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Being a quasi-brittle material, concrete under tensile loading exhibits a strain softening behaviour that
cannot be accurately reproduced with classical (without an internal length parameter) continuum
mechanics models. An internal length parameter must be introduced to regularize the problem, as in
the case of the so-called second gradient model. In this approach, an enriched kinematic description of
the continuum is adopted considering higher (second) order gradients of the displacements following
the work of Cosserat, Toupin, Mindlin and Germain. The model has been developed by Chambon and
co-workers and has been mainly used with plasticity constitutive laws to reproduce the non-linear
behaviour of soils. It is here applied for the first time to concrete and reinforced concrete specimens
considering material laws based on the damage mechanics theory. The advantages and limitations of the
approach are discussed, and possible improvements towards more realistic responses are suggested.

1. Introduction

Since the 70s [1–3] researchers study the strain localization
in quasi-brittle materials, or more generally in materials exhi-
biting strain softening. Strain localization zones are clearly
observed in experimental tests [4] and it is well known that
they cannot be modelled with classical (without an internal
length parameter) continuum mechanics models. Analytically,
the differential operator becomes hyperbolic and an infinite
number of solutions are possible. Numerically, the loss of
ellipticity appears as a pathological mesh dependency of the
results. These shortcomings are due to the lack of an internal
length parameter in the continuum model that characterizes the
width of the localization zone [5–11]. Different approaches exist
in the literature to regularize the problem and to obtain
objective numerical global (i.e. forces, displacements) and local
(i.e. strains, stresses, internal variables) results. The first is
important for design purposes and the second to deal for
example with durability and crack propagation problems. The
different approaches are briefly summarized hereafter (see also
[12] for a more detailed literature review):

� Regularization based on energy: The principle is to keep the
same fracture energy dissipated during the formation of cracks
whatever the size of the finite element mesh [13–16]. For this,
the post-peak behaviour of the adopted constitutive law is
changed according to the size of the finite elements. This
approach provides global results that may seem to be inde-
pendent of the size of the mesh. Nevertheless, the localization
zone is necessarily concentrated in one element (as in a
classical continuum mechanics model without an internal
length parameter) and thus local and global results are not
objective. Results are also dependent on the orientation of the
finite element mesh.

� Regularization based on time dependency: Viscous terms are
introduced in the model that restore the ellipticity of the
differential operator [17]. However, because this method does
not introduce an internal length to control the width of the
localization zone, severe mesh dependence is avoided for
dynamic but not for quasi-static calculations [18].

� Regularization based on spatial dependency:
○ Using a non-local integral type variable (i.e. on the damage

parameter or on the equivalent strain for constitutive laws
based on damage mechanics) [8]. For this integral type
model, the interaction between material points across a crack
[19] can still pose problems. Similar difficulties also exist
for materials presenting a different behaviour in traction and
compression (consider for example the interactions across
the compression and traction zones for a concrete beam
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submitted to bending, see also Section 4). Different appro-
aches can be found in the literature to deal with these
problems, mainly consisting in modifying the adopted weight
function either near the boundaries [20] or by introducing
a dependence on the stresses [21]. Nevertheless, this last
assumption implies that the internal length is no longer
a constant material parameter but that it decreases with
increasing loading. Furthermore, as is the case for the other
regularization techniques, the ability of the method to
reproduce accurately global and local results under size effect
needs to be more thoroughly studied [22].

○ Using strain gradients controlling the evolution of the
internal variables (i.e. the second gradient of the plastic
strain in the consistency condition and/or the flow rule)
[7,23]. This type of model is shown to be equivalent to the
integral type model [23].

○ Alternatively, the nonlocal variable can be defined via an
implicit gradient of the corresponding local variable, and is
then the solution of a boundary value problem [24]. This
type of model is shown to be equivalent to the integral type
model [23].

○ By taking into account gradient of internal variables (the
damage variable in the case of damage models) in the
energy [25–27]. The gradient term here acts as a penaliza-
tion term for the cases of high localization.

○ More recently, strainlocalization due to damage has been
treated using the thick level set approach [28]. The level set
separates the undamaged from the damaged zone while the
damage variable and its growth are a function of the level
set propagation. The force driving the damage front is non-
local in the sense that it averages information over the
thickness in the wake of the front [28].

○ A rather natural way of introducing (indirectly) a length para-
meter in a continuum model is to account for the micro-
structure of the material. The general class of the so-called
microstructured models or higher order continuum models
allows for the description of the kinematics of the micro-
structure by using an additional tensor in the displacement
field. Higher order continuum theories can be traced back to
the works of the Cosserat et al. [29], Toupin [30] and Mindlin
[31,32] and have been generalized and properly formulated by
Germain [33,34] using the virtual power method.

In this paper, we choose to work with the second gradient
model developed by Chambon and co-workers [35–39]. This
model can be seen as a particular case of a higher order continuum
(see Section 2) and has been mainly used till now to regularize
problems involving strain localization in soils. It is used hereafter
to concrete and reinforced concrete elements. The paper is
structured as follows: the theoretical framework of the second
gradient model and its numerical implementation are at first
presented. The objectivity of the numerical results is shown for a
1d concrete specimen and the evolution of the localization zone is
discussed. The paper ends with a case study, the simulation of a
three point bending test on a reinforced concrete beam. Discussion
on the numerical results shows the advantages and limitations of
the approach that should be considered as a first step towards the
use of local second gradient models for concrete structures.

2. The second gradient model

2.1. Theoretical framework

As detailed in the seminal work of Germain [33,34], using the
virtual power method one can choose a field of virtual displacements

to describe the proper kinematics of a higher order continuum
including its microstructure. The internal stresses, limit conditions
and equilibrium equations appear naturally as long as the linear form
representing the virtual power is correctly defined and that it
respects the principle of material independence.

The second gradient model developed by Chambon et al.
[35,36] can be seen as a particular case of a higher order
continuum where up to second gradient terms are adopted and
the macrostrains are considered to be equal to the microstrains.
The authors have come to this assumption following experimental
results that showed that for the case of geomaterials microrota-
tions equal macrorotations [40,41]. They have presented case
studies in the framework of plasticity and have shown that this
type of model restores mesh objectivity but not the uniqueness of
the solution [37–39,42].

For the second gradient model, the virtual displacement field
must be chosen as a field of continuous and continuously differ-
entiable velocities. According to the general theory for continua
with microstructure presented in [37] and assuming that micro-
strains are equal to macrostrains, the virtual work principle
equation takes the following form (for any α, α⋆ defining the
virtual quantity). For the sake of simplicity, we neglect hereafter
the body force terms and the presentation is done for a 2d
continuum:
Z

Ω
σij

∂u⋆
i

∂xj
þΣ ijk

∂2u⋆
i

∂xj∂xk

 !

dΩ¼

Z

Γ
ðpiu

⋆
i þPiDu

⋆
i Þ dΓ; ð1Þ

with

� i, j and k (varying from 1 to 2),
� xi the coordinates,
� ui the macrodisplacements field,
� Dq the normal derivative of any quantity q:

Dq¼
∂q

∂xk
nk; ð2Þ

� σij the Cauchy stresses (macrostresses),
� Σijk the double stresses,
� pi the classical traction forces,
� Pi the double traction forces,
� Γ the boundary of Ω.

The Cauchy stress σij is, as in classical continua, symmetric, the
double stress Σijk is symmetric with respect to its indices j and k.
Application of the virtual work principle equation (1) and two
integrations by parts provide the balance equation and the
boundary conditions. The balance equations become

∂σij

∂xj
�
∂2Σ ijk

∂xj∂xk
¼ 0: ð3Þ

Assuming that the boundary is regular (which means existence
and uniqueness of the normal for every point of the boundary Γ of
the studied domain), after one more integration by parts, we get

σijnj�nknjDΣ ijk�
DΣ ijk

Dxk
nj�

DΣ ijk

Dxj
nkþ

Dnl

Dxl
Σ ijknjnk�

Dnj

Dxk
Σ ijk ¼ pi; ð4Þ

and

Σ ijknjnk ¼ Pi; ð5Þ

where pi and Pi are prescribed. The tangential derivative of any
quantity q is defined by

Dq

Dxj
¼

∂q

∂xj
�

∂q

∂xk
nknj:
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To complete the equations of the problem two constitutive
laws have to be introduced linking the static variables macros-
tresses σij and double stresses Σijk with the kinematic variables
strains (first gradient of the displacements) ∂ui=∂xj and double
strains (second gradient of the displacements). The two constitu-
tive laws are usually supposed to be decoupled [35,36].
The first gradient law can be any classical constitutive law (e.g.
based on damage mechanics or plasticity). The second gradient
law is usually based on linear elasticity.

Following the work of Mindlin [31,32], the vector of double
stresses for a bidimensional case has eight components and can be
found considering the derivative of the strain energy with respect
to the second gradient of the strains and symmetry of the tensor
[31,32,43]. The obtained result is (where α1;α2;α3;α4;α5 are five
independent constants in the general case of an isotropic material)
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with

χpqr ¼
∂2up

∂xq∂xr
ð7Þ

α12345 ¼ 2ðα1þα2þα3þα4þα5Þ;

α23 ¼ α2þ2α3;

α12 ¼ α1þα2=2;

α145 ¼ α1=2þα4þα5=2;

α25 ¼ α2=2þα5;

α34 ¼ 2ðα3þ2α4Þ: ð8Þ

As there is no clear physical definition of the different material
constants and in order to simplify the equations the following
particular case of the general isotropic form is proposed [39],
where only one material parameter B is adopted with

α1 ¼ 0

α2 ¼ B

α3 ¼ �B=2

α4 ¼ B

α5 ¼ �B ð9Þ

leading to
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This expression derives from the strain energy density defined
as (considering only the second gradient terms)

Wχ ¼
B

2
ð2χkiiχ jjk�χkiiχkjjþ2χkjiχkji�2χkjiχijkÞ ð11Þ

It is shown in [35,36,42] and in Section 3.3 that the material
parameter B is directly linked with the size and the evolution of
the localization zone.

The second gradient model uses the gradient of kinematic
variables. The constitutive equation remains local and so ideas and
algorithms used in classical models can be adopted. Formulation
of a second gradient extension for any classical model is thus
straightforward.

2.2. Numerical implementation

The second gradient of the displacement necessitates the use
of C1 elements in a finite element code. This is avoided by
introducing a new field of unknowns vij imposed to be equal to
the gradient of the displacements using Lagrange multipliers λij
[39,44]. The new weak formulation of the problem then becomes
Z

Ω
σij

∂u⋆
i

∂xj
þΣ ijkv

⋆
ij;k dΩ�

Z

Ω
λij

∂u⋆
i

∂xj
�v⋆ij

� �

dΩ¼

Z

Γ
ðpiu

⋆
i þPiDu

⋆
i Þ dΓ;

ð12Þ

Z

Ω
λ
⋆
ij

∂ui

∂xj
�vij

� �

dΩ¼ 0: ð13Þ

The problem is discretized using a nine (9) nodes finite
element, where eight (8) nodes are used for the variables ui, four
(4) for vij and one (1) node at the centre for the Lagrange
multiplier λij, see Fig. 1. This element has been implemented in
the finite element code LAGAMINE (University of Liège) and the
problem is solved using the classical Newton–Raphson method [44].

3. One-dimensional problem: objectivity of the results and

evolution of the localization zone

3.1. Objectivity of the results

The objectivity of the numerical results obtained with a second
gradient model has been discussed in the past using constitutive
laws for soils based on the mathematical theory of plasticity [37–39].
We study hereafter numerically the objectivity of the results
for concrete specimens using constitutive laws based on damage
mechanics.

Let us consider the case of one-dimensional traction applied on
a concrete specimen. Fig. 2 shows the boundary conditions
adopted for the 2d second gradient finite element mesh intro-
duced into the code LAGAMINE. In order to avoid possible 2d
effects, the vertical displacements u2 are considered to be equal to
zero at the upper and lower boundaries along the specimen. The
section is considered to be equal to 0.1�1 m2 and the length 1 m.
The right end of the specimen is fixed (u1 ¼ u2 ¼ 0) and the
horizontal displacement U is applied at the left end. The additional
external double forces are assumed to be zero at both ends. As no
global snap-back is expected with these material and geometrical
parameters (see [36, Eq. (38)] for a snap-back criterion), the test is
simply controlled by the imposed displacement.

The constitutive law linking the stresses with the strains is
a classical damage mechanics law [45] with an initial slope

Fig. 1. The 2d second gradient finite element [44].
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Gel
¼ 30 GPa and a slope at the peak Gtg

¼ �16:7 GPa correspond-
ing to a strain ϵD0 ¼ 1 � e�4, see Fig. 3(a). The constitutive law
linking the double stresses with the second gradient of the
displacements is based on linear elasticity and depends on a
single parameter considered to be equal to B¼ 0:37 GN, see
Fig. 3(b) and Section 2.1. The two constitutive laws are supposed
to be decoupled.

Analytically, bifurcation in a 1D problem appears at the peak. In
order to visualize different possible solutions, an algorithm of
random initialization of the iterative solver of the equilibrium
equation is applied just after the peak [46,47]. For every step, a full
Newton–Raphson involving a numerical consistent tangent stiff-
ness operator for the complete model (i.e. the second gradient
terms as well as the classical ones) is used. The results of two
meshes with 14 and 50 elements are presented hereafter [48].

The convergence criterion and convergence rates are detailed in
Section 3.2.

Fig. 4 shows the global force versus displacement curve. The
differences just after the peak correspond to distinct converged
solutions. At the end of the loading, however, both meshes
converge to the same solution.

The above remark can be better understood looking at the local
results. Fig. 5 presents the distribution of the damage variable –

varying from 0 (undamaged section) to 1 (damaged section) – just
after the peak, at a strain equal to 1.2E�04. Fig. 6 presents the
distribution of the damage variable at the end of the loading at a
strain equal to 2.9E�04. Just after the peak, the mesh with 14
elements converges to a solution with two patterns (a hard part
and a soft (localized) part solution). The mesh with 50 elements
converges to a three pattern solution (hard–soft (localized)–hard),
Fig. 5. At the end of the loading, however, it switches to the same
two-pattern solution as the mesh with 14 elements, Fig. 6. This
phenomenon of switching deformation modes was also found to
be using plasticity models in [49]. At the end of the loading the
localization patterns and global curves provided by both meshes
thus become identical.

From the above it is obvious that the use of the second gradient
model with damage mechanics laws regularizes the problem
(mesh independency) but does not restore the uniqueness of the
solution for the corresponding boundary value problem. This was
also found for constitutive laws based on plasticity [47,49].

It is also observed in Fig. 4 that the non-homogeneous results
at the end present a higher strength. Indeed, for the same end

Fig. 2. Concrete specimen under 1D traction: boundary conditions and applied
loading.
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Fig. 3. Concrete specimen under 1d traction, constitutive laws: (a) first gradient (stresses versus strains) and (b) second gradient (double stresses versus strain gradients).

Fig. 4. Concrete specimen under 1d traction: force versus displacement curve.
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displacement, the maximum stress is larger than that in the
homogeneous case (see also [50]). An explanation of this numer-
ical behaviour could be that the stiffness introduced by the second
gradient terms does not vanish because of the adopted elastic law.
A way to deal with this behaviour is to introduce a coupling
between the first and second gradient material laws (something
that can also help to a priori control the evolution of the
localization zone, see [48] and Section 3.3). It can also be argued
that at some point a displacement discontinuity must be intro-
duced because the continuous damage model cannot model
correctly a crack. In our case, this should be done by inserting a
cohesive zone element since the discontinuity should be intro-
duced before the damage reaches its maximum value. An approach
like this is for example proposed for the case of a model with
gradient of the internal variables by Cuvilliez et al. [51], see also
[52–54].

3.2. Numerical convergence

Let Fint and Fext be the internal and external nodal force vectors
obtained from the finite element discretization of Eqs. (12) and (13)
respectively. Also let Fobf be the out of balance forces defined by
F int�Fext and Freact the vector of the forces associated with the fixed
degrees of freedom. In the following, the forces associated with the
displacement degrees of freedom are noted as FðuiÞ, those asso-
ciated with either the gradient or Lagrange multiplier degrees of
freedom are noted as Fðvij; λijÞ. A norm for the force vectors is here
adopted as the sum over the degrees of freedom of the absolute

values of the vectors coordinates:

JF J ¼ ∑
dof i

jF ij ð14Þ

The convergence criterion for the nodal forces is met when

1
2

JFobf ðuiÞJ

Nu

JFreactðuiÞJ

Nreact
u

þ

JFobf ðvij;λijÞJ

Nvλ

JFreactðvij; λijÞJ

Nreact
vλ

0

B

B

B

B

@

1

C

C

C

C

A

rprecision ð15Þ

where Nu, Nreact
u , Nvλ and Nreact

vλ are the number of degrees of
freedom and the number of fixed degrees of freedom for the
displacement field and both the gradient and Lagrange multipliers
respectively. For the previous computation, the precision was set
at 10�11. The convergence criterion proposed in Eq. (14) uses
several different units (because of the different types of degrees of
freedom). However, as specified in Eq. (15), the contribution of
each degree of freedom has no dimensions, as far as the norm of
the out of balance forces is divided by the norm of the reactions
corresponding to the degree of freedom.

A typical convergence profile for the one dimensional traction
test is shown in Fig. 7 starting from the random initialization.
Convergence difficulties observed at the first step are a direct
result of the random initialization [47]. The first few iterations for
this step show an important error. However as soon as a solution is
found, a classical convergence rate is recovered.

Convergence difficulties are also encountered seven steps after
the random initialization (corresponding to around 70 total itera-
tions). They correspond to a switching deformation mode [49].
Again, a classical convergence rate is recovered once the new
localized solution is found.

3.3. Evolution of the localization zone

The internal length parameter does not appear clearly from the
previous equations. However, an analytical solution exists for the
1d problem when a bilinear first gradient law and an elastic
second gradient law are adopted [35,36]. The authors have proven
that the solutions are built using patches of different fundamental
solutions, consisting – as in Section 3 – of hard parts correspond-
ing to the unloading (or elastically loading) pieces and soft parts
for the loading pieces of the medium. Various analytical patterns
are possible (a hard–soft solution, a soft–hard–soft solution, etc.)
but their number is finite. This is not the case for a classical
continuous mechanics medium without regularization where an
infinite number of solutions are possible [42]. The analytical
solution [35,36] introduces specific ratios for the hard (ωÞ and
the soft pattern (η)

ω2 ¼
Gel

B
40; ð16Þ

�η2 ¼
�Gtg

B
40; ð17Þ

and a wavelength ls given by the following equation:

ls ¼ 2π

ffiffiffiffiffiffiffiffi

�B

Gtg

s

: ð18Þ

This wavelength is proportional to the ratio of the moduli of the
elastic second gradient law and of the softening branch corre-
sponding to the first gradient law. It is only an indicator of the
width of the localization zone, and it does not provide its exact
value. This is due to the fact that it corresponds to a period of the
soft part standing alone. The real solution being a patch of the
different solutions ls is larger than the actual width [42].
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Fig. 5. Concrete specimen under 1d traction: distribution of the damage
variable just after the peak (strain equal to 1.2E�04): (a) 14 element mesh,
(b) 50 element mesh.
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Fig. 6. Concrete specimen under 1d traction: distribution of the damage variable
at the end of the loading (strain equal to 2.9E�04): (a) 14 element mesh and
(b) 50 element mesh.
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Analytical equation (18) is valid for a 1d problem considering a
bilinear first gradient law and an elastic second gradient law.
Nevertheless, it can be used to estimate the initial length of the
localization zone and its evolution [42]. For concrete structural
elements submitted to traction for example, constitutive laws have
the general form of Fig. 3 [45]. As damage increases, the slope Gtg

of the stress strain curve diminishes (in absolute value) and the
width of the band is thus found to be increased (see Figs. 5 and 6).
For the case of compression, where concrete exhibits a more
ductile behaviour the localization zone will at first decrease and
then increase [42] (remark: a simplified 1d model to a priori
control the evolution of the localization zone – constant, decreas-
ing or increasing – is presented in [48] considering a coupling
between the first and the second gradient law).

In the following section, an engineering case study is pre-
sented: the numerical simulation of a three point bending test on a
reinforced concrete beam using the second gradient model.

4. Three point bending test of a reinforced concrete beam

4.1. Experimental configuration

A three point bending test was conducted on a reinforced
concrete beam having the following geometrical characteristics:
thickness b¼200 mm, height h¼500 mm and span 5000 mm. The
geometry of the beam and informations about the steel reinforce-
ment are shown in Fig. 8. A vertical cyclic load was applied at the
upper part of the beam. Fig. 9 presents the positions of six strain
gauges to monitor the axial strains on the steel bars.

4.2. Finite element discretization

The three point bending test is modelled hereafter as a two
dimensional problem using the second gradient finite element
described in Section 2.2. Two meshes have been used for the
simulations, Fig. 10. The first mesh consists of 5180 elements, 4148
of which are second gradient elements and 1032 truss elements
representing the horizontal reinforcement. The average size of the
concrete elements for this mesh is of 0.02 m�0.035 m. The
second mesh consists of 13 494 elements with an average size of
0.01 m�0.017 m for the concrete elements. Concrete and steel
elements are supposed to be perfectly bonded (for engineering
applications where we are mostly concerned with the behaviour of

Fig. 7. Concrete specimen under 1d traction: typical convergence profile.

Fig. 8. 3 point bending test: beam dimensions and steel reinforcement [55,56].

67.5 67.5 67.5 67.5 67.5

J1 J2 J3 J4

J5 J6

steel bar

Fig. 9. 3 point bending test: position of the strain gauges [55,56].

Fig. 10. 3 point bending test: finite element meshes and boundary conditions.
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a structure on the ultimate limit state (ULS) this assumption is
acceptable [57,58]). The end nodes at each lower extremity of the
beam are blocked vertically; the right node is blocked horizontally.
For the finite element calculations, monotonically increased dis-
placements are applied at the upper part of the beam through an
elastic plate, which is very stiff compared to the other materials.
At the supports at both ends of the beam and on the upper part,
where the displacements are applied, an elastic linear law is
introduced to prevent from artificial numerical damage.

4.3. Material parameters

A classical damage mechanics law is used for the first gradient
constitutive law [45]. The concrete material parameters are pro-
vided in Table 1.

The elastic modulus B for the second gradient constitutive law
is considered to be equal to 1.5 MN. A way to choose this
parameter is discussed in Section 4.4. The first gradient material
law and the second gradient are hereafter considered to be
uncoupled.

Table 1

3 point bending test: concrete material parameters [45].

E (GPa) ϵD0 At Bt Ac Bc β

37.2 9.1E�05 0.7 6800 0.42 780 1.1

Table 2

3 point bending test: steel parameters (lower part).

E (GPa) σy (MPa) Section (m2)

195 466 16.085E�04 (2HA32)

Table 3

3 point bending test: steel parameters (upper part).

E (GPa) σy (MPa) Section (m2)

195 466 1.0053E�04 (2HA8)

Fig. 11. Choosing the material parameter B: 1d second gradient numerical calculation, evolution of the width of the localization zone. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 12. Choosing the material parameter B: 3 point bending test, concrete axial strain profile along the red line obtained numerically for an imposed displacement of 6 mm.
(For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 13. Choosing the material parameter B: comparison of the strain profiles coming from the 1d second gradient model and the three point bending tests. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 14. 3 point bending test: force–displacement curve.

Fig. 15. 3 point bending test: force versus axial strains obtained numerically at different positions on the reinforcement bars.
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An elastic perfectly plastic law is used for the reinforcement.
The following parameters are adopted, Tables 2 and 3 (where
σy the yield stress and HA states for high adherence).

4.4. Choosing the material parameter B

As discussed in Section 3.3, the analytical solution provided in
Eq. (18) can be used as an indicator of the initial size of the
localization and its evolution. As damage increases, the slope of
the first gradient law decreases (in absolute value) and the width
of the band is increased.

The above argument is verified hereafter for the case of the
three point bending test: A 1d second gradient calculation is
performed on a concrete specimen adopting the parameters of
Table 1 and an elastic modulus B equal to 1.5 MN. Eq. (18) provides
an initial width of the localization band (approximately) equal to
15 cm. In Fig. 11, the evolution of the profile of the concrete axial

strains for different values of imposed displacements coming from
the 1d calculation is provided. At the beginning of the loading the
width of the localization zone is (approximately) equal to 15 cm.
At the end of the loading it is found (approximately) to be equal to
30 cm. Fig. 12 presents the numerical profile of the concrete axial
strains for the three point bending test along the red line for an
imposed displacement of 6 mm. The strain distribution presents
several strain bands similar to the one found for the 1d case,
Fig. 11. Comparison is more obvious in Fig. 13 where the strain
distributions coming from the 1d model (dotted lines) and the
three point bending test (continuous lines) are plotted. The same
“peak strains” (the maximum strain found in the band) are found
(see red, green and orange lines in Figs. 11 and 13).

From the above it is obvious that for a three point bending test
a 1d second gradient model can be used to calibrate the parameter
B and thus the initial width of the localization zone and its
evolution.

4.5. Numerical results

Fig. 14 presents the numerical force versus displacement
(measured at the centre of the beam) curve compared to the
experimental one (note: during the experiment the beam was
loaded and unloaded cyclically whereas in the simulation the
beam is loaded with a monotonic increasing displacement). At this
global level results for both meshes were identical. The force
displacement graph exhibits the classical reinforced concrete
behaviour in three stages: In the first stage, concrete and steel
stay both in the elastic regime; then concrete starts to damage and
the slope of the force displacement curve changes. Finally, steel
enters a plastic phase and a second change in the slope appears.
The numerical model provides however more stiff results at the
last levels of the loading.

Fig. 15 shows the evolution of the numerically obtained axial
strains at different positions on the reinforcement bars as a
function of the global force. Results are found to be comparable
to the experimental data [55,56]. The model is able to capture
positive and negative strains and thus to distinguish the parts of
beam in traction or in compression. The strain gauge 4 is inside a
strain localization zone, this is why the corresponding strain value
is important.

Fig. 16 shows the distribution of the damage variable in
concrete at different stages of loading and for the two mesh sizes.
The damage distributions for the two meshes are similar (mesh
objectivity) but not exactly the same. This is due to the fact that
the second gradient method does not restore the unicity of the
solution and small changes in the model can trigger different
solutions. In contrast to a classical continuum mechanics model
(without any regularization technique), the different solutions are
however physically acceptable. For similar bending tests, classical
non-local damage models which define an equivalent strain by
averaging over a certain distance (material length parameter) have
sometimes a tendency to artificially develop damage on the upper,
compressed part of the beam (even if the local strain is not high
enough to cause compressive damage). This is due to the principle
of averaging over an area. There is no such problem with this
model as the variables are local.

The damage pattern develops numerically with sudden peaks
which experimentally correspond to developing cracks. The crack
opening cannot be modelled directly in this simulation as the
displacement field remains continuous, but it can be approximated
from the damage model by simply measuring the displacement
jump between two points located on the opposite sides of a
damaged zone. This obviously works only when the damaged
bands are clearly separated. The width and separation of the
damage bands can be controlled by changing the internal length,

Fig. 16. 3 point bending test: distribution of the damage variable in concrete at
different steps for the two meshes.
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which in our case means changing the slope of either or both the
first gradient and second gradient constitutive laws.

5. Conclusions

A second gradient model is adopted to simulate the behaviour
of plane concrete and reinforced concrete structural elements
using a classical damage mechanics law. The contribution is clearly
a first step in the modelling of concrete failure with such type of
models and the authors tried to highlight the advantages and
drawbacks of the approach.

More specifically, objective (mesh independent) global and
local results are obtained and damage is localized into bands
whose width is controlled by the model parameters. The unique-
ness of the solution is not restored and the evolution of the
localization zone is discussed. In its actual form, the model
provides a higher residual stress and spreading damage/strain
fields. In a forthcoming article the authors will try to address some
of the shortcomings of the current formulation (kernel of the
regularization operator, enlargement of the damage band, spur-
ious cohesive forces resulting from the higher order stress tensor).
These results are encouraging and represent the first steps toward
a wider use of second gradient models for concrete structures.
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