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Abstract. In this paper, we complete our previous works ( Cattiaux, Leon and Prieur
(2014-a), Cattiaux, Leon and Prieur (2014-b), Cattiaux, Leon and Prieur (2014-c))
on the (non-parametric) estimation of the characteristics (invariant density, drift term,
variance term) of some ergodic hamiltonian systems, under partial observations. More
precisely, we introduce recursive estimators using the full strength of the ergodic behav-
ior. We compare the theoretical results obtained with these estimators to the results we
proved for the ones we have introduced previously.
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1. INTRODUCTION.

Let
(

Zt := (Xt, Yt) ∈ R
2d , t ≥ 0

)

be governed by the following Ito stochastic differential
equation :

dXt = Ytdt

dYt = σ dWt − (c(Xt, Yt)Yt +∇V (Xt))dt. (1.1)

Each component Y i (1 ≤ i ≤ d) is the velocity of a particle i with position X i. Function
c is called the damping force and V the potential, σ is some symmetric positive definite
constant matrix and W is a standard Brownian motion.
We shall assume that c and V are regular enough for the existence and uniqueness of a
non explosive solution of (1.1). We shall also assume that the process is ergodic with a
unique invariant probability measure µ, and that the convergence in the ergodic theorem
is quick enough. Some sufficient conditions will be discussed below.
These models are important due to their physical relevance. They have a long history.
We refer to Wu (2001) and Cattiaux et al. (2014-a) for a detailed bibliography. We have
chosen the terminology “damping Hamiltonian systems” in reference to Wu. Such systems
are also called “kinetic diffusions” by several authors.

Once the probabilistic picture is well understood, it is particularly relevant to build
statistical tools for these models. In a series of previous papers, we have built several
estimators for the characteristics of such processes: non parametric estimators for the
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invariant density in Cattiaux, Leon and Prieur (2014-a), for the drift term in Cattiaux,
Leon and Prieur (2014-b), and various estimators for the noise or the diffusion term in
Cattiaux, Leon and Prieur (2014-c). The most important fact is that all these estimators
are built under partial observations, i.e. we assume that the position only can be observed,
the velocity is then estimated. This is in accordance with the concrete situations where
these processes can be used as a pertinent model.
The second common fact in these papers is that we assume high frequency observations,
i.e. the process Xt is observed at times khn (k ∈ R

+) for some parameter hn going to 0
as n goes to infinity (but of course nhn → +∞).

In the present paper, we propose recursive estimators.
Recursive estimation is of course particularly well adapted to the ergodic situation, where
one can observe the process on a long time interval. To be more precise, denote by ps the
invariant density (see the next section for its existence) and by b the drift term

b(x, y) = −c(x, y)y −∇V (x) .

We introduce the two natural estimations of Y and d Y ,

∆1(Xt, h) =
1

h
(Xt+h −Xt) and h∆2(Xt, h) =

1

h
(Xt+h +Xt−h − 2Xt) . (1.2)

We define the following three estimators

p̂r,n(x, y) :=
1

n

n
∑

i=1

1

bd1,i b
d
2,i

K

(

x−Xi

b1,i
,
y −∆1(Xi, hi)

b2,i

)

, (1.3)

for the invariant density,

p̂r,n(x, y) b̂r,n(x, y) :=
1

n

n
∑

i=1

1

bd1,i b
d
2,i

K

(

x−Xi

b1,i
,
y −∆1(Xi, hi)

b2,i

)

∆2(Xi+2hi
, hi) , (1.4)

for the drift term, and finally

σ̂r,n :=
3

2n

n
∑

i=1

1

hi
∆2(Xi+hi

, hi) >< ∆2(Xi+hi
, hi) , (1.5)

for the (constant) diffusion matrix, where A = x >< x denotes the symmetric matrix
with entries Aj,k = xj xk, xj denoting the jth coordinate of x.
The recursion formulae are thus

p̂r,n(x, y) =
n− 1

n
p̂r,(n−1)(x, y) +

1

n bd1,n b
d
2,n

K

(

x−Xn

b1,n
,
y −∆1(Xn, hn)

b2,n

)

,

p̂r,n(x, y) b̂r,n(x, y) =
n− 1

n
p̂r,(n−1)(x, y) b̂r,(n−1)(x, y) +

+
1

n bd1,n b
d
2,n

K

(

x−Xn

b1,n
,
y −∆1(Xn, hn)

b2,n

)

∆2(Xn+2hn , hn) ,

σ̂r,n =
n− 1

n
σ̂r,(n−1) +

3

2nhn
∆2(Xn+hn , hn) >< ∆2(Xn+hn , hn) .

We intend to give sufficient conditions on the discretization steps hn, bandwidth b1,n
and b2,n and kernels K, for these estimators to be consistent and provide some confidence
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intervals.
In the whole paper K will be a smooth kernel with compact support, satisfying

∫

K(x, y)dxdy = 1 .

It is worth noticing that the observations will be only locally high frequency, i.e. what
is needed is the joint observation of (Xn, Xn+hn , Xn+2hn , Xn+3hn) and we will choose hn
going to 0 and assume that 3hn < 1 for all n. In the case of complete observation, we
only need to observe the position process at integer times.

Of course, all these estimators are the “recursive” form of the estimators we have
introduced in our previous works.

Recursive estimation for the density of stationary sequences has a long history too,
starting presumably with Wegman and Davis (1979). One can mention among others a
series of papers by E. Masry (Masry (1986), Masry (1987), Masry (1989), Masry and
Györfi (1987)) and more recently Liang and Baek (2004) and Amiri (2009). We refer
to Amiri (2010) for a more complete bibliography.
Though these papers do not study explicitly diffusion processes, the results therein can
be applied to the case of complete observation of some stationary diffusion processes.
However we decided to give here complete new proofs for two major reasons: first the
proofs of the Central Limit Theorem given in these papers, based on an intricate block
decomposition can and will be simplified, second we are dealing with the partial observa-
tion case. In addition, some key assumption in all these papers is not clearly satisfied for
our model, though it is presumably true. A precise description and comparison will be
given later (see Section 5.2 for further discussion).

The plan of the paper is the following: after recalling some properties of the model,
we study recursive estimators for the invariant density and the drift under complete
observation. Then, as in Cattiaux et al. (2014-a) and Cattiaux et al. (2014-b), we show
that looking at estimators with partial observation, introduce a small perturbation of the
fully observed case, at least for well chosen hn. Finally we study the diffusion coefficient
in the spirit of the final section of Cattiaux et al. (2014-c).
Large parts of the proofs being similar to what we have done in our previous works, we
only indicate the modifications or simplifications in the present setting.

The main results of the paper can be summarized as follows: choosing hn = n−β for
some β > 1/2 as close as 1/2 we want, one can find kernels K and bandwidths bn,j
such that the recursive estimators simultaneously converge to the invariant density, drift
term and diffusion term. In addition we are able to find confidence intervals for all these
quantities, of respective size n−θp for θp < 1/2, n−θb for θb < 1/4 and n−1/2.

2. The model and its properties.

We are obliged to recall some facts on the model. A more detailed discussion is contained
in Cattiaux et al. (2014-a).

We shall first give some results about non explosion and long time behaviour. In a
sense, coercivity can be seen in this context as some exponential decay to equilibrium.
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Let | · | denote the euclidean norm in R
d.

Let us first introduce some sets of assumptions:

Hypothesis H1:

(i) the potential V is lower bounded, smooth over R
d, V and its first three partial

derivatives have polynomial growth at infinity and there exists v > 0 such that

+∞ ≥ lim inf
|x|→+∞

x.∇V (x)

|x| ≥ v > 0 ,

the latter being often called “drift condition”,
(ii) the damping coefficient c(x, y) is smooth and bounded, its first two derivatives are

bounded by some polynomial, and there exist c, L > 0 so that cs(x, y) ≥ cId > 0,
∀(|x| > L, y ∈ R

d), where cs(x, y) is the symmetrization of the matrix c(x, y),
given by 1

2
(cij(x, y) + cji(x, y))1≤i,j≤d,

(iii) σ is uniformly elliptic, i.e. here σ−1 exists.

These conditions ensure that there is no explosion, and that the process is positive
recurrent with a unique invariant probability measure µ. In some of our previous papers we
assumed that σ = Id, but of course multiplying Y by σ−1 we are immediately reduced (for
the probabilistic properties) to the case σ = Id. Furthermore µ admits some exponential
moment, hence polynomial moments of any order.
We will denote by Ptf(z) = Ez(f(Zt)) which is well defined for all bounded function f ,
Pt extends as a contraction semi-group on L

p(µ) for all 1 ≤ p ≤ +∞.
Another key feature is that the process is actually α-mixing, i.e.

Proposition 2.1. There exist some constants C > 0 and ρ < 1 such that:

∀ g, f ∈ L
∞(µ) , ∀ t ≥ 0,

|Covµ (f(Zt), g(Z0))| ≤ C ρt/2
∥

∥

∥

∥

g −
∫

gdµ

∥

∥

∥

∥

∞

∥

∥

∥

∥

f −
∫

fdµ

∥

∥

∥

∥

∞
. (2.2)

i.e., in the stationary regime, (Zt, t ≥ 0) is α-mixing with exponential rate.

Actually, using the semi-group property and the Riesz-Thorin interpolation theorem,
one can extend the previous mixing condition in the following way: if g, f ∈ L

q(µ) for
some q ≥ 2, then for t > 0,

|Covµ (f(Zt), g(Z0))| ≤ C ρt(q−2)/2q

∥

∥

∥

∥

g −
∫

gdµ

∥

∥

∥

∥

q

∥

∥

∥

∥

f −
∫

fdµ

∥

∥

∥

∥

q

. (2.3)

As explained in section 2.2 of Cattiaux et al. (2014-a), the infinitesimal generator L is
hypo-elliptic, which implies that

µ(dz) = ps(z) dz

for some smooth function ps.
At the same time, for all t > 0 the law of the process has a density p(t, z, .) with respect
to Lebesgue measure, which is smooth, and satisfies for any t0 > 0 and for all compact
subsets A and A′,

sup
z∈A , z′∈A′

sup
t≥t0

|p(t, z, z′)| = Q(A,A′) < +∞ . (2.4)
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One can relax the C∞ assumption on the coefficients into a Ck assumption, for a large
enough k, but this is irrelevant.
Furthermore it can be shown that ps is everywhere positive.

One can relax some assumptions and still have the same conclusions:

Hypothesis H2:

(a) One can relax the boundedness assumption on c in H1, assuming that for all
N > 0: sup|x|≤N,y∈Rd ‖c(x, y)‖H.S. < +∞, where H.S. denotes the Hilbert-Schmidt
norm of a matrix; but one has to assume in addition conditions (3.1) and (3.2) in
Wu (2001). An interesting example (the Van der Pol model) in this situation is
described in Wu (2001) subsection 5.3.

(b) The most studied situation is the one when c is a constant matrix. Actually almost
all results obtained in Wu (2001) or Bakry et al. (2008) in this situation extend
to the general bounded case.
Nevertheless we shall assume now that c is a constant matrix.
In this case a very general statement replacing H1 (i) is given in Theorem 6.5 of
Bakry et al. (2008). Tractable examples are discussed in Example 6.6 of the same
paper. In particular one can replace the drift condition on V by

lim inf
|x|→+∞

|∇V |2(x) > 0 and ‖∇2V ‖H.S. ≪ |∇V | .

Notice that one can relax the repelling strength of the potential, and obtain, no
more exponential but sub-exponential or polynomial decay (see the discussion in
Bakry et al. (2008)).

From now on in the whole paper we will assume that Hypothesis H1 (or H2) is fulfilled.
In all the proofs of the paper C denotes some constant which may vary from line to line.
We also use the expression in the stationary regime when the process is stationary, i.e.
when Z0 is distributed according to µ.

3. Estimation of the invariant density and of the drift term in the
stationary regime: complete observation case.

To begin with, we look at the recursive estimators under complete observation. This is
not our main goal, but as in Cattiaux et al. (2014-a), it is a first step for our study.

3.1. Invariant density. Introduce

p̃r,n(x, y) :=
1

n

n
∑

i=1

1

bd1,i b
d
2,i

K

(

x−Xi

b1,i
,
y − Yi
b2,i

)

. (3.1)

We have the following first result

Lemma 3.2. Assume that b1,n and b2,n are non-increasing sequences of real numbers (say
between 0 and 1), going to 0 as n→ +∞. Then for all (x, y), as n→ +∞,

Eµ(p̃r,n(x, y)) → ps(x, y) .
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If in addition nbd1,n b
d
n,2 → +∞ as n→ +∞, then

Varµ(p̃r,n(x, y)) ≤
C

n bd1,n b
d
n,2

,

hence p̃r,n(x, y) converges to ps(x, y) in L
2(µ) norm, as n→ +∞.

Proof. A simple change of variables shows that

Eµ

(

1

bd1,i b
d
2,i

K

(

x−Xi

b1,i
,
y − Yi
b2,i

)

)

=

∫

K(u, v) ps(x− ub1,i, y − vb2,i) du dv

so that using the smoothness of ps and the fact that K has compact support, it follows
that

Eµ

(

1

bd1,i b
d
2,i

K

(

x−Xi

b1,i
,
y − Yi
b2,i

)

)

→ ps(x, y)

as i goes to infinity. The first result then follows from the Cesaro rule.

For the variance we have the decomposition Varµ(p̃r,n(x, y)) = V1(n) + 2V2(n) with

V1(n) =
1

n2

n
∑

i=1

1

b2d1,i b
2d
2,i

Varµ

(

K

(

x−X0

b1,i
,
y − Y0
b2,i

))

(3.3)

=
1

n2

(

n
∑

i=1

1

bd1,i b
d
2,i

∫

K2(u, v) ps(x− ub1,i, y − vb2,i) du dv

)

− 1

n2

n
∑

i=1

1

b2d1,ib
2d
2,i

(

bd1,ib
d
2,i

∫

K(u, v)ps(x− ub1,i, y − vb2,i)dudv

)2

≤ C

n bd1,n b
d
2,n

where C =‖ ps ‖L∞(suppK+1)

∫

K2(u, v)dudv, and

V2(n) =
1

n2

n
∑

i=1

∑

j>i

1

bd1,i b
d
2,i

1

bd1,j b
d
2,j

(3.4)

Covµ

(

K

(

x−X0

b1,i
,
y − Y0
b2,i

)

, K

(

x−Xj−i

b1,j
,
y − Yj−i

b2,j

))

.

In order to bound the previous quantity, we have two options.
On one hand we may write

Eµ

(

K

(

x−X0

b1,i
,
y − Y0
b2,i

)

K

(

x−Xj−i

b1,j
,
y − Yj−i

b2,j

))

= bd1,i b
d
2,i b

d
1,j b

d
2,j

∫ ∫

K(u, v)K(u′, v′)

ps(x− ub1,i, y − vb2,i) p(j − i, (x− ub1,i, y − vb2,i), (x− u′b1,j, y − v′b2,j)) dudvdu
′dv′

so that, using (2.4),

1

bd1,i b
d
2,i

1

bd1,j b
d
2,j

∣

∣

∣

∣

Eµ

(

K

(

x−X0

b1,i
,
y − Y0
b2,i

)

K

(

x−Xj−i

b1,j
,
y − Yj−i

b2,j

))∣

∣

∣

∣

≤ C .
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At the same time,
∣

∣

∣

∣

Eµ

(

K

(

x−X0

b1,i
,
y − Y0
b2,i

))∣

∣

∣

∣

= bd1,i b
d
2,i

∣

∣

∣

∣

∫

K(u, v) ps(x− ub1,i, y − vb2,i) dudv

∣

∣

∣

∣

≤ C bd1,i b
d
2,i

so that

1

bd1,i b
d
2,i

1

bd1,j b
d
2,j

∣

∣

∣

∣

Covµ

(

K

(

x−X0

b1,i
,
y − Y0
b2,i

)

, K

(

x−Xj−i

b1,j
,
y − Yj−i

b2,j

))∣

∣

∣

∣

≤ C .

On the other hand, we may use (2.3) in order to get for any 2 ≤ q ≤ +∞,
∣

∣

∣

∣

Covµ

(

K

(

x−X0

b1,i
,
y − Y0
b2,i

)

, K

(

x−Xj−i

b1,j
,
y − Yj−i

b2,j

))∣

∣

∣

∣

≤ C b
d/q
1,i b

d/q
2,i b

d/q
1,j b

d/q
2,j ρ

(j−i)(q−2)/2q .

Using roughly the monotonicity of the sequences b.,i, we thus get

V2(n) ≤ C

n2

n
∑

i=1

∑

j>i

min



1,
ρ(j−i)(q−2)/2q

b
2d(1− 1

q
)

1,n b
2d(1− 1

q
)

2,n





≤ C

n2

n
∑

k=1

(n− k) min



1,
ρk(q−2)/2q

b
2d(1− 1

q
)

1,n b
2d(1− 1

q
)

2,n



 .

The sum splits into two terms, depending on which term reaches the minimal value. But
roughly, for all 1 ≤ kn ≤ n, we have, with q = +∞ for simplicity, a bound of the form

V2(n) ≤ C

(

kn
n

+
ρkn/2

n b2d1,n b
2d
2,n

)

= o

(

1

n bd1,n b
d
2,n

)

provided

ln(1/b1,n) + ln(1/b2,n) ≪ kn ≪
(

1

bd1,n b
d
2,n

)

,

hence the result. �

The previous proof gives us the feeling of the right normalization for a Central Limit
Theorem. Let us state the result

Theorem 3.5. Assume that H1 or H2 is fulfilled. Assume in addition that the following
assumption HK is satisfied

(HK) there exists m ∈ N
∗ such that for all multi-index (m1,m2) ∈ N

d ×N
d such that

m ≥ |m1|+ |m2| ≥ 1 ,
∫

um1 vm2 K(u, v)dudv = 0 .

Let b1,n and b2,n be non increasing sequences of real numbers satisfying

(1a) b1,n and b2,n go to 0 as n→ +∞,
(2a) nbd1,nb

d
2,n → +∞ as n→ +∞,

(3a) there exists Σ > 0 such that limn→+∞
1
n

(

∑n
i=1

bd1,nb
d
2,n

bd1,ib
d
2,i

)

= Σ.

(4a)
√

nbd1,nb
d
2,n

(

1
n

∑n
i=1 max(b1,i, b2,i)

m+1
)

→ 0 as n→ +∞.
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Then, in the stationary regime
√

nbd1,nb
d
2,n (p̃r,n(x, y)− ps(x, y))

D−−−−→
n→+∞

N
(

0, Σ ps(x, y)

∫

K2(s, t)dsdt

)

.

Remark 3.6. Typical allowed bandwidths are bj,n = n−αj for j = 1, 2 with αj > 0,
d(α1 + α2) < 1 and then choosing m such that 1 < d(α1 + α2) + 2(m+ 1)min(α1, α2). In
this case Σ = 1/(1 + d(α1 + α2)).
These conditions are satisfied in particular once

1

2(d+m+ 1)
< min(α1, α2) ≤ max(α1, α2) <

1

2d
,

in which case the rate we obtain is at most nτ with τ < m+1
2(d+m+1)

. ♦
Remark 3.7. It is always possible to build some kernel K satisfying HK for a given m.
First we may take K(z) = Π2d

j=1K1(zj) and choose K1 satisfying HK in dimension 1.
To build K1 choose for instance some even function ψ which is C∞ and compactly sup-
ported in [−1,+1], positive on its support. Then consider the space of polynomials R(u),
equipped with the L

2(ψ(u)du) norm, and its completion H(ψ). It is not difficult to see
that, for all k ∈ N

∗, the family 1, u, u2, ..., uk is an independent family of vectors for the
euclidean norm induced by the L2(ψ(u)du) norm. We may thus find some polynomial M
with degree m which is orthogonal to all the uj for j = 1, ...,m and satisfies < M, 1 >= 1
with < ·, · > the usual scalar product in L

2(ψ(u)du). It remains to choose K1 =Mψ.
The previous shows that we may choose m as large as we want. ♦

Proof. First, the bias term Bn =
√

n bd1,n b
d
2,n (Eµ(p̃r,n(x, y)) − ps(x, y)) can be treated

exactly as in Cattiaux et al. (2014-a) section 5 step 3. It is for this term that the conditions
on K and (4a) are required.
Next we show that n bd1,n b

d
2,n Varµ(p̃r,n(x, y)) converges as n → +∞. According to the

proof of the previous Lemma, we see that this convergence amounts to the convergence
of

n bd1,n b
d
2,n V1(n) .

But
n bd1,n b

d
2,n V1(n) = V11(n) + V12(n)

with

V11(n) =
1

n

(

n
∑

i=1

bd1,nb
d
2,n

bd1,ib
d
2,i

)

ps(x, y)

∫

K2(u, v)dudv ,

while

V12(n) =
1

n

(

n
∑

i=1

bd1,nb
d
2,n

bd1,ib
d
2,i

∫

K2(u, v)(ps(x− ub1,i, y − vb2,i)− ps(x, y)) dudv

)

.

Using the regularity of ps (here the local Lipschitz property) we see that

V12(n) ≤ C
b1,nb2,n
n

(

n
∑

i=1

bd−1
1,n b

d−1
2,n

bd−1
1,i b

d−1
2,i

)

≤ C b1,nb2,n
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thanks to the monotonicity of the sequences, and the latter goes to 0. Finally

lim
n→+∞

n bd1,n b
d
2,n Varµ(p̃r,n(x, y)) = Σ ps(x, y)

∫

K2(u, v)dudv . (3.8)

To prove the Central Limit Theorem it remains to use the Lindeberg method. As shown
in Bardet et al. (2008) Theorem 1, the proof amounts to check two conditions. Define

Ui,n =

√

bd1,n b
d
2,n√

n bd1,i b
d
2,i

K

(

x−Xi

b1,i
,
y − Yi
b2,i

)

then what is required is

(1) there exists some δ > 0 such that

lim
n→+∞

An := lim
n→+∞

n
∑

i=1

Eµ(|Ui,n|2+2δ) = 0 ,

(2) for all a ∈ R,

lim
n→+∞

Tn := lim
n→+∞

n
∑

i=1

∣

∣Covµ
(

eia(U1,n+...+Ui−1,n), eiaUi,n
)∣

∣ = 0 .

We have

An =
1

n1+δ

n
∑

i=1

b
d(1+δ)
1,n b

d(1+δ)
2,n

b
2d(1+δ)
1,i b

2d(1+δ)
2,i

Eµ

(

K2+2δ

(

x−X0

b1,i
,
y − Y0
b2,i

))

≤ C

n1+δ

n
∑

i=1

b
d(1+δ)
1,n b

d(1+δ)
2,n

b
d(1+2δ)
1,i b

d(1+2δ)
2,i

≤ C

nδ bdδ1,nb
dδ
2,n

(

1

n

n
∑

i=1

bd1,nb
d
2,n

bd1,ib
d
2,i

)

so that, under our assumptions, An → 0 as n→ +∞.

As in Bardet et al. (2008), we write

∣

∣Covµ
(

eia(U1,n+...+Ui−1,n), eiaUi,n
)∣

∣ =

∣

∣

∣

∣

∣

i−1
∑

j=1

Covµ
(

eia(U1,n+...+Uj,n) − eia(U1,n+...+Uj−1,n), eiaUi,n
)

∣

∣

∣

∣

∣

(3.9)
(as usual empty sums are equal to 0). Consider a random variable U∗

i,n independent from
(U1,n, . . . , Uj−1,n), with same distribution as Ui,n. Then, following Bardet et al. (2008),
we note that each element in the sum of the right hand term of Equality (3.9) is equal to

∣

∣Covµ
(

eia(U1,n+...+Uj,n) − eia(U1,n+...+Uj−1,n),
(

eiaUi,n − eiaU
∗
i,n
))∣

∣

which is bounded, arguing as in the proof of Lemma 3.2, by

C(a)min

(

Eµ(|Uj,n||Ui,n|), ρi−j/2
bd1,n b

d
2,n

n bd1,j b
d
2,jb

d
1,i b

d
2,i

)

≤ C(a)
bd1,n b

d
2,n

n
min

(

1,
ρi−j/2

bd1,ib
d
2,ib

d
1,jb

d
2,j

)

.
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Tn ≤ C(a)
n
∑

i=1

i−1
∑

j=1

bd1,n b
d
2,n

n
min

(

1,
ρi−j/2

bd1,ib
d
2,ib

d
1,jb

d
2,j

)

≤ C(a)
n
∑

k=1

(n− k) min

(

bd1,n b
d
2,n

n
,

ρk/2

nbd1,nb
d
2,n

)

≤ C(a)(k(n) bd1,n b
d
2,n +

ρk(n)

bd1,nb
d
2,n

)

so that choosing again

1

bd1,n b
d
2,n

≫ k(n) ≫ ln(1/b1,n) + ln(1/b2,n)

we obtain that Tn → 0. �

Remark 3.10. As we have seen HK is only required to control the bias term.
Lemma 3.2 is essentially contained in Amiri (2010) chapter 2, where a still more compli-
cated estimator is studied. For the Central Limit Theorem, usual proofs in the recursive
framework are using intricate block decompositions. Here we follow the beautiful and
now classical Lindeberg method (using Rio’s decomposition). The calculations are done
in Bardet et al. (2008) proof of Proposition 4.2 for the case of the classical kernel estimator
of the density, under weak dependence. It is adapted here to our framework. ♦

3.2. Drift term. The most difficult part in our previous study is presumably the
estimation of the drift term in Cattiaux et al. (2014-b) Proposition 4.2. Similarly to what
we have done in this paper introduce

H̃r,n(x, y) :=
1

n

n
∑

i=1

1

bd1,i b
d
2,i

K

(

x−Xi

b1,i
,
y − Yi
b2,i

)

∆2(Xi+2hi
, hi) . (3.11)

As for the density, using Cesaro’s rule, it is easy to see that H̃r,n is an asymptotically
unbiased estimator of b(x, y)ps(x, y), provided the bandwidths b.,n and hn go to 0 at
infinity. Next it is enough to closely follow the proof of Proposition 4.2 in Cattiaux et al.
(2014-b) keeping in mind that if the times ihn are replaced by i, this does not introduce
any modification since what is important is the size of the windows defining ∆j(X, hi).
Since some things will differ (in particular the normalization of the kernels), we will give a
proof (indicating the differences with Cattiaux et al. (2014-b)) of the following statement

Theorem 3.12. Assume that H1 or H2, and HK are fulfilled.
Let hn, b1,n and b2,n be non increasing sequences of real numbers satisfying, as n→ +∞,

(1b) hn < 1/3 for all n, hn, b1,n and b2,n go to 0,
(2b) nhn b

d
1,nb

d
2,n → +∞ ,

(3b) there exists θ > 0 such that 1
n

(

∑n
i=1

hn bd1,nb
d
2,n

hi bd1,ib
d
2,i

)

→ θ,

(4b)
√

nbd1,nb
d
2,nhn

(

1
n

∑n
i=1 max(b1,i, b2,i)

m+1
)

→ 0,

(5b) there exists some r > 1 such that
√

nbd1,nb
d
2,nhn

(

1
n

∑n
i=1 hi

(

bd1,ib
d
2,i

) 1
r
−1
)

→ 0 ,



RECURSIVE ESTIMATION FOR HAMILTONIAN SYSTEMS. 11

(6b) there exists some p > 1 such that
hnbd1,nb

d
2,n

n

∑n
i=1 h

2
i (b

d
1,ib

d
2,i)

1
p
−2 → 0,

Then, in the stationary regime
√

nbd1,nb
d
2,nhn

(

H̃r,n(x, y)− b(x, y)ps(x, y)
)

D−−−−→
n→+∞

σN
(

0,
θ

3
ps(x, y)(

∫

K2(s, t)dsdt) Id

)

.

Remark 3.13. Assume that hn is such that
∑n

i=1 h
2
i < +∞. Then for (6) to be satisfied,

it suffices that
hn(bd1,nb

d
2,n)

1/p

n bd1,nb
d
2,n

→ 0, which is automatic, thanks to (2). This situation is not

the most interesting.
Now assume that bj,n = n−αj and hn = n−β for some positive αj and β. It is not difficult
to see that, choosing p as close to 1 as necessary, (6) is again automatically satisfied,
whatever the positive value of β. For (1) to (5) to be satisfied, it is then enough to
assume

β + d(α1 + α2) < 1 < β + d(α1 + α2) + 2min(β, (m+ 1)min(α1, α2)) ,

and in this case we have θ = 1/(1 + β + d(α1 + α2)).
As we have seen in Remark 3.7, we may choosem as large as we want, so that the previous
conditions amounts to

β + d(α1 + α2) < 1 < 3β + d(α1 + α2) . (3.14)

Hence we may choose the αj’s as small as possible and β larger than but close to 1/3 to
get the quasi optimal rate n1/3. ♦

Proof. We give the main modifications w.r.t. the proof of Proposition 4.2 in Cattiaux et
al. (2014-b). We decompose

Sn :=
√

n bd1,nb
d
2,n hn

(

H̃r,n(x, y)− b(x, y)ps(x, y)
)

=
√

n bd1,nb
d
2,nhn

(

H̃n(x, y)− EH̃r,n(x, y) + EH̃r,n(x, y)− b(x, y)ps(x, y)
)

=: I1n + I2n.

Define

Ii :=

∫ i+3hi

i+2hi

∫ t

i+2hi

b(Xs, Ys)dsdt+

∫ i+2hi

i+hi

∫ i+2hi

t

b(Xs, Ys)dsdt ,

and

Wi :=

∫ i+3hi

i+2hi

(Ws −Wi+2hi
)ds+

∫ i+2hi

i+hi

(Wi+2hi
−Ws)ds .

The vector
√

nbd1,nb
d
2,nhnH̃r,n(x, y) can be decomposed in two terms: the one driving

the bias in the central limit theorem

Sn,1(x, y) :=
√

nbd1,nb
d
2,nhn

1

n

n
∑

i=1

1

bd1,ib
d
2,i

K

(

x−Xi

b1,i
,
y − Yi
b2,i

)

1

h2i
Ii ,
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and the one driving the variance

Sn,2(x, y) :=
√

nbd1,nb
d
2,nhn

1

n

n
∑

i=1

1

bd1,ib
d
2,i

K

(

x−Xi

b1,i
,
y − Yi
b2,i

)

1

h2i
σWi.

Notice that ESn,2(x, y) = 0. We thus have

I2n = EµSn,1(x, y)−
√

n bd1,nb
d
2,nhn b(x, y)ps(x, y) , (3.15)

while
I1n = (Sn,1 − EµSn,1(x, y)) + Sn,2(x, y) . (3.16)

First step: Showing that I2n → 0.

We define

Pi :=

∫ i+3hi

i+2hi

∫ t

i+2hi

(Psb(Xi, Yi)− b(Xi, Yi))dsdt

+

∫ i+2hi

i+hi

∫ i+2hi

t

(Psb(Xi, Yi)− b(Xi, Yi))dsdt .

Thanks to stationarity, it holds

I2n =
√

nbd1,nb
d
2,nhn Eµ

(

1

n

n
∑

i=1

1

bd1,ib
d
2,i

K

(

x−X0

b1,i
,
y − Y0
b2,i

)

1

h2i
P0

)

+

+
√

nbd1,nb
d
2,nhn Eµ

(

1

n

n
∑

i=1

1

bd1,ib
d
2,i

K

(

x−X0

b1,i
,
y − Y0
b2,i

)

b(X0, Y0) − b(x, y)ps(x, y)

)

.

The second summand in the above expression can be treated as for the density and goes
to 0 as soon as

√

nbd1,nb
d
2,nhn

(

1

n

n
∑

i=1

max(b1,i, b2,i)
m+1

)

→ 0 .

The first summand can be decomposed into a sum
√

nbd1,nb
d
2,nhn

∑n
i=1(A1i + A2i) with

A1i =
1

h2i

∫ ∫ 3hi

2hi

∫ t

2hi

(Psb(u, v)− b(u, v))
1

bd1,ib
d
2,i

K

(

x− u

b1,i
,
y − v

b2,i

)

ds dt µ(du, dv) ,

A2i being similar just changing
∫ 3hi

2hi

∫ t

2hi
into

∫ 2hi

hi

∫ 2hi

t
. We thus only study A1i for which

we have (|.| denoting the norm in R
d) as in Cattiaux et al. (2014-b)

|A1i| ≤ CMp hi
1

bd1,ib
d
2,i

(∫

Kr

(

x− u

b1,i
,
y − v

b2,i

)

µ(du, dv)

)1/r

≤ CMp hi
(

bd1,ib
d
2,i

)
1
r
−1

,

with p > 1 , r < +∞ ∈ N
∗ such that 1

p
+ 1

r
= 1. Accordingly the first summand goes to

zero as n tends to infinity, provided

√

nbd1,nb
d
2,nhn

(

1

n

n
∑

i=1

hi
(

bd1,ib
d
2,i

)
1
r
−1

)

→ 0 .
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Second step: Study of Sn,2

We now consider the term driving the variance. As in the proof of Proposition 4.2 in
Cattiaux et al. (2014-b) one can study the behavior of the characteristic function Φn(t)
of Sn,2, recall that

Sn,2(x, y) :=
√

nbd1,nb
d
2,nhn

1

n

n
∑

i=1

1

bd1,ib
d
2,i

K

(

x−Xi

b1,i
,
y − Yi
b2,i

)

σWi

h2i
.

and that ESn,2(x, y) = 0.
If < ·, · > denotes the usual scalar product in R

d, introduce the random function fn(t)
(t ∈ R

d)

fn(t) = e
− 1

6n
|σt|2 bd1,nbd2,n hn

∑n
k=1

1

b2d
1,k

b2d
2,k

hk
K2

(

x−Xk
b1,k

,
y−Yk
b2,k

)

.

One can follow the method used in Cattiaux et al. (2014-b) to show that the convergence
of Φn amounts to the convergence in Probability of fn.
Now define

Zn = bd1,nb
d
2,n hn

1

n

n
∑

k=1

1

b2d1,kb
2d
2,k hk

K2

(

x−Xk

b1,k
,
y − Yk
b2,k

)

.

Let

A = θ ps(x, y)

∫

K2(u, v)dudv ,

where

θ = lim
n→+∞

1

n

n
∑

k=1

bd1,nb
d
2,n hn

bd1,kb
d
2,k hk

.

Then

Eµ(|Zn − A|) ≤ 1

n

n
∑

k=1

bd1,nb
d
2,n hn

bd1,kb
d
2,k hk

∫

K2 (u, v) |ps(x− ub1,k, y − vb2,k)− ps(x, y)|dudv

+

(

1

nθ

n
∑

k=1

bd1,nb
d
2,n hn

bd1,kb
d
2,k hk

− 1

)

A

≤ 1

n

n
∑

k=1

∫

K2 (u, v) |ps(x− ub1,k, y − vb2,k)− ps(x, y)|dudv

+

(

1

nθ

n
∑

k=1

bd1,nb
d
2,n hn

bd1,kb
d
2,k hk

− 1

)

A ,

using the monotonicity properties of all sequences. This proves, using Cesaro’s rule again
that Eµ(|Zn − A|) → 0.
Thus Zn → θ ps(x, y)

∫

K2(u, v)dudv, in L1(µ). Using the bounded convergence theorem,
we deduce that

fn(t)
P→ e−

θ|σt|2

6
ps(x,y)

∫

K2(u,v)dudv ,
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so that we get that

Sn,2(x, y)
D−−−−→

n→+∞
σN

(

0,
θ

3
ps(x, y)(

∫

K2(s, t)dsdt) Id

)

.

Third step: showing that Sn,1(x, y))− Eµ(Sn,1(x, y)) → 0

Let us denote by Pk
i the kth coordinate of the vector Pi,. Defining

Γk(i, x, y,X, Y ) =
1

bd1,ib
d
2,i

K(
x−X

b1,i
,
y − Y

b2,i
)
1

h2i
Pk

i ,

we have

Sk
n,1 =

√

nhnbd1,nb
d
2,n

1

n

n
∑

i=1

Γk(i, x, y,Xi, Yi),

so that
n

bd1nb
d
2nhn

Varµ(S
k
n,1)

=

(

n
∑

i=1

Varµ(Γ
k(i, x, y,Xi, Yi)) +

∑

i 6=l

Covµ(Γ
k(i, x, y,Xi, Yi),Γ

k(l, x, y,Xl, Yl))

)

.

To bound the above expression we first bound as we did for the first step

Eµ((Γ
k(i, x, y,Xi, Yi))

2) ≤

≤ C

h4i b
2d
1,ib

2d
2,i

Eµ

[

K2

(

x−X0

b1,i
,
y − Y0
b2,i

) (∫ hi

0

(hi − s) (Psb(X0, Y0)− b(X0, Y0)) ds

)2
]

≤ C

hib2d1,ib
2d
2,i

∫ ∫ hi

0

K2

(

x− u

b1,i
,
y − v

b2,i

)

(Psb(u, v)− b(u, v))2 ds dµ

≤ C hi
b2d1,ib

2d
2,i

∫ hi

0

∫

K2

(

x− u

b1,i
,
y − v

b2,i

)(

Psb(u, v)− b(u, v)

s

)2

dµ ds

We may argue as in the first step, this time using Hölder inequality for some conjugate
pair (p, q) to conclude that

Eµ((Γ
k(i, x, y,Xi, Yi))

2) ≤ C h2i (b1,ib2,i)
(d/p)−2d . (3.17)

It follows

hnb
d
1,nb

d
2,n

n

n
∑

i=1

Varµ(Γ
k(i, x, y,Xi, Yi)) ≤ C

hnb
d
1,nb

d
2,n

n

n
∑

i=1

h2i (b
d
1,ib

d
2,i)

1
p
−2 ,

the latter going to 0 thanks to (6).

Let us now compute the covariances.
One has thanks to stationarity and mixing inequality (2.2) (remark that bd1,ib

d
2,iΓ

k(i, .) is
bounded)

bd1,nb
d
2,n hn

n

∑

i 6=l

Covµ
(

Γk(i, x, y,Xi, Yi),Γ
k(l, x, y,Xl, Yl)

)

≤
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≤ C
bd1,nb

d
2,n hn

n

n
∑

i=1

i−1
∑

j=1

min

(

1,
ρi−j/2

bd1,ib
d
2,ib

d
1,jb

d
2,j

)

≤ Chn

n−1
∑

j=1

min

(

bd1,nb
d
2,n,

ρj/2

bd1,nb
d
2,n

)

≤ C hn

(

knb
d
1,nb

d
2,n,

ρkn/2

bd1,nb
d
2,n

)

which goes to 0 for an appropriate choice of kn. �

Putting together the previous two theorems, we may deduce exactly as in Cattiaux et
al. (2014-b) proof of theorem 4.1 the following

Corollary 3.18. Assume that all the assumptions of Theorem 3.5 and Theorem 3.12 are
satisfied. Then, defining b̃r,n = H̃r,n/p̃r,n we have in the stationary regime
√

nbd1,nb
d
2,nhn

(

b̃r,n(x, y)− b(x, y)
)

D−−−−→
n→+∞

σN
(

0,
θ

3ps(x, y)
(

∫

K2(s, t)dsdt) Id

)

.

Remark 3.19. In the setting of Remark 3.13 the quasi optimal rate is still n1/3. ♦

4. Estimation of the invariant density and of the drift term in the
stationary regime: partial observation case.

We turn to the study of the estimators p̂r,n and b̂r,n defined in (1.3) and (1.4).

4.1. Estimation of the invariant density.

If we can only observe the position process, we have to consider instead of Yi its natural

approximation
Xi+hi

−Xi

hi
.

Recall our estimator

p̂r,n(x, y) :=
1

n

n
∑

i=1

1

bd1,ib
d
2,i

K

(

x−Xi

b1,i
,
y − Xi+hi

−Xi

hi

b2,i

)

.

Theorem 4.1. Assume that H1 (or H2) and HK are fulfilled. Assume in addition that
conditions (1a) up to (6a) are satisfied, where (1a) up to (4a) are given in Theorem 3 and

(5a) limn→+∞

√

nbd1,nb
d
2,n

(

1
n

∑n
i=1

√
hi

bd+1
2,i

)

= 0 ,

(6a) for some p > 1, limn→+∞

√

nbd1,nb
d
2,n

(

1
n

∑n
i=1

hi

bd+1
2,i b

d−(d/p)
1,i

)

= 0 .

Then in the stationary regime
√

nbd1,nb
d
2,n (p̂r,n(x, y)− ps(x, y))

D−−−−→
n→+∞

N
(

0, Σ ps(x, y)

∫

K2(s, t)dsdt

)

.
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Proof. We want to evaluate the expectation of the difference :
√

nbd1,nb
d
2,n (p̂s(x, y)− p̃s(x, y)) (4.2)

=

√

bd1,nb
d
2,n√

n

n
∑

i=1

1

bd1,ib
d
2,i

(

K

(

x−Xi

b1,i
,
y − Xi+hi

−Xi

hi

b2,i

)

−K

(

x−Xi

b1,i
,
y − Yi
b2,i

)

)

,

=

√

bd1,nb
d
2,n√

n

n
∑

i=1

1

bd1,ib
d
2,i

Ai .

We will closely follow Step 2 in the proof of Theorem 3.3 of Cattiaux et al. (2014-a).

Introduce Mu = 1
h

∫ u

i
(Ys − Yi)ds, defined for i ≤ u ≤ i+ hi.

Then we may write

Ai =
−1

hib2,i

∫ i+hi

i

∇yK

(

x−Xi

b1,i
,
y − Yi −Mu

b2,i

)

.(Yu − Yi)du .

Arguing as in the referred proof we can show that for all conjugate pair (p, q) with 1 <
p < +∞,

Eµ(|Ai|) ≤
C

hib2,i

(

h
3/2
i bd1,i + b

d/p
1,i h

2
i

)

.

Hence

Eµ

(

√

nbd1,nb
d
2,n |p̂r,n(x, y)− p̃r,n(x, y)|

)

≤

√

bd1,nb
d
2,n√

n

n
∑

i=1

1

bd1,ib
d
2,i

Eµ(|Ai|)

≤
C
√

bd1,nb
d
2,n√

n

n
∑

i=1

h
3/2
i bd1,i + b

d/p
1,i h

2
i

bd1,ib
d+1
2,i hi

.

It follows that
√

nbd1,nb
d
2,n (p̂r,n(x, y)− p̃r,n(x, y)) goes to 0 in L

1 as soon as (5a) and (6a)

are satisfied. The proof follows from Slutsky’s lemma and Theorem 3. �

Remark 4.3. Assume that bj,n = n−αj and hn = n−β. For (1a) up to (4a) to be satisfied,
we have seen in Remark 3.6 that the condition

d(α1 + α2) < 1 < d(α1 + α2) + 2(m+ 1)min(α1, α2) (4.4)

is sufficient and in Remark 3.7 that we can choose m as large as we want, so that the
previous amounts to d(α1 + α2) < 1.
Since we can choose p as close to 1 as we want, we easily see that (6a) is automatically
satisfied as soon as (5a) is satisfied. The latter implies

1 + α2(d+ 2) < β + dα1 . (4.5)

It follows that, if we are only interested in estimating the invariant density, we may take
β large enough for the latter to be satisfied. But of course we are interested in the
simultaneous estimation of both the invariant density and the drift term, so that (4.5)
will become some restrictive condition, we shall study in more details at the end of the
next subsection. ♦
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4.2. Estimation of the drift.

Introduce

Ĥr,n(x, y) :=
1

n

n
∑

i=1

1

bd1,i b
d
2,i

K

(

x−Xi

b1,i
,
y − Xi+hi

−Xi

hi

b2,i

)

∆2(Xi+2hi
, hi) . (4.6)

We shall first prove the analogue of Theorem 3.12.

Theorem 4.7. Assume that H1 (or H2) and HK are fulfilled. Assume in addition that
conditions (1b) up to (8b) are satisfied, where (1b) up to (6b) are given in Theorem 3.12
and

(7b) for some ε ≥ 1, limn→+∞

√

nhnbd1,nb
d
2,n

(

1
n

∑n
i=1

√
hi

bd+1
2,i b

dε/(1+ε)
1,i

)

= 0 ,

(8b) for some ε > 0 and some r > 1 + ε,

lim
n→+∞

√

nhnbd1,nb
d
2,n

(

1

n

n
∑

i=1

hi

bd+1
2,i b

d(r−1)/r
1,i

)

= 0 .

Then in the stationary regime
√

nhnbd1,nb
d
2,n

(

Ĥr,n(x, y)− ps(x, y)b(x, y)
)

D−−−−→
n→+∞

σN
(

0,
θ

3
ps(x, y)(

∫

K2(s, t)dsdt) Id

)

.

Proof. Starting from Theorem 3.12, as in the previous subsection, it remains to consider
Dn defined by

Dn :=
√

nhnbd1,nb
d
2,n

(

1

n

n
∑

i=1

1

bd1,i b
d
2,i

Ai ∆2(Xi+2hi
, hi)

)

,

where

Ai =

(

K

(

x−Xi

b1,i
,
y − Yi
b2,i

)

−K

(

x−Xi

b1,i
,
y − Xi+hi

−Xi

hi

b2,i

))

,

as in the previous subsection.
As before we decompose ∆2(Xi+2hi

, hi) = 1
h2
i
(Ii + Mi), Ii being the bounded variation

part and Mi the martingale part. More precisely we define

Mi = σ

(∫ i+3hi

i+2hi

(Ws −Wi+2hi
)ds+

∫ i+2hi

i+hi

(Wi+2hi
−Ws)ds

)

,

Ii =

∫ i+3hi

i+2hi

∫ t

i+2hi

g(Xs, Ys)dsdt+

∫ i+2hi

i+hi

∫ i+2hi

t

g(Xs, Ys)dsdt .

We want now to control

Mn = Eµ

(

1

n

n
∑

i=1

1

h2i b
d
1,i b

d
2,i

|Ai||Ii|
)

and Nn = Eµ

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

1

h2i b
d
1,i b

d
2,i

Ai Mi

∣

∣

∣

∣

∣

)

.

For the first term, we use Hölder inequality for some ε > 0,

Eµ(|Ai Ii|) ≤ Eµ

(

|Ai|1+ε
)1/(1+ε)

Eµ

(

|Ii|(1+ε)/ε
)ε/(1+ε)

.
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Similarly to what we have done in the previous proof we may show on one hand that

Eµ(|Ai|1+ε) ≤ C(ε)

hi b
1+ε
2,i

(h
(3+ε)/2
i bd1,i + h2+ε

i b
d/p
1,i ) . (4.8)

On the other hand, according to the proof in Cattiaux et al. (2014-b) (see formula (7.7)
therein), one has

Eµ

(

|Ii|(1+ε)/ε
)

≤ C(ε, u, v)h
2(1+ 1

ε
)

i .

Finally,

Eµ(|Ai Ii|) ≤ C(ε, u, v)
h

1+2ε
1+ε

i

b2,i
(h

(3+ε)/2
i bd1,i + h2+ε

i b
d/p
1,i )

1
1+ε

≤ C(ε, u, v)

(

h
5/2
i b

d/(1+ε)
1,i

b2,i
+
h3i b

d/p(1+ε)
1,i

b2,i

)

.

Hence
√

nhnbd1,nb
d
2,nMn → 0 according to (7b) and (8b).

It remains now to bound Nn.
To this end we compute the expectation of the square. But the terms Ai Mi are centered
and uncorrelated. It follows (similarly to Cattiaux et al. (2014-b)) that

N2
n ≤ C

n2

n
∑

i=1

1

h4i b
2d
1,ib

2d
2,i

h3i Eµ(|Ai|2)

≤ C

n2

n
∑

i=1

1

h4i b
2d
1,ib

2d
2,i

h3i
1

hi b22,i
(h2i b

d
1,i + h3i b

d/p
1,i )

where we have used (4.8) with ε = 1, and finally

Nn ≤ C

n

(

n
∑

i=1

1

b
d/2
1,i b

d+1
2,i

+
n
∑

i=1

√
hi

bd+1
2,i b

d(1−(1/2p))
1,i

)

.

Again
√

nhnbd1,nb
d
2,nNn → 0 according to (7b) and (8b). �

Remark 4.9. If limn→+∞

√

nhnbd1,nb
d
2,n

(

1
n

∑n
i=1

h
κ0
i

b
κ2
2,ib

κ1
1,i

)

= 0 for some positive κj’s, then

the same holds for all ηj’s with η0 ≥ κ0, η1 ≤ κ1 and η2 ≤ κ2. Hence it is easy to see that
(7b) and (8b) amounts to
(7-8-b’) there exists r > 1

2
such that

lim
n→+∞

√

nhnbd1,nb
d
2,n

(

1

n

n
∑

i=1

√
hi

bd+1
2,i b

rd
1,i

)

= 0 .

Now assume as usual that bj,n = n−αj and hn = n−β for some positive αj and β.
(7-8-b’) is satisfied as soon as

1 + (d+ 2)α2 < 2β .

In particular, for all the conditions in Theorem 4.7 and Theorem 4.1 to be satisfied it
is sufficient that both conditions (3.14) and 1 + (d + 2)α2 < β + β ∧ dα1 are fulfilled.
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Unfortunately, as for our estimators in Cattiaux et al. (2014-b), both conditions are
incompatible.
If we do not want to multiply the observations, we have to choose the same discretization
step hn in both Ĥr,n and p̂r,n. But as we did in Cattiaux et al. (2014-b) Theorem 4.1 and
proposition 4.4, we may choose different bandwidths for both estimators, denoted by bp

and bH for respectively the density estimator and the drift estimator.
The required conditions are then, on one hand

d(αp
1 + αp

2) < 1 and 1 + αp
2(d+ 2) < β + β ∧ dαp

1 , (4.10)

and, on the other hand

β + d(αH
1 + αH

2 ) < 1 < 3β + d(αH
1 + αH

2 ) and 1 + αH
2 (d+ 2) < 2β + dαH

1 . (4.11)

We also want β + d(αH
1 + αH

2 ) to be as small as possible. But it is easily seen that
this quantity has to be larger than 1/2. We will describe a typical situation in the next
Corollary. ♦

According to the previous discussion we have

Corollary 4.12. Assume that H1 (or H2) and HK are fulfilled.

Assume in addition that bHj,n = n−αH
j (resp. bpj,n = n−αp

j ) and hn = n−β for some positive

αj’s and β. Denote by Ĥr,n (resp. p̂r,n) the estimators built with the bandwidths bHj,n (resp.
bpj,n) and the discretization step hn. Finally assume that all the parameters satisfy (4.10)
and (4.11) and that

m min(αH
1 , α

H
2 , α

p
1, α

p
2) > 1 .

Then, defining b̂r,n = Ĥr,n/p̂r,n we have in the stationary regime
√

nbd1,nb
d
2,nhn

(

b̂r,n(x, y)− b(x, y)
)

D−−−−→
n→+∞

σN
(

0,
θ

3ps(x, y)
(

∫

K2(s, t)dsdt) Id

)

,

where θ = 1/(1 + β + d(αH
1 + αH

2 )).

Remark 4.13. In the previous Corollary we may choose any β > 1/2, then dαp
1 > 1/2,

then dmax(αH
1 , α

H
2 , α

p
2) sufficiently small and finally m large enough for all the assump-

tions of the previous Corollary to be satisfied. It yields a quasi optimal rate of order
n1/4.

Notice that if we want to estimate simultaneously ps and b, we may use two estimators of
ps, say p̂

p
r,n and p̂Hr,n, both with hn = n−β for some β > 1/2, the first one with bandwidths

αp
j , the second one with αH

j and look at (p̂Hr,n, (Ĥr,n/p̂
p
r,n)) simultaneously. ♦

5. Additional results and comments on the previous sections.

5.1. Non stationary case. This subsection will be very short and can be reduced to
the following sentence :

“All the results of the two previous sections are still true if the initial distribution is
either a Dirac mass or is absolutely continuous with respect to µ.”

Indeed the situation here is very simple: if we replace
∑n

i=1 by
∑n

i=ln
with (ln/n) → 0,

we obtain exactly the same results as the first ln terms go to 0 starting from any initial
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distribution. Next we have to compare the law of Zln to µ. But thanks to geometric
ergodicity (or exponential mixing see Proposition 2.1), it is known that the total variation
distance between both is less than Cρln provided the initial distribution satisfies the
conditions we have mentioned (see e.g. Bakry et al. (2008)). The conclusion is then
straightforward using Markov property and ln = c log(n).

5.2. Comparison with existing results. The rate of convergence for the recursive
estimators are much better than the ones we obtain in Cattiaux et al. (2014-a) and
Cattiaux et al. (2014-b) (see e.g Proposition 4.4 in Cattiaux et al. (2014-b)). For the
density the main reason is that we do not need the small time bounds for the transition
kernel as in Cattiaux et al. (2014-a) (see Konakov et al. (2010), Cattiaux (1990), Cattiaux

(1986)), for the unnormalized drift estimator Ĥr,n the gain is not as important.
In comparison with the existing literature on recursive estimation for the density (see
e.g. Amiri (2010) for a review), the results in Section 3 are similar. Of course in many
quoted references the authors also studied almost sure results in the spirit of the log-log
law. Again see Amiri (2010) for a review.
The assumption made in all these references is that the transition kernel ps,t(., .) satisfies

sup
|t−s|≥1

‖ ps,t(., .)− ps ⊗ ps ‖∞< +∞ .

In our situation, we do not know about such uniform bound, though it is presumably
true.

6. Estimation of the variance.

We turn to the estimation of σ. To this end we merely follow Section 4 in Cattiaux et
al. (2014-c), though here we only consider the σ constant case, which introduces various
simplifications.
Recall that

σ̂r,n :=
3

2n

n
∑

i=1

1

hi
∆2(Xi+hi

, hi) >< ∆2(Xi+hi
, hi) .

Theorem 6.1. Assume that H1 (or H2) and HK are fulfilled. Also assume that σ is
symmetric (i.e. we take the symmetric square root of σ∗σ). Assume in addition that, as
n→ +∞,

1√
n

n
∑

i=1

hi → 0 . (6.2)

Then, in the stationary regime or in the situation of subsection 5.1
√
n (σ̂r,n − σ2)

D−−−−→
n→+∞

σNd,dσ ,

where Nd,d is a symmetric gaussian random matrix whose entries N k,l
d,d are N (0, 1 + δk,l),

all entries for k ≥ l being independent.

Remark 6.3. Condition (6.2) is satisfied when hn = n−β with β > 1/2. ♦
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Proof. In the sequel the indices (k, l) denote respectively the index of the row and of the
column of a matrix.

Using Ito’s formula we have

h2 (∆2(Xt, h) >< ∆2(Xt, h))k,l =

=

∫ t+h

t−h

(h− |u− t|) (Hk
u (σdWu)

l +H l
u (σdWu)

k) + (6.4)

+

∫ t+h

t−h

(h− |u− t|) (Hk
u b

l(Zu) +H l
u b

k(Zu))du

+

∫ t+h

t−h

(h− |u− t|)2 σ2
k,l du ,

with

Hu =

∫ u

t−h

(h− |s− t|) (σdWs + b(Zs)ds) .

As explained in Cattiaux et al. (2014-c) formula (4.5) applied in our situation, it holds
for all j ∈ N and s between t− h and t+ h,

Eµ(|Hs|2j) ≤ C(j) (s− (t− h))j h2j . (6.5)

Now we can write

σ̂r,n − σ2 =

=
3

2n

n
∑

i=1

1

hi

{

∆2(Xi+hi
, hi) >< ∆2(Xi+hi

, hi) − 1

h2i

∫ i+2hi

i

(hi − |s− (i+ hi)|)2σ2ds

}

=
3

2n

n
∑

i=1

(SSi + SVi + V Vi)

where

SSk,l
i =

1

h3i

∫ i+2hi

i

(hi − |u− i− hi|)
∫ u

i

(hi − |s− i− hi|)((σdWs)
k (σdWu)

l + (σdWs)
l (σdWu)

k)

SV k,l
i =

1

h3i

∫ i+2hi

i

(hi − |u− i− hi|)
∫ u

i

(hi − |s− i− hi|)((σdWs)
k bl(Zu)du+ (σdWs)

lbk(Zu)du)

+
1

h3i

∫ i+2hi

i

(hi − |u− i− hi|)
∫ u

i

(hi − |s− i− hi|)((σdWu)
k bl(Zs)ds+ (σdWu)

lbk(Zs)ds)

V V k,l
i =

1

h3i

∫ i+2hi

i

(hi − |u− i− hi|)
∫ u

i

(hi − |s− i− hi|)(bk(Zs)ds b
l(Zu)du+ bl(Zs)ds b

k(Zu)du) .

It is immediate that the random matrices (Mi =
3
2
σ−1SSiσ

−1)i are independent, with

centered entries such that Varµ(M
k,l
i ) = 1 + δk,l. Hence according to the usual Central

Limit Theorem,
1√
n

n
∑

i=1

Mi
D−−−−→

n→+∞
σNd,dσ .
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It remains to prove that the remaining terms go to 0 in L
1.

First, it is not hard to see that

Eµ(|V V k,l
i |) ≤ C hi

so that 1√
n

∑n
i=1 Eµ(|V V k,l

i |) → 0 according to (6.2).

Next, to control SVi we are led to control two types of terms: either martingale terms

Nk,l
i =

1

h3i

∫ i+2hi

i

(hi − |u− i− hi|) βl
i(u) (σdWu)

k

or bounded variation terms

Bk,l
i =

1

h3i

∫ i+2hi

i

(hi − |u− i− hi|) γli(u) bk(Zu)du .

The martingale terms are centered and to prove the convergence of their normalized sum
to 0 in L

1(µ), it is enough to prove the convergence to 0 of the variance. But for i 6= j

the covariance Covµ(N
k,l
i , Nk,l

j ) = 0 so that the variance

Varµ

(

1√
n

n
∑

i=1

Nk,l
i

)

≤ C

n

n
∑

i=1

1

h6i

∫ i+2hi

i

(hi − |u− i− hi|)2 Eµ((β
l
i(u))

2) du ≤ C

n

n
∑

i=1

hi

goes to 0 provided hn goes to 0, hence we get convergence to 0 in L
1. Here we have used

Eµ

[

(∫ i+2hi

i

θ(u)du

)2
]

≤ C hi Eµ

(∫ i+2hi

i

θ2(u)du

)

.

For the bounded variation term we use the same trick as in Cattiaux et al. (2014-c) writing
bk(Zu) = (bk(Zu)− bk(Zi)) + bk(Zi). The terms

Bk,l
i,1 =

1

h3i

∫ i+2hi

i

(hi − |u− i− hi|) γli(u) bk(Zi)du ,

are thus centered and satisfy Covµ(B
k,l
i,1 , B

k,l
j,1) = 0 for i 6= j. As before it follows

Varµ

(

1√
n

n
∑

i=1

Bk,l
i,1

)

≤ C

n

n
∑

i=1

1

h5i

∫ i+2hi

i

(hi − |u− i− hi|)2 Eµ((γ
l
i(u)b

k(Zi))
2) du .

But

Eµ((γ
l
i(u)b

k(Zi))
2) = Eµ

(

(bk(Zi))
2

∫ u

i

(hi − |s− i− hi|)2 c(σ)ds
)

≤ Ch3i ,

so that again Varµ

(

1√
n

∑n
i=1B

k,l
i,1

)

≤ C
n

∑n
i=1 hi goes to 0, and we get convergence to 0

in L
1.

It remains to look at 1√
n
Eµ

(

∑n
i=1 |Bk,l

i,2 |
)

where

Bk,l
i,2 =

1

h3i

∫ i+2hi

i

(hi − |u− i− hi|) γli(u) (bk(Zu)− bk(Zi))du .

But, according to what we have done before

Eµ(γ
l
i(u) (b

k(Zu)− bk(Zi))) ≤ (Eµ((γ
l
i(u))

2))1/2 (Eµ((b
k(Zu)− bk(Zi))

2))1/2 ≤ Ch
3/2
i h

1/2
i .
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It follows that
1√
n
Eµ

(

n
∑

i=1

|Bk,l
i,2 |
)

≤ 1√
n

n
∑

i=1

hi ,

which goes to 0 thanks to (6.2). �
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(4), p. 908-923.



24 P. CATTIAUX, J. LEÓN, AND C. PRIEUR
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