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Abstract

We study the large time behavior of solutions to fully nonlinear parabolic equations

of Hamilton-Jacobi-Bellman type arising typically in stochastic control theory with

control both on drift and diffusion coefficients. We prove that, as time horizon goes

to infinity, the long run average solution is characterized by a nonlinear ergodic equa-

tion. Our results hold under dissipativity conditions, and without any nondegeneracy

assumption on the diffusion term. Our approach uses mainly probabilistic arguments

relying on new backward SDE representation for nonlinear parabolic, elliptic and er-

godic equations.
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1 Introduction

Let us consider the fully nonlinear parabolic equation of the form

∂v

∂T
− sup

a∈A

[

Lav + f
(

x, a,
v

T + 1

)]

= 0, on (0,∞)× R
d, (1.1)

with v(0, .) = h on R
d, where La is the second-order differential operator:

Lav = b(x, a).Dxv +
1

2
tr(σσ⊺(x, a)D2

xv).

Here A is some Borel subset of Rq, b, σ are continuous functions on R
d × R

q, and f =

f(x, a, y) is a measurable function on R
d × R

q × R satisfying some conditions to be spec-

ified later on. When the generator f = f(x, a) does not depend on y, equation (1.1) is

the dynamic programming equation, also called Hamilton-Jacobi-Bellman (HJB) equation,

associated to the stochastic control problem:

v(T, x) := sup
α∈A

Ex

[

∫ T

0
f(Xα

t , αt)dt+ h(Xα
T )

]

,

where Xα is the controlled diffusion process

dXα
t = b(Xα

t , αt)dt+ σ(Xα
t , αt)dWt, (1.2)

driven by a d-dimensional Brownian motion W on a probability space (Ω,F ,P) equipped

with the natural filtration of W , and given a control α ∈ A, i.e., an A-valued adapted

process. In the general case f = f(x, a, y), we shall see that under suitable conditions, there

exists a unique viscosity solution v = v(T, x) to the generalized parabolic HJB equation

(1.1), and our aim is to investigate the large time behavior of v(T, .) as T goes to infinity. It

turns out that this asymptotic problem is related to the generalized ergodic HJB equation:

λ− sup
a∈A

[

Laφ+ f(x, a, λ)
]

= 0, on R
d. (1.3)

Asymptotics for stochastic control and related HJB equation have been studied in va-

rious settings by many authors since the works [4] and [2]. In the PDE literature, we

refer for instance to [3] in a periodic setting, [28] under Dirichlet conditions, or [12] in the

whole space. In these cited papers, the HJB equation is semi-linear, i.e., the nonlinearity

appears only in the first order derivative. Recently, by combining PDE and stochastic

analysis arguments, the papers [15], [16] and [24] studied large time behavior of semi-

linear HJB equations with quadratic nonlinearity in gradients. We would like also to point

out the recent paper [14], which studied large time behavior of solutions to semi-linear

HJB equations by a probabilistic approach relying on ergodic BSDE introduced in [11].

Interestingly, the authors are able to prove in their context a rate of convergence for the

solution to the parabolic equation towards the ergodic equation under weak dissipativity

conditions. Long time asymptotics of solutions to HJB equations has been also considered

in the context of risk-sensitive stochastic control and utility maximization problem, see e.g.

[10] and [21].
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Our motivation is to develop a systematic study applicable to a large class of fully

nonlinear HJB type equation, and to give natural conditions on the dynamics of the control

system ensuring ergodicity. The principal novelty of this paper is to consider control on

both drift and diffusion coefficients b(x, a), σ(x, a), possibly degenerate, and satisfying

dissipativity conditions, instead of periodicity condition. In this case, we do not have in

general smooth solution to the HJB equation. Another original feature of our framework

is the dependence of f(x, a, y) on y, which occurs for example in stochastic control with

recursive utility functions. Our first main result is to prove the existence of a viscosity

solution pair (λ, φ) ∈ R× C(Rd), with φ Lipschitz, to the ergodic fully nonlinear equation

(1.3). We adopt the following approach. We consider the sequence of fully nonlinear elliptic

HJB equation for β > 0:

βvβ − sup
a∈A

[

Lavβ + f
(

x, a, βvβ
)]

= 0, on R
d, (1.4)

and obtain the existence and uniqueness of a solution vβ to (1.4) by combining analytical

and probabilistic methods. More precisely, following the randomization approach of [19] for

representing parabolic HJB equations, we introduce a class of Backward Stochastic Diffe-

rential Equations (BSDEs) with nonpositive jumps over an infinite horizon, and supported

by a forward regime switching process (X, I) where

dXt = b(Xt, It)dt+ σ(Xt, It)dWt, (1.5)

and I is a pure jump process valued in A. The minimal solution Y β to this class of elliptic

BSDEs is shown to exist and to provide the unique (viscosity) solution vβ to (1.4), and the

key point is to derive uniform Lipschitz estimate for the sequence (vβ)β. This is achieved

by ergodicity properties on the forward process X, and suitable estimation on the minimal

solution Y β. Then, by standard analytical approximation procedures (when β goes to zero)

as in [15] or [11], we obtain the existence of a pair (λ, φ) solution to (1.3). Moreover, the

function φ admits a probabilistic representation in terms of a new class of BSDEs, namely

ergodic BSDEs with nonpositive jumps. Ergodic BSDEs have been introduced in [11] and

then in [23], and related to optimal control on the drift of diffusions. We extend this

connection to the case of controlled diffusion coefficient by imposing a nonpositive jump

constraint on the ergodic BSDE.

Next, our main theorem is to prove that for any solution (λ, φ) to (1.3), we have the

convergence of the solution to the parabolic generalized HJB equation (1.1):

v(T, .)

T
−→ λ, in C(Rd), as T → ∞. (1.6)

Here, convergence “in C(Rd)” stands for locally uniform convergence in R
d. This shows as

a byproduct that λ in (1.3) is unique. The main difficulty with respect to the semi-linear

HJB case is that we do not have in general a smooth solution and an optimal control for the

finite horizon and ergodic stochastic control, and the classical arguments as in [15] or [16]

do not work anymore. Moreover, when f = f(x, a, y) depends also on y, we do not even

have a stochastic control representation of the function v. Our arguments for proving (1.6)

rely on the BSDE representation of solution to (1.1) and (1.3), corresponding comparison
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theorems, and dual representation of such BSDEs in terms of equivalent probability mea-

sures introduced in (2.3). Furthermore, we can strengthen the convergence result (1.6) by a

verification theorem: under the condition that the ergodic equation (1.3) admits a classical

component solution φ, we have

v(T, .) −
(

λT + φ) −→ c, in C(Rd), as T → ∞, (1.7)

for some constant c.

The paper is organized as follows. Section 2 introduces some notations, formulates the

dissipativity conditions on b, σ, and assumptions on f . We then state ergodicity properties

on the regime switching process (X, I) in (1.5) as well as on the controlled diffusion process

Xα in (1.2). In Section 3, we prove the existence and uniqueness of a solution to the fully

nonlinear elliptic HJB equation (1.4) and its relation to BSDE with nonpositive jumps

over an infinite horizon. Section 4 is concerned with the ergodic equation (1.3) and its

probabilistic representation in terms of ergodic BSDE with nonpositive jumps. Convergence

results (1.6) and (1.7) are studied in Section 5. We collect in the Appendix some proofs

and technical estimates needed in the paper.

2 Ergodicity properties

2.1 Notations and assumptions

Let (Ω,F ,P) be a complete probability space on which are defined a d-dimensional Brownian

motionW = (Wt)t≥0 and an independent Poisson random measure µ on R+×A, where A is

a compact subset of Rq, endowed with its Borel σ-field B(A). We assume that the random

measure µ has the intensity measure ϑ(da)dt for some finite measure ϑ on (A,B(A)). We

set µ̃(dt, da) = µ(dt, da) − ϑ(da)dt the compensated martingale measure associated to µ,

and denote by F = (Ft)t≥0 the completion of the natural filtration generated by W and µ.

We also denote, for any T > 0, PT the σ-field of F-predictable subsets of [0, T ]×Ω. Let us

introduce some additional notations. We denote by:

• Lp(Ft), p ≥ 1, t ≥ 0, the set of Ft-measurable random variables X such that E[|X|p]
< ∞.

• S2(t,T), 0 ≤ t < T < ∞, the set of real-valued càdlàg adapted processes Y =

(Ys)t≤s≤T satisfying

E

[

sup
t≤s≤T

|Ys|2
]

< ∞.

We also define S2
loc := ∩T>0S

2(0,T).

• Lp(W; t,T), p ≥ 1, 0 ≤ t < T < ∞, the set of R
d-valued predictable processes

Z = (Zs)t≤s≤T such that

E

[(
∫ T

t

|Zs|2ds
)

p

2
]

<∞.

We also define Lp

loc(W) := ∩T>0L
p(W;0,T).
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• Lp(µ̃; t,T), p ≥ 1, 0 ≤ t < T <∞, the set of PT ⊗B(A)-measurable maps U : [t, T ]×
Ω×A→ R such that

E

[
∫ T

t

(
∫

A

|Us(a)|2ϑ(da)
)

p

2

ds

]

< ∞.

We also define Lp

loc(µ̃) := ∩T>0L
p(µ̃;0,T).

• K2(t,T), 0 ≤ t < T <∞, the set of nondecreasing càdlàg predictable processes K =

(Ks)t≤s≤T such that E[|KT |2] <∞ andKt = 0. We also defineK2
loc := ∩T>0K

2(0,T).

We are given some continuous functions b : Rd × R
q → R

d, σ : Rd × R
q → R

d×d, and

consider the forward regime switching process (X, I) governed by the stochastic differential

equation in R
d × R

q:
{

dXt = b(Xt, It) dt+ σ(Xt, It) dWt,

dIt =
∫

A
(a− It−)µ(dt, da).

(2.1)

We note that the fact that σ is a square matrix does not involve any loss of generality,

since we are not going to assume any nondegeneracy condition. In particular, some rows

or columns of σ may be equal to zero. In the following we use the notation M ⊺ for the

transpose of any matrixM , and ‖M‖2 = tr(MM ⊺) for the Hilbert-Schmidt norm. We shall

make the following assumptions on the coefficients b and σ.

(H1)

(i) There exists a positive constant L1 such that for all x, x′ ∈ R
d, a, a′ ∈ R

q,

|b(x, a)− b(x′, a′)|+ ‖σ(x, a) − σ(x′, a′)‖ ≤ L1 (|x− x′|+ |a− a′|).

(ii) There exists a constant γ > 0 such that for all x, x′ ∈ R
d, a ∈ A,

(x− x′).(b(x, a) − b(x′, a)) +
1

2
‖σ(x, a) − σ(x′, a)‖2 ≤ −γ |x− x′|2. (2.2)

It is well-known that under (H1)(i), there exists a unique solution (Xx,a
t , Iat )t≥0 to (2.1)

starting from (x, a) ∈ R
d × R

q at time t = 0. Notice that when a ∈ A, then Iat ∈ A for all

t ≥ 0. Condition (H1)(ii) is called dissipativity condition and will ensure the ergodicity of

the process X, as stated in the next paragraph.

Example 2.1 Let b(x, a) = B(a)x+D(a), σ(x, a) = Σ(a) for some vector valued Lipschitz

function D, and matrix valued Lipschitz functions B, Σ on A, such that B is uniformly

stable:

x.B(a)x ≤ −γ|x|2, ∀x ∈ R
d, a ∈ A.

In this case, (H1) is satisfied, and this example corresponds to a controlled Ornstein-

Uhlenbeck process with uncertain mean-reversion and volatility. 2
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We also consider some real-valued continuous function f on R
d ×R

q ×R satisfying the

following assumption:

(H2)

(i) There exists a positive constant L2 such that for all x, x′ ∈ R
d, a, a′ ∈ R

q, y, y′ ∈ R,

|f(x, a, y)− f(x′, a′, y′)| ≤ L2 (|x− x′|+ |a− a′|+ |y − y′|).

(ii) The function y ∈ R 7−→ f(x, a, y) is nonincreasing for all (x, a) ∈ R
d × R

q.

We end this paragraph of notations by introducing the following set of probability

measures, which shall play an important role in the sequel for establishing estimates. Let

Vn be the set of P ⊗B(A)-measurable maps valued in [1, n+1], V = ∪n∈NVn, and consider

for ν ∈ V, the probability measure P
ν equivalent to P on (Ω,FT ), for any T > 0, with

Radon-Nikodym density:

dPν

dP

∣

∣

∣

Ft

= ζνt := Et
(

∫ .

0

∫

A

(νs(a)− 1)µ̃(ds, da)
)

, (2.3)

for 0 ≤ t ≤ T , where E(.) is the Doléans-Dade exponential. Actually, since ν ∈ V is

essentially bounded, it is shown in Lemma 2.4 in [19] that (ζν)0≤t≤T is a uniformly integrable

P-martingale, with ζνT ∈ L2(FT ), for any T > 0, and so it defines a probability measure

P
ν via (2.3). We shall denote by E

ν the expectation under P
ν . Moreover, by Girsanov

theorem, the compensator of µ under P
ν is νt(a)ϑ(da)dt, while W remains a Brownian

motion independent of µ under Pν. We denote by µ̃ν(dt, da) = µ(dt, da)− νt(a)ϑ(da)dt the

compensated martingale measure of µ under Pν .

2.2 Ergodicity

We now use the dissipativity condition in (H1)(ii) to state moment estimates and stability

results on the component X of (2.1).

Lemma 2.1 Let Assumption (H1) hold.

(i) There exists a positive constant C = Cb,σ depending only on b, σ such that for all x ∈ R
d

and a ∈ A,

sup
t≥0

sup
ν∈V

E
ν
[

|Xx,a
t |2

]

≤ C(1 + |x|2), (2.4)

(ii) For all t ≥ 0, x, x′ ∈ R
d, a ∈ A,

sup
ν∈V

E
ν
[

|Xx,a
t −Xx′,a

t |2
]

≤ |x− x′|2e−2γt. (2.5)

The proof relies on rather standard arguments based on Itô’s formula and Gronwall’s

lemma, and is reported in the Appendix.
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Remark 2.1 We shall need the following generalization of estimate (2.4), for all x ∈ R
d

and a ∈ A,

sup
s≥t

sup
ν∈V

E
ν
[

|Xx,a
s |2

∣

∣Ft

]

≤ C(1 + |x|2), (2.6)

which is valid with the same constant C = Cb,σ, independent of t, as in (2.4), when

Assumption (H1) holds. 2

Let α : Rd → A be a feedback control and let X = Xα be the associated diffusion process

governed by

dXt = b(Xt, α(Xt)) dt+ σ(Xt, α(Xt)) dWt. (2.7)

Suppose that the functions

b(x) := b(x, α(x)), σ(x) := σ(x, α(x)) (2.8)

are Lipschitz. Then, equation (2.7) defines a time-homogeneous Markov process {Xα
t , t ≥

0}, and we denote by (P
α
t )t≥0 the associated semigroup, which acts on B(Rd), the set of

bounded measurable functions ϕ, by

P
α
t ϕ(x) = Ex

[

ϕ(X
α
t )

]

, t ≥ 0, x ∈ R
d.

Notice that (P
α
t )t≥0 has the Feller property, i.e., for any f ∈ Cb(R

d), the space of continuous

and bounded functions on R
d, we have that P

α
t f ∈ Cb(R

d). The next result shows the

ergodicity of Xα.

Proposition 2.1 Let α : Rd → A be a feedback control such that b, σ in (2.8) satisfy As-

sumption (H1). Then Xα is ergodic, i.e., the following assertions are valid:

(i) There exists a unique invariant probability measure ρ = ρα on R
d:

∫

P
α
t ϕ(x)ρ(dx) =

∫

ϕ(x)ρ(dx), ∀ t ≥ 0, ϕ ∈ B(Rd).

(ii) X
α
t converges weakly to ρ as t→ ∞:

P
α
t ϕ(x) −→

∫

ϕ(x)ρ(dx), as t→ ∞, ∀x ∈ R
d, ϕ ∈ Cb(R

d). (2.9)

Moreover,
∫

|x|2ρ(dx) <∞, and the convergence (2.9) holds for all continuous ϕ satisfying

a linear growth condition.

The proof is based on the “pullback” method (see, e.g., Theorem 6.3.2 in [8]) and is

detailed in the Appendix.
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3 Elliptic HJB equation

For any β > 0, let us consider the fully nonlinear elliptic equation of HJB type:

β vβ − sup
a∈A

[

Lavβ + f(x, a, βvβ)
]

= 0, on R
d, (3.1)

where

Laϕ = b(x, a).Dxϕ+
1

2
tr
(

σσ⊺(x, a)D2
xϕ

)

.

Notice that in the particular case where f = f(x, a) does not depend on y, the equation

(3.1) is the dynamic programming equation associated to the stochastic control problem on

infinite horizon:

vβ(x) := sup
α∈A

Ex

[

∫ ∞

0
e−βtf(Xα

t , αt)dt
]

.

In this case, it is easy to see from the Lipschitz and growth condition on f in (H2)(i),

and the estimates (2.4), (2.5) that the sequence of functions (vβ)β satisfies the uniform

estimates:

vβ(x) ≤ C

β
(1 + |x|), |vβ(x)− vβ(x′)| ≤ C|x− x′|, ∀x, x′ ∈ R

d, (3.2)

for some positive constant C independent of β.

In the general case f = f(x, a, y), this section is devoted to the existence and uniqueness

of a viscosity solution vβ to (3.1), and to uniform estimate on (vβ)β as in (3.2). To this

purpose, we introduce the following class of BSDE with nonpositive jumps over an infinite

horizon, for any β > 0:

Y β
t = Y β

T − β

∫ T

t

Y β
s ds+

∫ T

t

f(Xs, Is, βY
β
s )ds +Kβ

T −Kβ
t

−
∫ T

t

Zβ
s dWs −

∫ T

t

∫

A

Uβ
s (a)µ̃(ds, da), 0 ≤ t ≤ T, ∀T ∈ (0,∞), (3.3)

and

Uβ
t (a) ≤ 0, dt⊗ dP⊗ ϑ(da)-a.e. (3.4)

BSDEs driven by Brownian motion over an infinite horizon have been introduced in

[9], [22], studied also in [5] and extended in [25], and related to elliptic semi-linear PDEs.

Here, we extend this definition to BSDEs driven by Brownian motion and Poisson random

measure, and with the nonpositivity constraint on the jump component. Aminimal solution

to the elliptic BSDE with nonpositive jumps (3.3)-(3.4) is a quadruple (Y β, Zβ, Uβ,Kβ) ∈
S2
loc × L2

loc(W) × L2
loc(µ̃) × K2

loc satisfying (3.3)-(3.4), with |Y β
t | ≤ C(1 + |Xt|), for all

t ≥ 0 and for some constant C, such that for any other solution (Ȳ β , Z̄β, Ūβ, K̄β) ∈
S2
loc × L2

loc(W) × L2
loc(µ̃) × K2

loc to (3.3)-(3.4), satisfying |Ȳ β
t | ≤ C ′(1 + |Xt|) for some

constant C ′, we have Y β
t ≤ Ȳ β

t , P-a.s., for all t ≥ 0.
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Remark 3.1 There exists at most one minimal solution to (3.3)-(3.4). Indeed, let (Y,Z,U,K)

and (Ỹ , Z̃, Ũ , K̃) be two minimal solutions to (3.3)-(3.4). The uniqueness of the Y compo-

nent is clear by definition. Regarding the other components, taking the difference between

the two backward equations we obtain
∫ t

0

(

Zs − Z̃s

)

dWs = Kt − K̃t −
∫ t

0

∫

A

(

Us(a)− Ũs(a)
)

µ̃(ds, da), (3.5)

for all 0 ≤ t ≤ T , P-almost surely. Then, we see that the right-hand side is a finite variation

process, while the left-hand side has not finite variation, unless Z = Z̃. Now, from (3.5),

we obtain the identity
∫ t

0

∫

A

(

Us(a)− Ũs(a)
)

µ(ds, da) =

∫ t

0

∫

A

(

Us(a)− Ũs(a)
)

ϑ(da)ds +Kt − K̃t,

where the right-hand side is a predictable process, therefore it has no totally inaccessible

jumps (see, e.g., Proposition 2.24, Chapter I, in [18]); on the other hand, the left-hand side

is a pure-jump process with totally inaccessible jumps, unless U = Ũ . As a consequence,

we must have U = Ũ , from which it follows that K = K̃. 2

In the sequel, we prove by a penalization approach the existence of the minimal solution

to (3.3)-(3.4), which shall provide the solution to the elliptic nonlinear HJB equation (3.1).

Then, by using this probabilistic representation of vβ, we shall state uniform Lipschitz

estimate on (vβ)β.

3.1 Elliptic penalized BSDE

For any β > 0 and n ∈ N, we consider the penalized BSDE on [0,∞), P-a.s.,

Y β,n
t = Y β,n

T − β

∫ T

t

Y β,n
s ds+

∫ T

t

f(Xs, Is, βY
β,n
s ) ds + n

∫ T

t

∫

A

(Uβ,n
s (a))+ϑ(da) ds

−
∫ T

t

Zβ,n
s dWs −

∫ T

t

∫

A

Uβ,n
s (a) µ̃(ds, da), 0 ≤ t ≤ T <∞, (3.6)

where h+ = max(h, 0) denotes the positive part of the function h.

We first state an a priori estimate on the above elliptic penalized BSDE.

Lemma 3.1 Suppose that (H1) holds. Let (x, a), (x′, a′) ∈ R
d×A and (Y 1,β,n, Z1,β,n, U1,β,n)

(resp. (Y 2,β,n, Z2,β,n, U2,β,n)) be a solution in S2
loc × L2

loc(W) × L2
loc(µ̃) to (3.6), with

(X, I) = (Xx,a, Ia) (resp. (X, I) = (Xx′,a′ , Ia
′
)) and f = f1 (resp. f = f2) satisfy-

ing assumption (H2). Set ∆tY = Y 1,β,n
t − Y 2,β,n

t , ∆tZ = Z1,β,n
t − Z2,β,n

t , ∆tU(a′′) =

U1,β,n
t (a′′)−U2,β,n

t (a′′), ∆′
tf1 = f1(X

x,a
t , Iat , βY

1,β,n
t ) − f1(X

x′,a′

t , Ia
′

t , βY
1,β,n
t ), and ∆tf =

f1(X
x′,a′

t , Ia
′

t , βY
2,β,n
t ) − f2(X

x′,a′

t , Ia
′

t , βY
2,β,n
t ), t ≥ 0, a′′ ∈ A. Then, there exists ν ∈ Vn

such that for all T ∈ (0,∞),

|∆tY |2 ≤ E
ν

[

e−2β(T−t)|∆TY |2 + 2

∫ T

t

e−2β(s−t)∆sY (∆′
sf1 +∆sf)ds

∣

∣

∣

∣

Ft

]

, (3.7)

for all 0 ≤ t ≤ T .
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Proof. See Appendix. 2

The next result states the existence and uniqueness of a solution to (3.6), and uniform

estimate on the solution.

Proposition 3.1 Let Assumptions (H1) and (H2) hold. Then, for any (x, a, β, n) ∈ R
d×

A×(0,∞)×N, there exists a solution (Y x,a,β,n, Zx,a,β,n, Ux,a,β,n) ∈ S2
loc×L2

loc(W)×L2
loc(µ̃)

to (3.6), with (X, I) = (Xx,a, Ia), and satisfying:

|Y x,a,β,n
t | ≤ Cb,σ,f

β
(1 + |Xx,a

t |), ∀t ≥ 0, (3.8)

for some positive constant Cb,σ,f depending only on b, σ, f . Moreover, this solution is unique

in the class of triplets (Y,Z,U) ∈ S2
loc × L2

loc(W) × L2
loc(µ̃) satisfying the condition |Yt| ≤

C(1 + |Xx,a
t |), for all t ≥ 0 and for some positive constant C (possibly depending on x, a,

β and n).

Proof. See Appendix. 2

For any (x, a, β, n) ∈ R
d×A×(0,∞)×N, we notice that Y x,a,β,n

0 is a constant since it is

F0-measurable. Therefore, for each β > 0, n ∈ N, we introduce the function vβ,n : Rd×A→
R defined as

vβ,n(x, a) := Y x,a,β,n
0 , (x, a) ∈ R

d ×A. (3.9)

Let us now investigate some key properties of the function vβ,n. We first state a uniform

Lipschitz estimate on (vβ,n).

Lemma 3.2 Let Assumptions (H1) and (H2) hold. For any (β, n) ∈ (0,∞) × N, the

function vβ,n is such that: Y x,a,β,n
t = vβ,n(Xx,a

t , Iat ), for all t ≥ 0, and (x, a) ∈ R
d × A.

Moreover, there exists some positive constant C depending only on b, σ, f , and independent

of β, n such that

vβ,n(x, a) ≤ C

β

(

1 + |x|
)

, (3.10)

∣

∣vβ,n(x, a)− vβ,n(x′, a)
∣

∣ ≤ C|x− x′|, (3.11)

for all x, x′ ∈ R
d and a ∈ A.

Proof. See Appendix. 2

As expected, for fixed (β, n), the function vβ,n is related to the elliptic integro-differential

equation:

β vβ,n(x, a)− Lavβ,n(x, a) −Mavβ,n(x, a) − f
(

x, a, βvβ,n(x, a)
)

(3.12)

−n
∫

A

(vβ,n(x, a′)− vβ,n(x, a))+ ϑ(da
′) = 0, on R

d ×A,

where

Maϕ(a) =

∫

A

(

ϕ(a′)− ϕ(a)
)

ϑ(da′),

for any ϕ ∈ C(A). More precisely, we have the following result.
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Proposition 3.2 Let Assumptions (H1) and (H2) hold. Then, the function vβ,n in (3.9)

is a continuous viscosity solution to (3.12), i.e., it is continuous on R
d × A and it is a

viscosity supersolution (resp. subsolution) to (3.12), namely

β ϕ(x, a) ≥ (resp. ≤) Laϕ(x, a) +Maϕ(x, a) + f
(

x, a, βϕ(x, a)
)

+ n

∫

A

(ϕ(x, a′)− ϕ(x, a))+ ϑ(da
′)

for any (x, a) ∈ R
d ×A and any ϕ ∈ C2(Rd × R

q) such that

0 = (vβ,n − ϕ)(x, a) = min
Rd×A

(vβ,n − ϕ) (resp. max
Rd×A

(vβ,n − ϕ)).

Proof. See Appendix. 2

3.2 Elliptic BSDE with nonpositive jumps

We can now prove the existence of the minimal solution to the elliptic BSDE with nonpo-

sitive jumps (3.3)-(3.4).

Proposition 3.3 Let Assumptions (H1) and (H2) hold. Then, for any β > 0 and (x, a) ∈
R
d×A there exists a solution (Y x,a,β, Zx,a,β, Ux,a,β,Kx,a,β) ∈ S2

loc×L2
loc(W)×L2

loc(µ̃)×K2
loc

to (3.3)-(3.4), with (X, I) = (Xx,a, Ia). Moreover

(i) Y x,a,β is the increasing limit of (Y x,a,β,n)n and satisfies

|Y x,a,β
t | ≤ C

β
(1 + |Xx,a

t |), ∀t ≥ 0, (3.13)

for some positive constant C independent of β, x, a, t.

(ii) (Zx,a,β
|[0,T ], U

x,a,β
|[0,T ]), for any T > 0, is the strong (resp. weak) limit of (Zx,a,β,n

|[0,T ] , Ux,a,β,n
|[0,T ] )n

in Lp(W;0,T) × Lp(µ̃;0,T), with p ∈ [1, 2), (resp. in L2(W;0,T) × L2(µ̃;0,T)).

(iii) Kx,a,β
t is the weak limit of (Kx,a,β,n

t )n in L2(Ft), for any t ≥ 0.

Furthermore, this solution is minimal in the class of quadruplets (Y,Z,U,K) ∈ S2
loc ×

L2
loc(W)×L2

loc(µ̃)×K2
loc satisfying the condition |Yt| ≤ C(1+ |Xx,a

t |), for all t ≥ 0 and for

some positive constant C (possibly depending on x, a, and β).

Proof. See Appendix. 2

For any β > 0, let us introduce the deterministic function vβ : Rd × A → R defined as

follows

vβ(x, a) := Y x,a,β
0 , ∀ (x, a) ∈ R

d ×A. (3.14)

From point (i) of Proposition 3.3, it follows that (vβ,n)n converges increasingly to vβ. Then,

the identification Y x,a,β,n
t = vβ,n(Xx,a

t , Iat ) implies that Y x,a,β
t = vβ(Xx,a

t , Iat ). We shall now

investigate the relation between vβ and the fully nonlinear elliptic PDE of HJB type (3.1).

More precisely, we shall prove that vβ solves in the viscosity sense equation (3.1). The main
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issue is to prove that vβ does not depend actually on a. However, as we do not know a

priori that the function vβ is continuous in both arguments, we shall rely on discontinuous

viscosity solutions arguments as in [19], and make the following assumptions on the set A

and the intensity measure ϑ:

(HA) The interior Å of A is connected, and A = Cl(Å), the closure of its interior.

(Hϑ) The measure ϑ supports the whole set Å, and the boundary of A: ∂A = A\Å,
is negligible with respect to ϑ.

Notice that equation (3.1) does not depend on ϑ, and this intensity measure only appears

in order to give a probabilistic representation of vβ. Therefore, we have the choice to fix an

intensity measure ϑ satisfying condition (Hϑ), which is anyway a fairly general condition

easy to realize. In the sequel, we shall make the standing assumption that (Hϑ) holds.

We can now state the main result of this section.

Theorem 3.1 Let Assumptions (H1), (H2), (HA), and (Hϑ) hold. Then, for any β > 0,

the function vβ in (3.14) does not depend on the variable a on R
d × Å:

vβ(x, a) = vβ(x, a′), a, a′ ∈ Å, (3.15)

for all x ∈ R
d, and we set by misuse of notation: vβ(x) = vβ(x, a), x ∈ R

d, for any a ∈ Å.

Then, vβ is the unique continuous viscosity solution to equation (3.1), i.e., it is continuous

on R
d and it is a viscosity supersolution (resp. subsolution) to (3.1), namely:

β ϕ(x) ≥ (resp. ≤) sup
a∈A

[

Laϕ(x) + f(x, a, β ϕ(x))
]

,

for any x ∈ R
d and any ϕ ∈ C2(Rd) such that

0 = (vβ − ϕ)(x) = min
Rd

(vβ − ϕ) (resp. max
Rd

(vβ − ϕ)).

Moreover, there exists some positive constant C independent of β such that:

|βvβ(x)| ≤ C(1 + |x|), ∀x ∈ R
d, (3.16)

|vβ(x)− vβ(x′)| ≤ C|x− x′|, ∀x, x′ ∈ R
d. (3.17)

Proof. We use the corresponding result for the parabolic case in [19] to prove the non

dependence of vβ on a, and then the viscosity property to the elliptic equation. More

precisely, we start by observing that, for any β > 0 and T > 0, vβ,n is a viscosity solution

to the parabolic PDE on [0, T ]× R
d ×A:

β w(t, x, a) =
∂w

∂t
(t, x, a) + Law(t, x, a) +Maw(t, x, a) + f(x, a, β w(t, x, a))

+n

∫

A

(w(t, x, a′)− w(t, x, a))+ ϑ(da
′),

with terminal condition w(T, x, a) = vβ,n(x, a), for all (x, a) ∈ R
d ×A, i.e.

β ϕ(t, x, a) ≥ (resp. ≤)
∂ϕ

∂t
(t, x, a) + Laϕ(t, x, a) +Maϕ(t, x, a) + f(x, a, β ϕ(t, x, a))
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+n

∫

A

(ϕ(t, x, a′)− ϕ(t, x, a))+ ϑ(da
′), (3.18)

for any (t, x, a) ∈ [0, T )× R
d ×A and any ϕ ∈ C1,2([0, T ]× (Rd × R

q)) such that

0 = (vβ,n − ϕ)(t, x, a) = min
[0,T ]×Rd×A

(vβ,n − ϕ) (resp. max
[0,T ]×Rd×A

(vβ,n − ϕ)). (3.19)

To prove this, for any (t, x, a) ∈ [0, T )×R
d×A and any ϕ ∈ C1,2([0, T ]×(Rd×A)) satisfying

(3.18)-(3.19), set ψt(x
′, a′) := ϕ(t, x′, a′), for all (x′, a′) ∈ R

d ×R
q. Then ψt ∈ C2(Rd ×R

q)

and

0 = (vβ,n − ψt)(x, a) = min
Rd×A

(vβ,n − ψt) (resp. max
Rd×A

(vβ,n − ψt)).

Observing that ∂tϕ(t, x, a) ≤ 0 (resp. ∂tϕ(t, x, a) ≥ 0) since ϕ(t, x, a) = maxt′∈[0,T ) ϕ(t
′, x, a)

(resp. ϕ(t, x, a) = mint′∈[0,T ) ϕ(t
′, x, a)), it follows from Proposition 3.2 that (3.18) is satis-

fied. Then, from Theorem 3.1 in [19], we deduce by sending n to infinity that the function

vβ does not depend on the variable a, and so (3.15) holds. We should point out that in

[19] the terminal condition of the parabolic PDE solved by vβ,n does not depend on n,

contrary to our case. However, the part of the proof of Theorem 3.1 in [19] regarding the

independence with respect to the variable a does not involve the terminal condition, so

the result still holds. Next, we obtain again from Theorem 3.1 in [19] that vβ solves in

the viscosity sense the parabolic PDE on [0, T ) × R
d × A (as before, we do not call in the

terminal condition):

β w(t, x, a) − ∂w

∂t
(t, x, a) − sup

a∈A

[

Law(t, x, a) + f(x, a, β w(t, x, a))
]

= 0.

Since this equation holds for any T , and vβ does not depend on t, we obtain that vβ is

a viscosity solution to the elliptic equation (3.1). The uniqueness follows from Theorem

7.4 in [17]. Finally, the linear growth and Lipschitz properties (3.16)-(3.17) of vβ are

direct consequences of the corresponding properties (3.13) for Y x,a,β
0 and (3.11) for vβ,n,

respectively. 2

Remark 3.2 Notice that, from the identification Y x,a,β = vβ(Xx,a), for any x ∈ R
d and

for some a ∈ Å, and the Lipschitz property (3.17), it follows that Y x,a,β is a continuous

process, so that Ux,a,β ≡ 0, while Kx,a,β is also a continuous process. 2

4 Ergodic HJB equation and ergodic BSDE with nonpositive

jumps

This section is devoted to the existence of a solution pair (λ, φ) to the ergodic HJB equation

λ− sup
a∈A

[

Laφ+ f(x, a, λ)
]

= 0, on R
d, (4.1)

and to its probabilistic representation in terms of ergodic BSDE with nonpositive jumps.

We first give the definition of viscosity solution to equation (4.1).
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Definition 4.1 (i) A pair (λ, φ), with λ a real number and φ : Rd → R a lower (resp. upper)

semicontinuous function, is called a viscosity supersolution (resp. viscosity subsolution) to

equation (4.1) if

λ ≥ (resp. ≤) sup
a∈A

{Laϕ(x) + f(x, a, λ)},

for any x ∈ R
d and any ϕ ∈ C2(Rd) such that

(φ− ϕ)(x) = min
Rd

(φ− ϕ) (resp. max
Rd

(φ− ϕ)).

(ii) A pair (λ, φ), with λ a real number and φ : Rq → R a continuous function, is called

a viscosity solution to equation (4.1) if it is both a viscosity supersolution and a viscosity

subsolution to (4.1).

Theorem 4.1 Let Assumptions (H1), (H2), (HA), and (Hϑ) hold. Then, there exists a

viscosity solution pair (λ, φ) to (4.1) with φ Lipschitz on R
d.

Proof. We follow the approximation procedure as in [15] or [11]: for any β > 0, let vβ be

the solution of (3.1) given in Theorem 3.1, and define λβ ∈ R, and the function φβ : Rd → R

by:

λβ := βvβ(0), φβ(x) := vβ(x)− vβ(0), x ∈ R
d.

By (3.16)-(3.17), we see that there exists some positive constant C independent of β such

that

sup
β>0

|λβ| < ∞,

sup
β>0

|φβ(x)| ≤ C|x|, ∀x ∈ R
d.

Then, the family of functions (φβ)β is equicontinuous and uniformly bounded on every

compact subset of Rd. Thus, by means of Ascoli-Arzelà theorem (for more details, see (4.4)

and (4.5) in [11]), we can construct a sequence (βk)k decreasing monotonically to zero such

that, for all x ∈ R
d,

λβk

k→∞−→ λ, φβk(x)
k→∞−→ φ(x), (4.2)

for some real constant λ, and a Lipschitz function φ : Rd → R. Moreover, the convergence

of φβk towards φ is uniform on compact sets.

Now, from the elliptic equation (3.1) satisfied by vβ, and by definition of (λβ , φ
β), we

see that φβ is a viscosity solution to:

λβ + βφβ − sup
a∈A

[

Laφβ + f(x, a, λβ + βφβ)
]

= 0, on R
d. (4.3)

Let us denote by

Fk(x, r, p,M) := λβk
+ βk r
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− sup
a∈A

[

b(x, a).p +
1

2
tr
(

σσ⊺(x, a)M
)

+ f(x, a, λβk
+ βk r)

]

,

so that by (4.3), φβk is a viscosity solution to:

Fk(x, φ
βk ,Dxφ

βk ,D2
xφ

βk

) = 0,

and set

G(x, r, p,M) := λ− sup
a∈A

[

b(x, a).p +
1

2
tr
(

σσ⊺(x, a)M
)

+ f(x, a, λ)
]

,

for all (x, r, p,M) ∈ R
d×R×R

d×R
d×d. Then, it follows from (4.2) that limk→∞ Fk(x, r, p,M)

= G(x, r, p,M). As a consequence, from the method of half-relaxed limits of Barles and

Perthame, see Remark 6.3 in [6], we deduce by (4.2) that φ is a viscosity solution to:

G(x, φ,Dxφ,D
2
xφ) = 0,

i.e., (λ, φ) is a viscosity solution to equation (4.1). 2

We postpone the uniqueness problem of the ergodic equation (4.1) to the next section,

and conclude this section by providing a probabilistic representation formula for a solution

to the ergodic equation. Let us introduce the ergodic BSDE with nonpositive jumps, P-a.s.,

Yt = YT +

∫ T

t

(

f(Xs, Is, λ)− λ
)

ds +KT −Kt

−
∫ T

t

ZsdWs −
∫ T

t

∫

A

Us(a)µ̃(ds, da), 0 ≤ t ≤ T <∞ (4.4)

and

Ut(a) ≤ 0, dt⊗ dP⊗ ϑ(da)-a.e. (4.5)

Here, in addition to the components (Y,Z,U,K), the real number λ is part of the unknowns

of the ergodic BSDE. We recall that ergodic BSDEs driven by Brownian motion have been

defined in [11] for the study of optimal control problems on the drift of a diffusion process,

which are related to ergodic semilinear HJB equations. In this paper, we extend this

definition by considering the jump constraint (4.5), and our first purpose is to introduce a

notion of “minimal” solution to (4.4)-(4.5). However, we notice that the “natural” definition

of minimal solution as the solution (Ȳ , Z̄, Ū , K̄, λ) ∈ S2
loc×L2

loc(W)×L2
loc(µ̃)×K2

loc×R to

(4.4)-(4.5) such that for any other solution (Ỹ , Z̃, Ũ , K̃, λ̃) ∈ S2
loc×L2

loc(W)×L2
loc(µ̃)×K2

loc×
R to (4.4)-(4.5) we have Ȳ ≤ Ỹ , is not relevant in this case, since (Ȳ −c, Z̄, Ū , K̄, λ), with c >
0, would be another solution to (4.4)-(4.5), contradicting the minimality of (Ȳ , Z̄, Ū , K̄, λ).

For this reason, we give the following definition of minimal solution to the ergodic BSDE

with nonpositive jumps (4.4)-(4.5).

Definition 4.2 A quintuple (Y ,Z,U,K, λ) ∈ S2
loc×L2

loc(W)×L2
loc(µ̃)×K2

loc×R is called

a minimal solution to (4.4)-(4.5) if, for any T > 0, (Y |[0,T ], Z |[0,T ], U |[0,T ],K |[0,T ]) is a
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minimal solution to the BSDE with nonpositive jumps on [0, T ] with terminal condition

Y T , P-a.s.,

Yt = Y T +

∫ T

t

(

f(Xs, Is, λ)− λ
)

ds+KT −Kt

−
∫ T

t

ZsdWs −
∫ T

t

∫

A

Us(a)µ̃(ds, da), 0 ≤ t ≤ T, (4.6)

together with the jump constraint

Ut(a) ≤ 0, dt⊗ dP⊗ ϑ(da)-a.e. (4.7)

In other words, for any other solution (Ỹ , Z̃, Ũ , K̃) ∈ S2(0,T)×L2(W;0,T)×L2(µ̃;0,T)×
K2(0,T) to (4.6)-(4.7) we have Y t ≤ Ỹt, P-a.s., for all 0 ≤ t ≤ T .

Remark 4.1 We do not know a priori if there is uniqueness of a minimal solution to

(4.4)-(4.5). This will be discussed later in Remark 5.3. 2

We shall now prove that any Lipschitz continuous viscosity solution to the ergodic HJB

equation (4.1), admits a probabilistic representation in terms of a minimal solution to the

ergodic BSDE (4.4).

Theorem 4.2 Let Assumptions (H1), (H2), (HA), and (Hϑ) hold. Let (λ, φ), with φ

Lipschitz, be a viscosity solution to the ergodic equation (4.1). Then, (λ, φ) can be repre-

sented by means of a minimal solution to the ergodic BSDE (4.4)-(4.5), namely:

(i) For any a ∈ Å, there exists a minimal solution (Y x,a, Zx,a, Ux,a,Kx,a, λ) ∈ S2
loc ×

L2
loc(W)× L2

loc(µ̃)×K2
loc × R to the ergodic BSDE with nonpositive jumps, P-a.s.,

Y x,a
t = Y x,a

T +

∫ T

t

(

f(Xx,a
s , Ias , λ)− λ

)

ds+Kx,a
T −Kx,a

t −
∫ T

t

Zx,a
s dWs

−
∫ T

t

∫

A

Ux,a
s (a′)µ̃(ds, da′), 0 ≤ t ≤ T <∞, (4.8)

and

Ux,a
t (a′) ≤ 0, dt⊗ dP⊗ ϑ(da′)-a.e. (4.9)

(ii) Y x,a
t = φ(Xx,a

t ) for t ≥ 0, and, in particular,

φ(x) = Y x,a
0 , for all x ∈ R

d,

for some a ∈ Å.

Proof. We start by observing that for any T > 0, φ is a viscosity solution to the following

parabolic equation, in the unknown ψ,







−∂ψ(t, x)
∂t

− supa∈A
[

Laψ(t, x) + f(x, a, λ)− λ
]

= 0, (t, x) ∈ [0, T ) × R
d,

ψ(T, x) = φ(x), x ∈ R
d.

(4.10)
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It follows from Theorem 7.4 in [17] that φ is the unique uniformly continuous viscosity

solution to (4.10). From Theorem 3.1 in [19], we see that this viscosity solution admits a

representation in terms of the minimal solution to a BSDE with nonpositive jumps on [0, T ].

More precisely, for any T > 0, let (Y x,a,T , Zx,a,T , Ux,a,T ,Kx,a,T ) ∈ S2(0,T)×L2(W;0,T)×
L2(µ̃;0,T) × K2(0,T) be the minimal solution to the BSDE with nonpositive jumps on

[0, T ], P-a.s.,

Yt = φ(Xx,a
T ) +

∫ T

t

(

f(Xx,a
s , Ias , λ)− λ

)

ds+KT −Kt

−
∫ T

t

ZsdWs −
∫ T

t

∫

A

Us(a
′)µ̃(ds, da′), 0 ≤ t ≤ T, (4.11)

and

Ut(a
′) ≤ 0, dt⊗ dP⊗ ϑ(da′)-a.e. (4.12)

Then, from Theorem 3.1 in [19] we see that Y x,a,T
t = φ(Xx,a

t ), for all 0 ≤ t ≤ T . The

identification Y x,a,T
t = φ(Xx,a

t ) also implies that Y x,a,T does not depend on T . Moreover,

using the fact that the Y component remains the same, reasoning as in Remark 3.1, we

can prove that Zx,a,T , Ux,a,T , and Kx,a,T do not depend on T . Let Y x,a
|[0,T ] = Y x,a,T ,

Zx,a
|[0,T ] = Zx,a,T , Ux,a

|[0,T ] = Ux,a,T , and Kx,a
|[0,T ] = Kx,a,T , for any T > 0. Then, we see

that, for any T > 0, the quadruple (Y x,a
|[0,T ], Z

x,a
|[0,T ], U

x,a
|[0,T ],K

x,a
|[0,T ]) is the minimal solution

to (4.11)-(4.12), from which we deduce that (Y x,a, Zx,a, Ux,a,Kx,a, λ) is a minimal solution

to the ergodic BSDE (4.4)-(4.5). 2

Remark 4.2 Notice that, a minimal solution to the ergodic BSDE with nonpositive jumps

(4.4)-(4.5) provides a viscosity solution to the ergodic HJB equation (4.1). In other words,

the converse of the result stated in Theorem 4.2 is also true. More precisely, let φ : Rd×R
q →

R be a Lipschitz function and λ ∈ R. For any x ∈ R
d, consider a ∈ Å and a minimal solution

(Y x,a, Zx,a, Ux,a,Kx,a, λ) ∈ S2
loc ×L2

loc(W)×L2
loc(µ̃)×K2

loc ×R to the ergodic BSDE with

nonpositive jumps (4.8)-(4.9), such that Y x,a
t = φ(Xx,a

t , Iat ), t ≥ 0. Then, φ does not

depend on the variable a and (λ, φ) is a viscosity solution to the ergodic equation (4.1).

Indeed, fix T > 0, then by Definition 4.2 we know that (Y x,a, Zx,a, Ux,a,Kx,a) is the unique

minimal solution to the BSDE with nonpositive jumps on [0, T ] in (4.6)-(4.7). It follows

from Theorem 3.1 in [19] that φ does not depend on a (this last property follows from

Proposition 3.2 in [19], which does not call in the terminal condition; therefore, even if in

our case, as opposite to [19], the terminal condition depends on a, the result is still valid)

and it is a viscosity solution to equation (4.10). As a consequence, (λ, φ) is a viscosity

solution to the ergodic equation (4.1). 2

5 Convergence of solutions

Let us consider the parabolic fully nonlinear equation of HJB type:










∂v

∂T
− sup

a∈A

[

Lav + f
(

x, a,
v

T + 1

)]

, = 0, on (0,∞) × R
d,

v(0, .) = h, on R
d,

(5.1)
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where h is a Lipschitz function on R
d. Existence and uniqueness of a solution v(T, x) to

(5.1) is studied in the next paragraph. Now, let us consider a solution pair (λ, φ), with φ

Lipschitz, to the ergodic equation (4.1). The main result of this section is to prove that

v(T, x)

T

T→∞−→ λ. (5.2)

Consequently, this will show the uniqueness of the component λ in (4.1). We shall end this

part of the paper by proving a stronger result than (5.2) under additional assumptions.

More precisely, suppose that φ belongs to C2(Rd) so that (λ, φ) is a classical solution to the

ergodic equation (4.1), and assume that in the ergodic equation, the supremum is attained

at a = α(x), for every x ∈ R
d, for some locally Lipschitz function α : A → R

d. Then, the

following convergence holds

v(T, x)− (λT + φ(x))
T→∞−→ c, (5.3)

for some constant c. In particular, φ is uniquely determined up to a constant.

5.1 Wellposedness of the parabolic equation (5.1)

We shall build a solution to equation (5.1) through BSDE methods, as this construction will

be useful in the sequel. More precisely, from Theorem 3.1 in [19], under (H1)(i), (H2)(i),

(HA), and (Hϑ), there exists a uniformly continuous viscosity solution v to equation (5.1),

which admits the following probabilistic representation formula

v(T, x) = Y x,a,T
0 , (T, x) ∈ [0,∞) ×R

d, (5.4)

for any a ∈ Å, where (Y x,a,T , Zx,a,T , Ux,a,T ,Kx,a,T ) ∈ S2(0,T)×L2(W;0,T)×L2(µ̃;0,T)×
K2(0,T), with v(T − t,Xx,a

t ) = Y x,a,T
t for all 0 ≤ t ≤ T , is the unique minimal solution to

the BSDE with nonpositive jumps on [0, T ], P-a.s.,

Y x,a,T
t = h(Xx,a

T ) +

∫ T

t

f
(

Xx,a
s , Ias ,

Y x,a,T
s

T − s+ 1

)

ds+Kx,a,T
T −Kx,a,T

t (5.5)

−
∫ T

t

Zx,a,T
s dWs −

∫ T

t

∫

A

Ux,a,T
s (a′)µ̃(ds, da′), 0 ≤ t ≤ T

and

Ux,a,T
t (a′) ≤ 0, dt⊗ dP⊗ ϑ(da′)-a.e. (5.6)

Moreover, from Theorem 7.4 in [17], we have that v is the unique uniformly continuous

viscosity solution to (5.1) (observe that Theorem 7.4 in [17] applies to elliptic equations

on unbounded domains; interpreting t as a space variable, (5.1) can be seen as an elliptic

equation on the space domain [0,∞)×R
d, so that we can now apply Theorem 7.4 in [17]).

Remark 5.1 Notice that Theorem 3.1 in [19] is designed for backward parabolic PDEs,

while (5.1) is a forward parabolic equation. However, we can exploit Theorem 3.1 in [19]

by proceeding as follows. For any T > 0, we consider the HJB equation on [0, T ]× R
d:











−∂v
T

∂t
− sup

a∈A

[

LavT (t, x) + f
(

x, a,
vT

T − t+ 1

)]

= 0, (t, x) ∈ [0, T ) × R
d,

vT (T, x) = h(x), x ∈ R
d.

(5.7)
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Under (H1)(i), (H2)(i), (HA), and (Hϑ), it follows from Theorem 3.1 in [19] that there

exists a uniformly continuous viscosity solution vT to equation (5.7), which admits a

probabilistic representation formula in terms of the unique minimal solution to a cer-

tain BSDE with nonpositive jumps. Define the function v(t, x) := vT (T − t, x), for all

(t, x) ∈ [0, T ] × R
d and for any T > 0. Notice that v is well-defined, thanks to uniqueness

results (see, e.g., Theorem 7.4 in [17]) of viscosity solutions to equation (5.7) (in particular,

vT (T − t, x) = vT
′
(T ′ − t, x), for any (t, x) ∈ [0, T ] × R

d and 0 ≤ T ≤ T ′ < ∞). Moreover,

from the viscosity properties of vT it follows that v is the unique uniformly continuous

viscosity solution to equation (5.1). Then, from the probabilistic representation formula

for vT we deduce the representation formula (5.4) for v. 2

In conclusion, we have proved the following result.

Proposition 5.1 Let Assumptions (H1), (H2), (HA), and (Hϑ) hold. Then, the func-

tion v given by (5.4) is the unique uniformly continuous viscosity solution to (5.1) on

[0,∞) × R
d.

5.2 First convergence result: the proof of (5.2)

Let (λ, φ), with φ Lipschitz, be a viscosity solution to the ergodic equation (4.1). Let us

introduce the function w : [0,∞)× R
d → R given by

w(T, x) := v(T, x) −
(

λT + φ(x)
)

, (T, x) ∈ [0,∞)× R
d. (5.8)

The aim is to state an upper and lower estimate for w, uniformly in time T , so that by

dividing by T , we obtain the convergence of the long run average v(T, .)/T to λ. Classical

PDE arguments (in the case where f does not depend on y) rely on the smoothness of v

and φ in order to prove that w is a sub and supersolution to some PDE without cost or

gain function. Then by comparison principle, and under ergodicity conditions, one would

obtain for w a lower and upper bound function which does not depend on time. In our

general framework, the major difficulty is due to the non-regularity in general of v and φ,

especially when there is singularity of the diffusion coefficient. In this case, it is not clear,

even with the notion of viscosity solution, how to derive an equation for w involving the

difference of v and φ. We circumvent this issue by adopting an alternative approach where

we use probabilistic representations formulae for v and φ. We are also interested in the

case where f(x, a, y) depends on y, that we shall actually tackle by using the nondecreasing

feature of f in y and imposing the following additional assumption.

(H3) The function f can be written as f(x, a, y) = f0(x, a) + f1(x, a, y), where f1
can be either the zero function or it satisfies, for all x ∈ R

d, a ∈ A, y, y′ ∈ R,

y > y′ =⇒ f1(x, a, y) − f1(x, a, y
′) ≤ −κ(y − y′),

for some constant κ > 0.
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Theorem 5.1 Let Assumptions (H1), (H2), (H3), (HA), and (Hϑ) hold. Then, there

exists a positive constant C such that, the function w defined in (5.8) satisfies

−C(1 + |x|) ≤ w(T, x) ≤ C(1 + |x|), (T, x) ∈ [0,∞)× R
d. (5.9)

In particular, we have
v(T, x)

T

T→∞−→ λ. (5.10)

Remark 5.2 We report here the proof of Theorem 5.1 when f = f(x, a) does not depend

on y, since it is much easier. Recall from Remark 5.1 that v(t, x) = vT (T − t, x), where

vT is the unique uniformly continuous viscosity solution to the Hamilton-Jacobi-Bellman

equation (5.7). Therefore, vT admits a stochastic control representation, which in terms of

v reads

v(T, x) = sup
α∈A

E

[
∫ T

0
f
(

Xx,α
s , αs

)

ds+ h(Xx,α
T )

]

, ∀ (T, x) ∈ [0,∞)× R
d,

where A is the set of adapted control processes valued in A, and (Xx,α
t )t≥0 is the unique

solution to the controlled equation (1.2) starting from x at time 0. Similarly, we know from

the proof of Theorem 4.2 that φ is the unique uniformly continuous viscosity solution to

equation (4.10), so that φ is given by

φ(x) = sup
α∈A

E

[
∫ T

0

[

f
(

Xx,α
s , αs

)

− λ
]

ds+ φ(Xx,α
T )

]

, ∀ (T, x) ∈ [0,∞)× R
d.

From the definition of w, we have

w(T, x) = sup
α∈A

E

[
∫ T

0
f
(

Xx,α
s , αs

)

ds + h(Xx,α
T )

]

− sup
α∈A

E

[
∫ T

0
f
(

Xx,α
s , αs

)

ds+ φ(Xx,α
T )

]

≤ sup
α∈A

E
[

(h− φ)(Xx,α
T )

]

.

Proceeding in a similar way, we obtain

w(T, x) ≥ inf
α∈A

E
[

(h− φ)(Xx,α
T )

]

.

Since h and φ are Lipschitz, from estimate (2.4) we deduce (5.9). 2

Proof of Theorem 5.1. We recall from (5.4) and Theorem 4.2 the nonlinear Feynman-Kac

formulae

φ(Xx,a
t ) = Y x,a

t , v(T − t,Xx,a
t ) = Y x,a,T

t , 0 ≤ t ≤ T,

for all (T, x) ∈ [0,∞) × R
d, and any a ∈ Å. Fix then a ∈ Å, and define, for (T, x) ∈

[0,∞) × R
d, the process:

Ỹ x,a,T
t := Y x,a,T

t − λ(T − t)− Y x,a
t , 0 ≤ t ≤ T.

Then, by definition of w in (5.8), we have

w(T, x) = Ỹ x,a,T
0 , ∀ (T, x) ∈ [0,∞) × R

d. (5.11)
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Moreover, from the BSDE (5.5)-(5.6) for Y x,a,T and (4.8)-(4.9) for Y x,a, we derive the

BSDE for Ỹ x,a,T :

Ỹ x,a,T
t = (h− φ)(Xx,a

T ) +

∫ T

t

(

f
(

Xx,a
s , Ias ,

Y x,a,T
s

T − s+ 1

)

− f(Xx,a
s , Ias , λ)

)

ds

+Kx,a,T
T −Kx,a,T

t −
(

Kx,a
T −Kx,a

t

)

−
∫ T

t

(

Zx,a,T
s − Zx,a

s

)

dWs

−
∫ T

t

∫

A

(

Ux,a,T
s (a′)− Ux,a

s (a′)
)

µ̃(ds, da′), 0 ≤ t ≤ T,

and

Ux,a,T
t (a′) ≤ 0, dt⊗ dP⊗ ϑ(da′)-a.e.

Ux,a
t (a′) ≤ 0, dt⊗ dP⊗ ϑ(da′)-a.e.

We shall now prove suitable upper and lower bounds for Ỹ x,a,T , and thus for w(T, x).

• Step 1. Upper bound: w(T, x) ≤ C(1+|x|). Let us consider the BSDE with nonpositive

jumps on [0, T ]:

Ŷ x,a,T
t = (h− φ)(Xx,a

T ) +

∫ T

t

(

f
(

Xx,a
s , Ias ,

Ŷ x,a,T
s + λ(T − s) + φ(Xx,a

s )

T − s+ 1

)

− f(Xx,a
s , Ias , λ)

)

ds+ K̂x,a,T
T − K̂x,a,T

t (5.12)

−
∫ T

t

Ẑx,a,T
s dWs −

∫ T

t

∫

A

Ûx,a,T
s (a′)µ̃(ds, da′)

and

Ûx,a,T
t (a′) ≤ 0, dt⊗ dP⊗ ϑ(da′)-a.e. (5.13)

We know from Theorem 2.1 in [19] that there exists a unique minimal solution (Ŷ x,a,T ,

Ẑx,a,T , Ûx,a,T , K̂x,a,T ) in S2(0,T) × L2(W;0,T) × L2(µ̃;0,T) × K2(0,T) to equation

(5.12)-(5.13). Set Ȳ x,a,T
t = Ŷ x,a,T

t +λ(T−t)+Y x,a
t , t ∈ [0, T ], and recall that Y x,a

t = φ(Xx,a
t ).

Then, from the BSDEs satisfied by Ŷ x,a,T and Y x,a, we easily see that (Ȳ x,a,T , Ẑx,a,T +

Zx,a, Ûx,a,T + Ux,a, K̂x,a,T + Kx,a) is a solution to (5.5)-(5.6). From the minimality of

(Y x,a,T , Zx,a,T , Ux,a,T ,Kx,a,T ), we get: Y x,a,T
t ≤ Ȳ x,a,T

t , and by subtracting to both sides

λ(T − t) + Y x,a
t we end up with

Ỹ x,a,T
t ≤ Ŷ x,a,T

t , t ∈ [0, T ]. (5.14)

Let us now derive an upper bound for Ŷ x,a,T
0 . To this end, we introduce the associated

penalized BSDE with jumps on [0, T ], for n ∈ N:

Ŷ x,a,T,n
t = (h− φ)(Xx,a

T ) +

∫ T

t

(

f
(

Xx,a
s , Ias ,

Ŷ x,a,T,n
s + λ(T − s) + φ(Xx,a

s )

T − s+ 1

)

− f(Xx,a
s , Ias , λ)

)

ds+ n

∫ T

t

∫

A

(Ûx,a,T,n
s (a′))+ϑ(da

′)ds (5.15)

−
∫ T

t

Ẑx,a,T,n
s dWs −

∫ T

t

∫

A

Ûx,a,T,n
s (a′)µ̃(ds, da′).
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From the uniform Lipschitz condition on f(x, a, y) with respect to y, together with As-

sumptions (H2)(ii) and (H3), we have

f
(

Xx,a
s , Ias ,

Ŷ x,a,T,n
s + λ(T − s) + φ(Xx,a

s )

T − s+ 1

)

− f(Xx,a
s , Ias , λ)

≤ ρns
(

Ŷ x,a,T,n
s + φ(Xx,a

s )− λ
)

, 0 ≤ s ≤ T, (5.16)

with (we suppose here that f1 in (H3) is not the zero function; otherwise, ρn can be taken

equal to zero everywhere and the proof becomes easier)

ρns = − κ

T + 1
1
{Ŷ x,a,T,n

s +φ(Xx,a
s )−λ>0}

− L21{Ŷ x,a,T,n
s +φ(Xx,a

s )−λ≤0}
, 0 ≤ s ≤ T. (5.17)

Then, applying Itô’s formula to e
∫ t

0
ρnr drŶ x,a,T,n

t between 0 and T , we get from (5.15):

Ŷ x,a,T,n
0 = e

∫ T

0
ρnr dr(h− φ)(Xx,a

T )−
∫ T

0
ρns e

∫ s

0
ρnr drŶ x,a,T,n

s ds

+

∫ T

0
e
∫ s

0
ρnr dr

(

f
(

Xx,a
s , Ias ,

Ŷ x,a,T,n
s + λ(T − s) + φ(Xx,a

s )

T − s+ 1

)

− f(Xx,a
s , Ias , λ)

)

ds+ n

∫ T

0

∫

A

e
∫ s

0
ρnr dr(Ûx,a,T,n

s (a′))+ϑ(da
′)ds

−
∫ T

0
e
∫ s

0
ρnr drẐx,a,T,n

s dWs −
∫ T

0

∫

A

e
∫ s

0
ρnr drÛx,a,T,n

s (a′)µ̃(ds, da′).

Using (5.16), we obtain

Ŷ x,a,T,n
0 ≤ e

∫ T

0
ρnr dr(h− φ)(Xx,a

T ) +

∫ T

0
ρns e

∫ s

0
ρnr dr

(

φ(Xx,a
s )− λ

)

ds

+ n

∫ T

0

∫

A

e
∫ s

0
ρnr dr(Ûx,a,T,n

s (a′))+ϑ(da
′)ds (5.18)

−
∫ T

0
e
∫ s

0
ρnr drẐx,a,T,n

s dWs −
∫ T

0

∫

A

e
∫ s

0
ρnr drÛx,a,T,n

s (a′)µ̃(ds, da′).

Now, from Proposition 2.1 in [19] we have the following dual representation formula for the

right-hand side of (5.18):

e
∫ T

0
ρnr dr(h− φ)(Xx,a

T ) +

∫ T

0
ρns e

∫ s

0
ρnr dr

(

φ(Xx,a
s )− λ

)

ds

+ n

∫ T

0

∫

A

e
∫ s

0
ρnr dr(Ûx,a,T,n

s (a′))+ϑ(da
′)ds

−
∫ T

0
e
∫ s

0
ρnr drẐx,a,T,n

s dWs −
∫ T

0

∫

A

e
∫ s

0
ρnr drÛx,a,T,n

s (a′)µ̃(ds, da′)

= sup
ν∈V

E
ν

[

e
∫ T

0
ρnr dr(h− φ)(Xx,a

T ) +

∫ T

0
ρns e

∫ s

0
ρnr dr

(

φ(Xx,a
s )− λ

)

ds

]

.

Therefore, we get

Ŷ x,a,T,n
0 ≤ sup

ν∈V
E
ν

[

e
∫ T

0
ρnr dr(h− φ)(Xx,a

T ) +

∫ T

0
ρns e

∫ s

0
ρnr dr

(

φ(Xx,a
s )− λ

)

ds

]

.
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From the definition of ρn in (5.17), we find

Ŷ x,a,T,n
0 ≤ sup

ν∈V
E
ν

[

|h− φ|(Xx,a
T ) + max

( κ

T + 1
, L2

)

∫ T

0
e−min( κ

T+1
,L2)s|φ(Xx,a

s )− λ|ds
]

.

Recalling that h and φ are Lipschitz, from estimate (2.4) we obtain

Ŷ x,a,T,n
0 ≤ C(1 + |x|),

for some positive constant C, independent of x, a, T , and n. Since from Theorem 2.1 in [19]

we have that Ŷ x,a,T,n
0 converges to Ŷ x,a,T

0 , as n goes to infinity, we get the same estimate:

Ŷ x,a,T
0 ≤ C(1 + |x|), and therefore, from (5.11) and (5.14), we deduce that

w(T, x) ≤ C(1 + |x|).

• Step 2. Lower bound: w(T, x) ≥ −C(1 + |x|). As in step 1, where we built an upper

bound for Ỹ x,a,T using the minimality of Y x,a,T , here we shall construct a lower bound

for Ỹ x,a,T exploiting the minimality of Y x,a in the sense of Definition 4.2. In particular,

we fix T > 0 and we recall that (Y x,a
|[0,T ], Z

x,a
|[0,T ], U

x,a
|[0,T ],K

x,a
|[0,T ]) is the minimal solution to

(4.6)-(4.7) on [0, T ] with terminal condition φ(Xx,a
T ). Now, let us consider the BSDE with

nonnegative jumps on [0, T ]:

Y̌ x,a,T
t = (h− φ)(Xx,a

T ) +

∫ T

t

(

f
(

Xx,a
s , Ias ,

v(T − s,Xx,a
s )

T − s+ 1

)

− f(Xx,a
s , Ias , λ)

)

ds (5.19)

−
(

Ǩx,a,T
T − Ǩx,a,T

t

)

−
∫ T

t

Žx,a,T
s dWs −

∫ T

t

∫

A

Ǔx,a,T
s (a′)µ̃(ds, da′)

and

Ǔx,a,T
t (a′) ≥ 0, dt⊗ dP⊗ ϑ(da′)-a.e. (5.20)

Theorem 2.1 in [19] gives the existence of a unique maximal solution (Y̌ x,a,T , Žx,a,T ,

Ǔx,a,T , Ǩx,a,T ) ∈ S2(0,T) × L2(W;0,T) × L2(µ̃;0,T) × K2(0,T) to (5.19)-(5.20). Ac-

tually, Theorem 2.1 in [19] is designed for minimal solutions, while here we deal with

maximal solutions; however, it is easy to show that −Y̌ x,a,T is a minimal solution to a

certain BSDE with nonpositive jumps, therefore we can apply Theorem 2.1 to −Y̌ x,a,T . Set

Y
x,a,T
t = −Y̌ x,a,T

t + Y x,a,T
t − λ(T − t), t ∈ [0, T ], then

(Y
x,a,T

, Z
x,a,T

, U
x,a,T

,K
x,a,T

)

:= (Y
x,a,T

,−Žx,a,T + Zx,a,T ,−Ǔx,a,T + Ux,a,T , Ǩx,a,T +Kx,a,T )

is a solution to (4.6)-(4.7) on [0, T ] with terminal condition φ(Xx,a
T ). From the already

mentioned minimality of (Y x,a

|[0,T ], Z
x,a

|[0,T ], U
x,a

|[0,T ],K
x,a

|[0,T ]) to (4.6)-(4.7), we see that Y x,a
t ≤

Y
x,a,T
t , and by subtracting to both sides Y x,a,T

t − λ(T − t), we end up with

Y̌ x,a,T
t ≤ Ỹ x,a,T

t , t ∈ [0, T ]. (5.21)

We now derive a lower bound for Y̌ x,a,T
0 by means of a dual representation formula. In

particular, we see from Theorem 2.2 in [19] that Y̌ x,a,T
0 admits the dual representation
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formula (observe that, as for Theorem 2.1 in [19], Theorem 2.2 in [19] is designed for

minimal solutions, while here we deal with maximal solutions; however, since −Y̌ x,a,T is a

minimal solution to a certain BSDE with nonpositive jumps, we can apply Theorem 2.2 to

−Y̌ x,a,T )

Y̌ x,a,T
0 = inf

ν∈V
E
ν

[

(h− φ)(Xx,a
T ) +

∫ T

0

(

f
(

Xx,a
s , Ias ,

v(T − s,Xx,a
s )

T − s+ 1

)

− f(Xx,a
s , Ias , λ)

)

ds

]

.

From the Lipschitz property of h and φ, and estimate (2.4), we have

inf
ν∈V

E
ν
[

(h− φ)(Xx,a
T )

]

≥ −C(1 + |x|). (5.22)

Moreover, from the uniform Lipschitz condition on f(x, a, y) with respect to y, and the

nondecreasing property of y 7→ f(x, a, y) in (H2), there exists some adapted, nonpositive,

and bounded process ζ such that

f
(

Xx,a
s , Ias ,

v(T − s,Xx,a
s )

T − s+ 1

)

− f(Xx,a
s , Ias , λ) = ζs

(v(T − s,Xx,a
s )

T − s+ 1
− λ

)

,

for all 0 ≤ s ≤ T . Therefore, we have

inf
ν∈V

E
ν

[
∫ T

0

(

f
(

Xx,a
s , Ias ,

v(T − s,Xx,a
s )

T − s+ 1

)

− f(Xx,a
s , Ias , λ)

)

ds

]

= inf
ν∈V

E
ν

[
∫ T

0
ζs

(v(T − s,Xx,a
s )

T − s+ 1
− λ

)

ds

]

. (5.23)

From step 1 and the Lipschitz property of φ, it follows that v(T, x)− λT ≤ C(1+ |x|), and
consequently v(T,x)

T+1 − λ ≤ C(1 + |x|). Hence, since ζ is nonpositive,

ζs

(v(T − s,Xx,a
s )

T − s+ 1
− λ

)

≥ ζsC(1 + |Xx,a
s |) ≥ −L2C(1 + |Xx,a

s |),

where we used the fact that ζ is bounded by L2, the Lipschitz constant of f . Plugging the

above estimate into (5.23) combined with (2.4), and recalling (5.22), we find

Y̌ x,a,T
0 ≥ −C(1 + |x|).

From (5.11) and (5.21), we conclude that w(T, x) ≥ −C(1 + |x|). 2

Remark 5.3 (i) From Theorem 5.1 and Remark 4.2, we deduce a uniqueness result for the

component λ of a minimal solution to the ergodic BSDE with nonpositive jumps (4.4)-(4.5).

Indeed, consider a family of minimal solutions to (4.4)-(4.5) as in Remark 4.2. Then, from

Theorem 5.1 we see that λ is given by (5.10).

(ii) Let f ∈ L1
loc([0,∞);R) be such that

∫∞
0 e−βtf(t)dt exists for β > 0. A theorem

which states that, under certain conditions on f , if limβ→0+ β
∫∞
0 e−βtf(t)dt = f∞ ∈ R

then limT→∞
1
T

∫ T

0 f(t)dt = f∞, is called a Tauberian theorem, see, e.g., [1]. In our

paper, Theorem 4.1 together with Theorem 5.1 can be thought as a “robust” Taube-

rian theorem. Indeed, in Theorem 4.1 we proved that the convergence of βkv
βk(x) =

βk supα Ex[
∫∞
0 e−βktf(Xα

t , αt)dt] towards λ, and also of vβk(x) − vβk(0) towards φ, allows

to construct a viscosity solution (λ, φ) to the ergodic equation (4.1). Then, Theorem 5.1

implies the convergence of v(T,x)
T

= 1
T
supα Ex[

∫ T

0 f(Xα
t , αt)dt+ h(Xα

T )] towards λ.

2
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5.3 Further convergence result via verification: the proof of (5.3)

We conclude this section by presenting, in the form of a verification theorem, the following

result, which shows the validity of the convergence (5.3).

Theorem 5.2 Let Assumptions (H1), (H2), (HA), and (Hϑ) hold. Suppose that:

(i) (λ, φ), with φ ∈ C2(Rd) and Lipschitz, is a classical solution to the ergodic equation

(4.1).

(ii) In the ergodic equation (4.1), the supremum is attained at a = α(x), for every x ∈ R
d,

for some function α : A→ R
d such that b, σ in (2.8) satisfy Assumption (H1).

Consider the unique (viscosity) solution v to (5.4). Then, there exists a real constant c

such that

v(T, x)− (λT + φ(x))
T→∞−→ c,

for all x ∈ supp ρ, the support of the invariant measure ρ given by Proposition 2.1. In

particular, when supp ρ = R
d we deduce that φ is uniquely determined up to a constant.

Remark 5.4 The existence of a smooth solution (λ, φ) to the ergodic equation (4.1) is

ensured under a uniform ellipticity condition, see, e.g., Theorem 1.1 in [27]. More precisely,

suppose that assumptions (H1), (H2), (HA), and (Hϑ) hold and let (λ, φ) be a viscosity

solution to (4.1) with φ Lipschitz, whose existence follows from Theorem 4.1. Then, to

exploit Theorem 1.1 in [27], we fix δ > 0 and we consider the elliptic equation in the

unknown ψ on the bounded domain BR ⊂ Rd (the open ball of radius R > 0 centered at

the origin)

δψ(x) − sup
a∈A

[

Laψ + f(x, a, λ)− λ+ δφ(x)
]

= 0, on BR, (5.24)

ψ = φ, on ∂BR. (5.25)

Notice that, thanks to the presence of the term “δψ(x)” in equation (5.24), we can apply

comparison Theorem 3.3 in [17], from which it follows that φ is the unique uniformly

continuous viscosity solution to equation (5.24)-(5.25). Let us now impose the following

uniform ellipticity condition: there exists ν ∈ (0, 1], possibly depending on R, such that

ν|ξ|2 ≤
d

∑

i,j=1

(σσ⊺)ij(x, a)ξiξj ≤ ν−1|ξ|2, ∀ ξ ∈ R
d,

for all x ∈ BR and a ∈ A. Then, as explained in Remark 1.1 of [27], under the above

assumption, Theorem 1.1 in [27] holds, and there exists a unique solution ψ ∈ C2(BR) ∩
C(BR) to equation (5.24)-(5.25). Theorem 3.3 in [17] implies that ψ coincides with our

function φ, so that φ ∈ C2(BR). Since R is arbitrary, we conclude that φ ∈ C2(Rd). 2

Proof. Step 1. Notice that, for any T, S > 0 and for all x ∈ R
d, we have

v(T + S, x) = sup
α∈A

E

[
∫ T

0
f
(

Xx,α
s , αs,

v(T + S − s,Xx,α
s )

T + S − s+ 1

)

ds+ v(S,Xx,α
T )

]

, (5.26)
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where A is the set of adapted control processes valued in A, and (Xx,α
t )t≥0 is the unique

solution to the controlled equation (1.2) starting from x at time 0. As a matter of fact,

to prove (5.26) we recall from Remark 5.1 that v(T + S, x) = vT+S(0, x), for all x ∈ R
d,

where vT+S is the unique uniformly continuous viscosity solution to the following Hamilton-

Jacobi-Bellman equation in the unknown ṽT+S:

−∂ṽ
T+S

∂t
− sup

a∈A

[

LaṽT+S(t, x) + f
(

x, a,
vT+S

T + S − t+ 1

)]

= 0, (t, x) ∈ [0, T ]× R
d,

ṽT+S(T, x) = vT+S(T, x), x ∈ R
d.

As a consequence, vT+S is given, for all (t, x) ∈ [0, T ] × R
d, by the stochastic control

representation:

vT+S(t, x) = sup
α∈A

E

[
∫ T−t

0
f
(

Xx,α
s , αs,

vT+S(s+ t,Xx,α
s )

T + S − s− t+ 1

)

ds + vT+S(T,Xx,α
T−t)

]

,

which implies (5.26). In particular, we have

v(T + S, x) ≥ E

[
∫ T

0
f
(

Xx,α
s , α(Xx,α

s ),
v(T + S − s,X

x,α
s )

T + S − s+ 1

)

ds+ v(S,X
x,α
T )

]

.

On the other hand, applying Itô’s formula to φ(X
x,α
s ) between 0 and T , and using the

optimality of α in the ergodic equation (4.1), we obtain

φ(x) = E

[
∫ T

0
f(Xx,α

s , α(Xx,α
s ), λ)ds − λT + φ(X

x,α
T )

]

.

Therefore, w in (5.8) satisfies

w(T + S, x) ≥ E

[

w(S,X
x,α
T ) (5.27)

+

∫ T

0
f
(

Xx,α
s , α(Xx,α

s ),
v(T + S − s,X

x,α
s )

T + S − s+ 1

)

− f(Xx,α
s , α(Xx,α

s ), λ)ds

]

.

Step 2. Let us prove that there exists a positive constant C such that

|w(T, x) − w(T, x′)| ≤ C|x− x′|,

for all T ≥ 0 and x, x′ ∈ R
d. Recalling (5.8) and since φ is Lipschitz, it is therefore enough

to prove that the function v satisfies

|v(T, x)− v(T, x′)| ≤ C|x− x′|, T ≥ 0, x ∈ R
d, (5.28)

for some positive constant C. We know that v(T, x) = Y x,a,T
0 is represented by the min-

imal solution to the BSDE with nonpositive jumps (5.5)-(5.6) on [0, T ]. We recall from

Theorem 2.1 in [19] that Y x,a,T,n ↑ Y x,a,T , where (Y x,a,T,n, Zx,a,T,n, Ux,a,T,n) ∈ S2(0,T) ×
L2(W;0,T) × L2(µ̃;0,T) is the solution to the penalized BSDE on [0, T ]:

Y x,a,T,n
t = h(Xx,a

T ) +

∫ T

t

f(Xx,a
s , Ias ,

Y x,a,T,n
s

T − s+ 1
)ds + n

∫ T

t

∫

A

(

Ux,a,T,n
s (a′)

)

+
ϑ(da′)ds
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−
∫ T

t

Zx,a,T,n
s dWs −

∫ T

t

∫

A

Ux,a,T,n
s (a′)µ̃(ds, da′), 0 ≤ t ≤ T

and

Ux,a,T,n
t (a′) ≤ 0, dt⊗ dP⊗ ϑ(da′)-a.e.

Then, (5.28) follows once we get:

|Y x,a,T,n
0 − Y x′,a,T,n

0 | ≤ C|x− x′|,

for a constant C that does not depend on x, a, T , and n. This can be done using Girsanov

theorem and the dissipativity condition (2.2) in the same way as for (3.11).

Step 3. Now, we proceed as in [15] and we introduce the set Γ which contains all the

ω-limits of the family {w(T, ·)}T>1 in C(Rd) (we endow C(Rd) with the topology for which

fj → f in C(Rd) if and only if fj converges uniformly to f on any compact subset of Rd).

In other words, Γ is given by

Γ :=
{

w∞ ∈ C(Rd) : w(Tj , ·) → w∞ in C(Rd) for some (Tj)j∈N with Tj → ∞
}

.

It follows from step 2 that the family {w(T, ·)}T>1 is relatively compact in C(Rd). In

particular, Γ 6= ∅, and any w∞ in Γ is Lipschitz. To conclude, it suffices to prove that every

w∞ ∈ Γ is equal to the same constant c ∈ R on suppρ.

- Step 3a. We first show that any element of Γ is constant on supp ρ. Let w∞ ∈ Γ,

therefore there exists a sequence (Tj)j∈N, with Tj → ∞, such that w(Tj , ·) → w∞ in C(Rd)

as j → ∞. From (5.27) with S = Tj − T , we have

w(Tj , x) ≥ E

[

w(Tj − T,X
x,α
T ) (5.29)

+

∫ T

0
f
(

Xx,α
s , α(Xx,α

s ),
v(Tj − s,X

x,α
s )

Tj − s+ 1

)

− f(Xx,α
s , α(Xx,α

s ), λ)ds

]

.

From (5.10) we have for all s ∈ [0, T ],

v(Tj − s,X
x,α
s )

Tj − s+ 1

j→∞−→ λ, P-a.s.

Therefore, sending j → ∞ in (5.29), and by the dominated convergence theorem, we obtain

w∞(x) ≥ E
[

w∞(X
x,α
T )

]

.

Moreover, choosing T := Tj and letting j → ∞ in the above inequality, we obtain, from

Proposition 2.1:

w∞(x) ≥
∫

Rd

w∞(x′)ρ(dx′).

Now, taking the infimum with respect to x ∈ R
d, we end up with

0 ≥
∫

Rd

(w∞(x′)− inf
Rd
w∞)ρ(dx′) ≥ 0.

As a consequence w∞ = infRd w∞, ρ-a.s., therefore w∞ is constant on supp ρ.
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- Step 3b. We next prove that every w∞ ∈ Γ is equal to the same constant c on supp ρ.

Proceeding as in the derivation of (5.27), we have:

E
[

w(R+ S,X
x,α
T−R

]

(5.30)

≥ E

[

w(S,X
x,α
T ) +

∫ T

R

f
(

Xx,α
s , α(Xx,α

s ),
v(T + S − s,X

x,α
s )

T + S − s+ 1

)

− f(Xx,α
s , α(Xx,α

s ), λ)ds

]

.

for any T, S,R > 0 with R ≤ T . Suppose that there exist two real constants c1, c2 and

two diverging sequences (Tj)j∈N and (Sj)j∈N such that w(Tj , ·) → c1 and w(Sj , ·) → c2 on

supp ρ as j → ∞. Let us take T := Tj , R = Tj − S, and S := Sk in (5.30). Then, letting

j → ∞ we obtain (notice that, by (5.30) and Lebesgue’s dominated convergence theorem,

the two integral terms in (5.30) simplify one with the other as j → ∞)

c1 ≥
∫

Rd

w(Sk, x
′)ρ(dx′).

Now, sending k → ∞, we find

c1 ≥ lim
k→∞

∫

Rd

w(Sk, x
′)ρ(dx′) =

∫

Rd

C2ρ(dx
′) = c2.

Therefore c1 ≥ c2. Changing the role of (Tj)j∈N and (Sj)j∈N, we also find c2 ≥ c1. Hence,

c1 = c2 and the claim follows. 2

Remark 5.5 Under the hypotheses of Theorem 5.2 and when f = f(x, a) does not depend

on y, λ can be interpreted as value of an ergodic control problem with gain functional

J(x, α) := lim sup
T→∞

E

[

∫ T

0
f(Xx,α

t , αt)dt+ h(Xx,α
T )

]

,

where Xx,α is the controlled diffusion process satisfying (1.2), starting from x ∈ R
d at time

0, and α ∈ A is a control process, i.e., an A-valued adapted process. More precisely, it

is clear that J(x, α) depends only on the asymptotic behavior of the trajectories of Xx,α.

Therefore, from the ergodicity of Xx,α, we expect that there exists a real number λ∗,

independent of x ∈ R
d, such that

λ∗ := sup
α∈A

J(x, α), ∀x ∈ R
d,

namely, λ∗ is the value of the ergodic control problem. Let us prove that λ∗ = λ. Firtsly,

observe that, since f does not depend on y, the function v in (5.4) admits the stochastic

control representation

v(T, x) = sup
α∈A

E

[

∫ T

0
f(Xx,α

t , αt)dt+ h(Xx,α
T )

]

.

From (5.10) we know that, for any x ∈ R
d,

λ = lim
T→∞

v(T, x)

T
= lim

T→∞
sup
α∈A

1

T
E

[

∫ T

0
f(Xx,α

t , αt)dt+ h(Xx,α
T )

]
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= lim
T→∞

sup
α∈A

1

T
E

[

∫ T

0
f(Xx,α

t , αt)dt
]

, (5.31)

where the last equality follows from the fact that limT→∞ supα∈A
1
T
E[h(Xx,α

T )] = 0, which

is a consequence of the Lipschitz property of h and estimate (2.4). From (5.31) we see that

λ∗ ≤ λ. To prove the reverse inequality, fix x ∈ R
d, then, applying Itô’s formula to φ(X

x,α
t )

between 0 and T , and using the optimality of α in the ergodic equation (4.1), we obtain

λ =
1

T
E

[

∫ T

0
f(X

x,α
t , α(X

x,α
t ))dt+ φ(X

x,α
T )− φ(x)

]

.

From the Lipschitz property of φ and estimate (2.4), we have 1
T
E[φ(X

x,α
T ) − φ(x)] → 0 as

T → ∞, therefore

λ = lim
T→∞

1

T
E

[

∫ T

0
f(X

x,α
t , α(X

x,α
t ))dt

]

≤ sup
α∈A

{

lim sup
T→∞

1

T
E

[

∫ T

0
f(Xx,α

t , αt)dt
]}

= λ∗,

which implies that λ∗ = λ. 2

Appendix

A Ergodicity proofs

A.1 Proof of Lemma 2.1

• Proof of (i)

Let t ≥ 0, then an application of Itô’s formula to eγs|Xx,a
s |2 between 0 and t yields

eγt|Xx,a
t |2 = |x|2 + γ

∫ t

0
eγs|Xx,a

s |2ds+ 2

∫ t

0
eγsXx,a

s .b(Xx,a
s , Ias )ds

+

∫ t

0
eγs‖σ(Xx,a

s , Ias )‖2ds+ 2

∫ t

0
eγs(Xx,a

s )⊺σ(Xx,a
s , Ias )dWs.

Rearranging the terms in a suitable way so to exploit the dissipativity condition (H1)(ii),

we obtain

eγt|Xx,a
t |2 = |x|2 + γ

∫ t

0
eγs|Xx,a

s |2ds+ 2

∫ t

0
eγsXx,a

s .(b(Xx,a
s , Ias )− b(0, Ias ))ds

+

∫ t

0
eγstr

[(

σ(Xx,a
s , Ias )− σ(0, Ias )

)(

σ(Xx,a
s , Ias )− σ(0, Ias )

)

⊺
]

ds

+ 2

∫ t

0
eγsXx,a

s .b(0, Ias )ds + 2

∫ t

0
eγstr

[

σ(0, Ias )
(

σ(Xx,a
s , Ias )− σ(0, Ias )

)

⊺
]

ds

+

∫ t

0
eγstr

[

σ(0, Ias )σ(0, I
a
s )

⊺
]

ds+ 2

∫ t

0
eγs(Xx,a

s )⊺σ(Xx,a
s , Ias )dWs.

Using (H1), we find

eγt|Xx,a
t |2 ≤ |x|2 + γ

∫ t

0
eγs|Xx,a

s |2ds− 2γ

∫ t

0
eγs|Xx,a

s |2ds+ 2M1

∫ t

0
eγs|Xx,a

s |ds
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+ 2M1L1

∫ t

0
eγs|Xx,a

s |ds+M2
1

∫ t

0
eγsds+ 2

∫ t

0
eγs(Xx,a

s )⊺σ(Xx,a
s , Ias )dWs,

where M1 := supa∈A(|b(0, a)| + ‖σ(0, a)‖). From the inequality |Xx,a
s | ≤ ε|Xx,a

s |2 + 1/(4ε),

for any ε > 0, we obtain

eγt|Xx,a
t |2 ≤ |x|2 − (γ − 2M1ε− 2M1L1ε)

∫ t

0
eγs|Xx,a

s |2ds

+

(

M1 +M1L1

2ε
+M2

1

)
∫ t

0
eγsds+ 2

∫ t

0
eγs(Xx,a

s )⊺σ(Xx,a
s , Ias )dWs. (A.1)

We can find ε such that γ − 2M1ε − 2M1L1ε ≥ 0 (more precisely, if M1 = 0 then ε can

be any positive real number; otherwise we take ε ≤ γ/(2M1 + 2M1L1)), therefore (also

multiplying both sides in (A.1) by e−γt)

|Xx,a
t |2 ≤ e−γt|x|2 +

(

M1 +M1L1

2ε
+M2

1

)

1− e−γt

γ

+ 2e−γt

∫ t

0
eγs(Xx,a

s )⊺σ(Xx,a
s , Ias )dWs. (A.2)

Now, consider ν ∈ V and recall that W remains a Brownian motion under Pν . Then, the

following well-known estimate holds under (H1)(i): for all T > 0 and p ≥ 1, there exists

some positive constant C̄T,p such that

sup
ν∈V

E
ν
[

sup
0≤s≤T

|Xx,a
s |p

]

≤ C̄T,p

(

1 + |x|p
)

, ∀ (x, a) ∈ R
d ×A. (A.3)

Estimate (A.3) implies that the local martingale

(MT )T≥0 :=

(
∫ T

0
eγs(Xx,a

s )⊺σ(Xx,a
s , Ias )dWs

)

T≥0

is indeed a P
ν-martingale. Then, we have E

ν [e−γtMt] = 0. Therefore, taking the expecta-

tion E
ν in (A.2), we find

E
ν
[

|Xx,a
t |2

]

≤ |x|2 +
(

M1 +M1L1

2ε
+M2

1

)

1

γ
,

from which we deduce (2.4) with C :=
√

max{1, [(M1 +M1L1)/(2ε) +M2
1 ]/γ}.

• Proof of (ii)

Applying Itô’s formula to |Xx,a
t −Xx′,a

t |2 we find

|Xx,a
t −Xx′,a

t |2 = |x− x′|2 + 2

∫ t

0
(Xx,a

s −Xx′,a
s ).(b(Xx,a

s , Ias )− b(Xx′,a
s , Ias ))ds

+

∫ t

0
‖σ(Xx,a

s , Ias )− σ(Xx′,a
s , Ias )‖2ds (A.4)

+ 2

∫ t

0
(Xx,a

s −Xx′,a
s )⊺(σ(Xx,a

s , Ias )− σ(Xx′,a
s , Ias ))dWs.
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Now, consider ν ∈ V and recall that W remains a Brownian motion under P
ν . Using

estimate (A.3), we see that the local martingale

(
∫ t

0
(Xx,a

s −Xx′,a
s )⊺(σ(Xx,a

s , Ias )− σ(Xx′,a
s , Ias ))dWs

)

t≥0

is indeed a P
ν-martingale. Therefore, taking the expectation E

ν with respect to P
ν in (A.4)

and using the dissipativity condition (2.2), we obtain

E
ν
[

|Xx,a
t −Xx′,a

t |2
]

≤ |x− x′|2 − 2γ

∫ t

0
E
ν
[

|Xx,a
s −Xx′,a

s |2
]

ds,

which implies

E
ν
[

|Xx,a
t −Xx′,a

t |2
]

≤ |x− x′|2e−2γt.

2

A.2 Proof of Proposition 2.1

Step 1. Existence and uniqueness of ρ. Let W̃ = (W̃t)t≥0 be a d-dimensional Brownian

motion, independent of W and µ. Then, we define

W̄t =

{

Wt, t ≥ 0,

W̃−t, t < 0.

For any T ∈ R and x ∈ R
d, we denote XT,x = (XT,x

t )t≥T the unique solution to the equation

on [T,∞):

dXt = b(Xt) dt+ σ(Xt) dW̄t, t ≥ T, XT = x. (A.5)

From the time-homogeneity of equation (A.5), it follows the law invariance property L(XT,x
t )

= L(Xx
t−T ), for t ≥ T , where Xx is the solution to (A.5) starting from x at time 0.

Let S > T > 0 and x ∈ R
d, then, applying Itô’s formula to the difference |X−S,x

t −X−T,x
t |2

from −T to t ∈ [−T, 0], we obtain

|X−S,x
t −X−T,x

t |2 = |X−S,x
−T − x|2 + 2

∫ t

−T

(X−S,x
s −X−T,x

s ).(b(X−S,x
s )− b(X−T,x

s ))ds

+

∫ t

−T

‖σ(X−S,x
s )− σ(X−T,x

s )‖2ds (A.6)

+ 2

∫ t

−T

(X−S,x
s −X−T,x

s )⊺(σ(X−S,x
s )− σ(X−T,x

s ))dW̄s.

Taking the expectation and using the dissipativity condition (2.2), we find

E
[

|X−S,x
t −X−T,x

t |2
]

≤ E
[

|X−S,x
−T − x|2

]

− 2γ

∫ t

−T

E
[

|X−S,x
s −X−T,x

s |2
]

ds,

which implies

E
[

|X−S,x
0 −X−T,x

0 |2
]

≤ E
[

|X−S,x
−T − x|2

]

e−2γT . (A.7)
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Similar to (2.4), we can prove that there exists a positive constant C̄, depending only on

the L1, M1, and γ, such that

E
[

|X−S,x
−T − x|2

]

≤ C̄(1 + |x|2). (A.8)

Plugging (A.8) into (A.7), we obtain

E
[

|X−S,x
0 −X−T,x

0 |2
]

≤ C̄(1 + |x|2)e−2γT . (A.9)

It follows from (A.9) that (X−T,x
0 )T>0 converges, as T → ∞, to some square integrable

random variable ηx, which a priori depends on x. Let x′ ∈ R
d, then applying Itô’s formula

to |X−T,x
s −X−T,x′

s |2 between −T and t ∈ [−T, 0], we find

|X−T,x
t −X−T,x′

t |2 = |x− x′|2 + 2

∫ t

−T

(X−T,x
s −X−T,x′

s ).(b(X−T,x
s )− b(X−T,x′

s ))ds

+

∫ t

−T

‖σ(X−T,x
s )− σ(X−T,x′

s )‖2ds

+ 2

∫ t

−T

(X−T,x
s −X−T,x′

s )⊺(σ(X−T,x
s )− σ(X−T,x′

s ))dW̄s.

Taking the expectation and using the dissipativity condition (2.2), we obtain

E
[

|X−T,x
t −X−T,x′

t |2
]

≤ |x− x′|2 − 2γ

∫ t

−T

E
[

|X−T,x
s −X−T,x′

s |2
]

ds,

which implies

E
[

|X−T,x
0 −X−T,x′

0 |2
]

≤ |x− x′|2e−2γT T→∞−→ 0.

As a consequence, ηx = ηx
′
=: η. We denote ρ := L(η). Finally, using the law invariance

property already recalled, and the fact that convergence in L2(P) implies convergence in

law, we deduce

L(Xx
T ) = L(X−T,x

0 ) −→ ρ, (A.10)

weakly as T → ∞. From the square integrability of η we see that
∫

Rd |x|2ρ(dx) < ∞. Let

us now prove the invariance property. Let ϕ ∈ Cb(R
d), then, from the Markov property we

have

P
α
t+sϕ(x) = P

α
t (P

α
s ϕ)(x), ∀ t, s ≥ 0.

Sending t→ ∞, using (A.10) and the Feller property, we obtain

∫

Rd

ϕ(x)ρ(dx) =

∫

Rd

Pα
s ϕ(x)ρ(dx), ∀ s ≥ 0, (A.11)

for all ϕ ∈ Cb(R
d). By a monotone class argument, we see that (A.11) remains true for all

ϕ ∈ B(Rd), which implies the invariant property of ρ. Concerning the uniqueness of ρ, let

us consider another invariance probability measure ν and take ϕ ∈ Cb(R
d), then

∫

Rd

ϕ(x)ν(dx) =

∫

Rd

Pα
s ϕ(x)ν(dx)

s→∞−→
∫

Rd

(
∫

Rd

ϕ(x)ρ(dx)

)

ν(dx) =

∫

Rd

ϕ(x)ρ(dx).
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Since the result holds for any ϕ ∈ Cb(R
d), we deduce the uniqueness of ρ.

Step 2. (2.9) is valid for any continuous ϕ satisfying a linear growth condition. For any

R > 0, consider a continuous function χR : Rd → [0, 1] which is equal to 1 on BR ⊂ R
d (the

open ball of radius R centered at the origin) and is equal to 0 on R
d\B2R. Then

∣

∣

∣

∣

E[ϕ(Xx
t )]−

∫

Rd

ϕ(x)ρ(dx)

∣

∣

∣

∣

≤
∣

∣

∣

∣

E[ϕ(Xx
t )χR(X

x
t )]−

∫

Rd

ϕ(x)χR(x)ρ(dx)

∣

∣

∣

∣

(A.12)

+

∣

∣

∣

∣

E[ϕ(Xx
t )(1− χR(X

x
t ))]−

∫

Rd

ϕ(x)(1 − χR(x))ρ(dx)

∣

∣

∣

∣

.

Since ϕχR ∈ Cb(R
d), the first term on the right-hand side of (A.12) goes to zero as t→ ∞.

If

lim
R→∞

lim sup
t→∞

∣

∣

∣

∣

E[ϕ(Xx
t )(1− χR(X

x
t ))] −

∫

Rd

ϕ(x)(1 − χR(x))ρ(dx)

∣

∣

∣

∣

= 0, (A.13)

then, taking first lim supt→∞ and then limR→∞ in (A.12), we get the thesis. Therefore it

remains to prove (A.13). From Cauchy-Schwarz inequality, the linear growth property of

ϕ, and estimate (A.8), we have that there exists a positive constant C such that

∣

∣E[ϕ(Xx
t )(1 − χR(X

x
t ))]

∣

∣ ≤
√

E[|ϕ(Xx
t )|2]

√

Ex[|1− χR(Xx
t )|2]

≤ C(1 + |x|)
√

E[|1− χR(Xx
t )|2].

Since the function |1− χR|2 ∈ Cb(R
d), we find

lim sup
t→∞

∣

∣E[ϕ(Xx
t )(1 − χR(X

x
t ))]

∣

∣ ≤ C(1 + |x|)
√

∫

Rd

|1− χR(x)|2ρ(dx).

Similarly, we have

∣

∣

∣

∣

∫

Rd

ϕ(x)(1 − χR(x))ρ(dx)

∣

∣

∣

∣

≤
√

∫

Rd

|ϕ(x)|2ρ(dx)
√

∫

Rd

|1− χR(x)|2ρ(dx)

≤ C

(

1 +

√

∫

Rd

|x|2ρ(dx)
)

√

∫

Rd

|1− χR(x)|2ρ(dx),

where we recall that
∫

Rd |x|2ρ(dx) <∞. In conclusion, we obtain

lim sup
t→∞

∣

∣

∣

∣

E[ϕ(Xx
t )(1 − χR(X

x
t ))]−

∫

Rd

ϕ(x)(1 − χR(x))ρ(dx)

∣

∣

∣

∣

≤ C

(

1 + |x|+
√

∫

Rd

|x|2ρ(dx)
)

√

∫

Rd

|1− χR(x)|2ρ(dx).

Notice that
∫

Rd

|1− χR(x)|2ρ(dx) ≤
∫

Rd\BR

ρ(dx) = ρ(Rd\BR)
R→∞−→ 0,

which implies (A.13). 2
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B Elliptic BSDEs

B.1 Proof of Lemma 3.1

Let 0 ≤ t ≤ T <∞ and apply Itô’s formula to e−2βs|∆Ys|2 between t and T , then

e−2βt|∆Yt|2 = e−2βT |∆YT |2 + 2n

∫ T

t

∫

A

e−2βs∆Ys
[

(U1,β,n
s (a′′))+ − (U2,β,n

s (a′′))+
]

ϑ(da′′)ds

+ 2

∫ T

t

e−2βs∆Ys
(

f1(X
x,a
s , Ias , βY

1,β,n
s )− f2(X

x′,a′

s , Ia
′

s , βY
2,β,n
s )

)

ds

− 2

∫ T

t

e−2βs∆Ys∆Zs dWs − 2

∫ T

t

∫

A

e−2βs∆Ys∆Us(a
′′) µ̃(ds, da′′)

−
∫ T

t

e−2βs|∆Zs|2ds−
∫ T

t

∫

A

e−2βs|∆Us(a
′′)|2µ(ds, da′′). (B.14)

Notice that, using the nonincreasing property of f1 in y, we have

∫ T

t

e−2βs∆Ys
(

f1(X
x,a
s , Ias , βY

1,β,n
s )− f2(X

x′,a′

s , Ia
′

s , βY
2,β,n
s )

)

ds

≤
∫ T

t

e−2βs∆Ys(∆
′
sf1 +∆sf)ds.

Now, define the [1, n + 1]-valued map ν as follows

νt(a
′′) = 1 + n

(U1,β,n
t (a′′))+ − (U2,β,n

t (a′′))+
∆Ut(a′′)

1{∆Ut(a′′)6=0}, t ≥ 0, a′′ ∈ A.

Observe that ν is a P⊗B(A)-measurable map satisfying 1 ≤ νs(a) ≤ n+1, ds⊗dP⊗ϑ(da)-
a.e., then ν ∈ Vn. Let us consider the probability measure P

ν equivalent to P on (Ω,FT )

with Radon-Nikodym density given by (2.3). Recalling that µ̃ν denotes the compensated

martingale measure associated to µ under Pν , equation (B.14) can be rewritten as follows

e−2βt|∆Yt|2 +
∫ T

t

e−2βs|∆Zs|2ds +
∫ T

t

∫

A

e−2βs|∆Us(a
′′)|2µ(ds, da′′)

≤ e−2βT |∆YT |2 + 2

∫ T

t

e−2βs∆Ys(∆
′
sf1 +∆sf)ds− 2

∫ T

t

e−2βs∆Ys∆Zs dWs

− 2

∫ T

t

∫

A

e−2βs∆Ys∆Us(a
′′) µ̃ν(ds, da′′). (B.15)

From Lemma 2.5 in [19], we see that the two stochastic integrals on the right-hand side of

(B.15) are martingales. Hence, taking the expectation E
ν , conditional on Ft, with respect

to P
ν in (B.15), we end up with estimate (3.7). 2

B.2 Proof of Proposition 3.1

Uniqueness. Fix (β, n) ∈ (0,∞) × N and consider two solutions (Y 1,β,n, Z1,β,n, U1,β,n),

(Y 2,β,n, Z2,β,n, U2,β,n) ∈ S2
loc ×L2

loc(W)×L2
loc(µ̃) to (3.6). Set ∆Yt = Y 1,β,n

t − Y 2,β,n
t , ∆Zt

= Z1,β,n
t −Z2,β,n

t , and ∆Ut(a
′) = U1,β,n

t (a′)−U2,β,n
t (a′), t ≥ 0, a′ ∈ A. Let 0 ≤ t ≤ T <∞.
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Then, from estimate (3.7) with f1 = f2 = f (so that ∆′f1 = ∆f = 0), there exists ν ∈ Vn

such that

e−2βt|∆Yt|2 ≤ E
ν
[

e−2βT |∆YT |2
∣

∣Ft

]

. (B.16)

Moreover, recall from (2.4) that the following estimate holds

E
ν
[

|Xx,a
T |2

]

≤ Cb,σ(1 + |x|2), ∀T ≥ 0.

Since |∆YT | ≤ 2C(1 + |Xx,a
T |), we conclude that E

ν[e−2βT |∆YT |2] → 0, as T → ∞. From

(B.16) it follows that ∆Y = 0. Finally, plugging ∆Y = 0 into (B.15), we conclude that

∆Z = 0 and ∆U = 0.

Existence. Step 1. Approximating BSDE. Fix (x, a, β, n) ∈ R
d × R

q × (0,∞) × N, T > 0,

and consider the backward stochastic differential equation on [0, T ] given by, P-a.s.,

Yt = −β
∫ T

t

Ys ds+ n

∫ T

t

∫

A

(Us(a
′))+ϑ(da

′) ds +

∫ T

t

f(Xx,a
s , Ias , βYs) ds

−
∫ T

t

Zs dWs −
∫ T

t

∫

A

Us(a
′) µ̃(ds, da′), 0 ≤ t ≤ T. (B.17)

Notice that (B.17) has a zero terminal condition at the final time T . It follows from Lemma

2.4 in [29] that there exists a unique solution (Y T , ZT , UT ) ∈ S2(0,T) × L2(W;0,T) ×
L2(µ̃;0,T) to (B.17).

Step 2. Estimate for Y T . Let t ∈ [0, T ], then, from estimate (3.7) with (Y 1,β,n, Z1,β,n, U1,β,n) =

(Y T , ZT , UT ), (Y 2,β,n, Z2,β,n, U2,β,n) = (0, 0, 0), f1 = f , and f2 = 0, there exists ν ∈ Vn:

|Y T
t |2 ≤ 2

∫ T

t

e−2β(s−t)
E
ν
[

Y T
s f(X

x,a
s , Ias , 0)

∣

∣Ft

]

ds

≤ 2

∫ T

t

e−2β(s−t)
√

Eν
[

|Y T
s |2

∣

∣Ft

]

√

Eν
[

|f(Xx,a
s , Ias , 0)|2

∣

∣Ft

]

ds. (B.18)

Set g(s) = e−2β(s−t)
E
ν [|Y T

s |2|Ft] and h(s) = 2e−β(s−t)
√

Eν [|f(Xx,a
s , Ias , 0)|2], for any s ∈

[t, T ]. Then, recalling that g(T ) = 0, inequality (B.18) becomes

g(t) ≤ g(T ) +

∫ T

t

√

g(s)h(s)ds.

Our aim is to derive a Gronwall type estimate for g. To this end, define

g̃(t) := g(T ) +

∫ T

t

√

g(s)h(s)ds, 0 ≤ t ≤ T.

Notice that g̃ ∈ C1([0, T ]). Moreover g(t) ≤ g̃(t), for any 0 ≤ t ≤ T , and

g̃(T ′) = g̃(T ′′) +

∫ T ′′

T ′

√

g(s)h(s)ds ≤ g̃(T ′′) +

∫ T ′′

T ′

√

g̃(s)h(s)ds, t ≤ T ′ < T ′′ ≤ T.

Dividing by T ′′ − T ′ and letting T ′′ − T ′ → 0, we deduce the differential inequality

g̃′(s) ≥ −h(s)
√

g̃(s), t ≤ s ≤ T.
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We have
d
√

g̃(s)

ds
≥ −1

2
h(s),

which yields
√

g̃(T )−
√

g̃(t) ≥ −1

2

∫ T

t

h(s)ds.

Therefore, we find

|Y T
t | =

√

g(t) ≤
√

g̃(t) ≤
∫ T

t

e−β(s−t)
√

Eν
[

|f(Xx,a
s , Ias , 0)|2

∣

∣Ft

]

ds.

Recalling that |f(x, a, 0)| ≤ L2|x|+M2, withM2 := supa∈A |f(0, a, 0)|, so that |f(x, a, 0)|2 ≤
2L2

2|x|2 + 2M2
2 , and using the inequality

√
a+ b ≤ √

a+
√
b, for any a, b ∈ R+, we find

|Y T
t | ≤

√
2L2

∫ ∞

t

e−β(s−t)
√

Eν
[

|Xx,a
s |2

∣

∣Ft

]

ds+
√
2M2

∫ ∞

t

e−β(s−t)ds.

From estimate (2.6), we have

|Y T
t | ≤

√
2
(

L2

√

Cb,σ

(

1 + |Xx,a
t |

)

+M2

)

∫ ∞

t

e−β(s−t)ds

=
√
2
L2

√

Cb,σ(1 + |Xx,a
t |) +M2

β
. (B.19)

Step 3. Convergence of (Y T )T>0. Let T, T
′ > 0, with T < T ′, and denote ∆Yt = Y T

t −Y T ′

t ,

0 ≤ t ≤ T . Let t ∈ [0, T ], then estimate (3.7) reads

|∆Yt|2 ≤ e−2β(T−t)
E
ν
[

|∆YT |2
∣

∣Ft

] T→∞−→ 0, (B.20)

where the convergence result follows from (B.19) and (2.6). Let us now consider the family

of real-valued càdlàg adapted processes (Y T )T>0. It follows from (B.20) that, for any t ≥ 0,

the family (Y T
t (ω))T>0 is Cauchy for almost every ω, so that it converges P-a.s. to some

Ft-measurable random variable Yt, which is bounded from the right-hand side of (B.19).

Moreover, using again (B.20), (B.19), and (2.6), we see that, for any 0 ≤ S < T ∧ T ′, with

T, T ′ > 0, we have

sup
0≤t≤S

|Y T ′

t − Y T
t | ≤ e−β(T∧T ′−S)C0 sup

0≤t≤S

(1 + |Xx,a
t |) T,T ′→∞−→ 0, (B.21)

where C0 is a positive constant independent of S, T, T ′. In other words, the family (Y T )T>0

converges P-a.s. to Y uniformly on compact subsets of R+. Since each Y T is a càdlàg

process, it follows that Y is càdlàg, as well. Finally, from estimate (B.19) we see that

Y ∈ S2
loc and

|Yt| ≤ C

β

(

1 + |Xx,a
t |

)

, ∀ t ≥ 0.

Step 4. Convergence of (ZT , UT )T>0. Let S, T, T ′ > 0, with S < T < T ′. Then, applying

Itô’s formula to e−2βt|Y T ′

t − Y T
t |2 between 0 and S, and taking the expectation, we find

E

∫ S

0
e−2βs|ZT ′

s − ZT
s |2ds+ E

∫ S

0

∫

A

e−2βs|UT ′

s (a′)− UT
s (a

′)|2ϑ(da′)ds
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= e−2βS
E
[

|Y T ′

S − Y T
S |2

]

− |Y T ′

0 − Y T
0 |2

+ 2E

∫ S

0
e−2βs

(

Y T ′

s − Y T
s

)(

f(Xx,a
s , Ias , βY

T ′

s )− f(Xx,a
s , Ias , βY

T
s )

)

ds

+ 2nE

∫ S

0

∫

A

e−2βs
(

Y T ′

s − Y T
s

)(

(UT ′

s (a′))+ − (UT
s (a

′))+
)

ϑ(da′)ds.

Since the map y 7→ f(x, a, y) is nonincreasing, we get (using also the inequality ab ≤
a2/2 + b2/2, for any a, b ∈ R)

E

∫ S

0
e−2βs|ZT ′

s − ZT
s |2ds+ E

∫ S

0

∫

A

e−2βs|UT ′

s (a′)− UT
s (a

′)|2ϑ(da′)ds

≤ e−2βS
E
[

|Y T ′

S − Y T
S |2

]

+ 2nE

∫ S

0

∫

A

e−2βs|Y T ′

s − Y T
s ||(UT ′

s (a′))+ − (UT
s (a

′))+|ϑ(da′)ds

≤ e−2βS
E
[

|Y T ′

S − Y T
S |2

]

+ 2n2ϑ(A)E

∫ S

0
e−2βs|Y T ′

s − Y T
s |2ds

+
1

2
E

∫ S

0

∫

A

e−2βs|(UT ′

s (a′))+ − (UT
s (a

′))+|2ϑ(da′)ds.

Multiplying the previous inequality by e2βS , we obtain

E

∫ S

0
|ZT ′

s − ZT
s |2ds+

1

2
E

∫ S

0

∫

A

|UT ′

s (a′)− UT
s (a

′)|2ϑ(da′)ds

≤ E

∫ S

0
e2β(S−s)|ZT ′

s − ZT
s |2ds+

1

2
E

∫ S

0

∫

A

e2β(S−s)|UT ′

s (a′)− UT
s (a

′)|2ϑ(da′)ds

≤ E
[

|Y T ′

S − Y T
S |2

]

+ 2n2ϑ(A)E

∫ S

0
e2β(S−s)|Y T ′

s − Y T
s |2ds T,T ′→∞−→ 0,

where the convergence to zero follows from estimate (B.21). Then, for any S > 0, we see

that the family (ZT
|[0,S], U

T
|[0,S])T>S is Cauchy in the Hilbert space L2(W;0,S)×L2(µ̃;0,S).

Therefore, we deduce that there exists (Z̄S , ŪS) ∈ L2(W;0,S) × L2(µ̃;0,S) such that

(ZT
|[0,S], U

T
|[0,S])T>S converges to (Z̄S , ŪS) in L2(W;0,S) × L2(µ̃;0,S), i.e.,

E

∫ S

0
|ZT

s − Z̄S
s |2ds+ E

∫ S

0

∫

A

|UT
s (a

′)− ŪS
s (a

′)|2ϑ(da′)ds T→∞−→ 0.

Notice that Z̄S′

|[0,S] = Z̄S and ŪS′

|[0,S] = ŪS, for any 0 ≤ S ≤ S′ <∞. Indeed, (Z̄S′

|[0,S], Ū
S′

|[0,S]),

as (Z̄S, ŪS), is the limit in L2(W;0,S) × L2(µ̃;0,S) of (ZT
|[0,S], U

T
|[0,S])T>S . Hence, we

define Zs = Z̄S
s and Us = ŪS

s , for all s ∈ [0, S] and for any S > 0. Observe that (Z,U) ∈
L2
loc(W)×L2

loc(µ̃). Moreover, for any S > 0, (ZT
|[0,S], U

T
|[0,S])T>S converges to (Z|[0,S], U|[0,S])

in L2(W;0,S) × L2(µ̃;0,S), i.e.,

E

∫ S

0
|ZT

s − Zs|2ds+ E

∫ S

0

∫

A

|UT
s (a′)− Us(a

′)|2ϑ(da′)ds T→∞−→ 0. (B.22)

Now, fix S ∈ [0, T ] and consider the BSDE satisfied by (Y T , ZT , UT ) on [0, S]:

Y T
t = Y T

S − β

∫ S

t

Y T
s ds+ n

∫ S

t

∫

A

(UT
s (a′))+ϑ(da

′) ds +

∫ S

t

f(Xx,a
s , Ias , βY

T
s ) ds
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−
∫ S

t

ZT
s dWs −

∫ S

t

∫

A

UT
s (a

′) µ̃(ds, da′), 0 ≤ t ≤ S.

From (B.21) and (B.22), we can pass to the limit in the above BSDE by letting T → ∞,

keeping S fixed. Then, we deduce that (Y,Z,U) solves the penalized BSDE (3.6) on [0, S].

Since S is arbitrary, it follows that (Y,Z,U) solves equation (3.6) on [0,∞). 2

B.3 Proof of Lemma 3.2

The linear growth of vβ,n follows from (3.9) and the estimate on Y x,a,β,n of Proposition

3.1. Concerning the identification Y x,a,β,n
t = vβ,n(Xx,a

t , Iat ), it is a consequence, as usual,

of the flow property (Xx,a
T , IaT ) = (X

X
x,a
t ,Iat

T−t , I
Iat
T−t) P-a.s., for any 0 ≤ t ≤ T <∞, and from

the uniqueness for the penalized BSDE. Finally, regarding the uniform Lipschitz condition

(3.11) of vβ,n with respect to x, consider x, x′ ∈ R
d and set ∆Yt = Y x,a,β,n

t − Y x′,a,β,n
t ,

∆Zt = Zx,a,β,n
t − Zx′,a,β,n

t , ∆Ut(a
′) = Ux,a,β,n

t (a′) − Ux′,a,β,n
t (a′), t ≥ 0, a′ ∈ A. Let

T ∈ (0,∞), then from estimate (3.7) there exists ν ∈ Vn:

|Ȳ0|2 ≤ E
ν
[

e−2βT |ȲT |2
]

+ 2

∫ T

0
e−2βs

E
ν
[

Ȳs
(

f(Xx,a
s , Ias , βY

x,a,β,n
s )− f(Xx′,a

s , Ias , βY
x,a,β,n
s )

)]

ds

≤ E
ν
[

e−2βT |ȲT |2
]

(B.23)

+ 2

∫ T

0
e−2βs

√

Eν
[

|Ȳs|2
]

√

Eν
[∣

∣f(Xx,a
s , Ias , βY

x,a,β,n
s )− f(Xx′,a

s , Ias , βY
x,a,β,n
s )

∣

∣

2]
ds.

Set g(s) = e−2βs
E
ν [|Ys|2] and h(s) = 2e−βs

√

Eν [|f(Xx,a
s , Ias , βY

x,a,β,n
s )− f(Xx′,a

s , Ias , βY
x,a,β,n
s )|2],

for any s ∈ [0, T ], and proceed as in (B.18). Then, we conclude that

|Ȳ0|2 ≤
√

Eν
[

e−2βT |ȲT |2
]

+

∫ T

0
e−βs

√

Eν
[∣

∣f(Xx,a
s , Ias , βY

x,a,β,n
s )− f(Xx′,a

s , Ias , βY
x,a,β,n
s )

∣

∣

2]
ds

≤
√

Eν
[

e−2βT |ȲT |2
]

+ L2

∫ T

0
e−βs

√

Eν
[
∣

∣Xx,a
s −Xx′,a

s

∣

∣

2]
ds.

Therefore, recalling that |ȲT | ≤ 2Cb,σ,f (1 + |Xx,a
T |)/β and using estimate (2.4), we obtain

E
ν
[

e−2βT |ȲT |2
] T→∞−→ 0.

By Lemma 2.1, we find

E
ν
[

|Xx,a
s −Xx′,a

s |2
]

≤ e−2γs|x− x′|2, ∀ s ≥ 0.

Then, we deduce that

|Ȳ0| ≤ L2

∫ ∞

0
e−(β+γ)s|x− x′|ds =

L2

β + γ
|x− x′| ≤ L2

γ
|x− x′|,

which implies (3.11). 2
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B.4 Proof of Proposition 3.2

Continuity. Fix (β, n) ∈ (0,∞) × N. Let x, x′ ∈ R
d and a, a′ ∈ R

q. Set ∆Yt = Y x,a,β,n
t −

Y x′,a′,β,n
t , ∆Zt = Zx,a,β,n

t −Zx′,a′,β,n
t , ∆Ut = Ux,a,β,n

t −Ux′,a′,β,n
t . Then, from estimate (3.7)

we find, for any 0 ≤ r ≤ T ,

|∆Yr|2 ≤ e−2βT
E
ν
[

|∆YT |2
]

+ 2Eν

[
∫ T

r

e−2βs∆Ys
(

f(Xx,a
s , Ias , βY

x,a,β,n
s )− f(Xx′,a′

s , Ia
′

s , βY
x,a,β,n
s )

)

ds

]

≤ e−2βT
E
ν
[

|∆YT |2
]

+ E
ν

∫ T

r

e−2βs|∆Ys|2ds

+ E
ν

∫ T

r

e−2βs
∣

∣f(Xx,a
s , Ias , βY

x,a,β,n
s )− f(Xx′,a′

s , Ia
′

s , βY
x,a,β,n
s )

∣

∣

2
ds.

From Gronwall’s lemma applied to the map s 7→ E
ν [|∆Ys|2] we obtain

|∆Y0|2 = e
1−e−2βT

2β

(

e−2βT
E
ν
[

|∆YT |2
]

+ E
ν

∫ T

0
e−2βs

∣

∣f(Xx,a
s , Ias , βY

x,a,β,n
s )− f(Xx′,a′

s , Ia
′

s , βY
x,a,β,n
s )

∣

∣

2
ds

)

.

From the Lipschitz property of f in (H2), we find

|∆Y0|2 = e
1−e−2βT

2β

(

e−2βT
E
ν
[

|∆YT |2
]

+ 2L2
2

∫ T

0
e−2βs

{

E
ν
[

|Xx,a
s −Xx′,a′

s |2
]

+ E
ν
[

|Ias − Ia
′

s |2
]}

ds

)

. (B.24)

Now, for any ε > 0, applying Itô’s formula to e(2γ−ε−εL2
1
)t|Xx,a

t −Xx′,a′

t |2 and proceeding

as in the proof of estimate (2.5), we obtain

E
ν
[

|Xx,a
t −Xx′,a′

t |2
]

≤ |x− x′|2 +
(

1 +
2

ε

)

L2
1

∫ t

0
e(2γ−ε−εL2

1
)(s−t)

E
ν
[

|Ias − Ia
′

s |2
]

ds.

Denote by T1 the first jump time of the marked point process (Tn, αn)n≥1 associated to the

Poisson random measure µ. Notice that the two processes Ia and Ia
′
coincide after T1, while

we have Ias = a and Ia
′

s = a′ before T1. In other words, |Ias −Ia
′

s | = |a−a′|1{s≤T1} ≤ |a−a′|.
Therefore

E
ν
[

|Xx,a
t −Xx′,a′

t |2
]

≤ |x− x′|2 +
(

1 +
2

ε

)

L2
1|a− a′|2

∫ t

0
e(2γ−ε−εL2

1
)(s−t)ds

≤ |x− x′|2 +
(

1 +
2

ε

)

L2
1|a− a′|2

∫ ∞

0
e−(2γ−ε−εL2

1)sds

= |x− x′|2 +
(

1 +
2

ε

)

L2
1|a− a′|2 1

2γ − ε− εL2
1

.

Therefore, (B.24) becomes

|∆Y0|2 ≤ e
1−e−2βT

2β

(

e−2βT
E
ν
[

|∆YT |2
]

+ C0

(

|x− x′|2 + |a− a′|2
)

∫ T

0
e−2βsds

)
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≤ e
1−e−2βT

2β

(

e−2βT
E
ν
[

|∆YT |2
]

+ C0

(

|x− x′|2 + |a− a′|2
) 1

2β

)

, (B.25)

for some positive constant C0, possibly depending on L1, L2, ε, but independent of T . Since

|∆YT | ≤ 2Cb,σ,f (1 + |Xx,a
T |)/β, using estimate (2.4) we see that E[e−2βT |∆YT |2] → 0 as

T → ∞. Therefore, letting T → ∞ in (B.25), it follows that |∆Y0|2 → 0 as (x′, a′) → (x, a).

Since ∆Y0 = vβ,n(x, a)− vβ,n(x′, a′), then vβ,n is continuous in both arguments.

Viscosity property. We shall now prove the viscosity supersolution property of vβ,n. A

similar argument would show that vβ,n it is a viscosity subsolution to equation (3.12). Let

(x̄, ā) ∈ R
d × R

q and ϕ ∈ C2(Rd × R
q) such that

0 = (vβ,n − ϕ)(x̄, ā) = min
Rd×Rq

(vβ,n − ϕ). (B.26)

Let us proceed by contradiction, assuming that

β ϕ(x̄, ā)− Lāϕ(x̄, ā)−Māϕ(x̄, ā)− f(x̄, ā, βvβ,n(x̄, ā))

−n
∫

A

[ϕ(x̄, a′)− ϕ(x̄, ā)]+ ϑ(da
′) =: −2ε < 0.

Using the continuity of b, σ, f , and vβ,n, we find δ > 0 such that

β ϕ(x, a) − Laϕ(x, a) −Maϕ(x, a)− f(x, a, βvβ,n(x, a))

−n
∫

A

[ϕ(x, a′)− ϕ(x, a)]+ ϑ(da
′) ≤ −ε, (B.27)

for any (x, a) ∈ R
d × R

q, with |x− x̄|, |a − ā| < δ. Define

τ := inf
{

t ≥ 0: |X x̄,ā
t − x̄| > δ, |I āt − ā| > δ

}

∧ δ

Since (X x̄,ā, I ā) is càdlàg, it is in particular right-continuous at time 0. Therefore, τ > 0,

P-almost surely. Then, an application of Itô’s formula to e−βtϕ(X x̄,ā
t , I āt ) between 0 and τ ,

using also (B.27), yields

e−βτϕ(X x̄,ā
τ , I āτ )

≥ ϕ(x̄, ā) + ε
1− e−βτ

β
− n

∫ τ

0

∫

A

e−βt
(

Ũ x̄,ā,β,n
t (a′)

)

+
ϑ(da′)dt

−
∫ τ

0
e−βtf(X x̄,ā

t , I āt , βv
β,n(X x̄,ā

t , I āt ))dt+

∫ τ

0
e−βt(Dxϕ(X

x̄,ā
t , I āt ))

⊺σ(X x̄,ā
t , I āt )dWt

+

∫ τ

0

∫

A

e−βtŨ x̄,ā,β,n
t (a′)µ̃(dt, da′), (B.28)

where Ũ x̄,ā,β,n
t (a′) = ϕ(X x̄,ā

t , a′)− ϕ(X x̄,ā
t , I ā

t−
). On the other hand, applying Itô’s formula

to e−βtY x̄,ā,β,n
t from 0 to τ , and using the identification Y x̄,ā,β,n

t = vβ,n(X x̄,ā
t , I āt ), we find

vβ,n(x̄, ā) = e−βτvβ,n(X x̄,ā
τ , I āτ ) + n

∫ τ

0

∫

A

e−βt
(

U x̄,ā,β,n
t (a′)

)

+
ϑ(da′)dt

+

∫ τ

0
e−βtf(X x̄,ā

t , I āt , βv
β,n(X x̄,ā

t , I āt ))dr −
∫ τ

0
e−βtZ x̄,ā,β,n

t dWt

40



−
∫ τ

0

∫

A

e−βtU x̄,ā,β,n
t (a′)µ̃(dt, da′). (B.29)

Plugging identity (B.29) into inequality (B.28), we obtain

e−βτϕ(X x̄,ā
τ , I āτ )− e−βτvβ,n(X x̄,ā

τ , I āτ )

≥ ϕ(x̄, ā)− vβ,n(x̄, ā) + ε
1− e−βτ

β

− n

∫ τ

0

∫

A

e−βt
[(

Ũ x̄,ā,β,n
t (a′)

)

+
−
(

U x̄,ā,β,n
t (a′)

)

+

]

ϑ(da′)dt

+

∫ τ

0
e−βt

(

σ⊺(X x̄,ā
t , I āt )Dxϕ(X

x̄,ā
t , I āt )− Z x̄,ā,β,n

t

)

dWt

+

∫ τ

0

∫

A

e−βt
(

Ũ x̄,ā,β,n
t (a′)− U x̄,ā,β,n

t (a′)
)

µ̃(dt, da′). (B.30)

Define the [1, n+ 1]-valued P ⊗ B(A)-measurable map ν as follows

νt(a
′) = 1 + n

(Ũ x̄,ā,β,n
t (a′))+ − (U x̄,ā,β,n

t (a′))+

Ũ x̄,ā,β,n
t (a′)− U x̄,ā,β,n

t (a′)
1
{Ũ x̄,ā,β,n

t (a′)−U
x̄,ā,β,n
t (a′)6=0}

.

Then, we have ν ∈ Vn. Let us introduce the probability measure P
ν equivalent to P on

(Ω,FT ), with T ≥ τ (e.g., T = δ), with Radon-Nikodym density given by (2.3). Then,

taking the expectation E
ν with respect to P

ν in (B.30), (recalling that ϕ(x̄, ā) = vβ,n(x̄, ā))

E
ν
[

e−βτ
(

ϕ(X x̄,ā
τ , I āτ )− vβ,n(X x̄,ā

τ , I āτ )
)]

≥ εEν

[

1− e−βτ

β

]

. (B.31)

Since τ > 0, P-a.s., we see that the right-hand side of (B.31) is strictly positive. On the

other hand, from (B.26) it follows that the left-hand side of (B.31) is nonpositive, therefore

we get a contradiction. 2

B.5 Proof of Proposition 3.3

Firstly, we prove point (i). To this end, consider Y x,a,β,n and Y x,a,β,n+1. It is useful to

fix T > 0 and to look at the penalized BSDE (3.6) on [0,∞) solved by Y x,a,β,n (resp.

Y x,a,β,n+1) as a BSDE on [0, T ] with terminal condition Y x,a,β,n
T (resp. Y x,a,β,n+1

T ) and

generator function f . Then, proceeding as in the proof of the comparison Theorem 2.5 of

[26] for BSDEs with jumps on [0, T ], we can find a probability measure P
ν equivalent to P

on (Ω,FT ), such that

Y x,a,β,n
t − Y x,a,β,n+1

t ≤ E
ν
[

e−β(T−t)
(

Y x,a,β,n
T − Y x,a,β,n+1

T

)
∣

∣Ft

]

, (B.32)

P-a.s., for all t ∈ [0, T ]. Now, from estimate (2.6) and since |Y x,a,β,n
T |, |Y x,a,β,n+1

T | ≤
Cb,σ,f (1 + |Xx,a

T |)/β, letting T → ∞ in (B.32), we obtain Y x,a,β,n
t ≤ Y x,a,β,n+1

t , P-a.s., for

all t ≥ 0. This shows that the sequence (Y x,a,β,n)n is monotone increasing. Since it is

bounded by Cb,σ,f (1 + |Xx,a
T |)/β, it converges increasingly to some adapted process Y x,a,β

satisfying |Y x,a,β
t | ≤ Cb,σ,f (1 + |Xx,a

t |)/β, for all t ≥ 0.

Now, fix again T > 0 and consider the BSDE with nonpositive jumps (3.3)-(3.4), with
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(X, I) = (Xx,a, Ia), on [0, T ] with terminal condition Y x,a,β
T and generator function f .

From Theorem 2.1 in [19] we know that there exists a unique minimal solution

(Ỹ x,a,β,T , Z̃x,a,β,T , Ũx,a,β,T , K̃x,a,β,T ) ∈ S2(0,T)× L2(W;0,T) × L2(µ̃;0,T)×K2(0,T)

to this BSDE. Moreover, Ỹ x,a,β,T is the increasing limit1 of (Y x,a,β,n)n, so that Ỹ x,a,β,T
t =

Y x,a,β
t , P-a.s., for all t ∈ [0, T ]. We also know that (Z̃x,a,β,T , Ũx,a,β,T ) is the strong (resp.

weak) limit of (Zx,a,β,n, Ux,a,β,n)n in Lp(W;0,T) × Lp(µ̃;0,T), with p ∈ [1, 2), (resp. in

L2(W;0,T)×L2(µ̃;0,T)). This implies that (Z̃x,a,β,T , Ũx,a,β,T ) = (Z̃x,a,β,T ′

|[0,T ] , Ũx,a,β,T ′

|[0,T ] ), for

all T ′ ≥ T . Then, we define (Zx,a,β, Ux,a,β) ∈ L2
loc(W)× L2

loc(µ̃) as

(Zx,a,β
|[0,T ], U

x,a,β
|[0,T ]) = (Z̃x,a,β,T , Ũx,a,β,T ), ∀T > 0. (B.33)

This proves point (ii). Concerning point (iii), from Theorem 2.1 in [19] we have that

K̃x,a,β,T
t is the weak limit of (Kx,a,β,n

t )n in L2(Ft), for any 0 ≤ t ≤ T . It follows that

K̃x,a,β,T
t = K̃x,a,β,T ′

t , P-a.s., for all t ∈ [0, T ] and for any T ′ ≥ T . Therefore, we define

Kx,a,β ∈ K2
loc as follows: Kx,a,β

t = K̃x,a,β,T
t , for all t ∈ [0, T ] and T > 0. We see that the

quadruple (Y x,a,β, Zx,a,β, Ux,a,β,Kx,a,β) solves the backward equation (3.3) on [0,∞).

Regarding the jump constraint (3.4), from Theorem 2.1 in [19] we know that

Ũx,a,β,T
t ≤ 0, dt⊗ dP⊗ ϑ(da)-a.e.

Then, from the definition (B.33) of Ux,a,β we see that (3.4) holds. It remains to prove the

minimality condition. Let (Ȳ x,a,β, Z̄x,a,β, Ūx,a,β, K̄x,a,β) ∈ S2
loc × L2

loc(W) × L2
loc(µ̃)×K2

loc

be another solution to (3.3)-(3.4), with |Ȳ x,a,β
t | ≤ C(1 + |Xx,a

t |), for all t ≥ 0 and for

some positive constant C (possibly depending on x, a, and β). Then, for any T > 0,

(Ȳ x,a,β
|[0,T ] , Z̄

x,a,β
|[0,T ], Ū

x,a,β
|[0,T ] , K̄

x,a,β
|[0,T ]) solves the BSDE (3.3)-(3.4) on [0, T ]. As before, proceeding

as in the proof of the comparison Theorem 2.5 of [26] for BSDEs with jumps on [0, T ], we

can find a probability measure P
ν equivalent to P on (Ω,FT ), such that

Y x,a,β,n
t − Ȳ x,a,β

t ≤ E
ν
[

e−β(T−t)
(

Y x,a,β,n
T − Ȳ x,a,β

T

)∣

∣Ft

]

, (B.34)

P-a.s., for all t ∈ [0, T ]. From |Y x,a,β,n
T | ≤ Cb,σ,f (1 + |Xx,a

T |)/β, |Ȳ x,a,β
T | ≤ C(1 + |Xx,a

T |)
and estimate (2.6), letting T → ∞ in (B.34) we obtain Y x,a,β,n

t ≤ Ȳ x,a,β
t , P-a.s., for all

t ≥ 0. Then, sending n → ∞, we find Y x,a,β
t ≤ Ȳ x,a,β

t , P-a.s., for all t ≥ 0, which proves

the minimality of (Y x,a,β, Zx,a,β, Ux,a,β,Kx,a,β) and concludes the proof. 2

1Notice that in Theorem 2.1 in [19], the terminal condition in the penalized BSDE does not depend on

n; while, in our case, the penalized BSDE associated with Y
x,a,β,n has the terminal condition Y

x,a,β,n

T .

However, since Y
x,a,β,n

T converges increasingly P-a.s. to Y
x,a,β

T as n → ∞, the results of Theorem 2.1 in [19]

are still valid.
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