David Harvey
email: d.harvey@unsw.edu.au

Joris Van Der Hoeven

On the complexity of integer matrix multiplication

Keywords: matrix multiplication, complexity, algorithm, FFT, Bluestein reduction A.C.M. subject classification: G.1.0 Computer-arithmetic A.M.S. subject classification: 68W30, 68Q17, 68W40

Let M(n) denote the bit complexity of multiplying n-bit integers, let ω ∈ (2, 3] be an exponent for matrix multiplication, and let lg * n be the iterated logarithm. Assuming that log d = O(n) and that M(n) / (n log n) is increasing, we prove that d × d matrices with n-bit integer entries may be multiplied in

bit operations. In particular, if n is large compared to d, say d = O(log n), then the complexity is only O(d 2 M(n)).

Introduction

In this paper we study the complexity of multiplying d × d matrices whose entries are integers with at most n bits. We are particularly interested in the case that n is very large compared to d, say d = O(log n). All complexity bounds refer to deterministic bit complexity, in the sense of the multi-tape Turing model [START_REF] Papadimitriou | Computational complexity[END_REF].

Matrices with large integer coefficients appear naturally in several areas. One first application is to the efficient high precision evaluation of so-called holonomic functions (such as exp, log, sin, Bessel functions, and hypergeometric functions) using a divide and conquer technique [START_REF] Chudnovsky | Computer algebra in the service of mathematical physics and number theory (computers in mathematics[END_REF][START_REF] Haible | Fast multiple-precision evaluation of elementary functions[END_REF][START_REF] Van Der Hoeven | Fast evaluation of holonomic functions[END_REF][START_REF]Fast evaluation of holonomic functions near and in singularities[END_REF][START_REF]Efficient accelero-summation of holonomic functions[END_REF]. Another application concerns recent algorithms for computing the L-series of algebraic curves [START_REF] Harvey | Counting points on hyperelliptic curves in average polynomial time[END_REF][START_REF] Harvey | Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time[END_REF]. The practical running time in these applications is dominated by the multiplication of matrices with large integer entries, and it is vital to have a highly efficient implementation of this fundamental operation. Typical parameters for these applications are n around 10 8 bits, and d around 10.

In this paper, we focus mainly on theoretical bounds. We write M d (n) for the cost of the d × d matrix multiplication, and M(n) := M 1 (n) for the cost of multiplying n-bit integers. We will also write M R,d (n) for the algebraic complexity of multiplying d × d matrices whose entries are polynomials of degrees <n over an abstract effective ring R, and M R (n

) := M R,1 (n).
Schönhage and Strassen [START_REF] Schönhage | Schnelle Multiplikation grosser Zahlen[END_REF] used fast Fourier transforms (FFTs) to prove that

M(n) = O(n log n log log n) for large n. Fürer [Für09] improved this to M(n) = O n log n 2 O(lg * n) where lg * is the iterated logarithm, i.e., lg n := ⌈log 2 n⌉, lg * n := min {k ∈ N: lg •k n 1}, lg •k := lg • ••• k× • lg,
and this was recently sharpened to

M(n) = O(n log n 8 lg * n) [HHL14a]. The best currently known bound [CK91] for M R (n) is M R (n) = O(n log n log log n); if R is a ring of finite characteristic this may be improved to M R (n) = O(n log n 8 lg * n) [HHL14b].
The algebraic complexity of d × d matrix multiplication is usually assumed to be of the form O(d ω), where ω is a so-called exponent of matrix multiplication [START_REF] Von | Modern computer algebra[END_REF]Ch. 12]. Classical matrix multiplication yields ω = 3, and Strassen's algorithm [START_REF] Strassen | Gaussian elimination is not optimal[END_REF] achieves ω = log 7/log 2 ≈ 2.807. The best currently known exponent ω < 2.3728639 was found by Le Gall [START_REF] François | Powers of tensors and fast matrix multiplication[END_REF][START_REF] Coppersmith | Matrix multiplication via arithmetic progressions[END_REF].

When working over the integers and taking into account the growth of coefficients, the general bound for matrix multiplication specialises to

M d (n) = O(d ω M(n + lg d)).
Throughout this paper we will enforce the very mild restriction that log d = O(n). Under this assumption the above bound simplifies to

M d (n) = O(d ω M(n)).
The main result of this paper is the following improvement.

Theorem 1. Assume that M(n)/(n log n) is increasing. Let C > 1 be a constant. Then M d (n) = O(d 2 M(n) + d ω n 2 O(lg * n-lg * d) M(lg d)/lg d), (1)
uniformly for all d 1, n 2 with lg d C n.

In particular, if n is large compared to d, say d = O(log n), then (1) simplifies to

M d (n) = O(d 2 M(n)). (2)
This bound is essentially optimal (up to constant factors), in the sense that we cannot expect to do better for d = 1, and the bound grows proportionally to the input and output size as a function of d.

The new algorithm has its roots in studies of analogous problems in the algebraic complexity setting. When working over an arbitrary effective ring R, a classical technique for multiplying polynomial matrices is to use an evaluation-interpolation scheme. There are many different evaluation-interpolation strategies [Hoe10, Sections 2.1-2.3] such as Karatsuba, Toom-Cook, FFT, Schönhage-Strassen and general multi-point. The efficiency of a particular evaluation-interpolation strategy can be expressed in terms of two quantities: the complexity E R (n) of evaluation/interpolation and the number N R (n) of evaluation points. In terms of these quantities, we have

M R,d (n) = O(d 2 E R (n) + d ω N R (n)). (3)
If R admits many primitive 2 p -th roots of unity, then the FFT provides an efficient evaluationinterpolation strategy that achieves

E R (n) = O(n log n) and N R (n) = O(n).
Moreover, when using the TFT [START_REF]The truncated Fourier transform and applications[END_REF], one may take N(n) = 2 n -1, which is optimal. If R is a field of characteristic zero, or a finite field with sufficiently many elements, then Bostan and Schost proved [START_REF] Bostan | Polynomial evaluation and interpolation on special sets of points[END_REF]Thm. 4] that one may achieve

E R (n) = O(M R (n)) and N R (n) = 2 n -1 by evaluating at geometric sequences.
Thus, in this situation they obtain

M R,d (n) = O(d 2 M R (n) + d ω n). (4)
In the setting of integer coefficients, a popular evaluation-interpolation strategy is Chinese remaindering with respect to many small primes of bit length O(log n). Still assuming that log d = O(n), this yields the bound (see [Sto00, Lemma 1.7], for instance)

M d (n) = O(d 2 M(n) log n + (n/log n) M d (lg n)),
and recursive application of this bound yields

M d (n) = O(d 2 M(n) log n + d ω n 2 O(lg * n-lg * d) M(lg d)/lg d).
Comparing with the algebraic bound (4), we notice an extra factor of log n in the first term. This factor arises from the cost of computing a certain product tree (and remainder tree) in the Chinese remaindering algorithm.

A well-known method that attempts to avoid the spurious log n factor is to use FFTs. For example, suppose that we are using the Schönhage-Strassen integer multiplication algorithm. This works by cutting up the integers into into chunks of about n √ bits, and then performs FFTs over a ring of the form S = Z/ 2 2 k + 1 Z where 2 k ∼ n √ . We can multiply integer matrices the same way, by cutting up each entry into chunks of about n √ bits, performing FFTs over S, and then multiplying the matrices of Fourier coefficients. When n is much larger than d, the latter step takes negligible time, and the bulk of the time is spent performing FFTs. Since each matrix entry is only transformed once, this leads to a bound of the type O(d 2 M(n)), without the extraneous log n factor. This method is very efficient in practice; both [START_REF] Harvey | Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time[END_REF] and Mathemagix [HLM+02, HLQ14] contain implementations based on number-theoretic transforms (i.e., FFTs modulo wordsized prime numbers). However, the theoretical question remains as to whether the log n overhead can be removed unconditionally, independently of the "internal structure" of the currently fastest algorithm for integer multiplication. Our Theorem 1 shows that this is indeed the case. More precisely, we reduce integer matrix multiplication to the multiplication of matrix polynomials over Z / p λ Z for a suitable prime power p λ . The multiplication of such polynomials is done using FFTs. However, instead of using a classical algorithm for computing the FFT of an individual polynomial, we reduce this problem back to integer multiplication using Bluestein's trick [START_REF] Bluestein | A linear filtering approach to the computation of discrete fourier transform, Audio and Electroacoustics[END_REF] and Kronecker substitution [START_REF] Von | Modern computer algebra[END_REF]Ch. 8]. This central idea of the paper will be explained in section 2. In section 3, we prove our main complexity bound (1).

We stress that Theorem 1 is a theoretical result, and we do not recommend our algorithm for practical computations. For any given FFT-based integer multiplication algorithm, it should always be better, by a constant factor, to apply the same FFT scheme to the matrix entries directly, as outlined above. See Remark 6 for further discussion about the implied big-O constant.

Remark 2. The observation that the Bluestein-Kronecker combination leads to a particularly efficient FFT algorithm was announced previously in [START_REF] Harvey | Even faster integer multiplication[END_REF]. We mention as a historical remark that the development of the main ideas of the present paper actually preceded [START_REF] Harvey | Even faster integer multiplication[END_REF].

Bluestein-Kronecker reduction

We begin with a lemma that converts a certain polynomial evaluation problem to integer multiplication.

Lemma 3. Assume that M(n) /n is increasing. Let p be an odd prime, let λ ≥ 1 be an integer, and let ζ ∈ (Z / p λ Z) * be an element of order p -1. Given as input F ∈ (Z / p λ Z)[x], with deg F < p -1, we may compute

F (1), F (ζ), ..., F (ζ p-2) ∈ Z/ p λ Z in time O(M(λ p lg p)). Proof. Let S = Z / p λ Z and let F = j =0 p-2 F j x j ∈ S[x].
We first use Bluestein's trick [START_REF] Bluestein | A linear filtering approach to the computation of discrete fourier transform, Audio and Electroacoustics[END_REF] to convert the evaluation problem to a polynomial multiplication problem. Namely, from the identity

i j = i 2 + -j 2 -i -j 2 we obtain F (ζ i) = j =0 p-2 F j ζ ij = H i j=0 p-2 F j ′ G i-j (5)
where p-2 F j ′ G i-j in (5) may be interpreted as the coefficient of x i in the product of the (Laurent) polynomials

H k = ζ k 2 , F k ′ = ζ -k 2 F k , G k = ζ -k 2 . Since H k+1 = ζ k H k and G k+1 = ζ -k G k ,
F ′ = k=0 p-2 F k ′ x k and G ′ = k=-p+2 p-2 G k x k .
Thus it suffices to compute the product

F ′ • (x p-2 G ′) in S[x].
To compute this product, we lift the problem to Z[x], and use Kronecker substitution [START_REF] Von | Modern computer algebra[END_REF]Ch. 8] to convert to an integer multiplication problem. The coefficients of F ′ and x p-2 G ′ are bounded by p λ , and their degrees by 2 p -4, so the coefficients of their product in Z

Integer matrix multiplication

Proposition 4. Assume that M(n)/(n log n) is increasing. Let C > 1 be a constant. Then

M d (n) = O d 2 M(n) + n lg n + lg d M d (lg n + lg d)
uniformly for all d 1, n 2 with lg d C n. Having selected p, λ and ζ, we now apply Lemma 3 to each matrix entry to evaluate

Proof. The input consists of matrices

A = (A ij) and B = (B ij), where 1 ≤ i, j ≤ d and A ij , B ij ∈ Z, |A ij | < 2 n , |B ij | < 2 n .
P ij (ζ k) ∈ S and Q ij (ζ k) ∈ S for 0 ≤ k < p -1. This step takes time O(d 2 M(λ p lg p)) = O(d 2 M(n)). Next we perform the pointwise multiplications (P Q)(ζ k) = P (ζ k) Q(ζ k).

(n)).

There is also a final division (scaling) by p -1, whose cost is subsumed into the above.

In the Turing model, we must also take into account the cost of data rearrangement. Specifically, in the above algorithm we switch between "matrix of vectors" and "vector of matrices" representations of the data. Using the algorithm in the Appendix to [START_REF] Bostan | Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator[END_REF], this needs only O((d 2 p λ lg p) (log n)) = O(d 2 n log n) = O(d 2 M(n)) bit operations, since we assumed that M(n)/(n log n) is increasing.

Remark 5. We could replace Z / p λ Z by a "ring" of finite-precision approximations to complex numbers, and obtain results of the same strength. The latter approach has the disadvantage that it introduces a tedious floating-point error analysis. Now we may prove the main theorem announced in the introduction.

where p stands for the precision at our evaluation points and p ⌈lg d⌉. In terms of E(n) = E(n, q) and N(n) = N(n, q) for some small fixed precision q p, we have E(n, p) E(n) N(n, p) ∼ N(n/ p).

Reformulated in this way, our new evaluation-interpolation strategy achieves

E(n) ∼ O(M(n)) N(n) = n 2 O(log * n) ,
and it can be applied to several other problems, such as the multiplication of multivariate polynomials or power series with large integer coefficients.

 we may easily compute H 0 , ..., H p-2 and G -p+2 , ..., G p-2 from ζ and ζ -1 = ζ p-2 using O(p) ring operations in S. Similarly we may obtain the F k ′ from the F k using O(p) ring operations. The sum j =0

 [x] have at most lg (2 p 2λ+1) = O(λ lg p) bits. Therefore the integers being multiplied have at most O(λ p lg p) bits, leading to the desired O(M(λ p lg p)) bound. The remaining work consists of O(p) ring operations in S, contributing a further O(p M(λ lg p)) = O(M(λ p lg p)) bit operations since M(n)/n is increasing.

 We wish to compute the product A B. Let b := lg n + lg d and m := ⌈n/ b⌉. Note that m = O(n/b) since we assumed that b = O(n). We split the entries A ij into chunks of b bits, choosing P ij ∈ Z[x] so that P ij (2 b) = A ij with deg P ij < m, and such that the coefficients of P ij are bounded in absolute value by 2 b . Similarly choose Q ij ∈ Z[x] for B ij . Let P = (P ij) and Q = (Q ij) be the corresponding d × d matrices of polynomials. The coefficients of the entries of P Q are bounded in absolute value by 2 2b d m, and thus have bit size bounded by 2 b + lg d + lg m = O(b). The product A B = (P Q)(2 b) may be deduced from P Q in time O(d 2 m b) = O(d 2 n). Thus we have reduced to the problem of computing P Q. The degrees of the entries of P Q are less than 2 m. Let p be the least odd prime such that p ≥ 2 m. By [BHP01] we have p = 2 m + O(m 0.525) = O(n/b). We may find p by testing candidates successively; the cost is o(n), since each candidate requires O((log p) O(1)) bit operations [AKS04]. To compute P Q, it suffices to compute P Q modulo p λ , where λ ≥ 1 is the least positive integer for which p λ > 2 • 2 2b d m. Since p λ 2 • 2 2b d m p we have λ lg p 2 b + lg d + lg m + lg p + 1 = O(b). Our plan is to compute P Q over S := Z / p λ Z by means of an evaluation-interpolation scheme, using Lemma 3 for the evaluations. The lemma requires a precomputed element ζ ∈ S * of order p -1. To find ζ, we first compute a generator of (Z/ p Z) * in (deterministic) time O(p 1/4+ǫ) = o(n) [Shp96], and then lift it to a suitable ζ ∈ S * in time O(M(λ lg p) lg p) = O(M(b) lg n) [vzGG03, Ch. 15]. This last bound lies in O(d 2 M(n)) (one may check the cases lg n d 2 and lg n d 2 separately).

 These are achieved by first lifting to integer matrix products, and then reducing the results modulo p λ . The integer products cost O(p M d (λ lg p)) = O((n / b) M d (b)). The bit size of the entries of the products are bounded by 2 λ lg p + lg d = O(b), so the reduction step costs O(d 2 p M(b)) = O(d 2 M(n)). Since the evaluation is really a discrete Fourier transform over S, the interpolation step is algebraically the same, with ζ replaced by ζ -1 . Thus we may recover (P Q) ij using Lemma 3 again, with cost O(d 2 M

On the complexity of integer matrix multiplication

Acknowledgments

The authors thank Arne Storjohann for helpful conversations. The first author was supported by the Australian Research Council, DECRA Grant DE120101293.

Bibliography

, and let n j := lg •j n for j = 0, ..., k, so that n k-1 > d and lg d n k d. By Proposition 4 there is a constant K > 1 (depending only on C) such that

for any n ′ > d. Starting with n ′ := n and iterating k times yields

By the argument in the first paragraph, we may apply Proposition 4 once more (and increase K if necessary) to obtain

Remark 6. An important question is to determine the best possible big-O constant in Theorem 1. For simplicity, consider the case where n is much larger than d, and define

After some optimisations, it is possible to achieve A = 24. (We omit the details. The idea is to increase the chunk size b, say from lg n to lg 2 n, and use the fact that Bluestein's trick actually produces a negacyclic convolution.)

We can do even better if we change the basic problem slightly. Define M ′ (n) to be the cost of an n-bit cyclic integer convolution, i.e., multiplication modulo 2 n -1. This kind of multiplication problem is of interest because all of the fastest known multiplication algorithms, i.e., based on FFTs, actually compute convolutions. (In this brief sketch we ignore the difficulty that such algorithms typically only work for n belonging to some sparse set.) Let M d ′ (n) be the cost of the corresponding d × d matrix multiplication (convolution) problem, and let A ′ be the corresponding constant defined as above. Then by mapping the Bluestein convolution directly to integer convolution, one saves a factor of two, obtaining A ′ = 12.

We conjecture that in fact one can achieve A = 1. This conjecture can be proved for all integer multiplication algorithms known to the authors, and it is also consistent with measurements of the performance of the implementation described in [START_REF] Harvey | Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time[END_REF][START_REF] Van Der Hoeven | Modular SIMD arithmetic in Mathemagix[END_REF]. The point is that the implementation transforms each matrix entry exactly once, and the time spent on the smallcoefficient matrix multiplications is negligible if n is large.

Remark 7. It is tempting to interpret the bound in Theorem 1 as an analogue of (3) in the case of integer coefficients. However, several technical problems arise if one wants to make this more precise. Indeed, most "evaluation-interpolation" strategies for integers (apart from Chinese remaindering) involve cutting the integers into several chunks, which prevents the evaluation mappings from being algebraic homomorphisms. Moreover, due to carry management, we have to include an additional parameter for the target precision of our evaluations. Thus, in the case of matrix multiplication, we really should be looking for bounds of the form