1.1. Any T -periodic solution ν(t) = (ν1, . . . , νd)
∗ of (1.1) is called

a periodic stationary probability measure � PSPM i� νi(t) ≥ 0 for all i ∈
{1, . . . , d} and

∑d
i=1 νi(t) = 1 both for all t ≥ 0.
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The following statement points out the long time asymptotics of the Markov
chain.

Theorem 1.2. The system (1.1) has a unique stationary probability measure
µ(t) which is T -periodic. For any initial condition ν0, the probability distribution
ν(t) := PXt converges in the large time limit towards µ(t). More precisely the
rate of convergence is given by

lim
t→∞

1

t
log ‖ν(t)− µ(t)‖ ≤ Re(λ2) < 0, (1.3)

where λ2 is the second Floquet exponent associated to (1.1) and (0.1); ‖·‖ stands
for the Euclidian norm in Rd.

Proof. Step 1. Existence of the periodic invariant measure. We consider the
distribution of the Markov chain (Xt) starting from state si, we obtain obviously
a probability measure which is solution of the following ode:

ν̇i(t) = Qtν
i(t), νi(0) = (δij)j∈{1,...,d}, (1.4)

where δij stands for the Kronecker symbol. We deduce that the principal matrix
solution of (1.1) is given by

M(t) =


ν11(t) ν21(t) . . . νd1 (t)
ν12(t) ν22(t) νd2 (t)
...

...
. . .

...
ν1d(t) ν2d(t) . . . νdd(t)


since M(0) = Idd, the identity matrix in Rd. The monodromy matrix M(T ) is
therefore stochastic and strictly positive: νij(T ) > 0 since Qt satis�es (H). By
the Perron-Frobenius theorem (see chapter 8 in [15]), the largest eigenvalue is
simple and equal to 1. Moreover, the associated eigenvector u = (u1, . . . , ud)

∗

is strictly positive and so we de�ne a probability measure using a normalisa-
tion procedure: u∑d

i=1 ui
. Consequently there exists a unique periodic invariant

probability measure µ(t) de�ned by

µ(t) =
M(t)u∑d
i=1 ui

, t ≥ 1.

Floquet's theory ensures that µ(t) is T -periodic.
Step 2. Convergence. By the Perron-Frobenius theorem, the eigenvalues of the
monodromy matrix M(T ), also called Floquet multipliers, are {r1, r2, . . . , rs},
s ≤ d with 1 = r1 > |r2| ≥ |r3| ≥ . . . ≥ |rs| and whose associated multiplicities
n1, . . . , ns satisfy n1 = 1 and

∑s
k=1 nk = d. Let us decompose the space as

follows Rd = Rµ(0) ⊕ V where µ(0) is the periodic invariant measure at time
t = 0 and V is a stable subspace for the linear operator M(T ). Since the �rst
eigenvalue r1 is simple, the spectral radius of M(T ) restricted to the subspace
V satis�es ρ(M(T )|V ) = |r2| < 1. So for any probability distribution ν0, we get
ν0 = αµ(0) + v with α ∈ R and v ∈ V . Hence

‖M(T )nν0 − αµ(0)‖ =
∥∥∥(M(T )|V

)n
v
∥∥∥ ≤ ∥∥∥(M(T )|V

)n∥∥∥ · ‖v‖.
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Using Gelfand's formula (see, for instance [20], p.70) we obtain the asymptotic
result

lim
n→∞

1

n
log ‖M(T )nν0 − αµ(0)‖ ≤ log(|r2|) < 0. (1.5)

In particular, since M(T )nν0 is a probability measure, we deduce that α = 1.
Let us just note that the Floquet multiplier r2 satis�es r2 = eλ2T where λ2 is
the associated Floquet exponent de�ned modulo 2π/T . Consequently

log(|r2|) = T Re(λ2).

Let us now consider any time t, ν(t) is then a probability measure satisfying

ν(t) = M(t)ν0.

We de�ne r(t) ∈ [0, T [ by r(t) = t− bt/T cT and obtain

‖ν(t)− µ(t)‖ = ‖M(t)ν0 −M(t)µ0‖
= ‖M (r(t))M (bt/T cT ) ν0 −M (r(t))µ0‖

≤ ‖M (r(t))‖
∥∥∥M(T )bt/Tcν0 − µ0

∥∥∥ .
By (1.5) and since M(t) is a continuous and T -periodic function (bounded op-
erator), we obtain the announced statement (1.3).

The particular 2-dimensional case

In this section, we focus our attention on the particular 2-dimensional case. As
explained in Theorem 1.2, the distribution of the Markov chain ν(t) := PXt
starting from the initial distribution ν0 and evolving in the state space S =
{s1, s2} converges exponentially fast to the unique PSPM µ. In dimension 2, we
can compute explicitly the probability measure ν(t) and the convergence rate,
applying Floquet's theory. This theory deals with linear di�erential equation
with periodic coe�cients (see Section 2.4 in [4]). The following statement points
out the long time asymptotics of the Markov chain.

Proposition 1.3. In the large time limit, the probability distribution ν con-
verges towards the unique PSPM µ de�ned by µ(t) = (µ1(t), 1− µ1(t)) and

µ1(t) = µ1(0)e−
∫ t
0
(ϕ1,2+ϕ2,1)(s)ds +

∫ t

0

ϕ2,1(s) e−
∫ t
s
(ϕ1,2+ϕ2,1)(u)duds, (1.6)

where

µ1(0) =
I(ϕ2,1)

I(ϕ1,2 + ϕ2,1)
and I(f) =

∫ T

0

f(t)e−
∫ T
t

(ϕ1,2+ϕ2,1)(u)dudt. (1.7)

More precisely, if ν(0) 6= µ(0) then

lim
t→∞

1

t
log ‖ν(t)− µ(t)‖ = λ2, (1.8)

where λ2 stands for the second Floquet exponent:

λ2 = − 1

T

∫ T

0

(ϕ1,2 + ϕ2,1)(t) dt. (1.9)
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Remark 1.4. It is possible to transform (Xt)t≥0 into a time-homogeneous
Markov process just by increasing the space dimension. By this procedure (µ(t))0≤t<T
becomes the invariant probability measure of (t mod T,Xt)t≥0.

Proof. 1. First we study the existence of a unique PSPM. Let µ(t) be a prob-
ability measure thus µ1(t) + µ2(t) = 1. If µ satis�es (1.1) then we obtain, by
substitution, the di�erential equation:

µ̇1(t) = −ϕ1,2(t)µ1(t) + ϕ2,1(t)(1− µ1(t)).

This equation can be solved using the variation of the parameters. The proce-
dure yields (1.6). The periodicity of the solution requires µ1(T ) = µ1(0) and
leads to (1.7).
2. The system (1.1) admits two Floquet multipliers ρ1 and ρ2. Since there exists
a periodic solution, one of the multipliers (let us say ρ1) is equal to 1 and we
can compute the other one using the relation between the product ρ1ρ2 and the
trace of Qt:

ρ1ρ2 = exp

(∫ T

0

tr(Qt) dt

)
.

The explicit expression of the trace leads to (1.9). Let us just note that we can
link to both Floquet multipliers ρ1 and ρ1 the so-called Floquet exponents λ1
and λ2 de�ned (not uniquely) by

ρ1 = eλ1T and ρ2 = eλ2T .

3. Since the Floquet multipliers are di�erent, each multiplier is associated with
a particular solution of (1.1). The multiplier ρ1 = 1 (i.e. λ1 = 0) corresponds
to the PSPM since µ(t+ T ) = ρ1µ(t) for all t ∈ R+. For the Floquet exponent
λ2, we consider ζ(t) the solution of (1.1) with initial condition ζ(0)∗ = (−1, 1).
Combining both equations of (1.1), we obtain{

ζ1(t) + ζ2(t) = 0

ζ1(t)− ζ2(t) = −2 exp
(
−
∫ t
0
(ϕ1,2 + ϕ2,1)(s)ds

)
.

(1.10)

We deduce

ζ(t)∗ =

(
− exp

(
−
∫ t

0

(ϕ1,2 + ϕ2,1)(s)ds

)
, exp

(
−
∫ t

0

(ϕ1,2 + ϕ2,1)(s)ds

))
and we can easily check that ζ(t+ T ) = ζ(t)eλ2T .
The solution of (1.1) with any initial condition is therefore a linear combination
of ζ and µ, the solutions associated with the Floquet multipliers. Writing ν(0)
in the basis (µ(0), ζ(0)) yields ν(t) = αµ(t) + βζ(t), with α = ν1(0) + ν2(0) (α
is equal to 1 in the particular probability measure case) and

β =
ν1(0)− ν2(0)

2
+ α

I(ϕ2,1)− I(ϕ1,2)

2I(ϕ1,2 + ϕ2,1)
.

Then, if the initial condition is a probability measure, we obtain (1.8) since

‖ν(t)− µ(t)‖ = ‖βζ(t)‖ =
√

2|β|e−
∫ t
0
(ϕ1,2+ϕ2,1)(s)ds.
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2 Statistics of the number of transitions

In this section, we aim to describe the number of transitions N i,j
t , up to time t,

between two given states si and sj . This information is of prime interest since
computing it for a given path is very simple [17]. Recent studies emphasize
how to get the probability distribution of this counting process, even in some
more general situations: Markov renewal processes including namely the time-
homogeneous Markov chains [3].
Moreover counting the transitions permits to get informations about the tran-
sition rates of the Markov chain. In the particular time-homogeneous case, the
number of transitions during some large time interval are used for estimation
purposes (for continuous-time Markov chains see, for instance, [1] and for time
discrete Markov chains [2]).
In general, the large time behaviour of N i,j

t is directly related to the ergodic
theorem, the law of large numbers and �nally the Central Limit Theorem (for
precise hypotheses concerning these limit theorems, see [16]). Let us just dis-
cuss a particular situation: the study of a time-discrete Markov chain (Xn)n≥0
with values in the state space S = {s1, . . . , sd} and with transition probabil-
ities π. Let us denote µ its invariant probability measure. In order to de-
scribe the number of transitions, we introduce a new Markov chain by de�ning
Zn := (Xn−1, Xn) for n ≥ 1, valued in the state space S2. Its invariant measure
is therefore µ̃ de�ned by

µ̃(x, y) := π(x, y)µ(x), (x, y) ∈ S2.

In this particular situation, the number of transitions of the chain (Xn) is given
by

N 1,2
n =

n∑
k=1

1{Xk−1=s1, Xk=s2} =

n∑
k=1

1(s1,s2)(Zk).

In other words, it corresponds to the number of visits of the state (s1, s2) by the
chain (Zn)n≥1. Consequently, under suitable conditions, the ergodic theorem
can be applied:

lim
n→∞

N 1,2
n

n
= µ̃(s1, s2) almost surely.

The Central Limit Theorem speci�es the rate of convergence.
However these arguments cannot be applied directly to the periodic forced

Markov chain model associated to the in�nitesimal generator (0.1) due to es-
sentially two facts:

• the Markov chain (Xt)t≥0 is time-inhomogeneous

• the Markov chain is a time-continuous stochastic process.

One way to overcome these di�culties is to combine a discrete time-splitting
(tn)n≥0 on one hand and an increase of the space dimension on the other hand
so that (tn mod T,Xtn−1

, Xtn) becomes homogeneous. This procedure seems to
be complicated and we choose to present a quite di�erent approach based on a
time-spitting and on a functional Central Limit Theorem for weakly dependent
random variables introduced by Herrndorf [11]. This result requires to study
the asymtotic behaviour of the �rst moments of N i,j

t and a mixing property of
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the Markov chain.
Let us also mention that usually the Central Limit Theorem and the associated
large deviations could be proven using asymptotic properties of the Laplace
transform of N i,j

t . Of course such information is not su�cient for a functional
CLT. An overview of the conditions can be found in [5].

2.1 Long time asymptotics for the average and the vari-

ance

The general d-dimensional case

Let us focus our attention to the two �rst moments of Nt, the number of transi-
tion between two given states, let us say s1 and s2. In a homogeneous continuous
time Markov chain, the average and the variance of Nt grows linearly if the pro-
cess starts with the stationary distribution. What happens if the Markov chain
is not homogeneous and in particular, if the transition probabilities depend
periodically on time?

Let us introduce di�erent mathematical quantities which play a crucial role
in the asymptotic result.

• Let us denote by M(t) the fundamental solution of (1.1), that is:

Ṁ(t) = QtM(t), M(0) = Id. (2.1)

• Ξ(T ) represents the Jordan canonical form ofM(T ). P is the matrix basis
of this canonical form: Ξ(T ) = P−1M(T )P . Moreover we denote for any
t ≥ 0,

Ξ(t) = P−1M(t)P. (2.2)

• Three additional notations: the vector e1 = (1, 0, . . . , 0) ∈ Rd and the

matrices Ǐd
1

i,j = 1{i=j≥2} for 1 ≤ i, j ≤ d and (Bt)i,j = ϕ1,2(t)δi,2δj,1.

Theorem 2.1. Asymptotics of the two �rst moments

The number of transitions from state s1 to state s2, denoted by Nt, satis�es the
following asymptotic properties.
1. First moment. For any initial distribution PX0 , we observe in the large time
limit

mt := E[Nt] ∼
∫ t

0

ϕ1,2(s)µ1(s) ds,

where µ1 is the �rst coordinate of the periodic stationary measure associated
with the Markov chain (Xt)t≥0. In particular,

lim
t→∞

1

t
E[Nt] =

1

T

∫ T

0

ϕ1,2(s)µ1(s) ds (2.3)

2. Second moment. Let us denote by Rν(t) := Var(Nt) − E[Nt] for the initial
distribution of the Markov chain: PX0

= ν. Then

Rµ(0)(T ) = 2

∫ T

0

ϕ1,2(s)e∗1 P Ξ(s)Ǐd
1
C(s) ds, (2.4)
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where µ is the PSPM and

C(t) =

∫ t

0

Ξ(s)−1P−1Bsµ(s) ds. (2.5)

Moreover the following limit holds

lim
t→∞

1

t
Rν(t) =

2

T

{
e∗1

(∫ T

0

ϕ1,2(s)P Ξ(s) ds
)

Ξ(T )Ǐd
1
(

Id− Ξ(T )Ǐd
1
)−1

C(T )

}

+
1

T
Rµ(0)(T ). (2.6)

The mathematical quantity Rν(t) has been studied since its expression is ac-
tually more concise than the explicit expression of the variance. Moreover, it
is well known that the variance of a Poisson distribution equals its average.
Therefore R vanishes for this particular probability distribution which in fact
plays an important role for counting processes in homogeneous environments.

Remark 2.2. 1. The limit (2.6) does not depend on the initial distribution
of X0. This property is related to the ergodic behaviour of the Markov chain
developed in 1.2.
2. If the fundamental solution of (2.1) at time T is diagonalizable, that is
r1 = 1 > |r2| > . . . > |rd| where ri are the Floquet multipliers of (1.1), then
(2.6) takes a simpler form due to the following expression:(

Ξ(T )Ǐd
1
(Id− Ξ(T )Ǐd

1
)−1
)
i,j

=
ri

1− ri
1{i=j≥2}, 1 ≤ i, j ≤ d.

3. If the transition probabilities are constant functions such that Qt de�ned in
(0.1) satis�es

ϕi,j = ϕ1{i 6=j} − (d− 1)ϕ1{i=j},

for some constant ϕ > 0, then Theorem 1.2 can be applied for any T > 0 and
straightforward computations lead to:

Rµ(0)(t) =
2

d4
(1− e−dϕt − dϕt)

Hence

lim
t→∞

1

t
Rµ(0)(t) = −2ϕ

d3
.

Even in this simple homogeneous situation, Nt is not asymptotically Poisson
distributed. Indeed the Poisson distribution would satisfy R(t) = 0.

Proof. Step 1. Averaged number of transitions. Let us �rst decompose the
averaged number of transitions as follows:

mt =

d∑
k=1

mk
t with mk

t = E[Nt1{Xt=sk}].

9



We setMt := (m1
t , . . . ,m

d
t )
∗. For h > 0 small enough, we get

m2
t+h =E[Nt+h1{Xt+h=s2}] =

∑
1≤i≤d

E[(Nt + (Nt+h −Nt))1{Xt=si, Xt+h=s2}]

=
∑

1≤i≤d

E[Nt1{Xt=si}]P(Xt+h = s2|Xt = si)

+
∑

1≤i≤d

E[(Nt+h −Nt)1{Xt=si, Xt+h=s2}]

=m2(t)(1− ϕ2,2(t)h) +

d∑
i=1,i6=2

mi(t)ϕi,2(t)h+ ν1(t)ϕ1,2(t)h+ o(h)

where νi(t) = P(Xt = si). By similar computations, we obtain the result for
h < 0 close to the origin. Moreover for k 6= 2:

mk
t+h =E[Nt+h1{Xt+h=sk}]

=mk(t)(1− ϕk,k(t)h) +

d∑
i=1,i6=k

mi(t)ϕi,k(t)h+ o(h).

Finally we observe thatMt satis�es the ode:

Ṁt = QtMt +Btνt, M0 = 0, (2.7)

where (Bt)i,j = ϕ1,2(t)δi,2δj,1. Let M(t) the fundamental solution of (2.1).
Since Qt satis�es (H), M(T ) is an irreducible positive and stochastic matrix.
Indeed, let us just explain why Psi(XT = sj) > 0 for any i and j: let us assume
that this inequality does not hold. Then for h small enough, there exists a state
sl such that

Psi(XT−h = sl) > 0, (2.8)

and
P(XT = sj |XT−h = sl) = ϕl,j(T − h)h+ o(h) (2.9)

if l 6= j, otherwise:

P(XT = sj |XT−h = sj) = 1− ϕj,j(T − h)h+ o(h). (2.10)

By (H), the combination of (2.8), (2.9) and (2.10) leads to the announced prop-
erty Psi(XT = sj) > 0, as a product of two positive quantities. Therefore the
Perron-Frobenius theorem (see chapter 8 in [15]) applied to the matrix M(T )
implies

• the eigenvalues r1, r2, . . . , rs, s ≤ d of the matrixM(T ) have the associated
multiplicity n1 = 1,

∑s
k=1 nk = d and r1 = 1 > |r2| ≥ . . . |rs|.

• the eigenvector associated to the �rst eigenvalue corresponds to the peri-
odic stationary probability measure µ(0).

We denote therefore B = (ξ01 , . . . , ξ
0
d) the basis of the canonical Jordan form

of the matrix M(T ) and P the basis matrix of B, P−1M(T )P being then the
Jordan form. In particular ξ01 = µ(0). We de�ne ξk(t) = M(t)ξ0k, 1 ≤ k ≤ d and
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observe two di�erent cases. First case: ξ0k is an eigenvector of M(T ) associated
to the eigenvalue rj which implies that

ξk(t+ T ) = M(t+ T )ξ0k = M(t)M(T )ξ0k = rjM(t)ξ0k = rjξk(t) (2.11)

and consequently ξk is a Floquet solution associated to the Floquet multiplier
rj .
Second case: ξ0k is not an eigenvector of M(T ) and belongs to the Jordan block
associated to the eigenvalue rj then

ξk(t+ T ) = M(t)M(T )ξ0k = rjM(t)ξ0k +M(t)ξ0k−1 = rjξk(t) + ξk−1(t). (2.12)

Furthermore we denote by Ξ(t) the matrix de�ned by (2.2): the coe�cient Ξi,j(t)
represents the i-th coordinate of the solution ξj(t) in the basis B for 1 ≤ i, j ≤ d.
Let us note that since ξ1 is a probability measure, (1, . . . , 1)ξ1 = 1. Moreover
combining (1.1) and (1.2) leads to the following property: (1, . . . , 1)P Ξ(t) is a
constant function. If ξ0k is an eigenvector of M(T ) associated to the eigenvalue
rj then ξk(T ) = rjξk(0) with |rj | < 1. In particular, since (1, . . . , 1)ξk(t) is
constant in the canonical basis (1, . . . , 1)ξk(t) = 0. If ξ0k is not an eigenvector
but belongs to the Jordan block associated to the eigenvalue rj then (2.12) leads
to

(1, . . . , 1)ξk(T ) = rj(1, . . . , 1)ξk(T ) + (1, . . . , 1)ξk−1(T ).

If (1, . . . , 1)ξk−1(T ) = 0 then the property |rj | < 1 leads to (1, . . . , 1)ξk(T ) = 0.
So step by step, we prove that

(1, . . . , 1)P Ξ(t) = (1, 0, . . . , 0), ∀t ≥ 0. (2.13)

Let us now solve the homogeneous part of the equation (2.7): there exists a
vector C = (C1, . . . , Cd)

∗ such that

Mt = P Ξ(t)C.

By the method of parameter variation, we obtain the system:

P Ξ(t)Ċ(t) = Btν(t) = (0, ϕ1,2(t)ν1(t), 0, . . . , 0)∗. (2.14)

The initial conditionM(0) = 0 leads to C(0) = 0. By multiplying (2.14) on the
left side by the vector (1, . . . , 1) we obtain Ċ1(t) = ϕ1,2(t)ν1(t). Hence

C1(t) =

∫ t

0

ϕ1,2(s)ν1(s)ds. (2.15)

We obtain therefore an explicit solution of (2.7) and deduce that

E[Nt] = (1, . . . , 1)Mt = C1(t) =

∫ t

0

ϕ1,2(s)ν1(s)ds ∼
∫ t

0

ϕ1,2(s)P Ξ1,1(s)ds,

as t becomes large. The equivalence presented in the previous equation is due
to the ergodic property of the periodically driven Markov chain (Theorem 1.2).
More precisely, for any su�ciently small constant ε > 0 (smaller than |Re(λ2)|)
there exists a constant C > 0 such that:∣∣∣E[Nt]−

∫ t

0

ϕ1,2(s)P Ξ1,1(s)ds
∣∣∣ ≤ ∫ t

0

ϕ1,2(s)|ν1(s)− P Ξ1,1(s)|ds

≤ C
∫ t

0

ϕ1,2(s)e(Re(λ2)+ε)sds. (2.16)
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Since the function ϕ1,2 is bounded, so is the di�erence E[Nt]−
∫ t
0
ϕ1,2(s)P Ξ1,1(s)ds.

Step 2. Description of the function C(t). From now on, we assume that the
initial probability measure of the Markov chain is µ(0), the initial value of the
PSPM. Before developing the asymptotics of the variance of Nt in the large
time limit, we need to specify the function C(t), solution of (2.14) where ν1 is
replaced by µ1. We know that C(0) = 0. Let us de�ne

η(t) := C(t+ T )− C(T ) for any t ≥ 0.

We observe that, due to the periodic property of ξ1 and ϕ1,2, the function η is
solution of the following equation

P Ξ(t+ T )η̇(t) = Btξ1(t), η(0) = 0. (2.17)

Introducing η̃(t) = Ξ(T )η(t), we obtain

P Ξ(t+ T )η̇(t) = P Ξ(t)Ξ(T )η̇(t) = P Ξ(t) ˙̃η(t) = Btξ1(t), η̃(0) = 0.

By uniqueness of the solution of the previous equation (Cauchy-Lipschitz the-
orem), the equality η̃(t) = C(t) holds. Since Ξ(T ) is invertible (the Floquet
multipliers are not equal to 0):

η(t) = C(t+ T )− C(T ) = Ξ(T )−1C(t), t ≥ 0.

Therefore, using the de�nition of η(t) and an iteration procedure, we deduce

C(t+ lT ) =
( l−1∑
i=0

Ξ(T )−i
)
C(T ) + Ξ(T )−lC(t), l ≥ 1. (2.18)

Step 3. Asymptotics of the variance. We now describe the asymptotic be-
haviour of the second moment. Let us denote Vt = (v1t , . . . , v

d
t )∗ with vkt =

E[N 2
t 1{Xt=sk}]. Using similar arguments as those presented in the beginning of

Step 1, we obtain the following di�erential equation:

V̇t = QtVt +Bt(2Mt + µ(t)), V0 = 0. (2.19)

The procedure is similar as above, the variation of parameters leads to:

Vt = P Ξ(t)κ(t) with κ(t) = (κ1(t), . . . , κd(t))
∗.

The coe�cient κ(t) is solution to the equation:

P Ξ(t)κ̇(t) = Bt(2Mt + µ(t)), κ(0) = 0.

Multiplying the previous equation on the left-hand side by (1, . . . , 1) implies:

κ̇1(t) = ϕ1,2(t)(2m1
t + µ(t)), κ1(0) = 0.

The second moment of the number of transitions between the states s1 and s2
satis�es Eµ[N 2

t ] = (1, . . . , 1)Vt = κ1(t), that is:

Eµ[N 2
t ] =

∫ t

0

ϕ1,2(s)(2m1
s + µ(s)) ds.

12



Here Eµ stands for the expectation of the Markov chain distribution with the
initial probability distribution µ(0). Let us set the vector e1 = (1, 0 . . . , 0)∗ and

the matrix Ǐd
1

i,j = 1{i=j≥2}. On the one hand we have

Eµ[N 2
t ] =

∫ t

0

ϕ1,2(s)
(

2e∗1Ms+µ1(s)
)
ds =

∫ t

0

ϕ1,2(s)
(

2e∗1P Ξ(s)C(s)+µ1(s)
)
ds.

On the other hand,

Eµ[Nt]2 =

∫ t

0

2m′sms ds =

∫ t

0

2ϕ1,2(s)µ1(s)C1(s)ds

=

∫ t

0

2ϕ1,2(s)e∗1P Ξ(s)(C(s)− Ǐd
1
C(s))ds.

Hence,

Rµ(0)(t) := Varµ(Nt)− Eµ[Nt] = 2

∫ t

0

ϕ1,2(s)e∗1P Ξ(s)Ǐd
1
C(s)ds. (2.20)

Let us now compute the limit of the following expression Rµ(0)(t)/t as t→∞.

We �rst observe that Ξ(T )Ǐd
1
Ξ(T )−1 = Ǐd

1
since Ξ(T ) is a Jordan canonical

form with a �rst eigenvalue which is simple. By (2.18), we obtain, for l > 0,

∆(t, l) := P Ξ(t+ lT )Ǐd
1
C(t+ lT )

= P Ξ(t)P−1(P Ξ(T )P−1)lP Ǐd
1
[( l−1∑

i=0

Ξ(T )−i
)
C(T ) + Ξ(T )−lC(t)

]
= P Ξ(t)Ǐd

1
l∑
i=1

Ξ(T )iC(T ) + P Ξ(t)Ǐd
1
C(t)

= P Ξ(t)
( l∑
i=1

(Ξ(T )Ǐd
1
)i
)
C(T ) + PΞ(t)Ǐd

1
C(t). (2.21)

The Perron-Frobenius theorem implies that the spectral radius ρ(Ξ(T )Ǐd
1
) =

|r2| < 1. Due to Householder's theorem (see, for instance, Section 7.2 in [20]),

there exists an induced norm satisfying ‖Ξ(T )Ǐd
1‖ < 1. Hence

‖P Ξ(t+ lT )Ǐd
1
C(t+ lT )‖ ≤ ‖P Ξ(t)‖

1− ‖Ξ(T )Ǐd
1‖
‖C(T )‖+ ‖P Ξ(t)Ǐd

1
C(t)‖.

The previous upper-bound does not depend on l. Moreover t 7→ P Ξ(t)Ǐd
1
C(t) is

a bounded function on [0, T ]. Therefore ‖P Ξ(t+lT )Ǐd
1
C(t+lT )‖ is bounded for

any l and t ∈ [0, T ]. We deduce that t 7→ ϕ1,2(t)e∗1P Ξ(t)Ǐd
1
C(t), the function

appearing in the integral (2.20) is also bounded. The limit we need to compute
is then given by

lim
t→∞

1

t
Rµ(0)(t) = lim

n→∞

2

nT
In with In =

∫ nT

0

ϕ1,2(s)e∗1P Ξ(s)Ǐd
1
C(s) ds,

(2.22)
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where T is the period of Qt. Let us introduce

I0 =

∫ T

0

ϕ1,2(s)P Ξ(s) ds and I1 =

∫ T

0

ϕ1,2(s)P Ξ(s)Ǐd
1
C(s) ds

By (2.21) and since ϕ1,2 is a periodic function, the following splitting holds

In =

n−1∑
k=0

∫ T

0

ϕ1,2(s)e∗1P Ξ(s+ kT )Ǐd
1
C(s+ kT ) ds

=

n−1∑
k=1

∫ T

0

ϕ1,2(s)e∗1P Ξ(s) ds
( k∑
i=1

(Ξ(T )Ǐd
1
)i
)
C(T )

+ n

∫ T

0

ϕ1,2(s)e∗1P Ξ(s)Ǐd
1
C(s) ds

=

n−1∑
k=1

e∗1I0
(

Ξ(T )Ǐd
1 − (Ξ(T )Ǐd

1
)k+1

)(
Id− Ξ(T )Ǐd

1
)−1

C(T ) + ne∗1I1

= (n− 1)e∗1I0Ξ(T )Ǐd
1
(

Id− Ξ(T )Ǐd
1
)−1

C(T ) + ne∗1I1

− e∗1I0
n−1∑
k=1

(Ξ(T )Ǐd
1
)k+1

(
Id− Ξ(T )Ǐd

1
)−1

C(T ).

Using the existence of an induced norm satisfying ‖Ξ(T )Ǐd
1‖ < 1, we deduce

that the last term in the previous equality is bounded with respect to the variable
n. Consequently (2.22) implies

lim
t→∞

1

t
Rµ(0)(t) =

2

T

{
e∗1I0Ξ(T )Ǐd

1
(

Id− Ξ(T )Ǐd
1
)−1

C(T ) + e∗1I1
}
.

Step 4. Generalization to any initial probability distribution. To end the proof,
we are going to develop the idea that the initial distribution of the Markov chain
does not play any role. The �rst part of the statement (Step 1) implies directly
that

lim
t→∞

1

t
Eν(Nt) = lim

t→∞

1

t
Eµ(0)(Nt).

Let us now observe the variance case. Let n ∈ N∗, we introduce{
∆n(t) := |Varν(NnT+t)−Varν(nT )(Nt)|,
Γn(t) := |Varν(nT )(Nt)−Varµ(0)(Nt)|,

(2.23)

where ν(nT ) is the distribution of XnT with the initial condition PX0 = ν.
Obviously

lim
t→∞

Varν(Nt)

t
= lim
t→∞

Varµ(0)(Nt)

t
, (2.24)

if

lim
n→∞

lim
t→∞

1

t
∆n(t) = lim

n→∞
lim
t→∞

1

t
Γn(t) = 0.

Using the Markov property, we get

Varν(NnT+t) = Varν(NnT+t −NnT ) + Varν(NnT ) + 2Covν(NnT+t −NnT ,NnT )

= Varν(nT )(Nt) + Varν(NnT ) + 2Covν(NnT+t −NnT ,NnT ).
(2.25)
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Moreover, let us introduce:

K(n, ν) := max
z∈S

∣∣∣Eν [NnT |XnT = z]− Eν [NnT ]
∣∣∣.

If we denote by Ex the conditional expectation under the event {X0 = x}, we
observe that

∆n(t) := |Covν(NnT+t −NnT ,NnT )|

=

∣∣∣∣∣∑
x∈S

Ex[Nt]
(
Eν [NnT |XnT = x]− Eν [NnT ]

)
νx(nT )

∣∣∣∣∣
=

∣∣∣∣∣∑
x∈S

(
Ex[Nt]− Eν(nT )[Nt]

)(
Eν [NnT |XnT = x]− Eν [NnT ]

)
νx(nT )

∣∣∣∣∣
≤ K(n, ν)

∑
(x,y)∈S2

∣∣∣Ex[Nt]− Ey[Nt]
∣∣∣νx(nT )νy(nT )

≤ 2K(n, ν) max
x∈S

∣∣∣Ex[Nt]− Eµ(0)[Nt]
∣∣∣.

By (2.3) the normalized averages appearing in the last upper-bound are equiv-
alent in the large time scale, the following asymptotic result therefore holds

lim
t→∞

1

t
∆n(t) = 0. (2.26)

Consequently, combining (2.25) and (2.26) leads to limt→∞
1
t ∆n(t) = 0. Finally

let us prove that limn→∞ limt→∞ Γn(t)/t = 0 in order to prove (2.24). Due to
the Perron-Frobenius theorem, the PSPM satis�es µx(0) > 0 for any x ∈ S and
so, using the de�nition of Γn in (2.23), we obtain

Γn(t) =
∑
x∈S

Varx(Nt)
∣∣∣νx(nT )

µx(0)
− 1
∣∣∣µx(0)

≤ ‖ν(nT )− µ(0)‖
minx∈S µx(0)

Varµ(0)(Nt)

=
‖ν(nT )− µ(nT )‖

minx∈S µx(0)
Varµ(0)(Nt).

Combining Step 3 in order to describe the asymptotic behaviour of Varµ(0)(Nt)
and Theorem 1.2 permits to imply limn→∞ limt→∞ Γn(t)/t = 0 and conse-
quently (2.24).

The particular 2-dimensional case

The aim of this section is to express the statement of Theorem 2.1 in the situ-
ation S = {s1, s2}. The results obtained in this quite simple situation are not
trivial and can be clari�ed since the explicit expression of the periodic stationary
probability measure has been developed in Proposition 1.3.

Corollary 2.3. 1. The number of transitions between state s1 and state s2,
denoted by Nt, satis�es

lim
t→∞

1

t
E[Nt] =

1

T

∫ T

0

ϕ1,2(s)µ1(s) ds,
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where (µ(t))t≥0 is the PSPM (1.6). This result does not depend on the initial
distribution of the Markov chain (Xt).
2. Moreover the following large time limit for the variance holds:

lim
t→∞

1

t

(
Var(Nt)− E[Nt]

)
= − 2

T

J1(T )J2(1)

e−λ2T − 1
− 2

T
J2(J1).

where λ2 = − 1
T

∫ T
0
ϕ1,2(t) + ϕ2,1(t) dt is the second Floquet exponent,

J1(t) =

∫ t

0

ϕ1,2(s)µ2
1(s)

ζ1(s)
ds, J2(f) :=

∫ T

0

ϕ1,2(s)ζ1(s)f(s) ds,

ζ1(t) = − exp

(
−
∫ t

0

(ϕ1,2 + ϕ2,1)(s)ds

)
, t ≥ 0. (2.27)

Proof. It su�ces to apply Theorem 2.1. Considering the arguments used in
Proposition 1.3, we know explicitly the fundamental solution of (2.1). In par-
ticular the Jordan canonical form Ξ(T ) (de�ned in (2.2)) is given by

Ξ(T ) =

(
1 0
0 eλ2T

)
,

where λ2 is de�ned in (1.9). The Floquet solution associated to the multiplier
1 is the PSPM (1.6) and the Floquet solution associated to the multiplier eλ2T

is ζ(t)∗ = (ζ1(t),−ζ1(t)) with ζ1(t) de�ned in (2.27). We deduce that the basis
matrix associated with the Jordan matrix is:

P =

(
µ1(0) −1

1− µ1(0) 1

)
, with µ1(0) =

I(ϕ2,1)

I(ϕ1,2 + ϕ2,1)
.

The function I has been de�ned in (1.7). Consequently

P Ξ(t) =

(
µ1(t) ζ1(t)

1− µ1(t) −ζ1(t)

)
, t ≥ 0.

The R2-valued function C de�ned by (2.5) is equal to

C1(t) =

∫ t

0

ϕ1,2(s)µ1(s) ds, C2(t) = −
∫ t

0

µ1(s)2ϕ1,2(s)

ζ1(s)
ds.

All these explicit expressions and simple computations combined with (2.4) and
(2.6) imply the announced statement.

2.2 Positivity of the limit for the normalized variance

Theorem 2.1 and Corollary 2.4 ensure that the limit, in the large time scale,
of the normalized variance Var(Nt)/t exists. The expression of the limit is
quite general and can be computed explicitly in any particular situation. One
important property concerning this limit is the positivity. This step is crucial as
a preliminary result for the proof of a Central Limit Theorem for the statistics
Nt.
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Proposition 2.4. Under the hypothesis (H), the long time limit of the normal-
ized variance is positive:

lim
t→∞

Var(Nt)
t

> 0 (2.28)

Proof. Let us decompose NkT into

NkT =

k∑
j=1

∆Nj with ∆Nj = NjT −N(j−1)T .

Using the conditioning with respect to the position of the Markov chain at times
0, T, . . . , kT , we de�ne Xk := (X0, XT , . . . , XkT ) and obtain

Var(NkT ) = Var
(
E[NkT |Xk]

)
+ E

[
Var(NkT |Xk)

]
≥ E

[
Var(NkT |Xk)

]
. (2.29)

We just recall that the conditional variance is given by:

Var(NkT |Xk) = E
[
(NkT − E[NkT |Xk])2

∣∣∣Xk]
= E

[( k∑
j=1

∆Nj − E[∆Nj |Xk]
)2∣∣∣Xk].

Developing the square implies:

Var(NkT |Xk) = E
[ k∑
j=1

(
∆Nj − E[∆Nj |Xk]

)2∣∣∣Xk]
+ 2

∑
1≤j<l≤k

E
[(

∆Nj − E[∆Nj |Xk]
)(

∆Nl − E[∆Nl|Xk]
)∣∣∣Xk].

Given Xk, the random variables ∆Nj − E[∆Nj |Xk] and ∆Nl − E[∆Nl|Xk] are
independent and centred (for 1 ≤ j < l ≤ k). Consequently the double sum in
the previous equality vanishes. The Markov property leads to

Var(NkT |Xk) =

k∑
j=1

Var(∆Nj |Xk) =

k∑
j=1

Var(∆Nj |X(j−1)T , XjT ).

Let us de�ne the function ψ : S × S → R+ by

ψ(a, b) = Var(∆Nj |X(j−1)T = a,XjT = b)

which does not depend on j since the transition probabilities are T -periodic.
Since the state space is �nite, the minimum of the function ψ is reached. More-
over the random variable ∆N1 knowing both X0 and XT is not constant a.s.
due to the hypothesis (H), so that the following minimum is positive:

V ∗ = min
(a,b)∈S2

ψ(a, b) > 0.

Therefore the following lower bound holds

Var(NkT |Xk) ≥ kV ∗ and so Var(NkT ) ≥ kV ∗,
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just by using (2.29). Dividing by kT , we obtain

lim
k→∞

Var(NkT )

kT
> 0. (2.30)

The statement of Theorem 2.1 points out that the limit considered in (2.28)
exists and since the limit of a subsequence (2.30) is positive, we deduce the
positivity of (2.28).

2.3 Mixing properties of the time periodic Markov chain

We have already partially described, in the previous results, the behaviour of
the Markov chain in the long time limit. The distribution of the Markov chain
converges exponentially fast toward the unique periodic stationary probability
measure, the normalized (divided by the time variable) averaged number of
transitions between two given states converges, so does the normalized variance.
All these results concern the one marginal distribution of the Markov chain
(Xt) or the one marginal distribution of the counting process (Nt). In order to
complete this study and to better understand the long time behaviour of Xt,
we are going to prove that the Markov chain (Xt)t≥0 is weakly correlated, that
is, Xt and Xt+h are weakly dependent when h is large enough. This property
can be measured with a particular tool associated to the strong mixing concept.
This property is quite evident for homogeneous Markov chains, we prove here
that it is also satis�ed for periodic inhomogeneous Markov chains.

Let us �rst introduce the σ-algebra

Fi,i+j = σ(∆Nk : i ≤ k ≤ i+ j)

where ∆Nk := NkT − N(k−1)T , and secondly, the mixing coe�cients αn(k)
de�ned, for k ≤ n− 1, by

αn(k) = sup
{
|P(A∩B)−P(A)P(B)| : A ∈ F1,m, B ∈ Fm+k,n, 1 ≤ m ≤ n−k

}
.

We set αn(k) = 0 for k ≥ n. These mixing coe�cients permit to measure
the dependence between random variables belonging to the same sequence. For
periodic forced Markov chains, we prove that the dependence of Xt with respect
to the initial condition rapidly decreases as time elapses. It is a consequence of
the following result.

Proposition 2.5. The family of random variables (∆Nk)k∈N is a strongly mix-
ing sequence, that is

α(k) := sup
n≥1

αn(k) = O(b−k) for some b > 1.

Proof. Let A ∈ F1,m and B ∈ Fm+k,n then there exist two measurable bounded
and non-negative functions ψA and ψB such that

1A = ψA(∆N1, . . . ,∆Nm) and 1B = ψB(∆Nm+k, . . . ,∆Nn).

Then, due to the Markov property, we obtain

P(A ∩B) = E[ψA(∆N1, . . . ,∆Nm)ψB(∆Nm+k, . . . ,∆Nn)]

= E
[
ψA(∆N1, . . . ,∆Nm)ψC(X(m+k−1)T )

]
,
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where ψC is a bounded non negative measurable function de�ned by

ψC(x) = E[ψB(∆Nm+k, . . . ,∆Nn)|X(m+k−1)T = x]

= Ex[ψB(∆N1, . . . ,∆Nn+1−m−k)].

We deduce that

P(A ∩B) = E[ψA(∆N1, . . . ,∆Nm)ψC(X(m+k−1)T )]

=

d∑
i=1

E[ψA(∆N1, . . . ,∆Nm)1{X(m+k−1)T=si}]ψC(si)

=

d∑
i,j=1

E[ψA(∆N1, . . . ,∆Nm)1{XmT=sj}1{X(m+k−1)T=si}]ψC(si)

=

d∑
i,j=1

E[ψA(∆N1, . . . ,∆Nm)1{XmT=sj}]Pj(X(k−1)T = si)ψC(si).

By similar computations, we obtain:{
P(A) =

∑d
j=1 E[ψA(∆N1, . . . ,∆Nm)1{XmT=sj}],

P(B) =
∑d
i=1 P(X(m+k−1)T = si)ψC(si).

Finally ∆ := |P(A ∩B)− P(A)P(B)| is equal to

∆ =
∣∣∣ d∑
i,j=1

E[ψA(∆N1, . . . ,∆Nm)1{XmT=sj}]

× ψC(si)
(
P(X(m+k−1)T = si)− Psj (X(k−1)T = si)

)∣∣∣
≤ max

1≤i,j,l≤d
|Psl(X(k−1)T = si)− Psj (X(k−1)T = si)|

≤ 2 max
1≤i,l≤d

|Psj (X(k−1)T = si)− µsi(0)|

where µ(t) is the periodic stationary probability measure associated with the
chain (Xt). Due to the ergodic property (Theorem 1.2), for any initial proba-
bility measure ν we have

lim
t→∞

1

t
log sup

1≤i≤d
|P(Xt = si)− µsi(t)| ≤ Re(λ2) < 0,

where λ2 is the second Floquet exponent associated with the distribution of the
periodically driven Markov chain.

2.4 A Functional Central Limit Theorem for the averaged

number of transitions

In this section, we aim to point out the main result of this study. We have
already given some description of the long time asymptotics of the number
of transitions Nt, by computing the two �rst moments. Moreover the mix-
ing property developed in Proposition 2.5 permits to ensure that the periodic
forced Markov chain would behave in a quite similar way as a time-homogeneous
Markov chain. In fact, we have to be careful since the law of Xt always depends
on the initial condition (see Theorem 1.2).
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Theorem 2.6. Functional Central Limit Theorem. The stochastic process

Zn(t) :=
NntT − E[NntT ]√

Var(NntT )
, t ∈ [0, 1], (2.31)

converges in distribution to the standard Brownian motion (Wt, 0 ≤ t ≤ 1) as
n→∞.

Let us just present the following preliminary result which corresponds to an
important argument in the proof of Theorem 2.6. We �rst recall that ϕi,j(t) ≥ 0
for all 1 ≤ i, j ≤ d and t ∈ [0, T ] and de�ne:

M = max
t∈[0,T ],i6=j

ϕi,j(t) > 0. (2.32)

Lemma 2.7. Let us de�ne ∆Nn := NnT−N(n−1)T for n ≥ 1 and introduce (Pt)
a Poisson process of parameter (d − 1)M . Then PT stochastically dominates
the random variable ∆Nn:

∆Nn � PT i.e. P(PT ≥ r) ≥ P(∆Nn ≥ r), ∀r ∈ N.

Proof of Lemma 2.7. Let us prove this statement for the particular case n = 1
(similar arguments permit to deal with the general case). We set T0 = 0 and
introduce (Tk, k ≥ 1) the successive transition times of the periodically driven
Markov chain (Xt) and ∆Tk := Tk − Tk−1. Of course, the number of transi-
tions between the states 1 and 2 before time T is smaller than the number of
transitions corresponding to the whole state space. That is why, for r ∈ N, we
get

P(∆N1 ≥ r) ≤ P(Tr ≤ T ) ≤ P(∆T1 + . . .+ ∆Tr ≤ T ).

Moreover we de�ne for k ≥ 1:

Uk(t, x) :=

∫ Tk−1+t

Tk−1

ϕx,x(u) du, t ≥ 0, x ∈ S.

Combining (2.32) and (2.13) leads to Uk(t, x) ≤ (d − 1)Mt for all x and t and
in particular: Uk(∆Tk, XTk−1

) ≤ (d − 1)M∆Tk for all k ≥ 1. Furthermore
straightforward computations permit to point out that

U1(∆T1, X0), U2(∆T2, XT1), . . . ,Uk(∆Tk, XTk−1
), . . .

is a sequence of independent exponentially distributed random variables with
mean 1. Finally we obtain

P(∆N1 ≥ r) ≤ P(∆T1 + . . .+ ∆Tr ≤ T )

≤ P
(U1(∆T1, X0)

(d− 1)M
+
U2(∆T2, XT1)

(d− 1)M
+ . . .+

Ur(∆Tr, XTr−1)

(d− 1)M
≤ T

)
= P(PT ≥ r), r ∈ N.
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Proof of Theorem 2.6. Step 1. The arguments developed in the �rst step of
the proof are based on the application of Corollary 2 in [11]. Let us introduce
(Yn)n≥1 de�ned by

Yn = ∆Nn − E[∆Nn], ∆Nn := NnT −N(n−1)T .

We just recall this result: the process Sn :=
∑n
k=1 Yk satis�es the Central Limit

Theorem (2.31) as soon as the following conditions are satis�ed:

1. E[Yn] = 0 and E[Y 2
n ] <∞ for any n ≥ 1.

2. The sequence of normalized variances converges as n→∞:

lim
n→∞

E[S2
n]

n
= σ2 > 0 for some σ > 0.

Moreover

sup
{ 1

n
E[(Sm+n − Sm)2] : (n,m) ∈ N2

}
<∞. (2.33)

3. There exists β > 2 (we set γ = 2/β) such that

‖Yn‖β = o
(
n(1−γ)/2/(log n)1−γ/2

)
and α(k) = O(b−k), (2.34)

for some b > 1 and ‖Yn‖β = E1/β [|Yn|β ].

Under these three conditions, Wn(t) := Sbntc/(σ
√
n) converges in distribution

towards a standard Brownian motion W . Let us now point out that these
conditions are satis�ed for the periodic driven Markov chain. The �rst condition
is trivial. The second condition is directly related to the convergence pointed out
in Proposition 2.4. Let us now prove (2.33): Lemma 2.7 ensures the stochastic
dominance ∆Nk � PT where (Pt) is a Poisson process of parameter (d− 1)M .
Since all moments of a Poisson process are �nite so are the moments of ∆Nk.
We deduce immediately that ‖Yn‖β is a bounded sequence (the �rst part of
(2.34) is therefore satis�ed). Furthermore

E
[

(Sm+n − Sn)2

n

]
≤ E

[
N 2
nT

n

]
≤ (d− 1)MT <∞, ∀(m,n) ∈ N2.

Finally let us note that the second part of (2.34) is an immediate consequence
of Proposition 2.5.
Step 2. In the �rst step, the convergence in distribution of Wn towards W
was emphasized. Now let us deduce the convergence of Zn towards W . The
following splitting holds

NntT − E[NntT ] = NbntcT − E[NbntcT ] + (NntT −NbntcT )

− E[NntT −NbntcT ]. (2.35)

Let us de�ne the function Un : [0, 1] → N by Un(t) = NntT − NbntcT . This
function vanishes at any time instant t = k/n with k ∈ {0, 1, . . . n}. Moreover
Un is a non decreasing function on each interval [(k − 1)/n, k/n[. Hence

sup
t∈[0,1]

Un(t) = max
1≤k≤n

(
lim

t→k/n, t<k/n
Un(t)

)
≤ max

1≤k≤n
∆Nk

21



where ∆Nk is the total number of transitions observed during the time interval
[(k − 1)T, kT [, k ∈ {1, . . . n}. This number is stochastically dominated by a
Poisson distributed random variable of parameter λ = (d − 1)MT where M is
de�ned by (2.32). So we prove that Un/

√
n converges in probability to the zero

function. Indeed for any ε > 0, we set δn = ε
√
n and obtain

P
(

max
1≤k≤n

∆Nk ≥ δn
)
≤ 1−

(
min
a∈S

Pa(∆N1 ≤ δn)

)n
≤ 1−

(
1−

∑
l≥bδnc+1

λle−λ

l!

)n
≤ 1−

(
1− λbδnc+1

(bδnc+ 1)!

)n
.

As n goes to ∞ the Stirling formula permits to prove that

lim
n→∞

(
1− λbδnc+1

(bδnc+ 1)!

)n
= 1.

Consequently

lim
n→∞

P
(
Un(t)√
n
≥ ε
)

= 0.

Combining (2.35) with the following convergences as n→∞:

NbntcT − E[NbntcT ]

σ
√
n

(d)−→Wt,
σ
√
n√

Var(NntT )
−→ 1,

(NntT −NbntcT )

σ
√
n

P−→ 0,
E[NntT −NbntcT ]√

Var(NntT )
−→ 0,

leads to (2.31).

3 Two examples in the stochastic resonance frame-

work

We seek to describe the phenomenon of stochastic resonance. Let us introduce
a continuous-time Markov chain Xt oscillating between two states {s1, s2} ac-
cording to a T -periodic in�nitesimal generator Qt. Then by varying the period,
we observe that the behaviour of the chain changes and adopts more or less
periodic paths. The aim in each example is to �nd the optimal period such
that the behaviour of the paths looks like the most periodic as possible. That
is why we shall introduce a criterion which measures the periodicity of any ran-
dom path. We propose to use a criterion associated with the mean number of
transition on a period (it should be also possible to propose a measure based
on the minimal variance but we do not adopt this point of view in this study).
The interesting tunings correspond to situations where this averaged number is
close to the value 1.

3.1 An in�nitesimal generator constant on each half pe-

riod

In this �rst example, we consider T -periodic rates given by

ϕ1,2(t) = ϕ01{0≤t<T/2} + ϕ11{T/2≤t<T} = ϕ0 + ϕ1 − ϕ2,1(t). (3.1)
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where ϕ0 = p e−
V
ε et ϕ1 = q e−

v
ε with p, q > 0, ε, 0 < v < V . This Markov

model is often used in the stochastic resonance framework (see for instance [18]).
Here we can compute explicitly the invariant measure (see also [18] Proposition
4.1.2 p.34)

Lemma 3.1. The periodic stationary probability measure PSPM is given by:

µ1(t) =
e−(ϕ0+ϕ1)t

1 + e−(ϕ0+ϕ1)T/2

ϕ0 − ϕ1

ϕ0 + ϕ1
+

ϕ1

ϕ0 + ϕ1
(3.2)

and µ1(t) +µ2(t) = 1, µ1(t+T/2) = µ2(t), µ2(t+T/2) = µ1(t). Here µ1 (resp.
µ2) stands for µs1 (resp. µs2).

Proof. Using the description of the PSPM in Proposition 1.3 we obtain

µ1(t) = µ1(0)e−(ϕ0+ϕ1)t +
ϕ1

ϕ0 + ϕ1

(
1− e−(ϕ0+ϕ1)t

)
=

(
µ1(0)− ϕ1

ϕ0 + ϕ1

)
e−(ϕ0+ϕ1)t +

ϕ1

ϕ0 + ϕ1
, 0 ≤ t < T/2. (3.3)

Furthermore, by symmetry arguments, the dynamics of the periodic invariant
measure satis�es: µ1(t + T/2) = µ2(t) for all t ≥ 0. We deduce in particular
that µ1(T/2) = µ2(0) = 1− µ1(0). Thus

µ1(0) =
ϕ0 + ϕ1 e

−(ϕ0+ϕ1)T/2

(ϕ0 + ϕ1)(1 + e−(ϕ0+ϕ1)T/2)

The equation (3.3) then permits to conclude.

An immediate consequence of Corollary 2.3 leads to the explicit computation
of the mean number of transitions (the details of the proof are left to the reader).

Proposition 3.2. The mean number of transitions from state s1 to state s2 of
the periodically driven Markov chain satis�es

lim
n→∞

1

n
E[NnT ] =

ϕ0ϕ1T

ϕ0 + ϕ1
+

(
ϕ0 − ϕ1

ϕ0 + ϕ1

)2

tanh
(

(ϕ0 + ϕ1)T/4
)
. (3.4)

This expression represents the asymptotic averaged number of one-sided transi-
tions during one period.

We are interested in the phenomenon of stochastic resonance associated to
continuous-time process (Xt, t ≥ 0). This process essentially depends on two
parameters: a parameter ε describing the intensity of the transition rates be-
tween both states {s1, s2} (some small ε corresponds to a frozen situation: the
Markov chain remains in the same state for a long while) and a second parameter
T , the period of the process dynamics. By considering the normalized process
Yt = XtT , especially its paths on a �xed interval [0, S], we observe the following
phenomenon (for �xed ε): if T is small then there are very few transitions of
Y : the process tends to remain in its original state. If T is large, Y behaves in
a chaotic way: lots of transitions are observed. For some intermediate values
of T , the random paths of Y are close to deterministic periodic functions (one
transition in each direction per period). Let us note that this phenomenon can
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also be observed by freezing the period length T and varying the intensity ε of
the rates.

The aim is therefore to point out the best relationship (tuning) between ε
and T which makes the process Y the most periodic as possible. If the process
is close to a periodic function then the mean number of transition from state
s1 to sate s2 is close to 1 per period. By Proposition 3.2, it is then su�cient to
�nd the best relation between ε and T such that

Eµ[NT ] = 1. (3.5)

0.975

0.980

0.985

0.990

0.995

1.000

1.005

2.0e+ 05 4.0e+ 05 6.0e+ 05 8.0e+ 05 1.0e+ 06 1.2e+ 06 1.4e+ 06 1.6e+ 06 1.8e+ 06 2.0e+ 06

average num ber of t ransit ions versus T

Figure 1: Average number of transitions. We set ε = 0.1, V = 2, v = 1,
p = q = 1 and let T vary. We compute numerically the average number of
transitions per period. We can clearly observe that there is one and only one
period corresponding to the condition (3.5).

Proposition 3.3. Let T εopt be the period which provides an average number of
transitions per period equal to 1. The following asymptotic behaviour holds, as
ε tends to 0,

T εopt ∼
V − v

2qε
ev/ε. (3.6)

Proof. The condition (3.5) combined with Proposition 3.2 leads to the equation

ϕ0ϕ1T

ϕ0 + ϕ1
+

(
ϕ0 − ϕ1

ϕ0 + ϕ1

)2

tanh
(

(ϕ0 + ϕ1)T/4
)

= 1.

The aim is to solve it and let ε tend to 0. The left member in the previous
equation is an increasing function of T . We introduce the change of variable
U ε = (ϕ0 +ϕ1)T/4. We �rst prove that U ε increases as ε decreases. U ε satis�es
K(U ε, ε) = 1 with

K(U ε, ε) =
4ϕ0ϕ1U

ε

(ϕ0 + ϕ1)2
+

(
ϕ0 − ϕ1

ϕ0 + ϕ1

)2

tanh(U ε).

Both functions ε 7→ K(·, ε) and x 7→ K(x, ·) decrease for ε small and x large
enough. It follows that U ε increases when ε decreases and tends to 0. Let us
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assume U ε → U0 < ∞ in the limit ε → 0. Then K(U ε, ε) → tanh(U0) which
contradicts the identity K(U ε, ε) = 1. We deduce that U ε → ∞ when ε → 0.
Now let us set t = e−V/ε and β = v/V < 1. With these new parameters K can
be written like

1 = K̃(U, t) =
4pqt1+βU ε

(pt+ qtβ)2
+

(
pt− qtβ

pt+ qtβ

)2

tanh(U ε).

Let us de�ne tanh(U ε) =: 1 −W then U ε = 1
2 log

(
2−W
W

)
, we obtain that W

tends to 0 when t→ 0 and the previous equation becomes:

1 = K̂(W, t) =
4pqt1+β

(pt+ qtβ)2
log

(
2−W
W

)
+

(
pt− qtβ

pt+ qtβ

)2

(1−W ).

Thus, when t→ 0, we have

K̂(W, t)− 1 =
−2pqt1+β

(pt+ qtβ)2
(logW + o(logW ))

+ (1− 4p

q
t1−β + o

(
t1−β

)
)(1−W )− 1

=
−2pqt1+β

(pt+ qtβ)2
logW −W + o(t1−β logW ) = 0.

If W = r0t
α log(t)R(t) with α = 1− β and r0 = − 2pα

q = − 2p
q (1− β), we obtain

the limit R(t)→ 1 when t→ 0 and therefore

U ε ∼ −1

2
log

(
2p

q
(1− β)t1−β(− log t)

)
∼ −1− β

2
log t ∼ (1− β)V

2ε
=
V − v

2ε
.

We recall U ε = (ϕ0 + ϕ1)T/4 which leads to the result set.

In [10] and [18], several quality measures have been proposed to point out
the optimal tuning of Y : the spectral power ampli�cation (SPA), the SPA
to noise intensity ratio (SPN), the energy (En), the energy to noise intensity
ratio (ENR), the out-of-phase measure which describes the time spent in the
most attractive state, the entropy or relative entropy. In his PhD report, I.
Pavlyukevich computes for each measure the optimal relation between ε and
T εmes, the length of the period, in the small ε limit, we adopt a similar procedure
in Proposition 3.3.

3.2 In�nitesimal generator with constant trace

Let us �nally present a second example of periodic forcing in the stochastic
resonance framework. This model was introduced by Eckmann and Thomas
[7]. The aim in this paragraph is to �nd the optimal tuning between the noise
intensity in the system and the period length in order to reach an average
number of transitions during one period close to 1. This approach is di�erent
from the study presented in [7].
The model consists in a continuous-time Markov chain with periodic forcing:
the transition rates are given by

ϕ1,2(t) = ε(a+ cosωt) and ϕ2,1(t) = ε(a− cosωt), a > 1. (3.7)
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The period satis�es T = (2π)/ω. In this particular case, the trace of the in-
�nitesimal generator, de�ned by (0.1), is a constant function. It is then quite
simple to compute explicitely the periodic stationary probability measure and
the mean number of transition.

Lemma 3.4. The periodic stationary probability measure of the periodic forced
Markov chain is given by

µ1(t) =
1

2
− ε

4a2ε2 + ω2
(2aε cosωt+ ω sinωt). (3.8)

Proof. Using Proposition 1.3, we obtain

µ1(t) = µ1(0)e−2εat +

∫ t

0

(εa− ε cosωs)e−2εa(t−s)ds.

Hence

µ1(t) = µ1(0)e−2εat +
1− e−2εat

2
+

2ε2ae−2εat − 2ε2a cosωt− εω sinωt

4ε2a2 + ω2
.

Setting µ1(T ) = µ1(0), we obtain µ1(0) =
1

2
− 2aε2

4ε2a2 + ω2
and consequently the

announced statement.

An application of Corollary 2.3 permits to describe the large time asymp-
totics for the �rst moments of the transitions from state s1 to state s2. It su�ces
to compute explicitly

∫ T
0
ϕ1,2(t)µ1(t)dt. The result is described in the following

statement while the proof is left to the reader.

Proposition 3.5. The the mean number of transition pro period is equal to

lim
n→∞

1

n
Eµ[NnT ] =

εaT

2
− ε3aT

4ε2a2 + ω2
, (3.9)

and µ given by (3.8).

Let us now discuss the suitable choice of the period such that Eµ[NT ] = 1.
We then need to solve

πεa(4ε2a2 + ω2)− 2πε3a = ω(4ε2a2 + ω2). (3.10)

It is obvious that ω is of the order ε, we set ω = µε and look for the best choice
of the parameter µ. Considering (3.10), the optimal value µ is in fact a real
root of the following polynomial function

P (µ) := µ3 − πaµ2 + 4a2µ+ 2πa(1− 2a2)

It is straightforward to prove that this polynomial function has a single positive
root since it is increasing and veri�es P (0) < 0. Using the Cardan formula,
we can obtain an explicit expression of µoptimal which depends of course on the
coe�cient a, this dependence is asymptotically linear as a becomes large.
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