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Abstract. Many robotic projects use simulation as a faster and easier
way to develop, evaluate and validate software components compared
with on-board real world settings. In the human-robot interaction field,
some recent works have attempted to integrate humans in the simulation
loop. In this paper we investigate how such kind of robotic simulation
software can be used to provide a dynamic and interactive environment
to both collect a multimodal situated dialogue corpus and to perform an
efficient reinforcement learning-based dialogue management optimisation
procedure. Our proposition is illustrated by a preliminary experiment
involving real users in a Pick-Place-Carry task for which encouraging
results are obtained.

1 Introduction

Simulation softwares are highly needed in robotic projects. By using simulators,
roboticists can evaluate and validate their works on the chosen level of abstrac-
tion in a sandbox that limits the risk-taking. In this way, projects relying on high
level computation (e.g. interaction, dialogue, supervision), can use a simulator to
abstract lower levels (e.g. navigation, image processing, localisation) and avoid
their related issues to interfere during the system evaluation. Furthermore, the
simulation setup can also be useful to assess parts of the development before any
attempt of costly integration on the on-board robotic platform.

In the present study, we specifically focus on Human-Robot Interaction (HRI).
In the simulation context, two distinct solutions can be adopted to integrate hu-
mans in the loop: 1. modelling and implementing their behaviours and actions,
and 2. dealing with tele-operation to control human avatars.

The first solution has the advantage of automatization and does not require
manual manipulation. So, this solution is less time consuming and easier to run.
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However, depending on the human features required, it may be really difficult to
have a realistic human model. Humans are complex entities with reactions and
behaviours nearly impossible to consistently synthesize. This solution is usually
used for studies that do not involve the most complex sides of human behaviours,
such as navigation or manipulation.

The second solution consits in having the simulated human controlled by a
real human operator. By doing so, the complexity of the experimentation rises as
an actual human is required to operate the human avatar. However, the avatar
in the simulator will have a far more realistic behaviour. To do so, the simulator
must have a realistic environment rendering and the human control must be
natural and close enough to the real world.

HRI projects that focus on situated dialogue usually investigate tasks that
seem to be within the scope or already implemented in HRI simulator, such
as a Pick-Place-Carry scenario [1], robot bartender [2] or navigation tasks in a
virtual environment [3]. Nevertheless, few works consider the simulation setup
as the way to carry out situated dialogue corpus acquisition as well as a test-
bed for an efficient online dialogue policy learning. Indeed, most of the previous
works in situated dialogue for HRI resorted to a preliminary Wizard-of-Oz (WoZ)
experiment, where a human remotely operates the robot [4,2,5]. However, the
WoZ technique is both time consuming and an expensive method.

In this article we present how a robotic simulation software, in which the
human is integrated, can help to train a dialogue system for realistic HRI from
scratch. In Section 2 we explain how we simulated HRI scenarios with the open-
source robotic simulator MORSE. In Section 3 we show how we used the sim-
ulator along with a robotic architecture, and finally in Section 4 we expose the
integration with the dialogue system and give some testing results. In last Sec-
tion 5, we discuss the outcome of this preliminary study and future work.

2 MORSE as HRI Simulator

2.1 Why MORSE for HRI?

In the robotic field, many simulators are available. We can name the Play-
er/Stage/Gazebo suite [6], the integrated simulation platform OpenHRP [7],
the cross-platform software architecture OpenRAVE [8] or even the commercial
simulator V-REP [9]. However, only a few of them are very well suited to HRI.
They generally limit human agent behaviours to relatively simple motions and
interaction capacities which is one of the reasons why HRI simulations so far
have been carried out in tele-operation settings, where only the robot and the
environment, but not the human agent, are actually simulated. Robotic simula-
tors USARSim [10] and MORSE [11,12] are both used in dozens of HRI studies
due to their explicit support for controlling a human agent. However, the latter
has several specific advantages that motivated our choice.

MORSE is an open-source simulator, with a very active community, that
was developed specifically for robotic simulation. It supports a wide range of



middleware (e.g. ROS, YARP, pocolibs) as well as reliable implementations of
realistic sensors and actuators which ease the integration on real robotic plat-
forms afterwards. Moreover, MORSE offers an adaptable simulation setup by
allowing virtual robots to interact with the virtual environment through both
realistic sensors/actuators and higher level ones. Thereby, roboticists can con-
trol the related computation cost of low level data processing by exploiting high
level outputs from unrealistic components. For example, MORSE provides both
a vision camera and a semantic camera sensor. While the first camera provides a
rough image (i.e. raw pixels) as output, the second one gives directly the names
of the perceived objects and their positions in the scene. The latter sensor avoids
practitioners to perform object recognition and localization processes when fo-
cusing on higher level issues.

Furthermore, MORSE relies on the Blender Game Engine, a real-time 3D
runtime integrated to the open-source Blender modelling toolkit, for both ad-
vanced 3D (OpenGL shader) and physics simulation (based on the BULLET
physics engine). This setup allows realistic rendering of complex environment
and provides an immersive graphical user interface, which is a required feature
for HRI modelling.

In MORSE, the human avatar can be controlled by a human operator or
directly through external scripts as any other robot.

Fig. 1: Human avatar grabbing an object controlled by an operator (left image)
and human in 3rd person perspective (right image).

In the first case, the operator controls the virtual human in an immersive
way (see Figure 1) in terms of displacement, gaze, and interactions on the en-
vironment, such as object manipulation (e.g. grasp/released an object). To go
even further in realistic human incorporation in the simulator, a motion capture
actuator allows to control the human avatar directly by using an external device.
So, a Kinect sensor collects human gestures and sends the posture data to move
the human avatar accordingly. Furthermore, a Nintendo wiimote can jointly be
used to manage its action (e.g. grasp/released an object).

In the second case, the avatar is programmatically controlled by using stan-
dard MORSE actuators. As an example, it is possible to use a waypoint actuator
on the human to define a path he has to follow.



2.2 Scenario Implementation

In our scenario, a disabled human is in her apartment and has a robot to assist
her to perform everyday life chores. The goal is to make the robot understand,
by reasoning on human speech, gestures and the environment, human’s requests
concerning objects. Objects are limited here to graspable items such as books,
DVDs and mugs, that have diverse colors and a unique identifier.

The PR2 robot is used in the simulator as it is our real platform at LAAS-
CNRS. PR2 is already present in MORSE models, making it directly usable. We
add a symbolic camera (MORSE semantic camera) sensor to the standard model
so that it can perform object recognition and also a teleport actuator to move
it to a designated position (while saving the time of the true displacement). We
also add a human avatar with first person representation to have realistic inputs
of speech and behaviour of human users. We use a virtual model of the physical
environment in which the real robot will be tested (see Figure 2).

Fig. 2: Scenario environment in MORSE

At the start of the simulation, a script randomly positions objects in prede-
fined areas (such as over kitchen table, living-room table, bedroom shelf etc.),
called manipulation areas. This allows us to use different environment configu-
rations without changing the initialization files (MORSE builder script).

2.3 Actions library

To get a more interactive and realistic simulation and also for the user to evaluate
the fulfilment of her request (e.g. does the robot bring the appropriate object),
we have developed a library of high-level and abstract actions that the robot
will be able to perform.

The list of abstract actions is as followed:



– To explore the environment and bring an object to the human, the robot
needs to be able to move to manipulation areas. To do so, we use the tele-
port actuator of MORSE. This actuator moves instantaneously the robot to
a given place. We define a script function to move the robot to each ma-
nipulation area that has been defined. In this way the robot can go to each
position to pick objects or explore an area to get some contextual informa-
tion.

– The robot is able to scan a manipulation area. To make this action possible
a symbolic camera is added to the robot on its head. We then move the head
sequentially to scan the environment.

– The robot has to grab an object. To perform this action the grasp service of
the PR2 is used. We specify the name of the object it has to grab and if the
object is close to robot’s hand it will be attached to it. In a similar way, we
added a function to drop an object that takes as parameter the manipulation
area where it should be dropped to. The robot will drop the object on top
of the corresponding furniture.

– The last action is giving the object to the human. It consists in moving the
robot to the human position and deploying the arm of the robot toward the
human to give her the object. We simply use the robot armature actuator
to control the robot’s arm.

3 Integration with robotic system

3.1 SPARK for Spatial Reasoning

To achieve geometric reasoning and to get the environment through robot per-
ception SPARK [13] (SPAtial Reasoning and Knowledge) was used on our robot.
To do the same in our simulated environment we need to get data from MORSE.
We briefly explain here how we linked SPARK with MORSE and then what is
obtained from this integration.

SPARK gets three kinds of input: object identifier and position, human po-
sition and posture and robot position and posture.

To obtain the object position in SPARK, we use the semantic camera on
the robot head. This sensor can export the position and name of objects in
view field. This data is sent using a middleware and is then read by SPARK
to position the object in its representation. Concerning human and robot, we
attach a pose sensor to them and we export their armature configuration. In
this way SPARK can read the position and posture of the robot and human
through the middleware, requesting only a mapping to match the MORSE joint
representation with the SPARK one.

SPARK uses robot perception data to build the environment as seen by
the robot. It also computes geometrical facts such as topological description of
object’s position (Book isOn table), agents affordances (Book is visibleBy

Human) and knowledge of agents (Human hasKnownLocation Book). These high
level data will be used to enrich the dialogue context.



3.2 Robotic System

By using SPARK as a link in the system, we are able to use a full robotic
architecture with MORSE. This architecture, shown in Figure 3, is composed of
several modules:

– Supervision System: the component in charge of commanding the other com-
ponents of the system in order to complete a task.

– HATP: the Human-Aware Task Planner [14], based on a Hierarchical Task
Network (HTN) refinement [15]. HATP is able to produce plans for the robot
actions as well as for the other participants (humans or robots).

– Collaboration Planners: this set of planners are used in joint actions such as
handover to estimate the user intentions and selects an action to perform.

– SPARK: the Spatial Reasoning and Knowledge component, as explained
in 3.1.

– Knowledge Base: the facts produced by the geometric and temporal reason-
ing component are stored in a central symbolic knowledge base. This base
maintains a different model for each agent, allowing to represent divergent
beliefs.

– Human Planners: a set of human aware motion, placement and manipulation
planners [16].

Our system is able, using SPARK, to create different representations of the
world for itself and for the other agents, which are then stored in the Knowledge
Base. In this way the robot can take into account what each agent can see,
reach and know when creating plans. Using HATP the robot can create a plan
constituted by different execution streams for every present agent.

Fig. 3: Robotic system architecture

The interaction process is designed to be flexible. Users are able to issue
commands to the robot but the robot is also able to plan on its own to execute



complex goals and to adapt its plan to user actions. Human actions are mon-
itored using SPARK by creating Monitor Spheres associated to items deemed
interesting in a given context. A Monitor Sphere is a spheric area surrounding
a point that can be associated to different events, like the hand of a human
entering into it. The system is explained in more details in [17].

4 Learning Dialogue Strategies

4.1 Dialogue Management

In this study the robot is dedicated to help a human achieving a specific ob-
ject manipulation task. Thereby, multimodal dialogues are employed to solve
ambiguities and to request missing information until task completion (i.e. full
command execution) or failure (i.e. explicit user disengagement or wrong com-
mand execution). In this setup, the robot, more precisely the Dialogue Manager
(DM), is responsible for taking appropriate multimodal dialogue decisions to
fulfil the user’s goal based on uncertain dialogue contexts.

To do so, the dialogue management problem is cast as a Partially Observ-
able Markov Decision Process (POMDP). In this setup, the agent maintains a
distribution over possible dialogue states, called the belief state in the literature,
and interacting with its perceived environment using a dialogue policy learned
by means of a Reinforcement Learning (RL) algorithm [18]. This mathematical
framework has been successfully employed in the Spoken Dialogue System (SDS)
field (e.g. [19,20,21]) as well as to manage dialogue in HRI context (e.g. [22,1]).
Indeed, this framework explicitly handles parts of the inherent uncertainty of
the information which the DM has to deal with (erroneous speech recognitions,
misrecognized gestures, etc.).

Recent attempts in SDS have shown the possibility to learn a dialogue policy
from scratch with a limited number (several hundreds) of interactions [23,24,25]
and the potential benefit of this technique compared to the classical use of WoZ
or to develop a well-calibrated user simulator [23]. Following the same idea,
we employ a sample-efficient learning algorithm, namely the Kalman Temporal
Differences (KTD) framework [26,25], which enables us to learn and adapt the
robot behaviour in an online setup. That is while interacting with users. The
main shortcoming of the chosen method consists in the very poor initial perfor-
mances. However, solutions as those proposed in [27,28] can be easily adopted
to alleviate this limitation.

Although objectively artificial, the presented robotic simulation platform pro-
vides a very interesting test-bed module for online dialogue learning. Indeed, a
better control over the global experimental conditions can be achieved (e.g. en-
vironment instantiation, sensors equipped by the robot). Thereby, comparisons
between different approaches and configurations are facilitated. Furthermore,
this solution reduces the subjects’ recruitment costs without strongly hamper-
ing their natural expressiveness (due to the capacities offered by the simulator).



Fig. 4: Architecture of the multimodal and situated dialogue system.

4.2 Architecture

The multimodal dialogue architecture considered in our experiments is presented
in Figure 4. Twelve components are responsible of the overall functioning of this
dialogue system.

The four orange ones are those which are implicated in the user’s input man-
agement, speech and gesture modalities in our case. Thus, the combination of
the Google Web Speech API3 for Automatic Speech Recognition (ASR) and a
custom-defined grammar parser for Spoken Language Understanding (SLU) are
used to perform speech recognition and understanding. The Gesture Recognition
and Understanding (GRU) module simply catches the gesture-events generated
by our spatial reasoner during the course of the interaction. Then, the Fusion
module temporally aligns the monomodal inputs then merge them with custom-
defined rules. Finally, the result of the fusion (i.e. N-best list of interpretation
hypotheses and their related confidence scores) becomes the input of the multi-
modal DM.

The three blue components are responsible of the context modelling. SPARK,
previously presented in 3, for both detecting the user gestures and generating the
per-agent spatial facts (perspective taking) which are used to dynamically feed
the contextual knowledge base. These two modules are responsible of per-agent
knowledge modelling which allows the robot to reason over different perspec-
tives on the world. Furthermore, we also make use of a static knowledge base
containing the list of all available objects (even those not perceived) and their
related static properties (e.g. color).

The four yellow components are dedicated to the output restitution. So, the
Fission module splits the abstract system action into verbal and non-verbal ones.
The spoken output is produced by chaining a template-based Natural Language
Generation (NLG) module with a Text-To-Speech Synthesis (TTS) component
based on the commercial Acapela TTS system4. The Non-verbal Behaviour Plan-

3 https://www.google.com/intl/en/chrome/demos/speech.html
4 http://www.acapela-group.com/index.html



ning and Motor Control (NVBP/MC) module produces arm gestures and head
and body poses for the robot by translating the non-verbal action into a sequence
of abstract actions, as defined in 2.3.

Finally, the green component is the DM, responsible for updating the internal
belief state and to take the next robot decision. It is based on the POMDP-based
Hidden Information State (HIS) framework [19] which has been adapted to the
multimodal case here. In this setup, the belief state is represented by a set of
partitions. Each partition represents a possible user command. The decision takes
place into a more reduced summary space where RL algorithms are tractable.
So, at each turn the system choose a summary action (e.g. inform, confirm,
execute) and a heuristic-based method maps the summary action back to the
master state (hand-crafted part).

Concerning the DM policy, the sample-efficient KTD-SARSA RL algorithm [25]
was used in combination with the Bonus Greedy exploration scheme to enable
the online learning of a dialogue policy from scratch. A reward function is de-
fined to penalise the DM by −1 for each dialogue turn and reward it by +20 if
the right command is performed at the end of the interaction, 0 otherwise. More
details about this setup are available in [27,28].

4.3 Experimental Setup & Results

In this ”proof of concept” study we chose to deal with a limited expert panel,
composed of 6 subjects (2 females and 4 males of around 25 years old), in order
to focus on the capacity of the system to learn from scratch using a limited
set of interactions. The advantage is that the collected data sufficiently explore
the state and action spaces during the online learning to be exploited in offline
learning (using batch samples).

At the beginning of each dialogue, a specific goal (here a command) is ran-
domly generated taking into account the simulated environment settings and
the current interaction history in order to select a possible command. For ex-
ample, “You want the robot to give you the white book on the kitchen table”.
No experimenter has any idea of the chosen configuration of the system with
which he is interacting. So, we basically compare a hand-crafted expert dialogue
policy (noted HDC) to a learned one (noted LEARNED). The latter was trained
using a small set of expert users which first performed 60 dialogues in an online
learning setting.

In the complete multimodal architecture, each interaction takes from 7 to 10
minutes to complete (objects detection, robot movements, etc.). So, without loss
of generality, a practical workaround to speed-up the testing process consisted
in using a fixed representation of the scene (a screenshot from the human point
of view) and a web-based multimodal GUI instead of the full simulation setup.
Overall, 84 dialogues for both the two proposed systems were recorded with 6
distinct subjects. At the end of each interaction users evaluated the system in
terms of task completion. The learned policy were configured to act greedily ac-
cording to the value function. Results are those gathered in test condition where
exploration is not allowed. All the dialogues were recorded both in terms of audio



and various kinds of meta-information (e.g. ASR N-Best list, dialogue manager
detected gestures and related timestamps, etc.) but also high level annotations
(e.g. environment settings, pursued goal, task success). As an illustration, a short
interaction, translated from French, is given in Table 1.

R1
DA hello()

NLG/TTS Can I help you ?

U1
ASR Can you put the book in my bedroom?
SLU inform(action=move,desc=in,room=bedroom)

R2
DA confreq(type=book,position)

NLG/TTS Sorry but where is the book you are talking about?

U3
ASR I am talking about this one
SLU inform(idobj=?)
GRU pointsAt BLUE BOOK 1395848705.31

R3

execute(action=move,destination=bedroom bedsidetable,
DA idobj=BLUE BOOK,position=livingroom table,type=book,

color=blue)
NVBP/MC move(BLUE BOOK,livingroom table,bedroom bedsidetable)
NLG/TTS Ok, I will put the blue book on your bedside table

Table 1: Example of a multimodal dialogue.

The results obtained are 14.3 for the HDCmethod and 17.6 for the LEARNED
one. These results are given in terms of mean discounted cumulative rewards [18].
According to the reward function definition, this metric expresses in a single real
value the two variables of improvement, namely the success rate (accuracy) and
the number of turns until dialogue end (time efficiency). So, here the HDC pol-
icy manages the dialogue with 86% of success rate in an average of 4.8 turns
against respectively 93% and 2.9 turns for the LEARNED one. The difference
observed between the two methods can be mainly explained by a more accurate
and less frequent usage of request of confirmation as well as an expected more
fined-grained uncertainty management for the LEARNED method. Thus, these
results clearly both demonstrates the ability of the overall architecture (simula-
tion software + multimodal dialogue system) to learn an efficient dialogue policy
using few dialogue examples and shows the interest of considering RL methods
rather than a hand-crafted fixed and suboptimal policy. Indeed, only 60 training
dialogues are enough to outperform the HDC by more than 3 points.

5 Summary and Future Work

In this paper we show how the MORSE simulator is used to build a scenario
for HRI and how we used a robotic system along with this simulator to provide
situated data to train the dialogue system. Using the MORSE simulator along
with a robotic system was very helpful for us as it allows several partners to
work with the same environment even being at different physical places and
allows to train the system without using the actual robot, making it much easier



for trainers. We believe this configuration is close enough to reality to efficiently
train the dialogue system. Anyhow as we have not yet deployed the dialogue
system on the robotic platform this affirmation still needs to be proved. These
metrics will be carried out in a future work.
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