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IMPROVING RIEMANN PRIME COUNTING

MICHEL PLANAT AND PATRICK SOLÉ

Abstract. Prime number theorem asserts that (at large x) the prime counting
function π(x) is approximately the logarithmic integral li(x). In the intermedi-

ate range, Riemann prime counting function Ri(N)(x) =
∑N

n=1
µ(n)
n

Li(x1/n)

deviates from π(x) by the asymptotically vanishing sum
∑

ρ Ri(xρ) depend-

ing on the critical zeros ρ of the Riemann zeta function ζ(s). We find a fit

π(x) ≈ Ri(3)[ψ(x)] [with three to four new exact digits compared to li(x)] by
making use of the Von Mangoldt explicit formula for the Chebyshev function
ψ(x). Another equivalent fit makes use of the Gram formula with the variable
ψ(x). Doing so, we evaluate π(x) in the range x = 10i, i = [1 · · · 50] with the
help of the first 2× 106 Riemann zeros ρ. A few remarks related to Riemann
hypothesis (RH) are given in this context.

1. Introduction

In his celebrated 1859 note about the prime counting function π(x), Riemann
concludes

The thickening and thinning of primes which is represented by the periodic term

in the formula has also been observed in the counts of primes, without, however, any

possibility of establishing a law for it having been noticed. It would be interesting in

a future count to examine the influence of individual periodic terms in the formula

for the density of primes [1, p. 305].
It is known that the periodic terms Ri(xρ) at the critical zeros ρ of the Riemann

zeta function ζ(s) are responsible for the inaccuracy of Riemann prime counting

function Ri(N)(x) =
∑N

n=1
µ(n)
n Li(x1/n) (where µ(n) is the Moebius function) in

the approximation of π(x), the number of primes up to x [4, eq. (4)]

π(x) ∼ π0(x) = Ri(N)(x) −
∑

ρ

Ri(xρ).

But even the account of the first 200 periodic terms performed in the approxi-
mation of π(1020) is not able to improve the approximation li(1020) 1 by more that
one digit [4, p. 249]

π(1020) = u 560918840,

li(1020) = u 783663484,

π0(10
20) ∼ u 591885820,
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1In the following when we write li, we mean its integer part ⌊li⌋.
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where u means 2220819602. In contrast, in [3], we introduced a different approach
where the account of the periodic terms is performed in a global way as π(x) ∼

π1(x) = Ri(3)[ψ(x)] so that one obtains

π(1020) ∼ π1(10
20) = u 561025931,

an almost three digit improvement over the approximation by the logarithmic in-
tegral.

Similarly, we are able to improve Gram formula [4, eq. (70)]

Ri(x) = 1 +

∞∑

n=1

(log x)n

nζ(n+ 1)n!

from the approximation π2(x) = 1 + Ri[ψ(x)] so that

π(1020) ∼ π2(10
20) = u 561025719.

This improvement is observed at all values x = 10i, i ≤ 25, where π(x) is exactly
known (see Sec. 2).

One is fortunate to have now at our disposal two distinct (but closely related
and surprisingly almost equal) formulas π1(x) and π2(x) to approximate the prime
counting function in the unknown range of values such as 10i, i > 25. We can use
either formula to explore the unknown range of values such as x := 10i, i > 25.
Specifically

li(1050) = v 862622818995697067491328,

π(1050) ∼ π1(10
50) = v 780454103362367083511808,

π(1050) ∼ π2(10
50) = v 780552101690258665504768,

where v means 876268031750784168878176.
In this short paper, we pursue the calculations of π(x) ∼ π1(x) started in [3] and

compare it to the Gram formula based approximation π2(x) by having recourse
to the explicit Von Mangoldt formula for the Chebyshev function ψ(x) and taking
into account the first 2× 106 critical zeros of the Riemann zeta function [2]. These
calculations are well in the spirit of the aforementioned quote of Riemann since the
approximate value of π(x) explicitly depends on the zeros ρ through ψ(x). The
function li[ψ(x)] also relates to Riemann hypothesis through the modified Robin’s
criterion [3, Corollary 2],[5] so that we are close to this important topic as well.

2. Approximation of π(x) at powers x = 10i, i = [1 · · · 25]

It is claimed in the introduction that π1(x) and π2(x) provide a much better fit
(two to four digits better) than li(x). It also provides a much better fit than the
Gram formula for Ri(x) as shown below. We used the first 7×105 zeros ρ calculated
in [2] to evaluate ψ(x) and the corresponding approximations π1(x) and π2(x) from
the explicit Von Mangoldt formula

ψ0(x) = x−
∑

ρ

xρ

ρ
−
ζ′(0)

ζ(0)
−

1

2
log(1− x−2), for x > 1,
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ψ(x) = ψ0(x) when x is not a prime power and ψ(x) = ψ0(x) +
1
2Λ(x), Λ(x) the

Von Mangoldt function, otherwise [7, p. 104]. 2

The difference Ri(x)−π(x) at powers of 10i, i = [1 · · · 25] is the sequence A215663

{0, 0, 0,−3,−5, 29, 88, 96,−79,−1828,−2319,−1476,−5774,−19201, 73217,

327052,−598255,−3501366, 23884333,−4891825,−86432205,−127132665,

1033299853,−1658989720,−1834784715}.

The sequence π1(x)− π(x) reads

{0, 0, 0, 0, 1, 1,−1, 4, 4,−2, 24,−16, 67,−273,−2886,

−5203, 24767, 39982, 11722, 107091,−339757,−3972640, ,

8296270, 75888611,−42528602}.

As for the sequence π2(x)− π(x), one gets

{0, 0, 0, 0, 0, 0,−2, 2, 1,−6, 18,−24, 58,−280,−2852,

−5390, 24170, 39667, 9990, 106880,−372719,−3896886,

8380617, 75606965,−10884280}.

Clearly the shift from π(x) of the approximation π1(x) and π2(x) is lower, some-
times with two orders of magnitude, than the shift from Ri(x) with respect to π(x),
as expected.

It turns out that π2(x) = π(x) at all powers of 10 up to 106. But there exists
plenty values of x < 106 where π2(x) 6= π(x). This occurs over thick intervals start-
ing at squares of primes p2 with p ∈ {13, 19, 23, 31, 47, 53, 61, 71, 73, 79, 83, 89 · · ·}.
The first 7 primes in this sequence are associated with prime gaps (OEIS sequence
A134266) but the rest is not recognized and quite random.

3. Approximation of π(x) at powers x = 10i, i = [26 · · ·50]

The values of π(10i) at i > 25 are not known. An approach to approximate 1026

is given in [6]. It is already interesting to guarantee which digits of li(x) are exact
and which ones can be added. Our approximation based on π1(x) ∼ π2(x) defined
in the introduction allows to solve this challenge as soon as a sufficient number of
critical zeros of ζ(s) are taken into account. As before, we used the first 2×106 zeros
calculated in [2] to evaluate ψ(x) and the corresponding approximations of π(x).
The results are listed below. In the array, the prefix that belongs to li(x) is denoted
w and three to four exact digits that do not belong to li(x) can be guaranteed; for
further comments compare the evaluation of π(1050) shown in the introduction.

2Incidently, we mention and numerically check a remarkable formula, known to Riemann [1,
p. 67], about the properties of critical zeros

∑

ρ

1

ρ(1− ρ)
= 2 + γ − log(4π) = C.

By using the first 2× 106 zeros [2], one gets
∑

ρ
1

ρ(1−ρ)
∼ 0.999920..

Of course, RH is equivalent to
∑

ρ
1

|ρ|2
= C, as observed in [9].
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li(1026) = 1699246750872 593033005722, π(1026) ∼ w 4370 ∗ ∗ ∗

li(1027) = 1635246042684 2189113085404, π(1027) ∼ w 1681 ∗ ∗ ∗

li(1028) = 15758926927597 4838158399970, π(1028) ∼ w 3411 ∗ ∗ ∗

li(1029) = 152069810971427 6717287880526, π(1029) ∼ w 2164 ∗ ∗ ∗

li(1030) = 146923988977204 47639079087666, π(1030) ∼ w 2886 ∗ ∗ ∗

li(1031) = 142115097348080 932014151407888, π(1031) ∼ w 8927 ∗ ∗ ∗

li(1032) = 137611086699376 6004917522323376, π(1032) ∼ w 5914 ∗ ∗ ∗

li(1033) = 13338384833104449 976987996078656, π(1033) ∼ w 5799 ∗ ∗ ∗

li(1034) = 12940862650515894 2694528690220032, π(1034) ∼ w 0734 ∗ ∗ ∗

li(1035) = 125663532881831647 7984258713700352, π(1035) ∼ w 3088 ∗ ∗ ∗

li(1036) = 122129142976193654 54914525219717120, π(1036) ∼ w 4747 ∗ ∗ ∗

li(1037) = 1187881589121682517 51964753226629120, π(1037) ∼ w 2948 ∗ ∗ ∗

li(1038) = 1156251261026516898 117818362099662848, π(1038) ∼ w 0207 ∗ ∗ ∗

li(1039) = 1126261940555920314 6275209660101296128, π(1039) ∼ w 5914 ∗ ∗ ∗

li(1040) = 10977891348982830282 8088665394982682624, π(1040) ∼ w 7136 ∗ ∗ ∗

li(1041) = 107072063488003546554 7951820678396641280, π(1041) ∼ w 5104 ∗ ∗ ∗

li(1042) = 104495503622645875354 81840562999989895168, π(1042) ∼ w 7283 ∗ ∗ ∗

li(1043) = 1020400469443659108805 59853621001121169408, π(1043) ∼ w 2642 ∗ ∗ ∗

li(1044) = 996973504768769817629 283320476467636207616, π(1044) ∼ w 1914 ∗ ∗ ∗

li(1045) = 9745982046649286035485 484938845939166085120, π(1045) ∼ w 2597 ∗ ∗ ∗

li(1046) = 9532053011747645833855 1157512823190583246848, π(1046) ∼ w 0125 ∗ ∗ ∗

li(1047) = 93273147934738153021141 7209650549631557304320, π(1047) ∼ w 3599 ∗ ∗ ∗

li(1048) = 91311875111614162331019 53278507015309237420032, π(1048) ∼ w 4673 ∗ ∗ ∗

li(1049) = 894313906580259138316220 54467196576109747503104, π(1049) ∼ w 3207 ∗ ∗ ∗

li(1050) = 876268031750784168878176 862622818995697067491328, π(1050) ∼ w 7805 ∗ ∗ ∗

4. Approximation of π(x) where ψ(x) is exactly known

To check the validity of prime counting functions π1(x) and π2(x) it is good to
compute them at values where the Chebyshev function ψ(x) is exactly known, that
is, irrespectively of the knowledge of the critical zeros ρ. Exact values of ψ(x) at
selected high values of x, with 106 ≤ x ≤ 1015 are given in [10].

In this subsection we restrict to the calculation of the Gram formula based
approximation π2(x). But similar observations hold for π1(x).

In the following two lists, π′
2(x) is calculated from the (almost) exact values of

ψ(x) and π2(x) is calculated from the explicit formula with 2 × 106 critical zeros.
The shifts π′

2(x)−π(x) and π2(x)−π(x) are given at values of x found in [10, Table
1], that is, x ∈ {k.10j}, k = [1 · · · 9], j = [6 · · · 14] and at x = 1015. To facilitate the
reading of the lists, we put a semi-column at x values preceding every power of 10.
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π
′
2(x)− π(x) =

{; 0,−1, 1, 0,−1, 2,−1, 2, 0;−2, 0, 0, 1, 2, 1, 0, 0, 2; 2,−2,−1,−1, 0, 4, 1,−1,−2;

−1, 3,−2,−3,−3, 0, 2,−2, 4; 2, 8,−3,−2, 8,−2,−5, 6,−12;−10, 11, 8,−4, 6,−14, 12, 16,−9;

−23, 16,−8, 5, 13,−21, 8,−3,−17;−27,−24, 5, 76, 15, 66, 28,−46, 81;

−9,−132,−46, 120,−65, 302,−214,−11, 197; 168}

π2(x)− π(x) =

{; 0,−1, 0, 0,−1, 2,−1, 2, 0;−2, 0, 1, 2, 3, 1,−1, 0, 1; 2,−1,−2,−2, 6, 7,−2,−2, 1;

1, 7,−4,−7, 4, 10, 4, 19,−13;−6, 17,−37,−15,−2, 30, 11, 48, 22; 18, 44, 11, 25, 9, 12,−59, 36,−8;

−24,−144,−34,−292, 77, 252,−81,−410, 5; 58, 61,−6, 58, 258,−894, 719, 556,−401;

−280, 94,−842,−1028, 178, 1425, 597, 247,−1617;−2852}

It is clear that, while the shifts are almost equal (and very small) at the beginning
of the lists, they are higher at the end of the lists, and they differ substantially
(about one order of magnitude) in the two.

These calculations reinforce our confidence in the efficiency of the prime counting
function π2(x) in that the remaining inaccuracy of π2(x) partially arises from the
possible inacurracy of the calculation of ψ(x) by the explicit formula. Unfortunately,
at high values of x, the time for computing ψ(x) becomes as prohibitive as the time
for computing π(x) [10], and this is why the approximation of ψ(x) based on the
explicit formula remains extremely useful.

Looking at the relative error ǫ := [π2(x)− π(x)]/π(x) compared to η := [li(x)−
π(x)]/π(x), over the range of the above explored values 106 < x < 1025, one gets
0 ≤ |ǫ/η| < 6.5×10−3 but the average ratio |ǫ/η| is about 1.2×10−3. This represents
an improvement of about three orders of magnitude of the prime counting function
π2(x) compared to li(x). Depending on the selected value of x, three to four new
exact digits are obtained from π2(x) compared to li(x) as shown in the previous
sections.

5. Hints about the function li(ψ(x)) and RH

Littlewood established that the function π(x)−li(x) changes sign infinitely often.
But it is known not to occur before x = x0 ≈ e727, a so-called Skewes’ number [8].

Asymptotically, one has x ∼ θ(x) ∼ ψ(x), where θ(x) =
∑

p≤x log p is the first

Chebyshev function. But Robin proved the statement [5]

ǫθ(x) = li[θ(x)] − π(x) > 0 is equivalent to RH.

As a corollary, the statement ǫψ(x) = li(ψ(x)) − π(x) > 0 is also equivalent to RH

as was already observed in [3]. 3

As we arrived at the excellent counting functions π1(x) and π2(x), themselves
functions of ψ(x) and thus explicitly related to the zeros of ρ of the Riemann zeta

3In a related work, we introduce a similar statement [11, eq. (2.1)] as a Chebyshev’s type bias
whose positivity is equivalent to GRH for the corresponding modulus.
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function, it is quite satisfactory to be back to the spirit of Riemann’s program of
counting the prime numbers.

One would of course like to have a rigorous proof of this, but I have put aside the

search for such a proof after some fleeting vain attemps because it is not necessary

for the immediate objective of my investigation [1, p. 301].
To conclude, Riemann prime counting function Ri(x) can be much improved by

replacing the variable x by the Chebyshev function ψ(x), but it is challenging to
understand the origin of this seemingly “explicit formula” for π(x).
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11. A. Alamadhi, M. Planat and P. Solé, Chebyshev’s bias and generalized Riemann hypothesis,

J. Alg., Numb Th.: Adv. and Appl. 8, 41-55 (2013); Preprint 1112.2398 (math.NT).

Institut FEMTO-ST, CNRS, 15 B Avenue des Montboucons, F-25044 Besançon, France.
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