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Summary. A new nonlinear stress resultant global constitutive model for RC panels is 
presented. Concrete damage, concrete stress transfer at cracks and bond-slip stress are the 
main nonlinear effects identified at the local scale that constitute the basis for the 
construction of the stress resultant global model through an analytical homogenization 
technique. The closed form solution is obtained using general functions for the previous 
phenomena.  

1 INTRODUCTION 
Industrial buildings, in particular Nuclear Power Plants (NPP), are subjected to severe 

seismic requirements. These facilities, generally built in Reinforced Concrete (RC), have 
large dimensions and therefore time-expensive dynamic analyses are necessary. The use of 
global modeling approaches, which relate the stress resultant  with the generalized strains 

 using relative big size finite elements of RC material, can assure reasonable computational 
costs, numerical efficiency and robustness. This type of modeling strategy is often used in 
civil engineering design offices adopting linear elastic constitutive laws. However, recent 
requirements for NPP have led to the use of more realistic RC non-linear models.  

In this sense, two global nonlinear constitutive models for RC shells have been recently 
introduced in the Finite Element  (FE) software Code_Aster [1], commonly used for the static 
and dynamic (including seismic) analysis of industrial buildings in France and, more 



specifically, for NPP. Initially, the GLRC_DM model [2] based on global damage variables 
describing the mechanical non-linearities in the entire Serviceability Limit State (SLS) 
domain (for moderate seismicity regions) was developed, but it was soon observed that this 
approach underestimates the energy dissipation for the case of cyclic loadings, even though 
the stiffness reduction effect in RC building natural frequencies is quite well reproduced. The 
performance was significantly improved considering the debonding between steel and 
concrete through a numerical homogenization procedure, developed in the DHRC model [3]. 
Both models are formulated according to the General Standard Materials Theory (GSMT) [4] 
within the framework of the Thermodynamics of Irreversible Processes (TIP) [5], allowing a 
well-defined energetic characterization and adapted for a time integration algorithm 
associated with a well-posed minimization problem. These choices ensure a high degree of 
robustness and versatility to any dynamic loading conditions that can occur at a RC building 
FE analysis. 

However, the previous global modeling approaches do not take explicitly into account 
phenomena of great importance for industrial facilities, (especially for confinement issues in 
NPP) such as crack apparition and evolution. The crack parameters (orientation, spacing and 
width) are thus often computed adopting suitable post-processing techniques. The limitations 
of this two-step procedure for the computation of the crack parameters as a post-processing of 
a FE analysis have been highlighted in [6], where the phenomenological constitutive model 
for cracked panels called Cracked Membrane Model (CMM) [7] has been used. 

Other phenomenological models are available in the literature, see for example [8]-[9]. In 
these approaches, cracking in RC panels is described by adopting suitable hypotheses or 
specific laws for the local scale physical phenomena that govern the nonlinear structural 
response. In general, they are only applicable to particular loadings (e.g. only for monotonic 
loadings) or states (e.g. only for a fully cracked panel) since they are developed and calibrated 
based on particular experimental campaigns (some exceptions exists, see the cyclic 
phenomenological model [10]). Furthermore, their numerical algorithms require iterations to 
fulfill the conditions at the local scale phenomena because the link between the local and 
global scales is not explicitly described. Therefore, their robust implementation at the global 
scale in a FE software is not straightforward. 

In this work, a novel global constitutive model for RC walls is presented taking into 
account three sources of non-linearities at the local scale: (i) concrete damage or micro-
cracking, which causes a reduction in the concrete stiffness through a damage variable, (ii) 
concrete macro-cracking with non-zero stresses at cracks and (iii) bond stresses caused by the 
relative displacement between concrete and steel bars. We describe the successive 
assumptions adopted in the model formulation. The obtained stress resultant  -   
generalized strains relationship takes into account the previous nonlinear phenomena as long 
as it is obtained by means of an analytical homogenization procedure where they explicitly 
appear. 

2 GEOMETRY OF THE RC PANEL 

Let us consider a RC panel of dimensions ,  and width  submitted to in-plane loads 
(Figure 1). Flexural effects are not considered and consequently all the reinforcement grids 
can be merged at the mid-plane. The  and  axes define the direction of the two groups of 



the steel bars, characterized by their diameters  and  and their spacings  and , 
respectively. The three components of the RC panel are identified with the following indexes: 
 for concrete, and  and  for the steel bars in the  and  directions respectively. 

Figure 1: Geometry of the RC panel 

3 MATERIAL MODELING 
The steel reinforcement bars are supposed to be a one-dimensional medium and to carry 

only longitudinal forces. Therefore, they are modeled using a one-dimensional linear elastic 
constitutive law (since the interest domain of the present model is the SLS), with  the 
Young modulus and  the dyadic tensor product): 

 (1) 

The global nonlinear response of the model has its origin at the three nonlinear phenomena 
at the local scale: concrete damage, apparition of macro-cracking (and development of stress 
transfer by concrete at cracks) and bond stress between concrete and steel rebars. 

Concrete damage, caused by the apparition and development of rather homogeneous 
diffuse micro-cracking, results in concrete stiffness reduction, introduced via an internal 
damage scalar variable , directly affecting the concrete Young Modulus . The relationship 
between the membrane stresses and strains (plane stress state, local concrete isotropic 
constitutive law) is expressed as follows:  

 (2) 

Concrete cracking (apparition of macro-cracks) is seen as localized concrete displacement 
discontinuities  in the normal-to-crack direction (or crack width)  and in the 
tangential direction . The apparition of a macro-crack occurs when the maximum principal 
concrete stress  reaches the concrete tensile stress . In other words, the adopted macro-
cracking criterion is the classical Rankine criterion expressed as: 

 (3) 

 

 

  

 

 

 



This criterion separates the behavior of the RC panel in two different phases: the uncracked 
and the cracked one. The cracked phase can also be divided in two parts: the crack formation 
(some cracks exist but other appear with increasing loading) and the stabilized crack phase 
(no more cracks appear even with increasing loading), see e.g. [11]. However, the crack 
formation phase can be considered to be negligible in a finite element with the usual modeling 
dimensions, and in this work only the uncracked and the stabilized cracked phases are 
considered. At cracks, the concrete stress transfer vector  is considered, which has a normal 
and a tangential component named  and  respectively. They both depend on the crack 
opening displacement field  and other internal variables noted hereafter : 

 (4) 

Finally, bond stresses  transmitted from  and  reinforcement steel bars to 
concrete are at the origin of the tension stiffening effect. They appear when a relative slip 

 or steel-concrete debonding, associated with internal variables , occurs: 

 (5) 

4 ANALYTICAL HOMOGENIZATION OF THE CRACKED RC PANEL 
In this section an analytical homogenization of a cracked RC panel is performed. In a 

region of the panel far enough from non-regular boundary conditions, an identifiable 
periodicity has to be identified in order to define the Reference Volume Element (RVE) of the 
problem, that is the smallest volume able to represent the physical phenomena governing the 
response of the material and which is repeated periodically in the space. After the 
identification of the RVE, referring for instance to [12], the following steps, represented 
schematically in Figure 2, have to be done: 

i) Definition of the local stress fields  as functions of an applied stress
resultant  on the RVE (stress localization).

ii) Application of the local constitutive laws to obtain the local strain fields
.

iii) Application of the compatibility equations and the averaging method to obtain the
generalized strain field  from the previous calculated fields.

Figure 2: Homogenization technique scheme 
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Even though it is more usual to formulate this scheme by beginning with the strain field, 
we prefer to take the stress resultant field to apply directly some useful equilibrium arguments 
in the formulation. In steps i) and iii) the local-global scales passage is done by means of the 
averaging method, based on the average value of a considered field in the RVE volume : 

 (6) 

4.1 The Representative Volume Element 
The panel in the stabilized crack configuration of Figure 3 is considered as a periodic 

succession of RC ties separated by two consecutive cracks, with orientation  
from the  axis and mean spacing . One of these straight ties is chosen as the RVE of the 
problem, where we define the normal to crack  and tangential  axes as follows: 

Figure 3: Representative Volume Element of a cracked panel 

Within the RVE, we adopt the assumption that all fields are constant in the  direction 
(they do not vary within the width ), and in the  direction (since the RVE dimensions in the 

 direction is the crack spacing  and the boundary conditions at cracks are 
constant); the fields depend thus only on the  dimensionless coordinate. Moreover,  
constitutes a symmetry plane. Under these assumptions, the average value (6) of any field in 
the RVE is calculated according to: 

 (7) 

The steel bars are considered uniformly distributed in the RVE, since  and 
the continuum stress fields  are considered into the entire RVE. Only 
surface forces are applied at the limit with the bordering RVE and the  stresses are 
transmitted. Under the previous assumptions a constant stress resultant is defined on the RVE: 

 (8) 
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4.2 Stress resultant localization 
The stress resultant localization (see Figure 2) consists in calculating the local stress fields 

in the RVE when a stress resultant  is applied. In the present case, it consists on 
determining nine unknowns: the three planar components of the three (concrete and  and  
steel bars) components local stress fields. 

First, we define the concrete and  and  steel bars local stress field averages with the 
equation (6) : 

 (9) 

with  the volume of component  in the RVE ( ). The stress resultant 
can be expressed as: 

 (10) 

where the volume fractions  have been used: 

 (11) 

In the considered RC panel they can be calculated as: 

(12) 

Equation (10) can be expressed, in a closed form (true in any point, not only for the 
stresses averages in the RVE) by using (8): 

 (13) 

Second, the equilibrium equation for the concrete component in the entire RVE reads: 
 (14) 

where  stands for the divergence operator and  for the volume forces vector (only 
caused by a diffuse action by bond stress from steel bars on the concrete domain), which can 
be obtained  from the equilibrium in a differential volume: 

(15) 

Finally, according to the steel constitutive law (1) the two non-axial components of  and 
 rebars stress fields vanish. These four equations are added to the three equations from the 

global-local relationship (13) and the two from the concrete equilibrium (14) to form a nine 
equations system that determines the local stress fields: 

(16) 



The two boundary conditions for the two differential equations of the concrete equilibrium 
stem from the definition of concrete stresses at cracks: 

 (17) 

The following solution is obtained for the local concrete and steel stress fields ,  and 
 : 

(18) 

(19) 

 (20) 

4.3 Local strain fields 
The concrete and steel reinforcement local strain fields are obtained by applying the 

constitutive models (1) and (2) to the obtained local stress fields of the previous section: 

(21) 

 

(22) 

 (23) 

4.4 Compatibility of strains 
For a medium with no displacement discontinuities in the RVE, the membrane generalized 

strain tensor  is given for any displacement field  by the direct application of (6): 

 (24) 



When a displacement discontinuity  on a particular regular boundary  within the RVE 
is considered (denoting by  the local unit normal vector on  and by  the symmetric 
dyadic tensor product), the following amendment of the previous expression is made 
(referring to the Stokes’ theorem): 

 (25) 

Equation (24) is used for the calculation of  and from  and  steel bars strain fields 
respectively, while (25) is used for calculating the three components of  from the concrete 
local strain field, with   the displacement discontinuity at cracks : 

(26) 

where the equivalent strains due to cracks in the  coordinates system are calculated as: 

(27) 

The averages of the local strain fields (21), (22) and (23) are calculated with (7) and 
inserted in (26). A five equations system linking the stress resultants  to the generalized 
strains  and the internal variables is obtained: 

 (28) 

where the average bond-slip stress is defined:  

 (29) 

Details about these developments and the complete thermodynamic formulation of the 
general model can be found in [13]. We briefly describe hereafter a particular one-
dimensional case. 

5 EXAMPLE OF APPLICATION TO 1D MODELS 

5.1 Pure damage model 
As an example of application of the developed general model, one of the simplest 

particular cases is reproduced hereafter: a one-dimensional damage model where crack 
development and bond stresses are not explicitly taken into account. The GLRC_DM [2] 



damage approach accounting for a constant slope in the  relationship while damage 
evolves is adopted.  

First, we solve the equations system (28) for a member reinforced only in the  direction 
( ) submitted to  stress ( ). Considering no distortion ( ) and 
that cracks appear orthogonally to the  direction ( ), the following  
relationship can be obtained: 

 (30) 

The expression for the crack opening is also obtained: 

 (31) 

In a damage model where no crack opening is taken into account, bond stress between 
concrete and steel vanishes, and thus  and  are set to zero in (31), obtaining the following 
value for stress : 

 (32) 

Using the previous condition and adding the dependency of the concrete Young modulus 
with the scalar damage variable , constitutive relationship (30) reads: 

 (33) 

The adopted free energy density is: 

(34) 

The energy release rate reads (assuming  and ): 

(35) 

The yield function is (assuming no hardening): 
 (36) 

Then the tangent slope  is deduced: 

(37) 

In the damage evolution phase,  is obtained with the  consistency condition: 

 (38) 

And finally the slope of the strain-stress resultant curve reads: 

 (39) 



The slope in the damage evolution phase in GLRC_DM model is constant and it is noted as 
for compression loadings and  for tension ones. Thus, from (39), the  function 

has the form: 

(40) 

with ,  undefined parameters. 

Figure 4: Associated rheological models for (a) the pure damage model and (b) the damage + crack opening 
model 

This model is applied to the experimental test described in [14], consisting in a one-
dimensional RC member  length,  section, reinforced with 4 rebars 
(  diameter) and Young modulus , and with a concrete 
characterized by an initial Young modulus , tensile strength  
and compressive strength .  and  parameters are set to  and 

 respectively, and  is set to . Finally, we use  and  in order 
to set the damage beginning at  for tension loadings and  for the compression ones.  

The comparison of Figure 5 (a) between the experimental and the numerical results shows 
a quite good agreement. However, dissipation is underestimated as long as the hysteretic 
experimental response is not well reproduced. In the next section a bit more complex model is 
presented in order to better assess the hysteretic response in tension by allowing the crack 
opening.  

5.2 Damage + crack opening model 
This model presents an enhancement of the previous one since crack opening is allowed 

and can be explicitly computed at each load step. The objective is to represent the 
compression hysteretic behavior with the damage approach of the model defined in the 
previous section while the tension nonlinear behavior is only represented by the crack opening 
evolution. The bond stresses and thus the tension stiffening effect are not taken into account.  

First, the compatibility equation (31) is rearranged: 

 (41) 
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Where  is the xx component of the crack equivalent strain tensor defined in (27). 
The constitutive relationship (30) can be expressed then as follows, where the dependence of 
the concrete Young Modulus  on the damage variable  is also explicitly expressed:  

 (42) 

The following free energy expression is retained to represent the previous constitutive 
equation: 

 (43) 

The first thermodynamic force is the energy release rate and is computed as: 

(44) 

The energy release rate evolution associated to the same yield function as (36): 
 (45) 

However, as long as the nonlinearities in tension are only described by the crack opening 
evolution, the tension damage parameters described in the previous section are modified in 
order to avoid damage evolution  

The second thermodynamic force is associated to the equivalent crack strain: 

 (46)

This force is identified as the average concrete stress, which is also the concrete stress at 
the crack since no bond-slip is considered. This physical identification allows us to define the 
concrete stress at crack yield function as:  

 (47) 

Where the maximum concrete stress at crack  is defined as: 

(48) 

With  the stress when the first crack appears in the beam (  in reason of the 
size effect between the tensile strength test sample and the actual beam). The threshold for 
compressive crack stresses is estimated as the half of the tension one. The crack re-closing 
condition  is implemented at this level by the use of a Heaviside 
function .   

The slope of the  curve in tension is computed with the condition  
 (49) 

Thus the slope is only given by the steel stiffness: 
 (50) 



Figure 5: Comparison between numerical and experiment results for a one-dimensional RC member 

The material parameters are the same than those used in the damage model defined in the 
previous section. The obtained results are shown in Figure 5 (b), and one can see that the steel 
stiffness corresponds to the global stiffness measured in the experimental test, as predicted by 
(50). With this model, on can also compute the crack opening evolution during the test by 
computing the product of the crack equivalent strain internal variable  and the crack 
spacing (which can be estimated p. ex. with [11]). Using an average crack spacing of 

, the  average crack opening evolution can be computed, see Figure 6 (a).  
Finally, Figure 6 (b) shows that the damage + crack model allows a higher energy 

dissipation than the purely damage model, basically due to the bigger hysteretic cycles 
described in tension governed by the crack evolution. 

Figure 6: (a) Computed evolution of the average crack opening and (b) comparison of the dissipated energy of 
the two models presented 

6 CONCLUSIONS 
A general nonlinear constitutive model for RC panels has been developed. Nonlinear 

phenomena at the local scale (concrete micro and macro cracking, steel-concrete debonding) 



appear in an explicit manner by means of general functions on the global formulation of the 
model as a result of an analytical homogenization technique. Two particular one-dimensional 
cases are finally presented in order to show the applicability of the model. 
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