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The present paper are the notes of a mini-course addressed mainly to non-experts. It purpose it to provide a first approach to the theory of mapping class groups of non-orientable surfaces.

have Homeo 0 (M, B) ⊂ Homeo + (M, B), and M + (M, B) = Homeo + (M, B)/Homeo 0 (M, B) is a subgroup of M(M, B). In 99.9% of the cases, the group called mapping class group is M + (M, B) and not M(M, B). The latter is usually called the extended mapping class group. Actually, I know only one exception to this rule, a paper by Ivanov [START_REF] Ivanov | Automorphisms of complexes of curves and of Teichmüller spaces[END_REF].

Exercise. Suppose that M is a connected and orientable surface.

(1) What is the meaning of being orientable for a homeomorphism of M ?

(2) What is the index of M + (M, B) in M(M, B)?

Definition. A crosscap is a graphical representation of the Möbius ribbon, as shown in Figure 1, where, in the circle which bounds the disk with a cross, two antipodal points are identified. 

Graphical representation.

Let N be a non-orientable connected surface of genus ρ with m boundary components. Pick S, an orientable connected surface of genus ρ 1 with ρ 2 + m boundary components, where 2ρ 1 + ρ 2 = ρ, and ρ 2 ≥ 1. Then we represent N drawing crosses, that represent crosscaps, to ρ 2 of the boundary components of S in a standard picture of S (see Figure 2).

Example. In Figure 2 we have two different representations of the non-orientable surface of genus 3 with 1 boundary component. Proof. We need to prove that Homeo(D, ∂D) is connected. Let h ∈ Homeo(D, ∂D). For t ∈ (0, 1] we define h t ∈ Homeo(D, ∂D) by:

h t (z) = z if |z| ≥ t , t h( 1 t z) if |z| < t ,
and we set h 0 = Id. Then {h t } t∈[0,1] is a path in Homeo(D, ∂D) joining the identity to h.

We turn now to give some useful definitions and results, often implicitly assumed in the literature.

Definition. Let X, Y be two topological spaces. We say that two maps f, g : X → Y are homotopic if there exists a continuous family {f t : X → Y } t∈[0,1] of continuous maps such that f 0 = f and f 1 = g. We say that two embeddings f, g : X → Y are isotopic if there exists a continuous family {f t : X → Y } t∈[0,1] of embeddings such that f 0 = f and f 1 = g. Finally, we say that two embeddings f, g : X → Y are ambient isotopic if there exists a continuous family {ψ t : Y → Y } t∈[0,1] of homeomorphisms such that ψ 0 = Id and ψ 1 • f = g. The families {f t } t∈[0,1] and {ψ t } t∈[0,1] are both called isotopies. It is clear that "ambient isotopic" implies "isotopic" which implies "homotopic". We will see that the converse holds in some cases.

Definition. We come back to our surface M . A circle in M is an embedding a : S 1 → M of the standard circle whose image is in the interior of M . A circle a is called essential if it does not bound any disk embedded in M . An arc in M is an embedding a : [0, 1] → M of the standard interval such that a(0), a(1) ∈ ∂M and a((0, 1)) ∩ ∂M = ∅.

Theorem 3 (Epstein [START_REF] Epstein | Curves on 2-manifolds and isotopies[END_REF]).

(1) Let a 0 , a 1 : S 1 → M be two essential circles. Then a 0 and a 1 are homotopic if and only if they are ambient isotopic by an isotopy which pointwise fixes the boundary of M .

(2) Let a 0 , a 1 : [0, 1] → M be two arcs having the same extremities. Then a 0 and a 1 are homotopic with respect to the extremities if and only if a 0 and a 1 are ambient isotopic by an isotopy which pointwise fixes the boundary of M . Now, we turn to apply Theorem 3 to the proof of the following.

Proposition 4. Let C = S 1 × [0, 1] be the cylinder, and let c 0 = S 1 × {0} and c 1 = S 1 × {1} be the boundary components of C (see Figure 3 

(i)). Then M(C, c 0 ) = {1}. c 0 a c 1 ã x0 b (n 0 , 1) b x0 ã (i) (ii) (iii)
Figure 3. cylinder and arcs.

Proof. We need to prove that Homeo(C, c 0 ) is connected. Let h ∈ Homeo(C, c 0 ). The restriction of h -1 to c 1 is a homeomorphism f : c 1 → c 1 which preserves the orientation. Such a homeomorphism is isotopic to the identity, that is, there exists a continuous family {f r :

c 1 → c 1 } r∈[0,1]
of homeomorphisms such that f 0 = Id c 1 and f 1 = f . This isotopy can be extended to an isotopy {f r : C → C} r∈[0,1] such that f 0 = Id C , and f r is the identity on c 0 for all r. So, upon replacing h by f 1 • h, we can assume that h is the identity on c 0 c 1 .

Let a : [0, 1] → C be the arc defined by a(t) = (1, t) (see Figure 3 (i)), and let b = h • a. Let p : C → C be the universal cover of C. Recall that C = R × [0, 1], and that p is defined by p(s, t) = (e 2iπs , t). We take x0 = (0, 0) as a basepoint for C, and we denote by ã and b the lifts of a and b in C of source x0 , respectively (see Figure 3 (ii)). We have ã(t) = (0, t) for all t ∈ [0, 1], and b(1) ∈ Z × {1} (say b(1) = (n 0 , 1)).

For r ∈ [0, 1], we define f r : C → C by f r (z, t) = (e -2iπrtn 0 z, t) .

Then {f r } r∈[0,1] is an isotopy which pointwise fixes c 0 , and such that such that f 0 = Id C , f r is the identity on c 0 c 1 , and

f 0 = Id C . Let b = f 1 • h • a = f 1 • b,
f 1 • b = a.
So, upon replacing h by f 1 • h, we can assume that h is the identity on c 0 ∪ c 1 ∪ a. If we cut C along a, we obtain a disk, and therefore we can apply the Alexander theorem (Proposition 2) to get an isotopy {f r :

C → C} r∈[0,1] such that f 0 = Id C , f 1 = h, and f r is the identity on c 0 ∪ c 1 ∪ a.
Proposition 5 (Epstein [3]). Let N be the Möbius ribbon. Then M(N, ∂N ) = {1}.

The proof of Proposition 5 is based on Lemma 6 below. This is a surprise in the sense that there is no such a result of "rigidity" in the world of orientable surfaces.

We picture the Möbius ribbon as in Figure 4 (i), where c 0 and c 1 are identified according to the orientation shown in the figure. We denote by a the arc depicted in the figure, by A its source, and by B its target. Note that a does not separate N into two connected components. An example of an arc from A to B which separates N into two connected components is depicted in Figure 4 (ii). Lemma 6 (Epstein [START_REF] Epstein | Curves on 2-manifolds and isotopies[END_REF]). Let b be an arc in the Möbius ribbon N from A to B which does not separate N into two connected components. Then b is homotopic to a relatively to the extremities.
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Remark. By Theorem 3, the arcs a and b of Lemma 6 are therefore ambient isotopic by an isotopy which pointwise fixes the boundary of N .

Proof. Let Ñ → N be the universal cover of N , and let γ : Ñ → Ñ be the generator of its deck transformation group (see Figure 5 In conclusion, we have m = 0, hence b is homotopic to a relatively to the extremities. Upon replacing h by f 1 • h, we may assume that h is the identity on ∂N ∪ a. If we cut N along a, we obtain a disk, and therefore we can apply the Alexander theorem (Proposition 2) to get an isotopy {f r : N → N } r∈[0,1] such that f 0 = Id N , f 1 = h, and f r is the identity on ∂N ∪ a.
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Definition. Recall that the cylinder is the surface C = S 1 × [0, 1]. The standard Dehn twist is the homeomorphism T : C → C defined by T (z, t) = (e 2iπt z, t) .

We also call standard Dehn twist the mapping class t ∈ M(C, ∂C) of T (see Figure 6). The main ingredients of the proof of the next proposition lie more or less in the proof of Proposition 4. The proof is left to the reader.

Proposition 7. Let C be the cylinder, and let t ∈ M(C, ∂C) be the standard Dehn twist. Then M(C, ∂C) is an infinite cyclic group generated by t.

Definition. Let M be a surface, and let B be a union of boundary components of M . Let M be a subsurface of M , and let B be a union of boundary components of M . We say that the pair (M , B ) is admissible if it satisfies the following condition.

• If a is a boundary component of M , then either a is a boundary component of M , or ∂M ∩ a = ∅. Moreover, if a ∩ ∂M = ∅ or if a ⊂ B, then a ⊂ B .
Let (M , B ) be an admissible pair. Then there is a natural injective homomorphism ι : Homeo(M , B ) → Homeo(M, B). The image of an F ∈ Homeo(M , B ) under this homomorphism is obtained by extending F to M \ M by the identity. This homomorphism induces a homomorphism ι * : M(M , B ) → M(M, B). An example of an admissible pair is given in Figure 7. The above defined homomorphism ι * : M(M , B ) → M(M, B) is not always injective, but its kernel is pretty well-understood. An explicit description of Ker ι * may be found in [START_REF] Paris | Geometric subgroups of mapping class groups[END_REF] for M connected and orientable, and in [START_REF] Stukow | Commensurability of geometric subgroups of mapping class groups[END_REF] for M connected and non-orientable. The general case is easily deduced from the connected case. Here is an example of the type of result that we have.

Theorem 8 (Paris, Rolfsen [START_REF] Paris | Geometric subgroups of mapping class groups[END_REF], Stukow [START_REF] Stukow | Commensurability of geometric subgroups of mapping class groups[END_REF]). Let M be a connected surface, and let (M , B ) be an admissible pair. Then ι * : M(M , B ) → M(M ) is injective if and only if the connected components of M \ M have all negative Euler characteristics.

Definition. Recall that a circle in M is an embedding a : S 1 → M of the standard circle whose image lies in the interior of M . We assume the circles non-oriented, and we often identify them with their images. Recall that a circle is called essential if it does not bound any disk embedded in M . We say that an essential circle a is generic if it does not bound any Möbius ribbon, and if it is not isotopic to any boundary component. The isotopy class of a circle a will be denoted by [a]. Depending on whether a regular neighborhood of a is an annulus or a Möbius ribbon, we will say that a is two-sided or one-sided. We denote by C(M ) the set of isotopy classes of generic circles, and by C 0 (M ) the set of isotopy classes of two-sided generic circles.

Definition. The intersection index of two classes α, β ∈ C(M ) is i(α, β) = min{|a ∩ b| | a ∈ α and b ∈ β}.
Definition. Let a : S 1 → Σ be a two-sided circle in M . Take a tubular neighborhood of a, that is, an embedding ϕ : C → M of the annulus C = S 1 × [0, 1], such that:

• ϕ(C) ∩ ∂M = ∅, • ϕ(z, 1 2 ) = a(z) for all z ∈ S 1 .
Let T a be the element of Homeo(M ) defined by:

• T a (x) = (ϕ • T • ϕ -1 )(x) if
x is in the image of ϕ, where T denotes the standard Dehn twist,

• T a (x) = x if x does not belong to the image of ϕ.

The isotopy class of T a , denoted by t a ∈ M(M ), is called the Dehn twist along a (see Figure 8). (1) The definition of t a depends neither on the choice of the tubular neighborhood, nor on the choice of an orientation of a. However, it depends on the choice of an orientation on a regular neighborhood of a (i.e. the image of C).

(2) If a and b are isotopic circles, then t a = t b .

Definition. Let α ∈ C 0 (M ). We choose a ∈ α, and we define the Dehn twist along α, denoted by t α , as being the Dehn twist along a, that is, t α = t a . If M is an orientable connected surface, then we may fix an orientation on M , and therefore the orientation of any regular neighborhood of a is naturally well-defined, hence the element t a = t α is well-defined, as well. However, if M is a non-orientable connected surface, then t a = t α depends on the choice of an orientation on a regular neighborhood of a. We use to indicate in the figures this chosen local orientation, that is, the "direction" of the Dehn twist, with arrows like in Figure 9. Remark. The notion of a Dehn twist along a one-sided circle does not exist.

When M is an orientable connected surface, the Dehn twists and the intersection indices are linked by the following formulas. These play an important role in the study of the mapping class groups of orientable surfaces.

Theorem 10 (Fathi, Laudenbach, Poénaru [START_REF] Fathi | Travaux de Thurston sur les surfaces[END_REF]). Assume that M is an oriented connected surface.

(1) Let α, β be two elements of C(M ), and let k be an integer. Then

i(t k α (β), β) = |k| i(α, β) 2 .
(2) Let α, β, γ be three elements of C(M ), and let k be an integer. Then

i(t k α (β), γ)| -|k| i(α, β) i(α, γ) ≤ i(β, γ) .
The above formulas are false if M is a non-orientable surface (see [START_REF] Stukow | Dehn twists on nonorientable surfaces[END_REF][START_REF] Stukow | Subgroup generated by two Dehn twists on nonorientable surface[END_REF]). There are other formulas for the non-orientable surfaces (see [START_REF] Stukow | Dehn twists on nonorientable surfaces[END_REF]), that are less powerful than the ones for the orientable surfaces, but that are still useful. Here are some.

Theorem 11 (Stukow [11]). Assume that M is a connected non-orientable surface. Let α, β be two elements of C 0 (M ), and let k be a non-zero integer.

(

) i(t k α (β), β) = |k| if i(α, β) = 1. 1 
(

) i(t k α (β), β) ≥ i(α, β). (3) i(t k α (β), β) ≥ (|k| -1) i(α, β) 2 + 2 i(α, β) -2. In particular, if i(α, β) = 0, then i(t k α (β), β) > 0. 2 
Lemma 12. Let a be an essential circle in M . If either a bounds a Möbius ribbon, or a is isotopic to a boundary component, then t a = 1.

Proof. Assume that a bounds a Möbius ribbon. The case where a is isotopic to a boundary component can be proved in the same way. We denote again by C = S 1 × [0, 1] the standard annulus, and we assume given a tubular neighborhood ϕ : C → M of a. There exists a subsurface N of M homeomorphic to the Möbius ribbon and which contains ϕ(C) in its interior. We denote by ϕ : C → N the tubular neighborhood of a given by restriction of ϕ to N , and by ι :

N → M the inclusion map. We have ϕ = ι • ϕ , hence ϕ * = ι * • ϕ * . Moreover, ϕ * (t) = 1 since, by Lemma 6, M(N, ∂N ) = {1}. So, t a = ϕ * (t) = 1.
However, if a is a generic circle (that is, a is essential, it does not bound any Möbius ribbon, and it is not isotopic to any boundary component), then we have the following.

Proposition 13. Let a be a generic circle in M . Then the Dehn twist t a is of infinite order.

Sketch of the proof. We set α = [a]. We leave to the reader to show that there exists β ∈ C 0 (M ) such that i(α, β) = 0. Let k be a non-zero integer. By Theorems 10 and 11, we have i(t k α (β), β) = 0, hence t k α (β) = β, and therefore t k α = Id.

We turn now to explain the relations that hold between two given Dehn twists. We start with an obvious case.

Lemma 14. Let α, β ∈ C 0 (M ). If i(α, β) = 0, then t α t β = t β t α .
In order to handle the case of two classes with intersection index 1, we need to choose local orientations as follows. Let α, β be elements of C 0 (M ) such that i(α, β) = 1. We choose a ∈ α and b ∈ β such that |a ∩ b| = 1. Let P be a regular neighborhood of a ∪ b. Then P is an orientable surface of genus 1 with one boundary component (see Figure 10). In the next lemma we will assume given an orientation on P , and we will assume that the given orientations on the regular neighborhoods of a and b are those induced by the one of P . 

Lemma 15. Let α, β ∈ C 0 (M ). If i(α, β) = 1, then t α t β t α = t β t α t β .
Proof. Let a ∈ α and b ∈ β such that |a ∩ b| = 1. We have

t α t β t α = t β t α t β ⇔ t -1 β t α t β = t α t β t -1 α ⇔ t t -1 β (α) = t tα(β) .
So, in order to show that t α t β t α = t β t α t β , it suffices to show that t -1 b (a) is isotopic to t a (b). As explained before, a regular neighborhood of a ∪ b is a one-holed torus, and it is easily seen that t a (b) t -1 b (a) is the circle depicted in Figure 8, up to isotopy.

The proof of the following is more complicated than the proofs of Lemmas 14 and 15, especially for non-orientable surfaces.

Theorem 16 (Ishida [START_REF] Ishida | The structure of subgroup of mapping class groups generated by two Dehn twists[END_REF], Stukow [START_REF] Stukow | Subgroup generated by two Dehn twists on nonorientable surface[END_REF]). Let α, β ∈ C 0 (M ). If i(α, β) ≥ 2, then t α and t β freely generate a free group.

Notation. From now on, we denote by S ρ,m the orientable surface of genus ρ with m boundary components, and by N ρ,m the non-orientable surface of genus ρ with m boundary components. Proposition 17 (Korkmaz [START_REF] Korkmaz | Mapping class groups of nonorientable surfaces[END_REF]). The group M(N 1,2 , c) is an infinite cyclic group generated by s c . The mapping class s c reverses the orientation in a regular neighborhood of a, and we have s 2 c = t c , where t c denotes the Dehn twist along a circle in N 1,2 isotopic to c.

Definition. Assume that N = N 1,
Remark. By Lemma 12, we have t c = 1 in M(N 1,2 ). However, t c is of infinite order in M(N 1,2 , c).

More generally, we have the following definition.

Definition. Let a be a boundary component of M , and let u be an oriented arc in M whose extremities lie in a. Let s u,a denote the mapping class in M(M ) obtained by sliding the boundary component a once along the arc u. Then s u,a is called the boundary slide of a along u.

The proof of the following is left to the reader.

Lemma 18. If u is two-sided, then s u,a is the product of two Dehn twists, t b 1 and t b 2 , oriented according to Figure 12.

By increasing the genus, that is, passing from genus 1 to genus 2, we meet new phenomena of "rigidity", as we turn now to show (see Propositions 19 and 21). Proposition 19 (Lickorish [START_REF] Lickorish | On the homeomorphisms of a non-orientable surface[END_REF]). We represent the Klein bottle, N = N 2,0 , by two crosscaps on the sphere as depicted in Figure 13 The proof of Proposition 19 given here is totally different from Lickorish's one [START_REF] Lickorish | On the homeomorphisms of a non-orientable surface[END_REF], and, as far as I know, is not written anywhere else in the literature. Like the proof of Lemma 6, it is based on the study of the lifts of the (generic two-sided) circles to the universal cover of N 2,0 .

Proof. We pick a generic two-sided circle b of N , and we turn to prove that b is isotopic to a.

Claim 1. There exists a homeomorphism H : N → N that sends b to a.

Proof of Claim 1. Let N be the surface obtained by cutting N along b. Suppose first that N has two connected components, N 1 and N 2 . Since b is generic and N i is a subsurface of N , N i has a unique boundary component, the genus of N i is (strictly) less than 1 if N i is orientable, and the genus of N i is (strictly) less than 2 if N i is non-orientable. In other words, N i is either a disk or a Möbius ribbon: a contradiction. So, N is connected, N has two boundary components, and χ(N ) = χ(N ) = 0. This implies that N is an annulus. In conclusion, b has the same topological type as a, hence there exists a homeomorphism H : N → N that sends b to a.

Let c be a circle in any connected surface M . We parametrize c, c : [0, 1] → M , we choose a base-point P in M , we choose a path d : [0, 1] → M connecting P to c(0) = c(1), and we denote by γ the element of π 1 (M, P ) represented by d -1 cd. We say that c is primitive if γ is not a non-trivial power in π 1 (M, P ), that is, if µ ∈ π 1 (M, P ) and k ∈ Z are such that γ = µ k , then k = ±1. It is easily seen that this definition depends neither on the choice of the parametrization of c, nor on the choice of P , nor on the choice of d.

Claim 2. b is primitive.

Proof of Claim 2. By Claim 1, it suffices to prove Claim 2 for b = a. Consider the base-point P , the orientation of a, and the loop e, depicted in Figure 13 (ii). We denote by α and the elements of π 1 (N, P ) represented by a and e, respectively. Then π 1 (N, P ) has the following presentation.

π 1 (N, P ) = α, | α -1 = α -1 .
From this presentation follows that there exists a homomorphism ϕ : π 1 (N, P ) → Z which sends α to 0, and to 1. The kernel of ϕ is an infinite cyclic group generated by α. If α were a power of some element β of π 1 (N, P ), then β would belong to Ker ϕ = α , hence α = β ±1 .

Exercise. Prove that any generic circle in any connected surface is primitive.

Consider the transformations σ, τ : C → C defined as follows.

σ(x + iy) = (x + 1) + iy , τ (x + iy) = -x + i(y + 1) .

We can and do assume that N is the quotient N = C/ σ, τ , and we denote by p : C → N the quotient map. Note that p is the universal cover of N . We assume, furthermore, that a is the circle parametrized by a : [0, 1] → N , t → p(t) = p(t + 0 i).

We compactify C with the asymptotic directions. In other words, we set C = C ∂C, where Proposition 20 (Lickorish [START_REF] Lickorish | On the homeomorphisms of a non-orientable surface[END_REF]). The mapping class group of the Klein bottle, N 2,0 , is isomorphic to Z/2Z × Z/2Z.

∂C = S 1 = {ẑ ∈ C | |ẑ| = 1}. A sequence {z n } n∈N in C converges to ẑ ∈ ∂C if lim n→∞ |z n | = ∞
Proposition 19 extends to the one-holed Klein bottle as follows.

Proposition 21 (Stukow [11]). We represent the one-holed Klein bottle, N = N 2,1 , by two crosscaps on the disk as depicted in Figure 15 The proof of Proposition 21 that we give here is new and completely different from the one given in [START_REF] Stukow | Dehn twists on nonorientable surfaces[END_REF]. It is in the spirit of the proofs of Lemma 6 and Proposition 19.

Proof. Let d denote the boundary component of N 2,1 . We assume that N 2,0 is obtained from N 2,1 by gluing a disk along d. We denote by ι : N 2,1 → N 2,0 the inclusion map, and by ι * : π 1 (N 2,1 ) → π 1 (N 2,0 ) the homomorphism induced by ι. Note that ι * is onto.

Recall the homomorphism ϕ : π 1 (N 2,0 ) → Z defined in the proof of Proposition 19. Recall that this homomorphism sends α to 0, and to 1. We set φ = ϕ • ι * : π 1 (N 2,1 ) → Z, and we denote by p : Ñ → N 2,1 the associated regular cover. We can describe Ñ as follows. Let T = S 1 × R be the "long tube", and let µ : T → T be the transformation defined by µ(z, x) = (-z, x + 1). We choose a small disk D embedded in S 1 × (0, 1). Then Ñ = T \ (∪ k∈Z µ k D) (see Figure 15 (ii)), N 2,1 is the quotient Ñ / µ , and p is the quotient map Ñ → Ñ / µ = N 2,1 .

For k ∈ Z we set ãk = S 1 × {k}. We can and do assume that ãk is a lift of a, and that every lift of a is of this form. On the other hand, we denote by dk the boundary of µ k D. Note that dk is a lift of d, and every lift of d is of this form.

Let b be a generic two-sided circle in N 2,1 . We can assume without loss of generality that b intersects a transversally in finitely many points. We say that a and b cobound a bigon if there exists a disk ∆ embedded in N 2,1 bounded by an arc of a and an arc of b (see Figure 15 (iii)). Note that, if such a bigon exists, then one can replace b by a circle b isotopic to b such that |b ∩ a| = |b ∩ a| -2.

By Proposition 19, b is isotopic to a in N 2,0 , hence all the lifts of b in Ñ are circles. Let b0 be one of these lifts. If b0 ∩ ãk = ∅ for all k ∈ Z, then b0 is isotopic to some ãk , hence b is homotopic to a (in N 2,1 ), and therefore, by Theorem 3, b is isotopic to a.

So, we can suppose that there exists k ∈ Z such that b0 We have

∩ ãk = ∅. Let k 0 , k 1 ∈ Z such that b0 ∩ ãk 0 = ∅, b0 ∩ ãk 0 +1 = ∅, b0 ∩ ãk 1 = ∅,
k 0 < k 1 , b0 ∩ ã = ∅ for all ∈ {k 0 + 1, . . . , k 1 }, and b0 ⊂ S 1 × (k 0 , k 1 + 1).
There exists a bigon, ∆ 0 , in S 1 × (k 0 , k 0 + 1], bounded by an arc of b0 and an arc of ãk 0 +1 (see Figure 15 (iv)). Similarly, there exists a bigon, ∆ 1 , in S 1 × [k 1 , k 1 + 1), bounded by an arc of b0 and an arc of ãk 1 (see Figure 15 

(v)). If µ k 0 D is not contained in ∆ 0 , that is, if ∆ 0 ∩ µ k 0 D = ∅, then ∆ 0 is contained in Ñ and p(∆ 0 ) is a bigon in N 2,1
bounded by an arc of b and an arc of a.

As pointed out before, we can then reduce the number of intersection points between a and b, and therefore apply an induction on |a ∩ b|.

So, we can assume that µ k 0 D is contained in ∆ 0 . Similarly, we can assume that µ

k 1 D is contained in ∆ 1 . Then µ k 1 D ⊂ µ k 1 -k 0 ∆ 0 ∩ ∆ 1 , hence µ k 1 -k 0 ∆ 0 ∩ ∆ 1 = ∅, and therefore µ k 1 -k 0 b0 ∩ b0 = ∅ (since ãk 1 ∩ ãk 1 +1 = ∅): a contradiction.
Similar arguments apply to the solution of the following exercise.

Exercise. Suppose that the torus, S 1,0 , is obtained from the one-holed torus, S 1,1 , by gluing a disk along the boundary component of S 1,1 . Prove that the map C(S 1,1 ) → C(S 1,0 ), induced by the inclusion map S 1,1 → S 1,0 , is a bijection.

Definition. Assume that N = N 2,1 is the one-holed Klein bottle. Consider the (oriented) circle a and the crosscap µ depicted in Figure 16. We orient a and a regular neighborhood of a as in the figure. We denote by y µ,a the mapping class in M(N, ∂N ) obtained sliding µ once along a.

Then y µ,a is called the crosscap slide of µ along a. Note that y µ,a reverses the orientation on a regular neighborhood of a, y 2 µ,a = t c , and y µ,a t a y -1 µ,a = t -1 a , where c is the boundary component of N . The proof of the following proposition is based on Proposition 21.

Proposition 22 (Stukow [11]). M(N 2,1 , ∂N 2,1 ) Z Z, where the first copy of Z is generated by t a , and the second copy is generated by y µ,a .

More generally, we have the following definition.

Definition. Let N be a non-orientable surface. Let µ be a crosscap in N , and let a be a generic two-sided (oriented) circle that intersects µ in a single point. Then the mapping class in M(N ) obtained by sliding µ once along a is called the crosscap slide of µ along a, and is denoted by y µ,a . Now, we come back to our initial hypothesis. So, M denotes a surface which may be orientable or not, have boundary or not, and have more than one connected component. However, we assume now that each connected component has a negative Euler characteristic. Recall that C(M ) denotes the set of isotopy classes of generic circles, and that C 0 (M ) denotes the set of isotopy classes of generic two-sided circles. The following proposition is a "classical result" for mapping class groups of connected orientable surfaces (see [START_REF] Paris | Geometric subgroups of mapping class groups[END_REF], for instance), and it is due to Stukow [START_REF] Stukow | Dehn twists on nonorientable surfaces[END_REF][START_REF] Stukow | Commensurability of geometric subgroups of mapping class groups[END_REF] for the mapping class groups of connected non-orientable surfaces. The general case is a straightforward consequence of these two cases.

Proposition 23. Let A be a simplex of C(M ), and let Λ A : M A (M ) → M(M A ) be the reduction homomorphism along A. Then the kernel of

Λ A is Z A . Definition. Let Γ(M ) = {M i | i ∈ I} denote the set of connected components of M . Let f ∈ M(M ). We say that f is pseudo-Anosov if C(M i ) =
∅ for all i ∈ I, and f n (α) = α for all α ∈ C(M ) and all n ∈ Z \ {0}. We say that f is reducible if there exists a (non-empty) simplex A of C(M ) such that f (A) = A. In this case, the simplex A is called a reduction simplex for f , and an element of A is called a reduction class for f .

Here is an important property of pseudo-Anosov elements. It is implicitly proved in [START_REF] Fathi | Travaux de Thurston sur les surfaces[END_REF] for orientable surfaces, and it is a consequence of [START_REF] Wu | Canonical reducing curves of surface homeomorphism[END_REF] (see Proposition 27 below) for non-orientable surfaces.

Proposition 24. Assume that M is a connected surface. Let f ∈ M(M ) be a pseudo-Anosov element, and let Z f (M(M )) be the centralizer of f in M(M ). Then f has infinite order, and f has finite index in Z f (M(M )).

Definition. Recall that Γ(M ) = {M i | i ∈ I} denotes the set of connected components of M . Let S(Γ(M )) denote the group of permutations of Γ(M ). Note that there is a natural homomorphism ϕ : M(M ) → S(Γ(M )) whose kernel is naturally isomorphic to ⊕ i∈I M(M i ).

Let f ∈ M(M ), and let n ∈ Z \ {0} such that f n ∈ Ker ϕ. We say that f ∈ M(M ) is adequately reduced if, for all i ∈ I, the restriction of f n to M(M i ) is either of finite order, or pseudo-Anosov.

It is easily proved that this definition does not depend on the choice of n. A reduction simplex A for f ∈ M(M ) is called an adequate reduction simplex for f if the reduction of f along A is adequately reduced.

The following result is extremely important in the study of mapping class groups of orientable surfaces.

Theorem 25 (Thurston [START_REF] Fathi | Travaux de Thurston sur les surfaces[END_REF]). Assume that M is an orientable surface. Then a mapping class f ∈ M(M ) is either reducible, or adequately reduced. Moreover, if f is reducible, then there exists an adequate reduction system for f .

The result of Theorem 25 holds for non-orientable surfaces, but I do not know whether the proof of [START_REF] Fathi | Travaux de Thurston sur les surfaces[END_REF] can be extended to non-orientable surfaces. However, following [START_REF] Wu | Canonical reducing curves of surface homeomorphism[END_REF], the result for nonorientable surfaces can be reduced to the result for orientable surfaces using oriented two-sheeted covers as follows.

From now on, N denotes a compact non-orientable surface possibly with boundary. We denote by p : M → N the two-sheeted cover of N with M orientable. (Such a cover exists and is unique.) Let J : M → M be the (unique) non-trivial deck transformation of p. We can and do assume that N and M are endowed with hyperbolic metrics such that the boundary components are geodesics, and J is an isometry. We denote by j the element of M(M ) represented by J.

Definition. Let F ∈ Homeo(N ). Then F has two lifts on M , one which preserves the orientation, that we denote by F , and one which reverses the orientation, J • F . These two lifts commute with J. By [START_REF] Zieschang | On the homeotopy group of surfaces[END_REF] (see also [START_REF] Birman | On the homeotopy group of a non-orientable surface[END_REF][START_REF] Birman | On the mapping class groups of closed surfaces as covering spaces[END_REF]), if F and F are two homeomorphisms of N such that F and F are isotopic, then F and F are also isotopic. Let M + (M ) denote the subgroup of M(M ) formed by the isotopy classes that preserve the orientation, and let Z + j (M ) denote the subgroup of M + (M ) formed by the mapping classes that commute with j. Then, by the above, we have the following. Proposition 26. The map which sends F ∈ Homeo(N ) to F induces an injective homomorphism ι : M(N ) → Z + j (M ).

One of the main results in [START_REF] Wu | Canonical reducing curves of surface homeomorphism[END_REF] is the following.

Proposition 27 (Wu [14]). Let f ∈ M(N ). Then:

(1) f is reducible if and only if ι(f ) is reducible.

(2) f has finite order if and only if ι(f ) has finite order.

(3) f is pseudo-Anosov if and only if ι(f ) is pseudo-Anosov. Now, to get the full result of Theorem 25 for non-orientable surfaces, we need also to understand the reduction simplices. Definition. Let ã be an essential circle in M . If either J(ã) = ã, or ã ∩ J(ã) = ∅, then p(ã) is an essential circle in N . Let α ∈ C(M ). Suppose that either j(α) = α, or i(α, j(α)) = 0. Choose ã ∈ α such that either J(ã) = ã, or J(ã) ∩ ã = ∅ (take a geodesic which represents α, for instance), and denote by p( α) the element of C(N ) represented by p(ã). It is easily checked that p(α) is well-defined (namely, does not depend on the choice of ã). Let à be a simplex of C(M ) satisfying j( Ã) = Ã. Then, for all α ∈ Ã, we have either j(α) = α, or i(α, j( α)) = 0. It follows that p( Ã) = {p(α) | α ∈ Ã} is a well-defined subset of C(N ).

The following lemma is easily proved choosing geodesics in the sets of admissible representatives of A (in (1)), and of à (in (2)).

Lemma 28.

(1) If A is a simplex of C(N ), then p -1 (A) is a simplex of C(M ).

(2) If à is a simplex of C(M ) such that j( Ã) = Ã, then p( Ã) is a simplex of C(N ). Now, the rest of the statement of Theorem 25 for non-orientable surfaces follows from the next proposition.

Proposition 29 (Wu [14]). Let f ∈ M(N ), and let A be a simplex of C(N ).

(1) A is a reduction simplex for f if and only if p -1 (A) is a reduction simplex for ι(f ).

(2) A is an adequate reduction simplex for f if and only if p -1 (A) is an adequate reduction simplex for ι(f ).
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 1 Figure 1. A crosscap.
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 2 Figure 2. Non-orientable surface of genus 3 with 1 boundary component.

  and let b be the lift of b in C of source x0 . Then b (1) = ã(1) = (0, 1), and f 1 • h is again the identity on c 0 c 1 . So, upon replacing h by f 1 • h, we can also assume that b(1) = ã(1) (see Figure 3 (iii)). Since the lifts of a and b of source x0 have the same endpoint, the arcs a and b are homotopic relatively to they extremities. By Theorem 3 it follows that a and b are ambient isotopic by an isotopy which pointwise fixes the boundary of C. In other words, there exists an isotopy {f r : C → C} r∈[0,1]

Figure 4 .

 4 Figure 4. Möbius ribbon and arcs.

  (i)). We choose a lift à of A, we denote by ã the lift of a of source Ã, and we denote by B the endpoint of ã. Let b be the lift of b of source Ã. There exists m ∈ Z such that the endpoint of b is γ m B. If m were odd with m ≥ 3, then b and γ 2 b would intersect (see Figure 5 (ii)), which is not possible. Similarly, we cannot have m odd with m ≤ -3. If m = 1 or -1, then b would separate N into two components (see Figure 4 (ii)). If m were even with m ≥ 2, then b and γ b would intersect (see Figure 5 (iii)), which is not possible. Similarly, we cannot have m even and m ≤ -2.
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 5 Figure 5. Universal cover of the Möbius ribbon.
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 6 Figure 6. Standard Dehn twist.
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 7 Figure 7. Admissible subsurface.
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 8 Figure 8. A Dehn twist.
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 9 Figure 9. Dehn twist on a non-orientable surface.
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 10 Figure 10. Orientation of Dehn twists, case where i(α, β) = 1.
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 11 Figure 11. Boundary slide.
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 212 Figure 12. Boundary slide along a two-sided arc.
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 13 Figure 13. The Klein bottle.

Claim 3 .

 3 and lim n→∞ zn |zn| = ẑ. Note that C is homeomorphic to the disk D = {z ∈ C | |z| ≤ 1} by a homeomorphism which sends z to z |z|+1 if z ∈ C, and sends ẑ to itself if ẑ ∈ ∂C = S 1 . We choose a parametrization of b, b : [0, 1] → N . We can and do assume that b(0) = b(1) = p(0). We denote by b : [0, 1] → C the lift of b in C of source 0. Then there exist n, m ∈ Z such that b(1) = n + im. Note that m must be even, since b is two-sided. Note also that either n = 0, or m = 0, since b is not homotopic to the constant loop. Either n = 0 or m = 0. Proof of Claim 3. Suppose that n = 0 and m = 0. Set φ = σ n τ m . Set B = ∪ k∈Z φ k b. Observe that B is a connected component of p -1 (b) and is an arc in C connecting u n = n+im √ n 2 +m 2 ∈ ∂C to -u n ∈ ∂C (see Figure 14). On the other hand, τ B is another connected component of p -1 (b), and τ B is an arc in C connecting v n = -n+im √ n 2 +m 2 ∈ ∂C to -v n ∈ ∂C. But then τ B intersects B: a contradiction. So, either n = 0 or m = 0. End of the proof of Proposition 19. By Claim 3, either n = 0 or m = 0. If n = 0, then, m = ±1 since by Claim 2 b is primitive. But, as pointed out before, m is even since b is two-sided: a contradiction. Hence, m = 0 and, since b is primitive, n = ±1. It follows that b is homotopic to a, and therefore, by Theorem 3, b is isotopic to a.Exercise. Prove that there are precisely two isotopy classes of generic one-sided circles in the Klein bottle.Proposition 19 is the main ingredient in the proof of the following.
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 14 Figure 14. Universal cover of N 2,0 .
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 15 Figure 15. One-holed Klein bottle and bigons.

  and b0 ∩ ãk 1 +1 = ∅ (see Figure15(iv) and Figure15 (v)).

Figure 16 .

 16 Figure 16. Crosscap slide.

Definition.

  Recall that the intersection index of two classes, α, β ∈ C(M ), is i(α, β) = min{|a∩ b| | a ∈ α and b ∈ β}. The set C(M ) is endowed with a structure of simplicial complex, where a simplex is a finite non-empty subset A of C(M ) satisfying i(α, β) = 0 for all α, β ∈ A. This simplicial complex is called the curve complex of M . Note that a simplex A admits a set of representatives, A, such that a ∩ b = ∅ for all a, b ∈ A, a = b. Such a set of representatives is called an admissible set of representatives for A. Note also that the group M(M ) acts naturally on C(M ) and on C 0 (M ), and that these actions are simplicial.Definition. Let A be a simplex in C(M ), and let A be an admissible set of representatives for A. We denote by M A (M ) the stabilizer of A in M(M ). On the other hand, we denote by M A the natural compactification of M \ (∪ a∈A a). The groups M A (M ) and M(M A ) are related by a homomorphism Λ A :M A (M ) → M(M A ) defined as follows. Let f ∈ M A (M ). Choose a representative F ∈ Homeo(M ) of f such that F (A) = A.The restriction of F to M \ (∪ a∈A a) extends in a unique way to a homeomorphism F ∈ Homeo(M A ). Then Λ A (f ) is the element of M(M A ) represented by F . The homomorphism Λ A is called the reduction homomorphism along A. Definition. For a simplex A in C(M ), we set A 0 = A ∩ C 0 (M ), and we denote by Z A the subgroup of M(M ) generated by {t α | α ∈ A 0 }.

Definition.

  Let α ∈ C(N ). Choose a circle a such that α = [a]. If α is one-sided, then p -1 (a) is formed by a unique essential circle, ã. Then we set p -1 (α) = {[ã]}. If α is two-sided, then p -1 (a) is formed by two disjoint essential circles, ã1 and ã2 . Then we set p -1 (α) = {[ã 1 ], [ã 2 ]}. It is easily checked that the definition of p -1 (α) does not depend on the choice of the representative a. For a subset A of C(N ), we set p -1 (A) = ∪ α∈A p -1 (α).
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