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Abstract. In the present paper, recent experimental results on large scale coherent

steady states observed in experimental von Kármán flows are revisited from a statistical

mechanics perspective. The latter is rooted on two levels of description. We first argue

that the coherent steady states may be described as the equilibrium states of well-

chosen lattice models, that can be used to define global properties of von Kármán

flows, such as their temperatures. The equilibrium description is then enlarged, in

order to reinterpret a series of results about the stability of those steady states, their

susceptibility to symmetry breaking, in the light of a deep analogy with the statistical

theory of Ferromagnetism. We call this analogy “Ferro-Turbulence”.
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1. Introduction

Describing the complexity of turbulent flows with tools from statistical mechanics is

a long-standing dream of theoreticians. In 1949, five years after the publication of its

solution for the problem of phase transition in the 2D Ising model, Onsager published a

notorious study of the statistical mechanics of the point vortex model [1], a special

solution of the 2D Euler equations that allows to interpret the emergence of long

lived coherent structures in terms of the pairing between vortices mutually interacting

through a long range Coulombian potential. That Onsager chose the special case of 2D

turbulence is probably not a coincidence: as soon as 1947, he was aware of the existence

of the dissipative anomaly in 3D flows that precludes the use of classical equilibrium

tools such as micro-canonical measures [2]. In other words, the non-vanishment of the
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energy flux at vanishing viscosity for 3D flows makes 3D turbulence an intrinsically far-

from-equilibrium system, which cannot be properly approximated by crudely setting

the viscosity to zero in the Navier-Stokes equations. Quite remarkably, the dissipative

anomaly does not exist in 2D, justifying Onsager’s choice for his statistical mechanics

approach. Since Onsager, the description of 2D turbulence using statistical mechanics

has greatly improved. Starting from the seminal work of Kraichnan in the 1960’s [3, 4],

Robert, Miller and Sommeria in the 1990’s [5, 6, 7] and subsequent work from then

[8, 9, 10, 11, 12, 13], the use of statistical mechanics led to a description of the coherent

structures that seems to match the observed large scale organization in experimental

and numerical 2D turbulence. However, the 3D case still escapes theoretical grasp.

A first light of hope may come from the special case of von Kármán (VK) turbulence,

a now classical human size experiment that reaches very large Reynolds numbers of the

order of 106 through the stirring of a fluid in between two counter-rotating propellers.

At this value, there is no doubt that the turbulence is fully developed with a wide

range of interacting scales. Previous analysis of turbulence properties in the middle

shear layer evidenced scaling properties and intermittency corrections in agreement with

other measurements in fully developed turbulent flows in different geometries [14]. Some

indications exist though, that the number of effective degrees of freedom in a turbulent

VK flow is not so large : at Reynolds number around 105 − 106, Poincaré maps of the

torque exerted by the turbulence on each propeller exhibit beautiful attractors and limit

cycles [15, 16] : as many features that are usually observed in dynamical systems with

only three or four degrees of freedom — see [17]. This suggests that the system could

in principle be efficiently described by only a few global quantities and that some kind

of statistical mechanics approach could be used to identify hydrodynamical analogues

for “temperatures” or “chemical potentials”. The purpose of the present paper is to

provide experimental evidence that the large scale coherent average states observed in

VK experiments can indeed be described using the language and tools from statistical

mechanics.

The starting point of our analysis is the observation that VK turbulence is not

isotropic. Besides, and as far as the average flow is concerned, the swirling flows obtained

in VK devices seem to provide an example of 3D turbulence with axial symmetry.

As previously discussed in [18, 19], axially symmetric turbulence is an intermediate

case between 2D and 3D turbulence, for which equilibrium theories yield non trivial

insights [20]. VK turbulence is however not axially symmetric, and the question remains

open whether the predictions obtained using an “axi-symmetric ansatz” are relevant

to account for the coarse-grained properties of such flows. Preliminary comparisons

performed at large Reynolds numbers by [21, 22] suggest that the steady states of

experimental VK flows can be described in terms of a restricted set of meta-stable

equilibria of the 3D axially symmetric Euler equations. The goal of the present paper

is to support further this idea and show how the light of the statistical mechanics can

be used beyond the scope of ideal theories, to provide a useful framework of analysis of

the data. We will evidence a deep analogy between the VK steady states and lattice
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models of Ferro-magnetism. We call this analogy “Ferro-Turbulence”. To make the

analogy vivid, we stick to the simplest conceptual level compatible with a comprehensive

description of the “ferro-turbulent” features observed in VK flows. The reader interested

in more technical details will be referred to the other publications. The present paper is

organized as follows. We first describe the experimental set-up and its symmetries. We

briefly recall the properties of the VK steady states, and of their associated bifurcations.

We then summarize the outcomes of several statistical theories associated to the “ideal

axially-symmetric fluid”. Those theories are then used beyond their initial scope, in

order to develop an analogy between the experimental VK flow and lattice models of

ferro-magnetism. Within this analogy, the previously observed VK bifurcations are

shown to be reminiscent of second order mean-field transitions, and critical exponents

are measured. We conclude by a discussion of our results.

2. Coarse-grained description of a VK flow

2.1. Control Parameters

The VK experimental set-up used for the present study has been thoroughly described

in [15, 22, 23]. The fluid is confined inside a cylinder of radius R = 100 mm, and forced

through two rotating impellers of radius Rt — see Figure 1. All the lengths will now

be expressed in units of the cylinder radius R. The aspect ratio of our experiment is

defined as the distance between the inner faces of the two opposite impellers 2H = 1.8.

Impellers are driven by two independent motors, whose frequencies f1 and f2 can either

be set equal, in order to get an exact counter-rotating regime, or set to different values

f1 6= f2. To change the viscosity, mixtures of water or glycerol with different dilution

rates were used.

f1

f2

1
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1
.8

0.925
1 = R
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ez
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+

Figure 1. Left : Sketch of the VK2 experiment. Right: Sketch of a propeller and

definition of the oriented angle α.

In this paper, three main global parameters are used to characterize VK turbulence.
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(i) The Reynolds number Re = π(f1 + f2)R
2ν−1 — with ν the fluid kinematic viscosity

— ranges from 102 to 5 × 105 so that a full range of regimes can be spanned, from a

purely laminar to a fully turbulent one. (ii) The rotation number, θ = (f1−f2)/(f1+f2),
measures the relative influence of global rotation over a typical turbulent shear frequency.

It can be varied from −1 to +1, hereby exploring a regime of relatively weak rotation to

shear ratio. (iii) Finally, the torque asymmetry γ = (C1 − C2)/(C1 + C2) measures the

difference between the torques C1 and C2 applied to each of the propellers. It is crucial

to note that in the VK2 experiment, turbulence can be either generated by maintaining

constant the frequencies or the torques applied to each of the propeller — please, see

[15, 16] for more details.

At a finer level of description, it has been shown that the turbulence properties

(anisotropy, fluctuations, dissipation) are influenced by the geometry of the propellers,

viz., their non dimensional radius Rt, the oriented angle α between the blades and the

rotation direction (see Figure 1), the heights hb and the number n of blades [15]. In the

present paper, we consider only propellers with hb = 0.2 and focus on changes induced

by variations of α. Those propellers are the so-called “TM60”, “TM87” and “TM73”

propellers, whose characteristics are summarized in Table 1. A single propeller can be

used to propel the fluid in two opposite directions, respectively associated to the concave

or convex face of the blades going forward. This can be accounted by a change of sign

of the parameter α. In the sequel, we denote (−) (resp. (+) ) a propeller used with the

concave (resp. convex) face of its blades going forward.

Table 1 summarizes the parameter space that was explored in our system.

Schematically, the influence of the propeller geometry has been explored at Re = 105,

θ = 0. The Reynolds variation has been explored at θ = 0 using the TM60 propellers

(±). The rotation variation has been explored at Re = 105 using TM73(±), TM87(±)

and TM60(±). The influence of the forcing type (“constant velocity” against “constant

torque” forcing) has been studied with the TM60(-) and TM87(-) at Re = 105.

Propellers Number of blades α (in degrees) Re θ

All 8 and 16 [−90, 90] 105 0

TM60(+) 16 72 [102, 106] [−1, 1]

TM60(-) 16 −72 105 [−1, 1]

TM87(+) 8 72 105 [−1, 1]

TM87(-) 8 −72 105 [−1, 1]

TM73(+) 8 +24 105 [−1, 1]

TM73(-) 8 −24 105 [−1, 1]

Table 1. Parameter space explored in our set-up

.
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2.2. Topology of the averaged steady states

2.2.1. A qualititative description. To analyze the topology of the averaged states,

Stereoscopic Particle Image Velocimetry (SPIV) measurements were mostly used. The

system provides the three components of the velocity field on a 95 × 66 points grid,

that covers a whole meridian plane of the flow through time series of about 600 to

5000 regularly sampled values at a 10Hz frequency. We also performed a few Laser

Doppler Velocimetry measurements providing mean velocities over a 11 × 13 points

grid covering a half meridian plane of the flow. To deal with non-dimensional velocity

fields, those are divided by a typical “forcing velocity” defined as V0 = 2πR(f1 + f2)/2.

We write (r, φ, z) the standard cylindrical coordinates, and denote 〈.〉◦ an average

over a time series of SPIV measurements. We also use the short-hand notation
∫

Dpiv
f = (1/2H)

∫ 1

0
rdr

∫ H

−H
(f(r, 0, z) + f(r, π, z)) to denote the spatial average of any

quantity f = f(r, φ, z) over the PIV window. As an example, Figure 2 shows the (r, z)
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Figure 2. Velocity fields reconstructed from SPIV measurements at Re ≃ 3 × 105

and θ = 0. Top: instantaneous snapshot for TM87(+). Bottom : after time averaging

over 600 snapshots, for TM87(-) (left) and TM87(+) (right). As the velocity field is

projected on a meridional plane that includes the rotation axis, the left part of the

fields here corresponds to (ur,−uφ, uz)) at φ = π, while the right part corresponds to

(ur, uφ, uz)) at φ = 0.

dependence of the three components of a three-dimensional velocity field (ur, uφ, uz)

reconstructed from a PIV measurement at Reynolds number approximately equal to

3×105. Although the SPIV system does not allow us to analyze in details the azimuthal

dependence of the velocity fields, it is clear from Figure 2 that the instantaneous velocity
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field is not axially symmetric, as it is not symmetric with respect to the transformation

r → −r. Axial symmetry exists though at the level of the time averaged velocity field

(and more generally for any quantity derived from it). At a coarse level of description,

the topology of the average velocity fields is simple and appears to bear some kind of

universality. It either consists of a two-cell state ‡ that is symmetric with respect to the

equatorial axis, a two-cell state with broken symmetry or a one-cell state.

2.2.2. A more quantitative description. As first observed in [21], the axial symmetry of

the averaged states is not just an artifact of the averaging procedure, it can also be used

as a natural guideline to describe the topology of the steady states. As the average flow

inside the tank is divergence free and axially symmetric (viz. symmetric with respect

to any azimuthal change), a Helmholtz decomposion can be used to write the averaged

velocity field as

〈u〉◦ = 〈uφ〉◦eφ +
1

r
∇(rΨ)× eφ. (1)

Independently of the underlying dynamics, the azimutal component of the vorticity

〈ωφ〉◦ = (∇ × 〈u〉◦) · eφ is then related to the stream function through 〈ωφ〉◦ =

−∂zzΨ − ∂rr
−1∂rrΨ = −L(Ψ). The knowledge of (〈uφ〉◦, 〈ωφ〉◦) is then sufficient

to reconstruct the three dimensional averaged velocity field 〈u〉◦. Using such a

decomposition of the velocity field, Monchaux et al [21] evidenced that the axially

symmetric averaged velocity fields observed in VK set-ups were peculiar steady solutions

of the Euler axially symmetric equations, at least in a region far from the propellers

and the boundaries. The Euler axially symmetric equations are derived from the 3D

(incompressible) Euler equations by considering the dynamics of a 3D velocity field

whose cylindrical components do not depend on the azimuthal coordinate, and depend

on r and z only — see for example [24, 18] and Section 3 below. Steady states of

the axially symmetric Euler equations are obtained whenever the toroidal field ruφ,

the poloidal field ωφ/r and the reduced stream function ψ = rΨ are related through

relations of the kind [24, 18] :

ruφ = F (ψ) and ωφ/r − FF ′(ψ)/r2 = G(ψ) for any function F and G. (2)

Using TM60(±) propellers for a wide range of rotation numbers, scatter plots of both the

toroidal field 〈ruφ〉◦ and the poloidal field 〈ωφ/r〉◦ against the reduced stream function

ψ = rΨ showed clear functional relationship between those quantities [21, 22]. To

understand the general trends of the topologies, it is enough to choose linear functions

for F and G. In this linear approximation, the VK topologies are characterized by four

constant numbers, say A, B, C and D, defined by : §

〈uφ〉◦ = BΨ+ A/r and 〈ωφ〉◦ = (B +Dr2)uφ + Cr. (3)

‡ Since the averaged flow is meant to be axially symmetric, the description refers to the flow observed

in either the right or left half of the PIV window.
§ To obtain (3) from (2), take F (ψ) = Bψ +A and G(ψ) = (C +DA/B) +Dψ.
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A, B, C, and D are computed using least square fits from the scatter plots of 〈uφ〉◦
and 〈ωφ〉◦ against Ψ. An example is shown in Figure 3, obtained for a large Reynolds

number at (θ, γ) = (0, 0). In such a case, the fit is rather good. As already noticed

in [21], the fit deteriorates at lower Reynolds numbers and when the rotation number

is too high (say |θ| & 0.3). Still, Equation (3) provides a general framework for the

interpretation of the data. The fitting procedure was carried with various propellers at

−4 0 4

·10−2

−0.4

0

0.4

〈uφ〉◦

Ψ

−4 0 4

·10−2

−2

0

2

〈ωφ〉◦

Ψ

Figure 3. Scatter plots obtained in TM73(+) at Re = 105 for (θ, γ) = (0, 0). The

light grey dots are the data, the opaque red dots are the fits obtained from Equation

(3). Left: 〈uφ〉◦ as a function of Ψ. Right: 〈ωφ〉◦ as a function of Ψ.

large Reynolds number in the symmetric state (γ = 0 and θ = 0) with LDV data, that

provide lower resolution representations of the mean flow. The resulting values for A,

B, C and D as a function of the propeller’s radius and angle are provided in Figure (4).

Because of the measurement technique, these fits are less accurate than with the PIV

data. The LDV-measured values of A, B, C and D should therefore be here used to

observe trends rather than providing quantitative values. We observe that in all cases,

both A and C are vanishing. The fact that A = 0 is compatible with uφ being finite at

r = 0, while the fact that C = 0 is a consequence of the symmetry of the basic state at

θ = 0. The value of B depends mostly on the propeller’s angle α, being positive when

the angle is negative and negative otherwise. The absolute value of B remains fairly

constant in between 3 and 4, regardless of the angle — except for the α = 0 case. At

negative α, the value of D is rather low, and close to 0. Increasing α > 0 yields a linear

decrease for D, from 0 to −20 (at α = 72◦). At this value of α though, some indications

exist, that a second branch of solutions can be found, with D = 0. This has been

confirmed by a study of the variations of our parameters with the Reynolds number,

using PIV data, at θ = 0 in the symmetric state. With these better resolved data (not

shown), we found that the coefficient D displays a clear bi-modal behavior, with two

branches of solution : One extends around D = 0, and the other decreases linearly with

logRe. A closer look at the values of D for the TM60/87(+) propellers indicates that

the negative branch of solutions corresponds to a branch that connects continuously
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from a two-cell to a one-cell solution. As for the other coefficients, we found that B is

rather insensitive to the Reynolds number while both the A and C coefficients remain

zero, at any Reynolds number, in agreement with the previously described regularity

and symmetry properties.
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−30

−20

−10
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C
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Figure 4. The constant A,B,C,D as defined by Equation (3) to characterize the VK

topologies . Left: A (orange squares) and B (blue circles) versus the angle α; Right: C

(orange squares) and D (blue circles) versus α. The size of the symbol is proportional

to the impeller’s radius Rt = 0.925 (big), Rt = 0.75 (medium) or Rt = 0.5 (small).

2.3. Transitions between the various topologies

When the forcing is fully symmetric (θ = 0 and γ = 0), all the impellers that we have

tested yield a symmetric two-cell state similar to the one depicted in Figure 2. Similarly,

when the forcing is clearly non-symmetric (|γ| ≃ 1 or |θ| ≃ 1), the fluid is globally in

rotation and the average state is one-cell. Yet, the nature of the transition between the

symmetric and the non-symmetric states does strongly depend on the geometry of the

impellers. On the one hand, the use of low curvature impellers (α & −30◦) yields a

continuous transition that occurs via a sequence of increasingly non-symmetric two-cell

states, with one cell becoming larger at the expense of the other. The sharpness of

the transition can be characterized throughout the use of susceptibility coefficients (see

Section 4), analogous to the magnetic susceptibilities in the theory of ferro-magnetism.

Cortet et al [25, 26] observed that those susceptibilities diverge at a finite turbulent

Reynolds number (Re ≃ 4 × 104), a feature clearly reminiscent of second-order phase

transition in statistical physics. On the other hand, the use of high curvature impellers

(α . −30◦) yields and abrupt change, that gives rise to multi-stability between the

two-cell symmetric state, and one of the two one-cell states (symmetric to each other

with respect to the equatorial axis) [15]. As a result, a hysteresis cycle for γ is described

when the rotation number θ is used as a control parameter, and cycled from 1 to −1

and back, over a given time scale. Increasing the curvature of the blades increase both
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the width and the height of the hysteresis cycle that the system describes in the θ − γ

plane[15]. When the torque number γ is used as a control parameter (i.e. when the

system is forced at constant torque rather than at constant velocity), the hysteresis

cycle is regularized [27, 16] — see Figure 5. Because of the apparent simplicity and

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

θ

γ
−0.5 0 0.5

−0.1

−0.05

0

0.05

0.1

θ

γ

Figure 5. Variation of the topology of the stationary state, as a function of the

forcing type. The symbols trace the torque asymmetry γ versus the averaged rotation

number θ. Left: for TM87(-) at constant torque (circles) and constant speed forcing

(triangles). Right: for TM87(+) (red circles) , TM73(+) (yellow squares) and TM73(-)

(green stars) at constant speed forcing. In insert, the corresponding topologies of the

velocity field are shown.

universality of the steady states, there is a good hope that a global understanding of

the steady states can be provided through general arguments based on symmetries and

conservation laws. This is precisely the outcome of statistical physics. In the sequel, we

try to explain the topology of the axially symmetric mean velocity field and explain their

stability as a function of the control parameters Re, θ, γ, α, using some tools borrowed

from statistical physics.

3. Insights from inviscid theories

Statistical theories of turbulent flows have so far only be conducted in the ideal case

of Euler equations with symmetries [6, 28, 29, 30, 31, 32, 12, 20]. In this section,

we summarize ideas and the outcome of the statistical theories based on the axially

symmetric Euler equations. Most of the technical details are pushed to appendix,

in order to focus on the predictions that those theories lead to. We then use the

corresponding results as a guideline to understand the topologies of the flow inside

the VK set-up.
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3.1. The axially symmetric perfect fluid.

Inside an axially symmetric domain D, an axially symmetric fluid is described in terms

of a 3D velocity field u , whose components in cylindrical coordinates (ur, uφ, uz) do

not depend on the azimuthal coordinate φ but on r and z only. The evolution equation

of a perfect axially symmetric fluid is therefore obtained by setting ∂φ = 0 in the

incompressible Euler equations

∂tu+ u · ∇u+∇p = 0 and ∇ · u = 0. (4)

Rather than prescribing the 3D velocity field, a convenient description of an axially

symmetric flow can be achieved in terms of only two fields : i) the azimuthal velocity

uφ (later named “toroidal field”), and ii) the azimuthal vorticity field ωφ = (∇×u) · eφ
(alternatively named “poloidal field”). The entire 3D velocity field can then be

reconstructed by using the incompressibility condition (∇ · u = 0) that allows the

following Helmholtz decomposition for u:

u = uφeφ +
1

r
∇(rΨ)× eφ, (5)

where Ψ is the stream function, deduced from the azimuthal vorticity by the relation :

ωφ = −
(

∂zz + ∂r
1

r
∂rr

)

Ψ = −L(Ψ). (6)

We also define ψ = rΨ the reduced stream function. To invert the differential operator

L, one needs to work with specified boundary conditions. We will assume here that ψ

is vanishing at the boundaries, a condition that comes for the impenetrability condition

for the velocity field on the outer walls. Finally, for a cylindrical domain D with height

2h and radius R, we will later use the short-hand notation
∫

D
≡ (1/(hR2))

∫ R

0
rdr

∫ h

−h
dz

later. This simple geometry will serve as a guideline for the statistical theories described

in the remainder of the section.

3.2. Analogy with a Ginzburg-Landau theory

A basic input of the statistical physics of axially symmetric flows is the existence of

conserved global quantities in the inviscid, unforced limit — at least provided that the

perfect fluid can be considered to remain “sufficiently regular”. For instance, it is well

known that the Euler dynamics (4) preserve both the kinetic energy E = 1/2
∫

D
u2 and

the Helicity H =
∫

D
u · (∇× u) [33]. In terms of uφ and ωφ these quantities read :

E =
1

2

∫

D

u2φ + ωφΨ and H = 2

∫

D

uφωφ. (7)

Yet, due to the spatial continuous symmetry around the axis, two infinite families of

global quantities, viz., the toroidal Casimirs Cg and the generalized helicities Hf are

further conserved by the axially symmetric Euler dynamics (see [24, 18])

Cf =

∫

D

f (ruφ) and Hg =

∫

D

g (ruφ)ωφ/r for any regular enough f and g. (8)
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Those quantities allow to interprete thermodynamically the linear description of the VK

topologies provided by Equations (6), (2) and (3). The idea is to use the invariants of

Equation (8) to build a “free energy” functional, that can be thought of as an analog of

a Landau-Ginzburg functional [21, 18, 19]. To stick to a linear level of description, one

uses a quadratic form for the functions f and a linear form for g, viz., f(x) = αx2 − µx

and g(x) = hx− γ, with α, µ, h, γ yet unprescribed scalars. The free energy then reads

:

F [uφ, ωφ] =

∫

D

(β/2 + αr2)u2φ + huφωφ + βωφΨ/2− γωφ/r − µruφ. (9)

If the fluid inside the VK set-up was both perfectly axially symmetric and inviscid, then

we could expect the local minimizers of F to play a peculiar role. Indeed, the reader

familiar with dynamical systems may have already recognized that the free energy (9)

is an Arnold function relevant for axially symmetric perfect fluid, whose minima (if

any) provide axially symmetric profiles that are formally stable — see [34, 24] for more

details about the stability of infinite dimensional dynamical systems and the stability

of axially symmetric perfect flows in particular. The critical points of F are determined

by the following class of axially symmetric fields (u⋆φ, ω
⋆
φ) :

(β + 2αr2)u⋆φ + hω⋆φ − µr = 0 and hu⋆φ + βΨ⋆ − γ/r = 0. (10)

Setting A = γ/h, B = −β/h, C = µ/h and D = −2α/h , we exactly retrieve Equation

(3), which we previously used to characterize the VK topologies. This provides a clear

connection between the steady states inside the VK tank and the steady states of the

axially symmetric perfect fluid. However, it is easily shown that the fields (u⋆φ, ω
⋆
φ)

that satisfy (10) do not in general locally minimize the free energy F , unless h = 0

(non-helical case). In this case, positive values for β and α ensure that the (u⋆φ, ω
⋆
φ)’s are

indeed minimizers of F . If h is non zero, the profiles that satisfy (10) are saddle points of

the free energy and are therefore unstable with respect to any non-trivial perturbations.

Were we dealing with an inviscid axially symmetric fluid, would we therefore conclude

that such “meta-stable” profiles could not be observed in the long term. It is however an

experimental fact, that those profiles (with non zero “h”) are relevant to approximate

those observed in a VK flow [21].

To connect the VK topologies with the meta-stable profiles of Equation (10), some

crude identifications need to be made : the equilibrium fields (u⋆φ, ω
⋆
φ) of the inviscid

theory with the averaged PIV fields (〈uφ〉◦, 〈ωφ〉◦), and the axially symmetric domain

D with the PIV measurement domain Dpiv. The VK analogs of the axially symmetric

Casimirs are the Angular Momentum I, the Circulation Γ, the Helicity H, the toroidal

energy T , and the poloidal energy P , defined as

I =

∫

Dpiv

〈ruφ〉◦ , Γ =

∫

Dpiv

〈ωφ〉◦ , H =

∫

Dpiv

〈uφ〉◦〈ωφ〉◦

T =(1/2)

∫

Dpiv

〈uφ〉◦2 and P = (1/2)

∫

Dpiv

〈ur〉◦2 + 〈uz〉◦2.
(11)
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Equations (10) and (3) actually provide a good approximation of the steady states of

the VK set-up.. Figure (6) shows the comparison between steady states obtained using

TM73(+) propeller and solutions predicted by inviscid thermodynamics. To obtain it,

we solved the equations (3) with the SPIV-measured values of the constants A, B, C

and D — and appropriate boundary conditions [27]. To make the computation easier,

we approximated the quantity B + Dr2 by a constant Keff. We will later refer to this

approximation as a “Beltrami” approximation. ‖
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Figure 6. Comparison between the velocity fields obtained in the VK experiment

with TM73(+) propellers (top) and the Beltrami approximation (bottom) for “VK

boundary conditions” at θ = 0 (left), θ = 0.05 (Middle) and θ = 0.09 (right). The

height and radius of the cylinders in the numerics are those of the real VK set-up,

namely 2H = 1.8 and R = 1.

3.3. The statistical mechanics perspective.

3.3.1. Analogy with a lattice model : a qualitative description. Since the topology of

VK flows can be retrieved from a simple thermodynamic argument, one may wonder

‖ The equation to be solved is then simply obtained by combining the two lines of Equation (3) —

or equivalently (10) — and recalling that ωφ = −LΨ. It reads : −LΨ = KeffBψ + AKeff/r + Cr

and is solved with Ψ = 0 at the boundaries ( “vanishing boundary conditions”) or by prescribing that

uφ(r, z = ±H) describe a solid rotation at frequencies f1 and f2 (“VK boundary conditions” : see [27]

for more details).
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about the practical use of a full statistical theory. However, we also noticed that the VK

steady profiles did not match any axially symmetric genuine equilibrium, but rather a

class of axially symmetric “meta-stable” equilibria. One aim of statistical mechanics is

to understand this discrepancy , and highlight important distinctions between VK flows

and truly axially symmetric fluids. In particular, we will argue that although the VK

profiles are in principles meta-equilibrium ones, they can still be interpreted as profiles

that maximize a suitably-defined configuration entropy.

The statistical origin of the coarse-grained steady states can be qualitatively

intuited, by looking at the averaged signs of the azimuthal field for nearly symmetric

forcing (γ ≃ 0 and θ ≃ 0). In a simplified interpretation of the VK experiment, one may

want to think about the signs of the instantaneous azimuthal velocity field ( as measured

on each position of SPIV grid ) as a “spin” that could take either a +1 or−1 value. In the

sequel we drop the precautional commas “” and call it a spin. Then, each propeller could

be thought of as a statistical reservoir of ′+′ and ′−′, ensuring the numbers of ′+′ and
′−′ to remain steady. The scatter plot of the average azimuthal velocity sign against the

stream function makes a hyperbolic tangent law emerge whatever the Reynolds number

— see Figure 7. At a qualitative level, the tanh law is reminiscent of the sinh laws

observed in decaying 2D turbulence [35], or to some particular “two-level discrete case”

found in the statistical theories developed for 2D inviscid flows in [6, 5, 28]. It is also

reminiscent of the mean-field closure equations that appear in the study of long-range

lattice models of ferromagnetism. Consider for example the Curie-Weiss model, one

of the simplest lattice model of ferromagnet that can be treated analytically [36], and

whose Hamiltonian reads:

H = − 1

2N

N∑

i=1

∑

j 6=i

sisj − h

N∑

i=1

si with si = ±1. (12)

In the thermodynamic limit (N ≫ 1), it is well-known that the canonical free energy

per site at temperature β−1 of the Curie Weiss model can be written as an infimum over

all the possible values of the magnetization µ = (1/N)
∑N

i=1 si, namely

f(β) = inf
µ

{
βµ2

2
− log cosh β(µ+ h)

}

. (13)

The infimum is reached for the value of the magnetization that satisfies a self-consistent

tanh law, namely µ = tanh β(µ + h). In the Curie-Weiss model, the tanh law emerges

as a consequence of the interactions being long range and the mean-field approximation

being exact. In fact, we show in the sequel that the tanh relation between the stream

function and the averaged azimuthal velocity spins in the VK set-up has some origin in

this analogy with the Curie-Weiss model.

3.3.2. Analogy with a lattice model : the Euler perspective. The statistical mechanics

of inviscid fluids, as developed by Robert, Sommeria and Miller [6, 5] for the 2D case,

aims to determine the coarse-grained configuration (if any) that a perfect fluid is the
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Figure 7. The averaged azimutal velocity sign scatter plotted against the reduced

stream function ψ = rΨ, at θ = 0 , γ = 0 and Re ≃ 3× 104 for TM60(+). ψ has been

normalized so that it ranges from −1 to +1. The light grey dots are the data, obtained

after a time SPIV averaging. The red crosses are obtained by further averaging the

signs on blocks of 42 contiguous SPIV-lattice points. The black line indicates a tanh

law.

most likely to adopt, were it described in terms of an equilibrium ensemble, be it micro

canonical, canonical, grand-canonical. The coarse-grained description can usually be

achieved in terms of a “macro-state probability field” p. In the case of axially symmetric

fluids, the latter is defined as

pr(σ, ξ) = Proba(ruφ = σ and r−1ωφ = ξ in the vicinity of r) (14)

As the number of degrees of freedom of the underlying axially-symmetric Euler equations

is formally infinite, the statistical ensembles and corresponding macro-state probability

fields need to be defined through an appropriate discretization and coarse graining,

whose details are here omitted — see [20] for the axially symmetric case and [28, 37] for

the 2D case. This construction provides a useful analogy with standard lattice models of

Ferro-magnetism. Indeed, the statistical ensemble that we wish to compute can now be

thought of as the thermodynamic spin-wave limit of a finite-size bi-dimensional lattice

model of N2 interacting spins S, whose Hamiltonian is prescribed by the specific shape

of the inviscid dynamical invariants given by Equation (8). In the axially symmetric

case, the spins Sij = (σij, ξij) are two-degrees-of-freedom objects that represent the

micro-scale value of the pair (ruφ, ωφ/r) at position rij (1 ≤ i, j ≤ N). The analogy is

clearer in the particular situation where the σij’s can take only two values say σ± = ±1

¶, (which would be the natural assumption if we wanted for example to study the

statistics of the signs of the σ′
ijs only). In this case, the appropriate micro-canonical

¶ Although particular, the case is easily extended to the general case where the σij ’s span a continuous

range of values (see A for more details).
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lattice model interaction Hamiltonian per spin is

H/N2 =
1

N4

∑

i,j,k,l

J ijklξijξkl with J a discretization of -L−1, (15)

subject to the constraint that both the toroidal magnetization I = (1/N2)
∑

i,j σij and

the poloidal conditional magnetizations Γ± = (1/N2)
∑

i,j:σij=± ξij remain constant. It

however turns out that the statistical ensembles related to this “axially-symmetric lattice

model” are ill-defined in the thermodynamic limit [18, 20]. The problem comes from

the poloidal degrees of freedoms, namely the ξij’s, which are not sufficiently constrained

by the prescription that both the energy and the conditional magnetizations remain

finite in the limit N → ∞. As a consequence, an ultra-violet catastrophe occurs :

unless the averaged poloidal field is uniformly zero, the most probable configurations

are those for which most of the ξij’s are infinite and mask the coherent structures. Two

problems are now apparent. The first one is theoretical. It relates to the existence

or not of equilibrium measures for the axially symmetric Euler equations. The second

problem is more practical : how can a ill-defined statistical theory possibly describe the

topology of the flows observed inside the VK set-up? As previously emphasized, the

present paper does not deal with the axially symmetric Euler equations but with VK

turbulence. Therefore, the first question is clearly far beyond our present concerns. We

now describe a strategy to deal with the second question.

3.3.3. A phenomenological treatment for the vorticity fluctuations. The UV

catastrophe of the statistical theory originates from the well-known vorticity stretching

that allows any initial vorticity to grow unbounded, in absence of any viscosity. The

questioning that therefore arises is whether appropriate additional physical assumptions

can be used to “tame” the UV catastrophe, so that the corresponding statistical theory

becomes not only not trivial but also possibly relevant to real flows ? Following this

line of thought, several attempts have been made, in order to write down a consistent

equilibrium statistical theory for the axially symmetric perfect fluid. In common to

all these works is the use of additional phenomenological assumptions to control the

fluctuations of the poloidal degrees of freedom. Ensemble averages are usually computed

in terms of a most probable macro state probability field that maximizes a macro-state

entropy, determined by an appropriate use of Laplace’s theorem, and the saddle-point

method. The idea is therefore to restrict the set of macro state probability fields over

which the maximization is carried on. References [38, 39] impose that the axially

symmetric flow has a vanishing toroidal field, so that an extra-enstrophy constraint

appears for the poloidal field; References [18, 19, 32] assume that the poloidal field

is non-fluctuating, viz., 〈ω2
φ〉 = 〈ωφ〉2 at any position r ; Reference [40] suggests to

freeze the poloidal degrees of freedom, viz write the macro-state probability field as

pr(σ, ξ) = pr(σ)pr(ξ|σ) and prescribe the conditional probability distribution pr(ξ|σ) ;

it was also suggested to impose a cut-off on the poloidal degrees of freedom, either used

as a physical parameter [18] or as an intermediate regularization constraint [20].
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Table 2 presents the different outcomes that the various ansatz lead to. Results are

here summarized for two cases. In the “Gaussian modeling”, only the quadratic and

linear invariants enter the theory. In the two-level modeling, it is assumed that the

toroidal degrees of freedom can only take the two values ±1. Both cases give consistent

results and are easily extended to the general case (see the appendix). Table 2 shows

that the different modelings yield different outcomes. This suggests that the poloidal

fluctuations play a crucial role in VK mixing.

If one indeed takes for granted that the axially symmetric Euler equations can be used as

a guideline to understand the VK topologies — which we remind is far from obvious but

relies on experimental observations —, then those statistical theories shed a qualitative

light on the mixing processes at stake inside the VK tank. On the one hand, the

assumption that the poloidal field is non fluctuating and fixed in space (the “frozen-r”

model) so that only toroidal degrees of freedom do indeed mix is not satisfying. This

assumption yields only one of the two constitutive thermodynamic equations (10). It

thus does not allow to self-consistently determine the averaged field without a further

ansatz about the poloidal profile. On the other hand, if one allows for too high a level of

fluctuations in the theory (the “micro-canonical theory” ), one obtains a closed but very

restricted class of profiles, viz., the “(h = 0)” solutions of Equation (10). Those solutions

correspond to cases where the coarse-grained toroidal field is completely decoupled from

the stream function. Those solutions may therefore be formally relevant for an axially-

symmetric perfect fluid, but are clearly not those observed inside the VK tank. Rather,

the mixing inside the tank seems to lie in between those two extreme cases. The “frozen-

σ” theory provides such an example of mixing. The theory describes poloidal degrees

of freedom that cannot mix independently from the toroidal ones. Observe that this

assumption leads to a tanh relation between the coarse-grained toroidal field and the

stream-function, as apparent in Figure 7.

This interpretation of statistical mechanics provides a zero order approximation to the

actual nature of the VK stirring. The difference between the equilibrium steady states

(the “h = 0” case) and the non-equilibrium ones is here provided through a restriction of

phase space. This idea is similar to the notion of restricted partition functions recently

proposed by Herbert [41] to explore the nature of inverse cascades in helical turbulence.

Finally note that our discussion was here restricted to predictions for the averages of

first-order quantities. Obviously, a statistical theory based on an “axi-symmetric ansatz”

fails to give an accurate and quantitative view about the fluctuations measured in VK

turbulence, as those are clearly observed not to be axially symmetric — see Figure

2. It is however interesting to remark that the minimal “frozen-σ” theory does not

prescribe any shape for the poloidal fluctuations. In particular, those are not prescribed

to be Gaussian, as one could in principle expect from a statistical mean field theory

that uses quadratic invariants as inputs. Because of the seemingly crucial role played

by the fluctuations, it is natural to investigate in more details both the poloidal and

the toroidal fluctuations inside the VK tank. To this end, we introduce two quantities,

which can be thought of as two toroidal and poloidal inverse temperatures, viz. βtor and
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βpol. Those are defined by

β−1
tor =

∫

Dpiv

(
〈u2φ〉◦ − 〈uφ〉2◦

)
and β−1

pol =

∫

Dpiv

(
〈ω2

φ〉◦ − 〈ωφ〉2◦
)

(16)

These temperatures should depend on the experimental control parameters that can

now be seen as analogous of ”thermostats”. In Figure 8, we show for example the

dependence of 1/βtor as a function of the angle α (left panel) and the Reynolds number

Re (Right panel). It can be seen that the toroidal temperature increases with decreasing

α, and increases from zero past Re ∼ 103 (the laminar/turbulent transition). The

temperature peaks around Re = 40000 for TM60(+) impellers, and then saturates or

slightly decreases. Both the toroidal and the poloidal temperature will allow us to

describe VK topologies at any control parameter from a statistical perspective, that

goes beyond the insight of the inviscid theories.
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Figure 8. The toroidal temperature 1/βtor as a function of the control parameters

α (left) and Re (right). The symbol color codes α (defined on the left panel). The

size of the symbol is proportional to the impeller’s radius, Rt = 0.925 (big), Rt = 0.75

(medium) orl Rt = 0.5 (small).

4. Statistical mechanics beyond the inviscid case

4.1. Analogy with the Curie-Weiss theory of Ferro-magnetism

A major drawback of the theories described in the previous section is their intrinsic

rooting on an inviscid description (i.e. force-free, zero viscosity) of the VK flows. As

such, they do not predict anything about finite Reynolds number effects. Besides, the

presence of forcing and dissipation, as well as the lack of instantaneous axial-symmetry

concur to destroy the conservation of the global invariants on which the statistical

description relies on. However, the broad description of the VK flow topologies in terms

of an equilibrium statistical theory allows for a thermodynamical interpretation of the
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Name Macrostate Gaussian Two-Level

Frozen-r δ(ξ − ξ0(r))pr(σ|ξ)
〈σ〉 = (µ− hξ0(r)) /D(r) 〈σ〉 = tanh(A+Bξ0(r))

〈ξ〉 = ξ0(r) 〈ξ〉 = ξ0(r)

Frozen-σ
pr(σ) pr(ξ|σ)

︸ ︷︷ ︸

prescribed

〈σ〉 = (C − βA(r)ψ(r))/D(r) 〈σ〉 = tanh(A1 +B1ψ(r))

〈ξ〉 = A(r)〈σ〉+B 〈ξ〉 = ξ+e
A++B+ψ + ξ−e

A−+B−ψ

eA++B+ψ + eA−+B−ψ

Gaussian
pr(σ, ξ)

〈σ〉 = (A(r) + B(r)ψ(r))/D(r) 〈σ〉 = tanh(A1 +B1ψ(r))

〈ξ〉 = (C(r) + F (r)ψ(r))/D(r) 〈ξ〉 = −βψ/(4ν)

with 〈ξ2〉 < +∞ +
1

2ν

g+e
A++B+ψ + g−e

A−+B−ψ

eA++B+ψ + eA−+B−ψ

Microcanonical
pr(σ, ξ) 〈σ〉 = A(r) 〈σ〉 = A1(r)

with 〈ξ2〉 → +∞ 〈ξ〉 = Bψ(r) + C 〈ξ〉 = B1ψ(r) + C1

Table 2. Equilibria obtained using different ansatz for the azimuthal vorticity ξ.

Greek letters denote Lagrange multipliers, Latin letters combinations of those — that

are different in each cell. In the Gaussian modeling only the quadratic invariants are

taken into account, while in the two-level theory it is assumed that the toroidal field

can only take two values ±1. More details can be found in the appendix.

transitions, in the spirit of the Curie-Weiss theory of Ferro-Magnetism. Here, we shall

not specify in as much details as in the previous section the spin lattice model that we

consider. What we retain from the analogy is the following. The VK flow can be seen

as a lattice model, whose spins each have two components : one linked with the toroidal

velocity uφ, the other one linked with the toroidal vorticity ωφ. Those two-component

spins evolve under the action of both a thermostat and a symmetry breaking external

field, that are provided by the four control parameters Re, γ, θ, α. The ability of the

spin to orientate itself as a function of the forcing can be traced by an averaged-in-time

magnetization vector, defined as:

M = (I,Γ) . (17)

As illustrated in Figure 9, different shapes for the propellers give rise to different

behavior for M, implying different “preferred orientations” for the spins. We think,

that the propensity of each spin to deviate from this orientation can be captured by

the behavior of the two temperatures βpol and βtor based on toroidal vorticity and

velocity fluctuations, see Equation (16) : The more curved the propellers, the higher

the temperatures. In the same way, increasing the Reynolds number for a given shape

increases the temperatures. In the spirit of statistical physics, the transition from a two-

cell state towards a one-cell state can be thought of as a symmetry-breaking transition.

It is then natural to introduce a susceptibility vector χ as :

χ = (χI , χΓ) =
∂M

∂θ

∣
∣
∣
∣
Re,α

(18)

The complete analogy is summarized in Table 3. It allows for an interpretation of the

salient hydrodynamical observations previously observed in the VK set-up in terms of
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Figure 9. Magnetization M = (Γ, I) for various rotation numbers θ’s, and different

propellers : TM87 (+)(squares), TM87(-) (diamonds), TM73 (+)(stars) and TM73 (-)

(triangles). The color codes θ.

phase transition and critical exponents. With this analogy in mind, a new light can

be shed on the finite-Reynolds number “phase transition” observed in the VK set-up

by [25, 26]. The main signature of the phase transition is obtained by monitoring the

behavior of the susceptibility χI(θ = 0), in order to characterize the situation of a

weak symmetry breaking due to the external forcing. In [25, 26], the control parameter

was taken to be the logarithm of the Reynolds number, in analogy with a definition

formulated by Castaing in [42] for the temperature of a turbulent flow. Here, we show

that the phase transition can be identified and further characterized by the fluctuations

of uφ and ωφ, which play the role of temperatures, as suggested by the inviscid statistical

theory.

“Ferro-Magnetic” Quantity Hydrodynamic Analog Name

Spin (ruφ, ωφ/r) “Beltrami Spin”

Magnetization M = (I,Γ) Angular momentum and circulation

Thermostat Forcing and dissipation

Temperature (1/βtor, 1/βpol) Fluctuations

Symmetry breaking fields (θ, γ) Rotation and Torque numbers

Susceptibility (χI , χΓ)

Table 3. Analogy between a two components spin system and the VK flow

The phase transition is made apparent by the study of the behavior of the

magnetization as a function of the temperature 1/βtor. This is shown in Figure 10, where

the mean magnetizations at θ = 0 for all impellers (any α) and Reynolds numbers have

been gathered. The data collapse nicely on a well-defined curve. Compared to a ferro-

magnetic system, the behavior is here reversed. A non-zero magnetization occurs when

the temperature is higher then a critical temperature 1/β⋆tor(M) ≃ 0.044 ± 0.03. The
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data then suggest, that the magnetization grows as the square root of the distance to the

critical temperature, viz., |M| ∝
√

1/βtor − 1/β⋆tor, a behavior reminiscent of standard

lattice models with mean-field interactions between the spins. Similarly, the behavior
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Figure 10. Mean magnetization as a function of temperature. Left : I (top) and

Γ (bottom) as functions of 1/βtor. Right : The magnetization M =
√
I2 + Γ2 as a

function of the toroidal temperature for different propellers (TM87(+)(circles) and (-)

(diamond) and TM73 (+)(triangles) and (-) (stars)) . In every case, the black dotted

line indicates a fit y = ±a
√

1/β − 1/β⋆, with 1/β⋆ = 0.044 ± 0.03, and various a :

a = 2.1 for I, a = 20 for Γ and a = 21 for M . The black circles are magnetization

estimates based on the height of the hysteresis cycle [27] .

of the susceptibility χ seems to exhibit a divergence around a critical temperature

1/β⋆tor(χ) ≃ 0.044 ± 0.03 — see Figure 11. Because of the crucial role played by the

poloidal fluctuations in the statistical theories described in Section 3, it is tempting

to check whether some sort of fluctuation-dissipation relation holds, involving both

the poloidal and the toroidal fluctuations. Under its simplest expression, a fluctuation

relation involving the susceptibility χΓ can be written as

χΓ = βtor

∫

Dpiv

(
〈ω2

φ〉◦ − 〈ωφ〉2◦
)
∝ βtor/βpol. (19)

To check whether such a relation holds, we have plotted in Figure 12, χΓ against the

quantity βtor/βpol. Indication of a linear trend is apparent. This is compatible with

the observation made in the previous section, that the poloidal and the toroidal degrees
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Figure 11. The susceptibilities χ as a function of the temperature. The black

dotted line is a fit b/(1/β − 1/β⋆), with b = 0.04 for χI and b = 0.2 for χΓ and

1/β⋆ = 0.044± 0.03.

of freedom are far more correlated in a VK set-up, than a purely axially symmetric

interpretation of the dynamics would imply. This observation is in a sense compatible

with the “frozen-σ” scenario, which tells that the poloidal degrees of freedom are

somehow enslaved to the toroidal ones. Note that the linear trend also exists for

χI . In both cases, the prefactor is small (of the order of 1/1000 to 1/20000). In

a Beltrami approximation, the ratio βtor/βpol in inversely proportional to the mode

numbers, i.e. to the number of degrees of freedom [19]. This remark would therefore

provide an interpretation of the prefactor in the fluctuation-dissipation relation as the

inverse number of degrees of freedom. This would give an estimate for the number of

degrees of freedom of the order of N ∼ 103 to 104, much smaller than the traditional

estimate N = Re9/4 (that would rather give a number of the order of 1013 ).

4.2. The zero-mode scenario

Finally, let us mention a possible thermodynamic explanation for the spontaneous

symmetry breaking in terms of a “zero-mode mechanism” discussed in details in [27].

We already noted that the VK axially symmetric topologies could be mapped to the

saddle points (u⋆φ, ω
⋆
φ) of the quadratic free energy functional F defined in Equation (9).

To include some finite-Reynolds dependence in the description of the VK topologies,

[27] proposed to build into the free energy a dependence on both the dissipation Dν

and the injected power P , upon the “steady state requirement” that P + Dν = 0, a

strategy already followed in [43] to interpret the slopes of turbulent spectra in terms

of ad-hoc maximal entropy exponents. In the case of an axially symmetric fluid, the

viscous dissipation reads Dν = −ν
∫

D
∇(ruφ)

2/r2 + ω2
φ. For an axially symmetric force

of the kind f = fφeφ + r−1∇(rΞ) × eφ, the injected power reads P =
∫

D
fφuφ + Ξωφ.
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Figure 12. Fluctuation-dissipation relation: the susceptibilities χ as a function of the

βtor/βpol. Left: χI . Right: χΓ. The dotted line are linear fits, with respective slopes

10−3 et 2× 10−4.

[27] therefore proposed to consider a free-energy Fǫ defined by

Fǫ[uφ, ωφ] = F [uφ, ωφ] + ǫ {P [uφ, ωφ] +Dν [uφ, ωφ]} , (20)

where F is the inviscid free energy that was previously defined by Equation (9).

Contrarily to the inviscid case (ǫ = 0), no general argument exists to guarantee that the

extremizers of such a free-energy are relevant, neither for the dynamics of a putative

forced-dissipated axially symmetric fluid nor even less for the VK dynamics. However,

let us here admit that the VK topologies can be described as specific minimizers of

Fǫ. The column vector fields b⋆(ǫ) = (u⋆φ(ǫ), ω
⋆
φ(ǫ))

T that extremize Fǫ can then

be suggestively written as the solutions of the following linear differential system of

equations :

Oǫb
⋆ = gǫ, (21)

where the differential operator Oǫ and the vector field gǫ are defined by

Oǫ =

(

β + 2αr2 + 2νǫL(·) h

h −2νǫ− βL−1(·)

)

and gǫ =

(

µr − ǫfφ
γ/r − ǫΞ

)

. (22)

The linear operator Oǫ is obtained from the gradient of the quadratic part of the free

energy Fǫ. In the context of VK flows, it is tempting to think of ǫ as a control parameter

that chacterizes the distance to equilibrium, and which could in principle be a function

of both the Reynolds number and the angle α (and hence of the toroidal temperature).

The vector field gǫ can be interpreted as the external driving field, characterizing both

the rotation ant the torque numbers. Finally, note that the vector field b⋆ has the same

symmetries in the vertical direction as the local magnetization m⋆ = (ru⋆φ, ω
⋆
φ/r).

To simplify the discussion, let us now work with our “ Beltrami approximation”

and crudely replace the r-dependent coefficient β+2αr2 by the constant coefficient Keff.
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As we know from the previous section that h should be non vanishing to account for VK

topologies, let us also rescale all the coefficients by h so that the differential operator

and the vector field of Equation (21) read :

Oǫ =

(

Keff + 2νǫL(·) 1

1 −2νǫ− βL−1(·)

)

and gǫ =

(

µr − ǫfφ
γ/r − ǫΞ

)

. (23)

The differential system (21) can be conveniently solved in terms of Fourier Bessel modes,

viz. the eigen-modes φkl’s of the negative definite operator L with prescribed boundary

conditions +. We write λkl the corresponding eigenvalues, so that Lφkl = −λ2klφkl.
Within this framework, the odd-l (resp. even-l) modes are odd (resp. even) functions

of the vertical coordinate z (see for example [32, 27]). The operator Oǫ can be formally

written as a block diagonal matrix, with 2× 2 matrices Okl on its diagonal, so that its

determinant formally reads

det Oǫ =
∏

k,l

det Okl with det Okl =
(
2νǫλ2kl −Keff

) (
2νǫ− β/λ2kl

)
− 1. (24)

Two situations can then occur. (i) If Oǫ has an empty kernel, i.e. if none among the

det Okl’s vanish, then b⋆ = O−1gǫ and the local magnetization m⋆ has the symmetries

of the driving field gǫ. In that case, the main contribution to the susceptibility

χ =
δ

δgǫ

∫

D

m⋆[gǫ]

∣
∣
∣
∣
gǫ=0

∗comes from the smallest eigen-value modulus |δ0| reached over

the even-l operators |Okl|’s. Both χI and χΓ then diverge as 1/δ0 when |δ0| ≪ 1. (ii) If

the kernel of Oǫ is non-empty, then the solution of (21) has the general shape :

b⋆ = O−1
+ gǫ + k, with k an element of the kernel, (25)

and O+ the restriction of Oǫ on the (k, l)’s such that det Okl 6= 0. For vanishing driving

fields, the symmetry properties of b⋆ (i.e. of the local magnetization) are then those

of the kernel of Oǫ. If the kernel is given by an even-l subspace, then one will observe

a non-zero spontaneous magnetization, that breaks the symmetry of the driving field.

Note also that the main contribution to the susceptibility comes from the smallest non-

vanishing eigenvalue (in modulus) reached by the even-l operators Okl.

To check the plausibility of the zero-mode toy scenario for the finite Reynolds/finite

temperature susceptibility divergences reported in the previous section, we have

estimated Keff and β for various values of the Reynolds number in the symmetric two-

cell state at θ = 0 for low-curvature propellers. The coefficients were deduced from the

values of A and B obtained using Equation (3) for D = 0 (i.e. within the Beltrami

approximation). To include a Reynolds number dependence, we prescribe the quantity

νǫ to be Reynolds-dependent, and arbitrarily choose 2νǫ ∝ 1/Re. The determinants

+ For vanishing boundary conditions for example, φkl(r, z) ∝ J1(jkr/R) sin [(l + 1)π(1 + z/h)/2] with

jk the kth zero of the first-order Bessel function J1, and k, l non-negative integers.
∗ Note, that this definition is compatible with the definition (18), if one assumes for example that gǫ

varies linearly with the torque asymmetry θ for vanishing gǫ.
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detOkl of Equation (24) are then estimated with these coefficients. Figure 13 shows the

Reynolds dependence of those experimentally driven determinants, as obtained for the

first two even-l eigenvalues of the operator −L. With this modus-operandi, we obtain

the remarkable fact that the determinant modulus | detO10| exhibits a vertiginous drop

around Rec ≃ 40000, which is is not observed for the higher modes. This behavior could

be related to the peak of the toroidal temperature 1/βtor ≃ 0.04 observed at Re ≃ 42000

for the TM60(+) propeller (see Figure 8). The drop of | detO10| at Rec ≃ 40000 may

therefore provide a qualitative explanation of the transition at 1/βtor = 0.04 in terms of

a zero-mode mechanism.

102 103 104 105 106
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10−1

100

Re

|d
et

O
k
l|

Figure 13. | detOkl| as a function of Re using TM60(+) propellers. Results are

shown for the first two even-l modes of the Laplacian operator, with VK boundary,

2H = 1.8 and R = 1 as in Figure 6. The modes are (1, 0) (blue circles) and (1, 2)

(green squares). The dashed vertical line shows Re = 42000. The factor 10 decrease of

| detO10| may indicate the presence of a “zero-mode transition” at a critical Reynolds

number Rec ≃ 42000.

5. Conclusion

In this work, we argued that the steady topologies observed in a turbulent VK set-up,

as well as the transitions between those, could be interpreted in terms of a statistical

physics modeling. This allowed us to exhibit a deep analogy between the VK large scale

dynamics and the standard behavior of Ferro-Magnetic material. We have shown that

the topologies of the VK steady states could be interpreted thermodynamically, using as

a guideline an equilibrium theory that relies on the axially symmetric Euler equations

and an adequate modeling of the fluctuations. At first sight, there was no reason to

expect that such an equilibrium theory could be relevant for the VK cases : the lack of

axial-symmetry for the instantaneous VK dynamics, the presence of a large-scale forcing

which precludes any kind of separation of scale working hypothesis, the non-gaussianity

of the VK fluctuations and the UV catastrophe associated to statistical theories based
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on the Euler axially symmetric equations are for example as many reasons which should

imply that such an approach is bound to fail.

However, in the present case, the forcing and dissipation that are present in the

experiment seem to play the role of thermostats, which prescribe strong correlations

between the degrees of freedom present in the flow. This allows for a statistical mean-

field interpretation of the mean flow, provided one plugs into the theory additional

ansatz non prescribed by the Euler equations. In other words, the VK steady states do

not correspond to ideal axially symmetric equilibria. Still, to first order, there exists

some good indication that those can be interpreted as maximizers over an appropriate

restricted subset of phase space of a suitably defined configuration entropy. This

experimental fact provides an intuitive ground, to think about the VK experiment in

terms of a statistical mean field theory. We have shown that this analogy goes beyond

the mere description of the VK topologies. We showed that the transitions between

the various topologies could be phrased in terms of phase transition and spontaneous

symmetry breaking, shedding an unexpected analogy between VK turbulence and the

theory of ferro-magnetism.

The empirical coincidence between the steady turbulent states and a class of “meta-

equilibria” for the Euler equation is puzzling and opens the question of how far ”out-

of-equilibrium” is our system. In traditional turbulence theory, the degree of non-

equilibriumness can be quantified by measuring the non-dimensional energy flux. In the

VK experiment, the latter is related to the torques exerted on both propellers. One

then observes that this quantity is minimal when the averaged topology is a two-cell

symmetric states, obtained by forcing at positive angle α. These states appear to be

better fitted by an equilibrium theory than the other bifurcated states, obtained at

larger θ of for negatively curved propeller. It is also well known that the energy flux

measured at the large scales of a turbulent flow is very close to zero. It may therefore

well be that the large-scale topologies that we here considered match a situation where

the deviations from equilibrium (quantified by the flux) are sufficiently small, so that

some kind of perturbative theory around the equilibria states may in the end be valid.
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A. Summary of axially symmetric statistical theories.

In this technical appendix, we explain how to obtain Table 2, in which the outcomes

of the different statistical theories based on the axially symmetric perfect fluid are



CONTENTS 27

summarized. Our point is not to discuss those theories very thoroughly, but to show

how various ansatz for the poloidal fluctuations lead to different relations between the

average toroidal field and the average poloidal field.

Because of the specific shape of the inviscid invariants related to the ideal axially

symmetric fluid, and in particular because of the long-range, mean field nature of

the kinetic energy, the micro canonical averages can be computed in terms of a local

probability field : the macro state probability field. The latter is defined though a local

discretization of the physical domain combined with a local averaging of the velocity

field, the details of which can be found in numerous papers — see for example [37, 20]

for a recent exposition. In the case of the axially-symmetric perfect fluid, it is convenient

to define the macro state probability field p as

pr(σ, ξ) = Proba(ruφ = σ andωφ = rξ in the vicinity of r). (A.1)

The probability “Proba” that appears in the latter equation is a local micro canonical

probability, which we later write 〈·〉. In what follows, we use the short-hand notation
∫

σ,ξ
=
∫∫

R2 dσdξ and still denote
∫

D
= (1/hR2)

∫ R

r=0

∫ h

−h
rdrdz.

To compute the axially symmetric equilibria, one first needs to translate the

inviscid invariants (7) and (8) which by definition affect the microscopic dynamics, into

constraints for the macro-state probability fields. For axially symmetric flows, we write

Aσ (“toroidal areas”) , Γσ (“partial circulations”) and E the macro-state constraints

induced by the axially-symmetric Toroidal Casimirs, Helical Casimirs and the energy

respectively, viz.,

Aσ0 [p] =

∫

D

∫

σ,ξ

pr(σ, ξ)δ(σ − σ0), Γσ0 [p] =

∫

D

∫

σ,ξ

ξpr(σ, ξ)δ(σ − σ0), and

E [p] =
∫

D

∫

σ,ξ

{
ψξ

2
+
σ2

2r2

}

pr(σ, ξ),

(A.2)

Another crucial macro state functional is the “macro state entropy”, defined by

S[p] = −
∫

D

∫

σ,ξ

pr(σ, ξ) log pr(σ, ξ). (A.3)

In principle, for a prescribed set of macro state constraints, say α(σ), γ(σ) and E, the

micro canonical averages 〈〉 can now be computed in terms of a most probable macro

state probability field p⋆. This is a consequence of an extension of Laplace’s method of

steepest descent called the Sanov theorem. p⋆ is then obtained by maximizing the macro

state entropy (A.3) among the macro state probability fields that satisfy the prescribed

set of macro-state constraints, namely :

p⋆ = arg sup {S[p]|Aσ[p] = α(σ),Γσ[p] = γ(σ), E [p] = E} . (A.4)

In principle, the optimization problem (A.4) can be solved explicitly in terms of Lagrange
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multipliers, and the solution glibly written as

p⋆
r
(σ, ξ) =

1

Z⋆
r

exp

{

−β ξψ
2

− β
σ2

2r2
+ f(σ) + ξg(σ)

}

, with ψ = −L−1〈ωφ〉
r

and Z⋆
r
=

∫

σ,ξ

exp

{

−β ξψ
2

− β
σ2

2r2
+ f(σ) + ξg(σ)

}

.

(A.5)

The Lagrange multiplier β, and Lagrange functions f and g are determined by the

(functional) derivatives of the partition function :

−
∫

D

∂ logZr

∂β
= E,

∫

D

δ logZr

δf(σ0)
= α(σ0) and

∫

D

δ logZr

δg(σ0)
= γ(σ0). (A.6)

The formulation (A.4)–(A.6) is however merely formal, as the optimization problem

(A.4) is in this case ill-defined. The trouble comes from the poloidal degrees of freedom

being in a sense not constrained enough by the macro state constraints of Equation

(A.2). The problem is apparent in the definition of the partition function (A.5) : the

integral
∫

ξ
there involved does not in general converge. We think that this behavior

is an avatar of the UV catastrophe encountered in the statistical theories of ideal

3D flows. A phenomenological taming of the problem can be achieved by further

constraining the set of macro state fields over which the optimization problem (A.4)

is solved. This requires the use of additional ansatz, some of which we below discuss.

In order to carry out some explicit calculations and retrieve the equations of Table (2),

we will consider two simplified sets of macro-constraints (A.2). (i) In the Two-Level

modeling, we prescribe the toroidal field to be a two-level, symmetric distribution, viz.,

α(σ) = pδ(σ − 1) + (1 − p)δ(σ + 1). Only five constraints then remain from the set of

constraints (A.2) : the energy, two toroidal areas A±, and two partial circulations Γ±.

We write f± and g± the corresponding Lagrange multipliers that appear in Equation

(A.5). (ii) In the Gaussian modeling, we relax the constraint on the toroidal distribution,

and only prescribe its average and variance computed over the domain. Similarly, instead

of specifying the correlations between the poloidal and the toroidal field using the partial

circulations, we we only prescribe a value for the helicity and the circulation. We are

then again left with five macro state constraints. As far as the optimization problem

is concerned, this is tantamount to prescribe a quadratic f and a linear function g in

Equation (A.9), namely

f(σ) = −κσ2 + µσ and g(σ) = −hσ + γ. (A.7)

A.1. Freezing the poloidal field : The “frozen-r” scenario.

A simple but extreme way to further constrain the optimization problem (A.4) is to

assume that the poloidal field at position r is prescribed and non fluctuating. We

therefore solve (A.4) among the macro states of the kind:

pr(σ, ξ) = pr(σ|ξ)δ(ξ − ξ0(r)). (A.8)
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Whatever the field ξ0, the macro state entropy (A.3) now reads S[p] =

−
∫
pr(σ|ξ0) log pr(σ|ξ0). The extremal points of S[p] are achieved for the now correctly

defined macro states :

p⋆
r
(σ, ξ) =

1

Z⋆
r

exp

{

−β σ
2

2r2
+ f(σ) + ξ0(r)g(σ)

}

δ(ξ − ξ0(r)),

where Z⋆
r
=

∫

σ

exp

{

−β σ
2

2r2
+ f(σ) + ξ0g(σ)

}

δ(ξ − ξ0(r)).

(A.9)

An easy calculation then yields :

〈σ〉 =
∫

σ,ξ

pr(σ, ξ)σ = (µ− hξ0)/(2κ+ 2β/r2) in the Gaussian case,

= tanh(A+Bξ0(r)) in the two-level case.

(A.10)

We write D(r) = 2κ + 2β/r2), A = (f+ − f−)/2 and B = (g+ − g−)/2. In both cases,

we also obtain 〈ξ〉 = ξ0(r), as indicated in Table 2.

A.2. Enslaving the poloidal field : the “frozen-σ” scenario

Another way to remove the UV catastrophe is to prescribe that not only the poloidal

averages conditioned on the toroidal areas but the whole conditional distributions p(ξ|σ)
are prescribed. We then choose to solve the optimization problem (A.4) over macro

states of the kind

pr(σ, ξ) = pr(σ)pr(ξ|σ), with pr(ξ|σ) being prescribed a priori. (A.11)

The macro state entropy (A.3) can now be written in terms of the (prescribed) entropy

sr(σ) of the conditional distributions as

S[p] = −
∫

D

∫

σ

pr(σ)(log pr(σ)−sr(σ)) with sr(σ) = −
∫

ξ

pr(ξ|σ) log pr(ξ|σ). (A.12)

Defining ξ(σ) =
∫

σ
ξpr(ξ|σ), we find that the macro-states (A.11) that solve the

optimization problem and extremize S[p] are those satisfying

p⋆
r
(σ) =

1

Z⋆
r

exp
{
sr(σ) + ξ(σ)g(σ) + f(σ)− βσ2/2r2 − βξ(σ)ψ/2

}

with Z⋆
r
=

∫

σ

exp
{
sr(σ) + ξ(σ)g(σ) + f(σ)− βσ2/2r2 − βξ(σ)ψ/2

}
.

(A.13)

In the two-level case, we write ξ± =
∫

σ
ξpr(ξ|σ = ±), and easily obtain

〈σ〉 = tanh(A1 +B1ψ) and 〈ξ〉 =
∑

± ξ± exp {sr,± + ξ±g± + f± − βξ±ψ/2}
∑

± exp {sr,± + ξ±g± + f± − βξ±ψ/2}
. (A.14)

with A1 = (1/2)(sr,+ + ξ+g+ + f+ − sr,− + ξ−g− + f−) and B1 = −β(ξ+ − ξ−)/2.
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In the gaussian modeling, one needs to specify a shape for ξ(σ) and the entropies

sr(σ) in order to carry the calculation further. If one assumes for simplicity ξ(σ) =

A(r)σ +B, and sr(σ) = const., one readily obtains

〈σ〉 = γA+ µ− hB − Aβψ/2

2 (κ+ β/2r2 + Ah)
and 〈ξ〉 = A〈σ〉+B. (A.15)

We therefore put C = 2(γA+ µ− hB), D = 4 (κ+ β/2r2 + Ah) to obtain the result of

Table 2.

A.3. A regularization through dissipation : the “Gaussian” scenario

An alternative way to give some sense to the problem (A.4) is to restrict the

maximization procedure to the macro state fields p’s whose local poloidal fluctuations

are everywhere bounded, namely the ones for which a prescribed λ <∞ exists such that
∫

σ,ξ
ξ2pr(σ, ξ) < λ. One could rather wish to plug into the integral a r2 coefficient so

as to make this additional macro-state constraint the exact counterpart to the poloidal

viscous dissipative term made explicit in Section (4.2), but this subtlety goes beyond the

present point. In the gaussian modeling, the partition function logarithm of Equation

(A.5) can be computed as

logZr = log π − 1

2
log δ(r) +

νµ2 − hµ(γ − βψ/2) + (κ+ β/2r2)(γ − βψ/2)2

4δ(r)
, (A.16)

where the Gaussian integration requires both ν and δ(r) = (κ + β/2r2)ν − h2/4 to be

positive. We deduce

〈σ〉 = 2µν − hγ + hβψ/2

4δ(r)
and 〈ξ〉 = 2γ(κ+ β/2r2)− hµ− (κ+ β/2r2)βψ

4δ(r)
. (A.17)

Hence we retrieve the expression of Table 2 by putting A = 4µν−2hγ, B = hβ, D = 8δ,

C = 4γ(κ+ β/2r2)− 2hµ and F = −2(κ+ β/2r2)β. In the two-level case, the partition

function reads

logZr =
1

2
log π − 1

2
log ν + log

∑

±

ef±+(g±−βψ/2)2/(4ν). (A.18)

We deduce

〈σ〉 = tanh (A1 +B1ψ) and 〈ξ〉 = −βψ
4ν

+
1

2ν

∑

± g±e
f±−(g±−βψ/2)2/2ν

∑

± e
f±−(g±−βψ/2)2/2ν

, (A.19)

with A1 = (1/2)
(
f+ − f− + (g2− − g2+)/(2ν)

)
, B1 = −β(g− − g+)/(4ν). To obtain the

expression of Table 2, one needs to develop the squares in the exponentials in both the

numerator and the denominator of the expression for 〈ξ〉, to obtain A± = f± − g2±/(2ν)

and B± = g±β.
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A.4. An ideal microcanonical scenario

Finally, in order to define a micro canonical measure for the axially symmetric Euler

equations, the following strategy was proposed in [20] : (i) regularize the optimization

problem (A.4) by using a temporary cutoff, (ii) solve the cutoff dependent optimization

problem (iii) Relax the cutoff dependency by letting the cutoff go to ∞ while using an

appropriate scaling for the Lagrange multipliers. The result of [20] can be retrieved from

the Gaussian scenario just described and equations (A.17) and (A.19). From Equation

(A.17), one prescribes β ∼ β0ν, h ∼ h0ν , γ = γ0ν as ν → 0 to obtain

〈σ〉 = µ

2κ
and 〈ξ〉 = γ0

2
− h0µ

4κ
− β0ψ

4
. (A.20)

From Equation (A.17), one prescribes β ∼ β0ν, g± ∼ g±,0ν, f± ∼ f±,0 as ν → 0, to

obtain

〈σ〉 = tanh

(
f+,0 − f−,0

2

)

and 〈ξ〉 = −β0ψ
4

+
1

2

∑

± g±,0e
f±0

∑

± e
f±,0

. (A.21)

In both cases, the average toroidal field is constant and the average poloidal field is

linear with ψ. Hence, we retrieve the expression of Table 2 by putting A = µ/2κ,

C = γ0/2 − h0µ/4κ, B = B1 = −β0ψ/4, A1 = tanh ((f+,0 − f−,0)/2) and C1 =

(1/2)
(∑

± g±,0e
f±0

)
/
(∑

± ef±,0
)
.
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