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Abstract

The influence of a time-periodic forcing on stochastic processes can

essentially be emphasized in the large time behaviour of their paths. The

statistics of transition in a simple Markov chain model permits to quan-

tify this influence. In particular a functional Central Limit Theorem can

be proven for the number of transitions between two states chosen in

the whole finite state space of the Markov chain. An application to the

stochastic resonance is presented.
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Introduction

The description of natural phenomenon sometimes requires to introduce stochas-
tic models with periodic forcing. The simplest model used to interpret for in-
stance the abrupt changes between cold and warm ages in paleoclimatic data is
a one-dimensional diffusion process with time-periodic drift [6]. This periodic
forcing is directly related to the variation of the solar constant (Milankovitch cy-
cles). In the neuroscience framework, such periodic forced model is also of prime
importance: the firing of a single neuron stimulated by a periodic input signal
can be represented by the first passage time of a periodically driven Ornstein-
Uhlenbeck process [18] or other extended models [13]. Moreover let us note that
seasonal autoregressive moving average models have been introduced in order to
analyse and forecast statistical time series with periodic forcing. Recently the
time dependence of the volatility in financial time series leaded to emphasize
periodic autoregressive conditional heteroscedastic models. Whereas several sta-
tistical models permit to deal with time series, the influence of periodic forcing
on time-continuous stochastic processes concerns only few mathematical studies.
Let us note a nice reference in the physics literature dealing with this research
subject [12].

Therefore we propose to study a simple Markov chain model evolving in
a time-periodic environment (already introduced in the stochastic resonance
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context [11] and [9]) and in particular to focus our attention to its large time
asymptotic behaviour. Since the dynamics of the Markov chain is not time-
homogeneous, the classical convergence towards the invariant measure and the
related convergence rate cannot be used.

Description of the model. Let us consider a time-continuous irreducible
Markov chain evolving in the state space S = {s1, s2, . . . , sd} with d ≥ 2. The
transition rate from state si to state sj is denoted by ϕ0

i,j . We assume that

ϕ0
i,j ≥ c for some positive constant c and for any i and j. We perturb this initial

process by a periodic forcing of period T ; it means that the transition rates
ϕ0
i,j are increased using additional non negative periodic functions ϕp

i,j . The
obtained Markov chain is denoted by (Xt)t≥0 and its infinitesimal generator is
given by

Qt =











−ϕ1,1(t) ϕ2,1(t) . . . ϕd,1(t)
ϕ1,2(t) −ϕ2,2(t) ϕd,2(t)

...
...

. . .
...

ϕ1,d(t) ϕ2,d(t) . . . −ϕd,d(t)











, (0.1)

Here ϕi,j = ϕ0
i,j + ϕp

i,j are T -periodic functions representing the transition rate
from state si to sj . In particular, the transitions rates satisfy:

ϕi,j(t) ≥ c > 0 for any (i, j) ∈ S2. (H)

We also assume that ϕi,j are càdlàg functions.
In order to describe precisely the paths of the chain (Xt), we define transi-

tions statistics: N i,j
t corresponds to the number of switching from state si to sj

up to time t. For notational convenience, we focus our attention to Nt := N 1,2
t .

Obviously knowing the processes (N i,j
t ) for any 1 ≤ i, j ≤ d is equivalent to

know the behaviour of (Xt).
Main result. Let us first note that, in the higher dimensional space [0, T ]×S,

we can define a Markov process (t mod T,Xt)t≥0 which is time-homogeneous
and admits a unique invariant measure µ = (µi(t))1≤i≤d, t∈[0,T [. The main
results can then be stated. The periodic forcing implies that the distribution of
the Markov chain (Xt) converges as time elapses toward the unique invariant
measure µ (the sense of this convergence is made precise in Section 1). Moreover
the first moments of the statistics Nt satisfy:

lim
t→∞

1

t
E[Nt] =

1

T

∫ T

0

ϕ1,2(s)µ1(s) ds,

and there exists a constant κϕ > 0 such that limt→∞ Var(Nt)/t = κϕ. The
explicit value of the constant κϕ is emphasized in Section 2.1. Using these two
moment asymptotics, we can prove a Central Limit Theorem: the number of
transitions between two given states during n periods is asymptotically gaussian
distributed: the process

(

NntT − E[NntT ]
√

Var(NntT )

)

0≤t≤1

converges in distribution towards the standard Brownian motion as n tends to
infinity (Theorem 2.6).
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Application. The explicit expression of the mean number of transition be-
tween two states before time t permits to deal with particular optimization
problems appearing in the stochastic resonance framework (see, for instance,
[8]). Let us reduce the study to a 2-state space: S = {s1, s2} and to the corre-
sponding Markov chain whose transition rates correspond to ϕ1,2 respectively
ϕ2,1, the exit rate of the state s1 resp. s2. Let us consider a family of periodic
forcing having all the same period T and being parametrized by a variable ǫ,
then it is possible to choose in this family the perturbation which has the most
influence on the stochastic process, just by minimizing the following quality
measure:

M(ǫ) :=

∣

∣

∣

∣

∣

∫ T

0

ϕǫ
1,2(s)µ

ǫ
1(s)ds− 1

∣

∣

∣

∣

∣

.

Indeed this expression intuitively means that the asymptotic number of transi-
tions from state s1 to state s2 is close to 1. In Section 3 we shall compare this
quality measure (already introduced in [20]) to other measures usually used in
the physics literature [11].

1 Periodic stationary measure for Markov chains

Before focusing our attention to the paths behaviour of the Markov chain, we
describe, in this preliminary section, the fixed time distribution of the random
process and, in particular, analyse the existence of a so-called periodic stationary
probability measure – PSPM (we shall precise this terminology in the following).
The distribution of the Markov chain (Xt)t≥0 starting from the initial distribu-
tion ν0 and evolving in the state space S = {s1, . . . , sd} is characterized by

νi(t) = Pν0(Xt = si), 1 ≤ i ≤ d.

This probability measure ν = (ν1, . . . , νd)
∗ (the symbol ∗ stands for the trans-

pose) constitutes a solution to the following ode:

ν̇(t) = Qtν(t) and ν(0) = ν0, (1.1)

where the generator Qt is defined in (0.1). Let us just note that

P(Xt+h = sj |Xt = si) = ϕi,j(t)h+ o(h)

for i 6= j. Moreover the following relation holds

ϕi,i =

d
∑

j=1,j 6=i

ϕi,j , ∀1 ≤ i ≤ d. (1.2)

Floquet’s theory dealing with linear differential equation with periodic coeffi-
cients can thus be applied. In particular we shall prove that ν(t) converges
exponentially fast towards a periodic solution of (1.1), the convergence rate
being related to the Floquet multipliers (see Section 2.4 in [4]).

Definition 1.1. Any T -periodic solution ν(t) = (ν1, . . . , νd)
∗ of (1.1) is called

a periodic stationary probability measure – PSPM iff νi(t) ≥ 0 for all i ∈
{1, . . . , d} and

∑d
i=1 νi(t) = 1 both for all t ≥ 0.
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The following statement points out the long time asymptotics of the Markov
chain.

Theorem 1.2. The system (1.1) has a unique stationary probability measure
µ(t) which is T -periodic. For any initial condition ν0, the probability distribution
ν(t) := PXt

converges in the large time limit towards µ(t). More precisely the
rate of convergence is given by

lim
t→∞

1

t
log ‖ν(t)− µ(t)‖ ≤ Re(λ2) < 0, (1.3)

where λ2 is the second Floquet exponent associated to (1.1) and (0.1); ‖·‖ stands
for the Euclidian norm in Rd.

Proof. Step 1. Existence of the periodic invariant measure. We consider the
distribution of the Markov chain (Xt) starting from state si, we obtain obviously
a probability measure which is solution of the following ode:

ν̇i(t) = Qtν
i(t), νi(0) = (δij)j∈{1,...,d}, (1.4)

where δij stands for the Kronecker symbol. We deduce that the principal matrix
solution of (1.1) is given by

M(t) =











ν11(t) ν21(t) . . . νd1 (t)
ν12(t) ν22(t) νd2 (t)

...
...

. . .
...

ν1d(t) ν2d(t) . . . νdd(t)











since M(0) = Idd, the identity matrix in Rd. The monodromy matrix M(T )
is therefore stochastic and strictly positive: νij(T ) > 0 since Qt satisfies (H).
By the Perron-Frobenius theorem (see chapter 8 in [14]), the largest eigenvalue
is simple and equal to 1. Moreover, the associated eigenvector is strictly pos-
itive and so we define a probability measure using a normalisation procedure.
Consequently there exists a unique periodic invariant probability measure µ(t).
Floquet’s theory insures that µ(t) is T -periodic.
Step 2. Convergence. By the Perron-Frobenius theorem, the eigenvalues of the
monodromy matrix M(T ), also called Floquet multipliers, are {r1, r2, . . . , rs},
s ≤ d with 1 = r1 > |r2| ≥ |r3| ≥ . . . ≥ |rs| and whose associated multiplicity
n1, . . . , ns satisfy n1 = 1 and

∑s
k=1 nk = d. Let us decompose the space as

follows Rd = Rµ(0) ⊕ V where µ(0) is the periodic invariant measure at time
t = 0 and V is a stable subspace for the linear operator M(T ). Since the first
eigenvalue r1 is simple, the spectral radius of M(T ) restricted to the subspace
V satisfies ρ(M(T )|V ) = |r2| < 1. So for any probability distribution ν0, we get
ν0 = αµ(0) + v with α ∈ R and v ∈ V . Hence

‖M(T )nν0 − αµ(0)‖ =
∥

∥

∥

(

M(T )|V

)n

v
∥

∥

∥ ≤
∥

∥

∥

(

M(T )|V

)n∥
∥

∥ · ‖v‖.

Using Gelfand’s formula (see, for instance [19], p.70) we obtain the asymptotic
result

lim
n→∞

1

n
log ‖M(T )nν0 − αµ(0)‖ ≤ log(|r2|) < 0. (1.5)

4



In particular, since M(T )nν0 is a probability measure, we deduce that α = 1.
Let us just note that the Floquet multiplier r2 satisfies r2 = eλ2T where λ2 is
the associated Floquet exponent defined modulo 2π/T . Consequently

log(|r2|) = T Re(λ2).

Let us now consider any time t, ν(t) is then a probability measure satisfying

ν(t) =M(t)ν0.

We define r(t) ∈ [0, T [ by r(t) = t− ⌊t/T ⌋T and obtain

‖ν(t)− µ(t)‖ = ‖M(t)ν0 −M(t)µ0‖
= ‖M (r(t))M (⌊t/T ⌋T ) ν0 −M (r(t))µ0‖
≤ ‖M (r(t))‖

∥

∥

∥M(T )⌊t/T⌋ν0 − µ0

∥

∥

∥ .

By (1.5) and since M(t) is a continuous and T -periodic function (bounded op-
erator), we obtain the announced statement (1.3).

The particular 2-dimensional case

In this section, we focus our attention to the particular 2-dimensional case. As
explained in Theorem 1.2, the distribution of the Markov chain ν(t) := PXt

starting from the initial distribution ν0 and evolving in the state space S =
{s1, s2} converges exponentially fast to the unique PSPM µ. In dimension 2, we
can compute explicitly the probability measure ν(t) and the convergence rate,
applying Floquet’s theory. This theory deals with linear differential equation
with periodic coefficients (see Section 2.4 in [4]). The following statement points
out the long time asymptotics of the Markov chain.

Proposition 1.3. In the large time limit, the probability distribution ν con-
verges towards the unique PSPM µ defined by µ(t) = (µ1(t), 1− µ1(t)) and

µ1(t) = µ1(0)e
−

∫
t

0
(ϕ1,2+ϕ2,1)(s)ds +

∫ t

0

ϕ2,1(s) e
−

∫
t

s
(ϕ1,2+ϕ2,1)(u)duds, (1.6)

where

µ1(0) =
I(ϕ2,1)

I(ϕ1,2 + ϕ2,1)
and I(f) =

∫ T

0

f(t)e−
∫

T

t
(ϕ1,2+ϕ2,1)(u)dudt. (1.7)

More precisely, if ν(0) 6= µ(0) then

lim
t→∞

1

t
log ‖ν(t)− µ(t)‖ = λ2, (1.8)

where λ2 stands for the second Floquet exponent:

λ2 = − 1

T

∫ T

0

(ϕ1,2 + ϕ2,1)(t) dt. (1.9)

Remark 1.4. It is possible to transform (Xt)t≥0 into a time-homogeneous
Markov process just by increasing the space dimension. By this procedure (µ(t))0≤t<T

becomes the invariant probability measure of (t mod T,Xt)t≥0.
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Proof. 1. First we study the existence of a unique PSPM. Let µ(t) be a prob-
ability measure thus µ1(t) + µ2(t) = 1. If µ satisfies (1.1) then we obtain, by
substitution, the differential equation:

µ̇1(t) = −ϕ1,2(t)µ1(t) + ϕ2,1(t)(1− µ1(t)).

This equation can be solved using the variation of the parameters. The proce-
dure yields (1.6). The periodicity of the solution requires µ1(T ) = µ1(0) and
leads to (1.7).
2. The system (1.1) admits two Floquet multipliers ρ1 and ρ2. Since there
exists a periodic solution, one of the multipliers (let’s say ρ1) is equal to 1 and
we can compute the other one using the relation between the product ρ1ρ2 and
the trace of Qt:

ρ1ρ2 = exp

(

∫ T

0

tr(Qt) dt

)

.

The explicit expression of the trace leads to (1.9). Let us just note that we can
link to both Floquet multipliers ρ1 and ρ1 the so-called Floquet exponents λ1
and λ2 defined (not uniquely) by

ρ1 = eλ1T and ρ2 = eλ2T .

3. Since the Floquet multipliers are different, each multiplier is associated with
a particular solution of (1.1). ρ1 = 1 (i.e. λ1 = 0) corresponds to the PSPM
since µ(t+T ) = ρ1µ(t) for all t ∈ R+. For the Floquet exponent λ2, we consider
ζ(t) the solution of (1.1) with initial condition ζ(0)∗ = (−1, 1). Combining both
equations of (1.1), we obtain

{

ζ1(t) + ζ2(t) = 0

ζ1(t)− ζ2(t) = −2 exp
(

−
∫ t

0
(ϕ1,2 + ϕ2,1)(s)ds

)

.
(1.10)

We deduce

ζ(t)∗ =

(

− exp

(

−
∫ t

0

(ϕ1,2 + ϕ2,1)(s)ds

)

, exp

(

−
∫ t

0

(ϕ1,2 + ϕ2,1)(s)ds

))

and we can easily check that ζ(t+ T ) = ζ(t)eλ2T .
The solution of (1.1) with any initial condition is therefore a linear combination
of ζ and µ, the solutions associated with the Floquet multipliers. Writing ν(0)
in the basis (µ(0), ζ(0)) yields ν(t) = αµ(t) + βζ(t), with α = ν1(0) + ν2(0)
(equal to 1 in the particular probability measure case) and

β =
ν1(0)− ν2(0)

2
+ α

I(ϕ2,1)− I(ϕ1,2)

2I(ϕ1,2 + ϕ2,1)
.

Then, if the initial condition is a probability measure, we obtain (1.8) since

‖ν(t)− µ(t)‖ = ‖βζ(t)‖ =
√
2|β|e−

∫
t

0
(ϕ1,2+ϕ2,1)(s)ds.
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2 Statistics of the number of transitions

In this section, we aim to describe the number of transitions N i,j
t , up to time t,

between two given states si and sj . This information is of prime interest since
computing it for a given path is very simple [16]. Recent studies emphasize
how to get the probability distribution of this counting process, even in some
more general situations: Markov renewal processes including namely the time-
homogeneous Markov chains [3].
Moreover counting the transitions permits to get informations about the tran-
sition rates of the Markov chain. In the particular time-homogeneous case, the
number of transitions during some large time interval are used for estimation
purposes (for continuous-time Markov chains see, for instance, [1] and for time
discrete Markov chains [2]).
In general, the large time behaviour of N i,j

t is directly related to the ergodic
theorem, the law of large numbers and finally the Central Limit Theorem (for
precise hypotheses concerning these limit theorems, see [15]). Let us just dis-
cuss a particular situation: the study of a time-discrete Markov chain (Xn)n≥0

with values in the state space S = {s1, . . . , sd} and with transition probabil-
ities π. Let us denote µ its invariant probability measure. In order to de-
scribe the number of transitions, we introduce a new Markov chain by defining
Zn := (Xn−1, Xn) for n ≥ 1, valued in the state space S2. Its invariant measure
is therefore µ̃ defined by

µ̃(x, y) := π(x, y)µ(x), (x, y) ∈ S2.

In this particular situation, the number of transitions of the chain (Xn) is given
by

N 1,2
n =

n
∑

k=1

1{Xk−1=s1, Xk=s2} =

n
∑

k=1

1(s1,s2)(Zk).

In other words, it corresponds to the number of visits of the state (s1, s2) by the
chain (Zn)n≥1. Consequently, under suitable conditions, the ergodic theorem
can be applied:

lim
n→∞

N 1,2
n

n
= µ̃(s1, s2) almost surely.

The Central Limit Theorem precises the rate of convergence.
However these arguments can not be applied directly to the periodic forced

Markov chain model associated to the infinitesimal generator (0.1) due to es-
sentially two facts:

• the Markov chain (Xt)t≥0 is time-inhomogeneous

• the Markov chain is a time-continuous stochastic process.

One way to overcome these difficulties is to combine a discrete time-splitting
(tn)n≥0 on one hand and an increase of the space dimension on the other hand
so that (tn mod T,Xtn−1

, Xtn) becomes homogeneous. This procedure seems to
be complicated and we choose to present a quite different approach based on a
time-spitting and on a functional Central Limit Theorem for weakly dependent
random variables introduced by Herrndorf [10]. This results requires to study
the asymtotic behaviour of the first moments of N i,j

t and a mixing property of
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the Markov chain.
Let us also mention that usually the Central Limit Theorem and the associated
large deviations could be proven using asymptotic properties of the Laplace
transform of N i,j

t . Of course such information is not sufficient for a functional
CLT. An overview of the conditions can be found in [5].

2.1 Long time asymptotics for the average and the vari-

ance

The general d-dimensional case

Let us focus our attention to the two first moments of Nt, the number of transi-
tion between two given states, let us say s1 and s2. In a homogeneous continuous
time Markov chain, the average and the variance of Nt grows linearly if the pro-
cess starts with the stationary distribution. What happens if the Markov chain
is not homogeneous and in particular, if the transition probabilities depend
periodically on time?

Let us introduce different mathematical quantities which plays a crucial role
in the asymptotic result.

• Let us denote by Mh(t) the fundamental solution of (1.1), that is:

Ṁh(t) = QtM
h(t), Mh(0) = Id. (2.1)

• Ξ(T ) represents the Jordan canonical form of Mh(T ). P is the matrix
basis of this canonical form: Ξ(T ) = P−1Mh(T )P . Moreover we denote
for any t ≥ 0,

Ξ(t) = P−1Mh(t)P. (2.2)

• Three additional notations: the vector e1 = (1, 0, . . . , 0) ∈ Rd and the

matrices Ǐd
1

i,j = 1{i=j≥2} for 1 ≤ i, j ≤ d and (Bt)i,j = ϕ1,2(t)δi,2δj,1.

Theorem 2.1. Asymptotics of the two first moments

The number of transitions from state s1 to state s2, denoted by Nt, satisfies the
following asymptotic properties.
1. First moment. For any initial distribution PX0 , we observe in the large time
limit

mt := E[Nt] ∼
∫ t

0

ϕ1,2(s)µ1(s) ds,

where µ1 is the first coordinate of the periodic stationary measure associated
with the Markov chain (Xt)t≥0. In particular,

lim
t→∞

1

t
E[Nt] =

1

T

∫ T

0

ϕ1,2(s)µ1(s) ds (2.3)

2. Second moment. Let us denote by Rν(t) := Var(Nt) − E[Nt] for the initial
distribution of the Markov chain: PX0

= ν. Then

Rµ(0)(T ) = 2

∫ T

0

ϕ1,2(s)e
∗
1 P Ξ(s)Ǐd

1
C(s) ds, (2.4)
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where µ is the PSPM and

C(t) =

∫ t

0

Ξ(s)−1P−1Bsµ(s) ds. (2.5)

Moreover the following limit holds

lim
t→∞

1

t
Rν(t) =

2

T

{

e∗1

(

∫ T

0

ϕ1,2(s)P Ξ(s) ds
)

Ξ(T )Ǐd
1
(

Id− Ξ(T )Ǐd
1
)−1

C(T )

}

+
1

T
Rµ(0)(T ). (2.6)

Remark 2.2. 1. The limit (2.6) does not depend on the initial distribution
of X0. This property is related to the ergodic behaviour of the Markov chain
developed in 1.2.
2. If the fundamental solution of (2.1) at time T is diagonalizable, that is
r1 = 1 > |r2| > . . . > |rd| where ri are the Floquet multipliers of (1.1), then
(2.6) takes a simpler form due to the following expression:

(

Ξ(T )Ǐd
1
(Id− Ξ(T )Ǐd

1
)−1
)

i,j
=

ri
1− ri

1{i=j≥2}, 1 ≤ i, j ≤ d.

3. If the transition probabilities are constant functions such that Qt defined in
(0.1) satisfies

ϕi,j = ϕ1{i 6=j} − (d− 1)ϕ1{i=j},

for some constant ϕ > 0, then Theorem 1.2 can be applied for any T > 0 and
straightforward computations lead to:

Rµ(0)(t) =
2

d4
(1− e−dϕt − dϕt)

Hence

lim
t→∞

1

t
Rµ(0)(t) = −2ϕ

d3
.

Even in this simple homogeneous situation, Nt is not asymptotically Poisson
distributed. Indeed the Poisson distribution would satisfy R(t) = 0.

Proof. Step 1. Averaged number of transitions. Let us first decompose the
averaged number of transitions as follows:

mt =

d
∑

k=1

mk
t with mk

t = E[Nt1{Xt=sk}].

We set Mt := (m1
t , . . . ,m

d
t )

∗. For h > 0, we get

m2
t+h =E[Nt+h1{Xt+h=s2}] =

∑

1≤i≤d

E[(Nt + (Nt+h −Nt))1{Xt=si, Xt+h=s2}]

=
∑

1≤i≤d

E[Nt1{Xt=si}]P(Xt+h = s2|Xt = si)

+
∑

1≤i≤d

E[(Nt+h −Nt)1{Xt=si, Xt+h=s2}]

=m2(t)(1− ϕ2,2(t)h) +

d
∑

i=1,i 6=2

mi(t)ϕi,2(t)h+ ν1(t)ϕ1,2(t)h+ o(h)
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where νi(t) = P(Xt = si). By similar computations, we obtain the result for
h < 0. Moreover for k 6= 2:

mk
t+h =E[Nt+h1{Xt+h=sk}]

=mk(t)(1− ϕk,k(t)h) +
d
∑

i=1,i 6=k

mi(t)ϕi,k(t)h+ o(h).

Finally we observe that Mt satisfies the ode:

Ṁt = QtMt +Btνt, M0 = 0, (2.7)

where (Bt)i,j = ϕ1,2(t)δi,2δj,1. Let Mh(t) the fundamental solution of (2.1).
Since Qt satisfies (H), Mh(T ) is an irreducible positive and stochastic matrix.
Indeed, let us just explain why Psi(XT = sj) > 0 for any i and j: let us assume
that this inequality does not hold. Then for h small enough, there exists a state
sl such that

Psi(XT−h = sl) > 0, (2.8)

and
P(XT = sj |XT−h = sl) = ϕl,j(T − h)h+ o(h) (2.9)

if l 6= j, otherwise:

P(XT = sj |XT−h = sj) = 1− ϕj,j(T − h)h+ o(h). (2.10)

By (H), the combination of (2.8), (2.9) and (2.10) leads to the announced prop-
erty Psi(XT = sj) > 0, as a product of two positive quantities. Therefore the
Perron-Frobenius theorem (see chapter 8 in [14]) applied to the matrix Mh(T )
implies

• the eigenvalues r1, r2, . . . , rs, s ≤ d of the matrix Mh(T ) have the associ-
ated multiplicity n1 = 1,

∑s
k=1 nk = d and r1 = 1 > |r2| ≥ . . . |rs|.

• the eigenvector associated to the first eigenvalue corresponds to the peri-
odic stationary probability measure µ(0).

We denote therefore B = (ξ01 , . . . , ξ
0
d) the basis of the canonical Jordan form of

the matrix Mh(T ) and P the basis matrix of B, P−1Mh(T )P being then the
Jordan form. In particular ξ01 = µ(0). We define ξk(t) = Mh(t)ξ0k, 1 ≤ k ≤ d
and observe two different cases: either ξ0k is an eigenvector of Mh(T ) associated
to the eigenvalue rj which implies that

ξk(t+ T ) =Mh(t+ T )ξ0k =Mh(t)Mh(T )ξ0k = rjM
h(t)ξ0k = rjξk(t) (2.11)

and consequently ξk is a Floquet solution associated to the Floquet multiplier
rj , either ξ0k is not an eigenvector of Mh(T ) and belongs to the Jordan block
associated to the eigenvalue rj then

ξk(t+ T ) =Mh(t)Mh(T )ξ0k = rjM
h(t)ξ0k +Mh(t)ξ0k−1 = rjξk(t) + ξk−1(t).

(2.12)
Furthermore we denote by Ξ(t) the matrix defined as follows: the coefficient
Ξi,j(t) represents the i-th coordinate of the solution ξj(t) in the basis B for
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1 ≤ i, j ≤ d: i.e. Ξ(t) = P−1Mh(t)P . Let us note that since ξ1 is a prob-
ability measure, (1, . . . , 1)ξ1 = 1. Moreover combining (1.1) and (1.2) leads
to the following property: (1, . . . , 1)P Ξ(t) is a constant function. If ξ0k is an
eigenvector of Mh(T ) associated to the eigenvalue rj then ξk(T ) = rjξk(0) with
|rj | < 1. In particular, since (1, . . . , 1)ξk(t) is constant in the canonical basis
(1, . . . , 1)ξk(t) = 0. If ξ0k is not an eigenvector but belongs to the Jordan block
associated to the eigenvalue rj then (2.12) leads to

(1, . . . , 1)ξk(T ) = rj(1, . . . , 1)ξk(T ) + (1, . . . , 1)ξk−1(T ).

If (1, . . . , 1)ξk−1(T ) = 0 then the property |rj | < 1 leads to (1, . . . , 1)ξk(T ) = 0.
So step by step, we prove that

(1, . . . , 1)P Ξ(t) = (1, 0, . . . , 0), ∀t ≥ 0. (2.13)

Let us now solve the homogeneous part of the equation (2.7): there exists a
vector C = (C1, . . . , Cd)

∗ such that

Mh
t = P Ξ(t)C.

By the method of parameter variation, we obtain the system:

P Ξ(t)Ċ(t) = Btν(t) = (0, ϕ1,2(t)ν1(t), 0, . . . , 0)
∗. (2.14)

The initial condition M(0) = 0 leads to C(0) = 0. By multiplying (2.14) on the
left side by the vector (1, . . . , 1) we obtain Ċ1(t) = ϕ1,2(t)ν1(t). Hence

C1(t) =

∫ t

0

ϕ1,2(s)ν1(s)ds. (2.15)

We obtain therefore an explicit solution of (2.7) and deduce that

E[Nt] = (1, . . . , 1)Mt = C1(t) =

∫ t

0

ϕ1,2(s)ν1(s)ds ∼
∫ t

0

ϕ1,2(s)P Ξ1,1(s)ds,

as t becomes large. The equivalence presented in the previous equation is due
to the ergodic property of the periodically driven Markov chain (Theorem 1.2).
More precisely, for any sufficiently small constant ǫ > 0 (smaller than |Re(λ2)|
the second Floquet exponent associated with the invariant measure µ) there
exists a constant C > 0 such that:

∣

∣

∣E[Nt]−
∫ t

0

ϕ1,2(s)P Ξ1,1(s)ds
∣

∣

∣ ≤
∫ t

0

ϕ1,2(s)|ν1(s)− P Ξ1,1(s)|ds

≤ C

∫ t

0

ϕ1,2(s)e
(Re(λ2)+ǫ)sds. (2.16)

ϕ1,2 is a bounded function, so is the difference E[Nt] −
∫ t

0
ϕ1,2(s)P Ξ1,1(s)ds.

Step 2. Description of the function C(t). From now on, we assume that the
initial probability measure of the Markov chain is µ(0), the initial value of the
PSPM. Before developing the asymptotics of the variance of Nt in the large
time limit, we need to precise the function C(t), solution of (2.14) where ν1 is
replaced by µ1. We know that C(0) = 0. Let us define

η(t) := C(t+ T )− C(T ) for any t ≥ 0.

11



We observe that, due to the periodic property of ξ1 and ϕ1,2, the function η is
solution of the following equation

P Ξ(t+ T )η̇(t) = Btξ1(t), η(0) = 0. (2.17)

Introducing η̃(t) = Ξ(T )η(t), we obtain

P Ξ(t+ T )η̇(t) = P Ξ(t)Ξ(T )η̇(t) = P Ξ(t) ˙̃η(t) = Btξ1(t), η̃(0) = 0.

By uniqueness of the previous equation (Cauchy-Lipschitz theorem), the equal-
ity η̃(t) = C(t) holds. Since Ξ(T ) is invertible (the Floquet multipliers are not
equal to 0):

η(t) = C(t+ T )− C(T ) = Ξ(T )−1C(t), t ≥ 0.

Therefore, using the definition of η(t) and an iteration procedure, we deduce

C(t+ lT ) =
(

l−1
∑

i=0

Ξ(T )−i
)

C(T ) + Ξ(T )−lC(t), l ≥ 1. (2.18)

Step 3. Asymptotics of the variance. We now describe the asymptotic be-
haviour of the second moment. Let us denote Vt = (v1t , . . . , v

d
t )

∗ with vkt =
E[N 2

t 1{Xt=sk}]. Using similar arguments as those presented in the beginning of
Step 1, we obtain the following differential equation:

V̇t = QtVt +Bt(2Mt + µ(t)), V0 = 0. (2.19)

The procedure is similar as above, the variation of parameters leads to:

Vt = P Ξ(t)κ(t) with κ(t) = (κ1(t), . . . , κd(t))
∗.

The coefficient κ(t) is solution to the equation:

P Ξ(t)κ̇(t) = Bt(2Mt + µ(t)), κ(0) = 0.

Multiplying the previous equation on the left side by (1, . . . , 1) implies:

κ̇1(t) = ϕ1,2(t)(2m
1
t + µ(t)), κ1(0) = 0.

The second moment of the number of transitions between the states s1 and s2
satisfies Eµ[N 2

t ] = (1, . . . , 1)Vt = κ1(t), that is:

Eµ[N 2
t ] =

∫ t

0

ϕ1,2(s)(2m
1
s + µ(s)) ds.

Here Eµ stands for the expectation of the Markov chain distribution with the
initial probability distribution µ(0). Let us set the vector e1 = (1, 0 . . . , 0)∗ and

the matrix Ǐd
1

i,j = 1{i=j≥2}. On one hand we have

Eµ[N 2
t ] =

∫ t

0

ϕ1,2(s)
(

2e∗1Ms+µ1(s)
)

ds =

∫ t

0

ϕ1,2(s)
(

2e∗1P Ξ(s)C(s)+µ1(s)
)

ds.

12



On the other hand,

Eµ[Nt]
2 =

∫ t

0

2m′
sms ds =

∫ t

0

2ϕ1,2(s)µ1(s)C1(s)ds

=

∫ t

0

2ϕ1,2(s)e
∗
1P Ξ(s)(C(s)− Ǐd

1
C(s))ds.

Hence,

Rµ(0)(t) := Varµ(Nt)− Eµ[Nt] = 2

∫ t

0

ϕ1,2(s)e
∗
1P Ξ(s)Ǐd

1
C(s)ds. (2.20)

Let us now compute the limit of the following expression Rµ(0)(t)/t as t → ∞.

We first observe that Ξ(T )Ǐd
1
Ξ(T )−1 = Ǐd

1
since Ξ(T ) is a Jordan canonical

form with a first eigenvalue which is simple. By (2.18), we obtain, for l > 0,

∆(t, l) := P Ξ(t+ lT )Ǐd
1
C(t+ lT )

= P Ξ(t)P−1(P Ξ(T )P−1)lP Ǐd
1
[(

l−1
∑

i=0

Ξ(T )−i
)

C(T ) + Ξ(T )−lC(t)
]

= P Ξ(t)Ǐd
1

l
∑

i=1

Ξ(T )iC(T ) + P Ξ(t)Ǐd
1
C(t)

= P Ξ(t)
(

l
∑

i=1

(Ξ(T )Ǐd
1
)i
)

C(T ) + PΞ(t)Ǐd
1
C(t). (2.21)

The Perron-Frobenius theorem implies that the spectral radius ρ(Ξ(T )Ǐd
1
) =

|r2| < 1. Due to Householder’s theorem (see, for instance, Theorem 4.2.1 in

[19]), there exists an induced norm satisfying ‖Ξ(T )Ǐd1‖ < 1. Hence

‖P Ξ(t+ lT )Ǐd
1
C(t+ lT )‖ ≤ ‖P Ξ(t)‖

1− ‖Ξ(T )Ǐd1‖
‖C(T )‖+ ‖P Ξ(t)Ǐd

1
C(t)‖.

The previous upper-bound does not depend on l and therefore t 7→ P Ξ(t)Ǐd
1
C(t)

is a bounded function so do t 7→ ϕ1,2(t)e
∗
1P Ξ(t)Ǐd

1
C(t), the function appearing

in the integral (2.20). The limit we need to compute is then given by

lim
t→∞

1

t
Rµ(0)(t) = lim

n→∞

2

nT
In with In =

∫ nT

0

ϕ1,2(s)e
∗
1P Ξ(s)Ǐd

1
C(s) ds,

(2.22)
where T is the period of Qt. Let us introduce

I0 =

∫ T

0

ϕ1,2(s)P Ξ(s) ds and I1 =

∫ T

0

ϕ1,2(s)P Ξ(s)Ǐd
1
C(s) ds

13



By (2.21) and since ϕ1,2 is a periodic function, the following splitting holds

In =
n−1
∑

k=0

∫ T

0

ϕ1,2(s)e
∗
1P Ξ(s+ kT )Ǐd

1
C(s+ kT ) ds

=
n−1
∑

k=1

∫ T

0

ϕ1,2(s)e
∗
1P Ξ(s) ds

(

k
∑

i=1

(Ξ(T )Ǐd
1
)i
)

C(T )

+ n

∫ T

0

ϕ1,2(s)e
∗
1P Ξ(s)Ǐd

1
C(s) ds

=

n−1
∑

k=1

e∗1I0

(

Ξ(T )Ǐd
1 − (Ξ(T )Ǐd

1
)k+1

)(

Id− Ξ(T )Ǐd
1
)−1

C(T ) + ne∗1I1

= (n− 1)e∗1I0Ξ(T )Ǐd
1
(

Id− Ξ(T )Ǐd
1
)−1

C(T ) + ne∗1I1

− e∗1I0

n−1
∑

k=1

(Ξ(T )Ǐd
1
)k+1

(

Id− Ξ(T )Ǐd
1
)−1

C(T ).

Using the existence of an induced norm satisfying ‖Ξ(T )Ǐd1‖ < 1, we deduce
that the last term in the previous equality is bounded with respect to the variable
n. Consequently (2.22) implies

lim
t→∞

1

t
Rµ(0)(t) =

2

T

{

e∗1I0Ξ(T )Ǐd
1
(

Id− Ξ(T )Ǐd
1
)−1

C(T ) + e∗1I1

}

.

Step 4. Generalization to any initial probability distribution. To end the proof,
we are going to develop the idea that the initial distribution of the Markov chain
does not play any role. The first part of the statement (Step 1) implies directly
that

lim
t→∞

1

t
Eν(Nt) = lim

t→∞

1

t
Eµ(0)(Nt).

Let us now observe the variance case. Let n ∈ N∗, we introduce

{

∆n(t) := |Varν(NnT+t)−Varν(nT )(Nt)|,
Γn(t) := |Varν(nT )(Nt)−Varµ(0)(Nt)|,

(2.23)

where ν(nT ) is the distribution of XnT with the initial condition PX0 = ν.
Obviously

lim
t→∞

Varν(Nt)

t
= lim

t→∞

Varµ(0)(Nt)

t
, (2.24)

if

lim
n→∞

lim
t→∞

1

t
∆n(t) = lim

n→∞
lim
t→∞

1

t
Γn(t) = 0.

Using the Markov property, we get

Varν(NnT+t) = Varν(NnT+t −NnT ) + Varν(NnT ) + 2Covν(NnT+t −NnT ,NnT )

= Varν(nT )(Nt) + Varν(NnT ) + 2Covν(NnT+t −NnT ,NnT ).
(2.25)
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Moreover, let us introduce:

K(n, ν) := max
z∈S

∣

∣

∣Eν [NnT |XnT = z]− Eν [NnT ]
∣

∣

∣.

If we denote by Ex the expectation under the conditional event {X0 = x}, we
observe that

∆n(t) := |Covν(NnT+t −NnT ,NnT )|

=

∣

∣

∣

∣

∣

∑

x∈S

Ex[Nt]
(

Eν [NnT |XnT = x]− Eν [NnT ]
)

νx(nT )

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

x∈S

(

Ex[Nt]− Eν(nT )[Nt]
)(

Eν [NnT |XnT = x]− Eν [NnT ]
)

νx(nT )

∣

∣

∣

∣

∣

≤ K(n, ν)
∑

(x,y)∈S2

∣

∣

∣Ex[Nt]− Ey[Nt]
∣

∣

∣νx(nT )νy(nT )

≤ 2K(n, ν)max
x∈S

∣

∣

∣
Ex[Nt]− Eµ(0)[Nt]

∣

∣

∣
.

By (2.3) the normalized averages appearing in the last upper-bound are equiv-
alent in the large time scale, the following asymptotic result therefore holds

lim
t→∞

1

t
∆n(t) = 0. (2.26)

Consequently, combining (2.25) and (2.26) leads to limt→∞
1
t ∆n(t) = 0. Finally

let us prove that limn→∞ limt→∞ Γn(t)/t = 0 in order to prove (2.24). Due to
the Perron-Frobenius theorem, the PSPM satisfies µx(0) > 0 for any x ∈ S and
so, using the definition of Γn in (2.23), we obtain

Γn(t) =
∑

x∈S

Varx(Nt)
∣

∣

∣

νx(nT )

µx(0)
− 1
∣

∣

∣µx(0)

≤ ‖ν(nT )− µ(0)‖
minx∈S µx(0)

Varµ(0)(Nt)

=
‖ν(nT )− µ(nT )‖
minx∈S µx(0)

Varµ(0)(Nt).

Combining Step 3 in order to describe the asymptotic behaviour of Varµ(0)(Nt)
and Theorem 1.2 permits to imply limn→∞ limt→∞ Γn(t)/t = 0 and conse-
quently (2.24).

The particular 2-dimensional case

The aim of this section is to express the statement of Theorem 2.1 in the situ-
ation S = {s1, s2}. The results obtained in this quite simple situation are not
trivial and can be clarified since the explicit expression of the periodic stationary
probability measure has been developed in Proposition 1.3.

Corollary 2.3. 1. The number of transitions between state s1 and state s2,
denoted by Nt, satisfies

lim
t→∞

1

t
E[Nt] =

1

T

∫ T

0

ϕ1,2(s)µ1(s) ds,
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where (µ(t))t≥0 is the PSPM (1.6). This result does not depend on the initial
distribution of the Markov chain (Xt).
2. Moreover the following large time limit for the variance holds:

lim
t→∞

1

t

(

Var(Nt)− E[Nt]
)

= − 2

T

J1(T )J2(1)

e−λ2T − 1
− 2

T
J2(J1).

where λ2 = − 1
T

∫ T

0
ϕ1,2(t) + ϕ2,1(t) dt is the second Floquet exponent,

J1(t) =

∫ t

0

ϕ1,2(s)µ
2
1(s)

ζ1(s)
ds, J2(f) :=

∫ T

0

ϕ1,2(s)ζ1(s)f(s) ds,

ζ1(t) = − exp

(

−
∫ t

0

(ϕ1,2 + ϕ2,1)(s)ds

)

, t ≥ 0. (2.27)

Proof. It suffices to apply Theorem 2.1. Considering the arguments used in
Proposition 1.3, we know explicitly the fundamental solution of (2.1). In par-
ticular the Jordan canonical form Ξ(T ) (defined in (2.2)) is given by

Ξ(T ) =

(

1 0
0 eλ2T

)

,

where λ2 is defined in (1.9). The Floquet solution associated to the multiplier
1 is the PSPM (1.6) and the Floquet solution associated to the multiplier eλ2T

is ζ(t)∗ = (ζ1(t),−ζ1(t)) with ζ1(t) defined in (2.27). We deduce that the basis
matrix associated with the Jordan matrix is:

P =

(

µ1(0) −1
1− µ1(0) 1

)

, with µ1(0) =
I(ϕ2,1)

I(ϕ1,2 + ϕ2,1)
.

The function I has been defined in (1.7). Consequently

P Ξ(t) =

(

µ1(t) ζ1(t)
1− µ1(t) −ζ1(t)

)

, t ≥ 0.

The R2-valued function C defined by (2.5) is equal to

C1(t) =

∫ t

0

ϕ1,2(s)µ1(s) ds, C2(t) = −
∫ t

0

µ1(s)
2ϕ1,2(s)

ζ1(s)
ds.

All these explicit expressions and simple computations combined with (2.4) and
(2.6) imply the announced statement.

2.2 Positivity of the limit for the normalized variance

Theorem 2.1 and Corollary 2.4 ensure that the limit, in the large time scale,
of the normalized variance Var(Nt)/t exists. The expression of the limit is
quite general and can be computed explicitly in any particular situation. One
important property concerning this limit is the positivity. This step is crucial as
a preliminary result for the proof of a Central Limit Theorem for the statistics
Nt.
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Proposition 2.4. Under the hypothesis (H), the long time limit of the normal-
ized variance is positive:

lim
t→∞

Var(Nt)

t
> 0 (2.28)

Proof. Let us decompose NkT into

NkT =

k
∑

j=1

∆Nj with ∆Nj = NjT −N(j−1)T .

Using the conditioning with respect to the position of the Markov chain at times
0, T, . . . , kT , we define Xk := (X0, XT , . . . , XkT ) and obtain

Var(NkT ) = Var
(

E[NkT |Xk]
)

+ E

[

Var(NkT |Xk)
]

≥ E

[

Var(NkT |Xk)
]

. (2.29)

We just recall that the conditional variance is given by:

Var(NkT |Xk) = E

[

(NkT − E[NkT |Xk])
2
∣

∣

∣Xk

]

= E

[(

k
∑

j=1

∆Nj − E[∆Nj |Xk]
)2∣
∣

∣Xk

]

.

Developing the square implies:

Var(NkT |Xk) = E

[

k
∑

j=1

(

∆Nj − E[∆Nj |Xk]
)2∣
∣

∣Xk

]

+ 2
∑

1≤j<l≤k

E

[(

∆Nj − E[∆Nj |Xk]
)(

∆Nl − E[∆Nl|Xk]
)∣

∣

∣Xk

]

.

Given Xk, the random variables ∆Nj − E[∆Nj |Xk] and ∆Nl − E[∆Nl|Xk] are
independent and centred (for 1 ≤ j < l ≤ k). Consequently the double sum in
the previous equality vanishes. The Markov property leads to

Var(NkT |Xk) =

k
∑

j=1

Var(∆Nj |Xk) =

k
∑

j=1

Var(∆Nj |X(j−1)T , XjT ).

Let us define the function ψ : S × S → R+ by

ψ(a, b) = Var(∆Nj |X(j−1)T = a,XjT = b)

which does not depend on j since the transition probabilities are T -periodic.
Since the state space is finite, the minimum of the function ψ is reached. More-
over the random variable ∆N1 knowing both X0 and XT is not constant a.s.
due to the hypothesis (H), so that the following minimum is positive:

V ∗ = min
(a,b)∈S2

ψ(a, b) > 0.

Therefore the following lower bound holds

Var(NkT |Xk) ≥ kV ∗ and so Var(NkT ) ≥ kV ∗,
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just by using (2.29). Dividing by kT , we obtain

lim
k→∞

Var(NkT )

kT
> 0. (2.30)

The statement of Theorem 2.1 points out that the limit considered in (2.28)
exists and since the limit of a subsequence (2.30) is positive, we deduce the
positivity of (2.28).

2.3 Mixing properties of the time periodic Markov chain

We have already partially described, in the previous results, the behaviour of
the Markov chain in the long time limit. The distribution of the Markov chain
converges exponentially fast toward the unique periodic stationary probability
measure, the normalized (divided by the time variable) averaged number of
transitions between two given states converges, so does the normalized variance.
All these results concern the one marginal distribution of the Markov chain
(Xt) or the one marginal distribution of the counting process (Nt). In order to
complete this study and to better understand the long time behaviour of Xt, we
are going to prove that the Markov chain (Xt)t≥0 is weakly correlated, that is,
Xt and Xt+h are weakly dependent when h is large enough. This property can
be measured with a particular tool associated to the strongly mixing concept.
This property is quite evident for homogeneous Markov chains, we prove here
that it is also satisfied for periodic inhomogeneous Markov chains.

Let us first introduce the σ-algebra

Fi,i+j = σ(∆Nk : i ≤ k ≤ i+ j)

where ∆Nk := NkT − N(k−1)T , and secondly, the mixing coefficients αn(k)
defined, for k ≤ n− 1, by

αn(k) = sup
{

|P(A∩B)−P(A)P(B)| : A ∈ F1,m, B ∈ Fm+k,n, 1 ≤ m ≤ n−k
}

.

We set αn(k) = 0 for k ≥ n. These mixing coefficients permit to measure
the dependence between random variables belonging to the same sequence. For
periodic forced Markov chains, we prove that the dependence of Xt with respect
to the initial condition rapidly decreases as time elapses. It is a consequence of
the following result.

Proposition 2.5. The family of random variables (∆Nk)k∈N is a strongly mix-
ing sequence, that is

α(k) := sup
n≥1

αn(k) = O(b−k) for some b > 1.

Proof. Let A ∈ F1,m and B ∈ Fm+k,n then there exist two measurable bounded
and non-negative functions ψA and ψB such that

1A = ψA(∆N1, . . . ,∆Nm) and 1B = ψB(∆Nm+k, . . . ,∆Nn).

Then, due to the Markov property, we obtain

P(A ∩B) = E[ψA(∆N1, . . . ,∆Nm)ψB(∆Nm+k, . . . ,∆Nn)]

= E

[

ψA(∆N1, . . . ,∆Nm)ψC(X(m+k−1)T )
]

,
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where ψC is a bounded non negative measurable function defined by

ψC(x) = E[ψB(∆Nm+k, . . . ,∆Nn)|X(m+k−1)T = x]

= Ex[ψB(∆N1, . . . ,∆Nn+1−m−k)].

We deduce that

P(A ∩B) = E[ψA(∆N1, . . . ,∆Nm)ψC(X(m+k−1)T )]

=

d
∑

i=1

E[ψA(∆N1, . . . ,∆Nm)1{X(m+k−1)T=si}]ψC(si)

=

d
∑

i,j=1

E[ψA(∆N1, . . . ,∆Nm)1{XmT=sj}1{X(m+k−1)T=si}]ψC(si)

=

d
∑

i,j=1

E[ψA(∆N1, . . . ,∆Nm)1{XmT=sj}]Pj(X(k−1)T = si)ψC(si).

By similar computations, we obtain:
{

P(A) =
∑d

j=1 E[ψA(∆N1, . . . ,∆Nm)1{XmT=sj}],

P(B) =
∑d

i=1 P(X(m+k−1)T = si)ψC(si).

Finally ∆ := |P(A ∩B)− P(A)P(B)| is equal to

∆ =
∣

∣

∣

d
∑

i,j=1

E[ψA(∆N1, . . . ,∆Nm)1{XmT=sj}]

× ψC(si)
(

P(X(m+k−1)T = si)− Psj (X(k−1)T = si)
)∣

∣

∣

≤ max
1≤i,j,l≤d

|Psl(X(k−1)T = si)− Psj (X(k−1)T = si)|

≤ 2 max
1≤i,l≤d

|Psj (X(k−1)T = si)− µsi(0)|

where µ(t) is the periodic stationary probability measure associated with the
chain (Xt). Due to the ergodic property (Theorem 1.2), for any initial proba-
bility measure ν we have

lim
t→∞

1

t
log sup

1≤i≤d
|P(Xt = si)− µsi(t)| ≤ Re(λ2) < 0,

where λ2 is the second Floquet exponent associated with the distribution of the
periodically driven Markov chain.

2.4 A Central Limit Theorem for the averaged number of

transitions

In this section, we aim to point out the main result of this study. We have
already given some description of the long time asymptotics of the number
of transitions Nt, by computing the two first moments. Moreover the mix-
ing property developed in Proposition 2.5 permits to ensure that the periodic
forced Markov chain would behave in a quite similar way as a time-homogeneous
Markov chain. In fact, we have to be careful since the law of Xt always depends
on the initial condition ! (see Theorem 1.2).
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Theorem 2.6. Central Limit Theorem. The stochastic process

Zn(t) :=
NntT − E[NntT ]
√

Var(NntT )
, t ∈ [0, 1], (2.31)

converges in distribution to the standard Brownian motion (Wt, 0 ≤ t ≤ 1) as
n→ ∞.

Proof. Step 1. The arguments developed in the first step of the proof are based
on the application of Corollary 2 in [10]. Let us introduce the Markov chain
(Yn)n≥1 defined by

Yn = ∆Nn − E[∆Nn], ∆Nn := NnT −N(n−1)T .

We just recall this result: the process Sn :=
∑n

k=1 Yk satisfies the Central Limit
Theorem (2.31) as soon as the following conditions are satisfied:

1. E[Yn] = 0 and E[Y 2
n ] <∞ for any n ≥ 1.

2. The sequence of normalized variances converges as n→ ∞:

lim
n→∞

E[S2
n]

n
= σ2 > 0 for some σ > 0.

Moreover

sup
{ 1

n
E[(Sm+n − Sm)2] : (n,m) ∈ N

2
}

<∞. (2.32)

3. There exists β > 2 (we set γ = 2/β) such that

‖Yn‖β = o
(

n(1−γ)/2/(log n)1−γ/2
)

and α(k) = O(b−k), (2.33)

for some b > 1 and ‖Yn‖β = E1/β [|Yn|β ].

Under these three conditions, Wn(t) := S⌊nt⌋/(σ
√
n) converges in distribution

towards a standard Brownian motion W . Let us now point out that these
conditions are satisfied for the periodic driven Markov chain. The first condition
is trivial. The second condition is directly related to the convergence pointed out
in Proposition 2.4. Let us now prove (2.32): for all 1 ≤ i, j ≤ d and t ∈ [0, T ],
ϕi,j(t) ≥ 0 and moreover

M = max
t∈[0,T ],i 6=j

ϕi,j(t) > 0. (2.34)

Let us define the Poisson process (Pt) of parameter M and introduce the upper-
bound ∆Nk ≤ PT . Since all moments of a Poisson process are finite so do the
moments of ∆Nk. We deduce immediately that ‖Yn‖β is a bounded sequence
(the first part of (2.33) is therefore satisfied). Furthermore

E

[

(Sm+n − Sn)
2

n

]

≤ E

[N 2
nT

n

]

≤MT <∞, ∀(m,n) ∈ N
2.

Finally let us note that the second part of (2.33) is an immediate consequence
of Proposition 2.5.
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Step 2. In the first step, the convergence in distribution of Wn towards W
was emphasized. Now let us deduce the convergence of Zn towards W . The
following splitting holds

NntT − E[NntT ] = N⌊nt⌋T − E[N⌊nt⌋T ] + (NntT −N⌊nt⌋T )

− E[NntT −N⌊nt⌋T ]. (2.35)

Let us define the function Un : [0, 1] → N by Un(t) = NntT − N⌊nt⌋T . This
function vanishes at any point of the form k/n with k ∈ {0, 1, . . . n}. Moreover
Un is a non decreasing function on each interval [(k − 1)/n, k/n[. Hence

sup
t∈[0,1]

Un(t) = max
1≤k≤n

(

lim
t→k/n, t<k/n

Un(t)

)

≤ max
1≤k≤n

∆Nk

where ∆Nk is the total number of transitions observed during the time interval
[(k − 1)T, kT [, k ∈ {1, . . . n}. This number is stochastically smaller than a
Poisson distributed random variable of parameter λ =MT where M is defined
by (2.34). So we prove that Un/

√
n converges in probability to the zero function.

Indeed for any ε > 0, we set δn = ε
√
n and obtain

P

(

max
1≤k≤n

∆Nk ≥ δn

)

≤ 1−
(

min
a∈S

Pa(∆N1 ≤ δn)

)n

≤ 1−
(

1−
∑

l≥⌊δn⌋+1

λle−λ

l!

)n

≤ 1−
(

1− λ⌊δn⌋+1

(⌊δn⌋+ 1)!

)n

.

As n goes to ∞ the Stirling formula permits to prove that

lim
n→∞

(

1− λ⌊δn⌋+1

(⌊δn⌋+ 1)!

)n

= 1.

Consequently

lim
n→∞

P

(

Un(t)√
n

≥ ε

)

= 0.

Combining (2.35) with the following convergences as n→ ∞:

N⌊nt⌋T − E[N⌊nt⌋T ]

σ
√
n

(d)−→Wt,
σ
√
n

√

Var(NntT )
−→ 1,

(NntT −N⌊nt⌋T )

σ
√
n

P−→ 0,
E[NntT −N⌊nt⌋T ]
√

Var(NntT )
−→ 0,

leads to (2.31).

3 Two examples in the stochastic resonance frame-

work

We seek to describe the phenomenon of stochastic resonance. Let us introduce
a continuous-time Markov chain Xt oscillating between two states {s1, s2} ac-
cording to a T-periodic infinitesimal generator Qt. Then by varying the period,
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we observe that the behaviour of the chain changes and adopts more or less
periodic paths. The aim in each example is to find the optimal period such
that the behaviour of the paths looks like the most periodic as possible. That’s
why we shall introduce a criterion which measures the periodicity of any ran-
dom path. We propose to use a criterion associated with the mean number of
transition on a period (it should be also possible to propose a measure based
on the minimal variance but we do not adopt this point of view in this study).
The interesting tunings correspond to situations where this averaged number is
close to the value 1.

3.1 An infinitesimal generator constant on each half pe-

riod

In this first example, we consider T-periodic rates given by

ϕ1,2(t) = ϕ01{0≤t<T/2} + ϕ11{T/2≤t<T} = ϕ0 + ϕ1 − ϕ2,1(t). (3.1)

where ϕ0 = p e−
V
ǫ et ϕ1 = q e−

v
ǫ , v < V . This Markov model is often used in

the stochastic resonance framework (see for instance [17]). Here we can compute
explicitly the invariant measure (see also [17] Proposition 4.1.2 p.34)

Lemma 3.1. The periodic stationary probability measure PSPM is given by:

µ1(t) =
e−(ϕ0+ϕ1)t

1 + e−(ϕ0+ϕ1)T/2

ϕ0 − ϕ1

ϕ0 + ϕ1
+

ϕ1

ϕ0 + ϕ1
(3.2)

and µ1(t)+µ2(t) = 1, µ1(t+T/2) = µ2(t), µ2(t+T/2) = µ1(t). Here µ1 (resp.
µ2) stands for µs1 (resp. µs2).

Proof. Using the description of the PSPM in Proposition 1.3 we obtain

µ1(t) = µ1(0)e
−(ϕ0+ϕ1)t +

ϕ1

ϕ0 + ϕ1

(

1− e−(ϕ0+ϕ1)t
)

=

(

µ1(0)−
ϕ1

ϕ0 + ϕ1

)

e−(ϕ0+ϕ1)t +
ϕ1

ϕ0 + ϕ1
, 0 ≤ t < T/2. (3.3)

Furthermore, by symmetry arguments, the dynamics of the periodic invariant
measure satisfies: µ1(t + T/2) = µ2(t) for all t ≥ 0. We deduce in particular
that µ1(T/2) = µ2(0) = 1− µ1(0). Thus

µ1(0) =
ϕ0 + ϕ1 e

−(ϕ0+ϕ1)T/2

(ϕ0 + ϕ1)(1 + e−(ϕ0+ϕ1)T/2)

The equation (3.3) then permits to conclude.

An immediate consequence of Corollary 2.3 leads to the explicit computation
of the mean number of transitions (the details of the proof are left to the reader).

Proposition 3.2. The mean number of transitions from state s1 to state s2 of
the periodically driven Markov chain satisfies

lim
n→∞

1

n
E[NnT ] =

ϕ0ϕ1T

ϕ0 + ϕ1
+

(

ϕ0 − ϕ1

ϕ0 + ϕ1

)2

tanh
(

(ϕ0 + ϕ1)T/4
)

. (3.4)

This expression represents the asymptotic averaged number of one-sided transi-
tions between one period.
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We are interested in the phenomenon of stochastic resonance associated to
continuous-time process (Xt, t ≥ 0). This process essentially depends on two
parameters: a parameter ǫ describing the intensity of the transition rates be-
tween both states {s1, s2} (some small ǫ corresponds to a frozen situation: the
Markov chain remains in the same state for a long while) and a second parameter
T , the period of the process dynamics. By considering the normalized process
Yt = XtT , especially its paths on a fixed interval [0, S], we observe the following
phenomenon (for fixed ǫ): if T is small then there are very few transitions of
Y : the process tends to remain in its original state. If T is large, Y behaves in
a chaotic way: lots of transitions are observed. For some intermediate values
of T , the random paths of Y are close to deterministic periodic functions (one
transition in each direction per period). Let us note that this phenomenon can
also be observed by freezing the period length T and varying the intensity ǫ of
the rates.

The aim is therefore to point out the best relationship (tuning) between ǫ
and T which makes the process Y the most periodic as possible. If the process
is close to a periodic function then the mean number of transition from state
s1 to sate s2 is close to 1 per period. By Proposition 3.2, it is then sufficient to
find the best relation between ǫ and T such that

Eµ[NT ] = 1. (3.5)

In Figure 3.1, we set ǫ = 0.1, V = 2, v = 1, p = q = 1 and let T vary.
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average num ber of t ransit ions versus T

Figure 1: Average number of transitions

We compute numerically the average number of transitions per period. We
can clearly observe that there is one and only one period corresponding to the
condition (3.5).

Proposition 3.3. Let T ǫ
opt be the period which provides an average number of

transitions per period equal to 1. The following asymptotic behaviour holds, as
ǫ tends to 0,

T ε
opt ∼

V − v

2qǫ
ev/ǫ. (3.6)
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Proof. The condition (3.5) combined with Proposition 3.2 leads to the equation

ϕ0ϕ1T

ϕ0 + ϕ1
+

(

ϕ0 − ϕ1

ϕ0 + ϕ1

)2

tanh
(

(ϕ0 + ϕ1)T/4
)

= 1.

The aim is to solve it and let ǫ tend to 0. The left member in the previous
equation is an increasing function of T . We introduce the change of variable
U ǫ = (ϕ0+ϕ1)T/4. We first prove that U ǫ increases as ǫ decreases. U ǫ satisfies
K(U ǫ, ǫ) = 1 with

K(U ǫ, ǫ) =
4ϕ0ϕ1U

ǫ

(ϕ0 + ϕ1)2
+

(

ϕ0 − ϕ1

ϕ0 + ϕ1

)2

tanh(U ǫ).

Both functions ǫ 7→ K(·, ǫ) and x 7→ K(x, ·) decrease for ǫ small and x large
enough. It follows that U ǫ increases when ǫ decreases and tends to 0. Let us
assume U ǫ → U0 < ∞ in the limit ǫ → 0. Then K(U ǫ, ǫ) → tanh(U0) which
contradicts the identity K(U ǫ, ǫ) = 1. We deduce that U ǫ → ∞ when ǫ → 0.
Now let us set t = e−V/ǫ and β = v/V < 1. With these new parameters K can
be written like

1 = K̃(U, t) =
4pqt1+βU ǫ

(pt+ qtβ)2
+

(

pt− qtβ

pt+ qtβ

)2

tanh(U ǫ).

Let us define tanh(U ǫ) =: 1 −W then U ǫ = 1
2 log

(

2−W
W

)

, we obtain that W
tends to 0 when t→ 0 and the previous equation becomes:

1 = K̂(W, t) =
4pqt1+β

(pt+ qtβ)2
log

(

2−W

W

)

+

(

pt− qtβ

pt+ qtβ

)2

(1−W ).

Thus, when t→ 0, we have

K̂(W, t)− 1 =
−2pqt1+β

(pt+ qtβ)2
(logW + o(logW ))

+ (1− 4p

q
t1−β + o

(

t1−β
)

)(1−W )− 1

=
−2pqt1+β

(pt+ qtβ)2
logW −W + o(t1−β logW ) = 0.

If W = r0t
α log(t)R(t) with α = 1− β and r0 = − 2pα

q = − 2p
q (1− β), we obtain

the limit R(t) → 1 when t→ 0 and therefore

U ǫ ∼ −1

2
log

(

2p

q
(1− β)t1−β(− log t)

)

∼ −1− β

2
log t ∼ (1− β)V

2ǫ
=
V − v

2ǫ
.

We recall U ǫ = (ϕ0 + ϕ1)T/4 which leads to the result set.

In [17], several quality measures have been proposed to point out the optimal
tuning of Y : the spectral power amplification (SPA), the SPA to noise intensity
ratio (SPN), the energy (En), the energy to noise intensity ratio (ENR), the out-
of-phase measure which describes the time spent in the most attractive state,
the entropy or relative entropy. In his PhD report, I. Pavlyukevich computes for
each measure the optimal relation between ǫ and T ǫ

mes, the length of the period,
in the small ǫ limit, we adopt a similar procedure in Proposition 3.3. So we can
now gather these quality measures into three families:

24



• for the first family, the optimal tuning satisfies T ǫ
mes = o(T ǫ

opt) where T ǫ
opt

is given by (3.6). The associated Markov chain has an average number of
transitions from −1 to +1 strictly smaller than 1. This family contains in
particular the SPN.

• The second family concerns T ǫ
opt = o(T ǫ

mes). The Markov chain has then
more than one transition per period on average. This family contains most
of the measures: SPA, En, Out-of-phase, the entropy and relative entropy.

• Finally in the third family T ǫ
opt and T ǫ

mes are comparable, this is namely
the case for ENR.

3.2 Infinitesimal generator with constant trace

Let us finally present a second example of periodic forcing in the stochastic
resonance framework. This model was introduced by Eckmann and Thomas
[7]. The aim in this paragraph is to find the optimal tuning between the noise
intensity in the system and the period length in order to reach an average
number of transitions during one period close to 1. This approach is different
from the study presented in [7].
The model consists in a continuous-time Markov chain with periodic forcing:
the transition rates are given by

ϕ1,2(t) = ǫ(a+ cosωt) and ϕ2,1(t) = ǫ(a− cosωt), a > 1. (3.7)

The period satisfies T = (2π)/ω. In this particular case, the trace of the in-
finitesimal generator, defined by (0.1), is a constant function. It is then quite
simple to compute explicitely the periodic stationary probability measure and
the mean number of transition.

Lemma 3.4. The periodic stationary probability measure of the periodic forced
Markov chain is given by

µ1(t) =
1

2
− ǫ

4a2ǫ2 + ω2
(2aǫ cosωt+ ω sinωt). (3.8)

Proof. Using Proposition 1.3, we obtain

µ1(t) = µ1(0)e
−2ǫat +

∫ t

0

(ǫa− ǫ cosωs)e−2ǫa(t−s)ds.

Hence

µ1(t) = µ1(0)e
−2ǫat +

1− e−2ǫat

2
+

2ǫ2ae−2ǫat − 2ǫ2a cosωt− ǫω sinωt

4ǫ2a2 + ω2
.

Setting µ1(T ) = µ1(0), we obtain µ1(0) =
1

2
− 2aǫ2

4ǫ2a2 + ω2
and consequently the

announced statement.

An application of Corollary 2.3 permits to describe the large time asymp-
totics for the first moments of the transitions from state s1 to state s2. It suffices
to compute explicitly

∫ T

0
ϕ1,2(t)µ1(t)dt. The result is described in the following

statement while the proof is left to the reader.
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Proposition 3.5. The the mean number of transition pro period is equal to

lim
n→∞

1

n
Eµ[NnT ] =

ǫaT

2
− ε3aT

4ǫ2a2 + ω2
, (3.9)

and µ given by (3.8).

Let us now discuss the suitable choice of the period such that Eµ[NT ] = 1.
We then need to solve

πǫa(4ǫ2a2 + ω2)− 2πǫ3a = ω(4ǫ2a2 + ω2). (3.10)

It is obvious that ω is of the order ǫ, we set ω = µǫ and look for the best choice
of the parameter µ. Considering (3.10), the optimal value µ is in fact a real
root of the following polynomial function

P (µ) := µ3 − πaµ2 + 4a2µ+ 2πa(1− 2a2)

It is straightforward to prove that this polynomial function has a single positive
root since it is increasing and verifies P (0) < 0. Using the Cardan formula,
we can obtain an explicit expression of µoptimal which depends of course on the
coefficient a, this dependence is asymptotically linear as a becomes large.

Acknowledgements

We are very grateful to Mihai Gradinaru for interesting conceptual and scientific
discussions on the problem of stochastic resonance associated to the two-states
Markov chain. His availability was greatly appreciated.

References

[1] Arthur Albert. Estimating the infinitesimal generator of a continuous time,
finite state Markov process. Ann. Math. Statist., 33:727–753, 1962.

[2] T. W. Anderson and Leo A. Goodman. Statistical inference about Markov
chains. Ann. Math. Statist., 28:89–110, 1957.

[3] Frank Ball and Robin K. Milne. Simple derivations of properties of count-
ing processes associated with Markov renewal processes. J. Appl. Probab.,
42(4):1031–1043, 2005.

[4] C. Chicone. Ordinary differential equations with applications, volume 34 of
Texts in Applied Mathematics. Springer-Verlag, New York, 1999.

[5] J. Theodore Cox and David Griffeath. Large deviations for Poisson systems
of independent random walks. Z. Wahrsch. Verw. Gebiete, 66(4):543–558,
1984.

[6] P. D. Ditlevsen. Extension of stochastic resonance in the dynamics of ice
ages. Chemical Physics, 375(2-3):403 – 409, 2010. Stochastic processes in
Physics and Chemistry (in honor of Peter Hänggi).

[7] J P Eckmann and L E Thomas. Remarks on stochastic resonances. Journal
of Physics A: Mathematical and General, 15(6):L261, 1982.

26



[8] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni. Stochastic reso-
nance. Reviews of Modern Physics, 70(1):223–287, 1998.

[9] S. Herrmann and P. Imkeller. The exit problem for diffusions with time-
periodic drift and stochastic resonance. Ann. Appl. Probab., 15(1A):39–68,
2005.

[10] Norbert Herrndorf. A functional central limit theorem for weakly dependent
sequences of random variables. Ann. Probab., 12(1):141–153, 1984.

[11] P. Imkeller and I. Pavlyukevich. Stochastic resonance in two-state Markov
chains. Arch. Math. (Basel), 77(1):107–115, 2001. Festschrift: Erich Lam-
precht.

[12] P. Jung. Periodically Driven Stochastic Systems. Physics reports. North-
Holland, 1993.

[13] A. Longtin. Stochastic resonance in neuron models. Journal of Statistical
Physics, 70:309–327, 1993.

[14] Carl Meyer. Matrix analysis and applied linear algebra. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. With
1 CD-ROM (Windows, Macintosh and UNIX) and a solutions manual
(iv+171 pp.).

[15] Sean Meyn and Richard L. Tweedie. Markov chains and stochastic stability.
Cambridge University Press, Cambridge, second edition, 2009. With a
prologue by Peter W. Glynn.

[16] Vladimir N. Minin and Marc A. Suchard. Counting labeled transitions in
continuous-time Markov models of evolution. J. Math. Biol., 56(3):391–412,
2008.

[17] I. Pavlyukevich. Stochastic Resonance. Logos Verlag Berlin, 2002.

[18] H.E. Plesser and S. Tanaka. Stochastic resonance in a model neuron with
reset. Physics Letters A, 225(4-6):228 – 234, 1997.

[19] Denis Serre. Matrices, volume 216 of Graduate Texts in Mathematics.
Springer, New York, second edition, 2010. Theory and applications.

[20] P. Talkner. Statistics of entrance times. Phys. A, 325(1-2):124–135, 2003.
Stochastic systems: from randomness to complexity (Erice, 2002).

27


