
HAL Id: hal-01071178
https://hal.science/hal-01071178

Submitted on 8 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An inheritance model for documents in web applications
with sydonie

Jean-Marc Lecarpentier, Pierre-Yves Buard, Hervé Le Crosnier, Romain
Brixtel

To cite this version:
Jean-Marc Lecarpentier, Pierre-Yves Buard, Hervé Le Crosnier, Romain Brixtel. An inheritance model
for documents in web applications with sydonie. 2012 ACM symposium on Document engineering
(DocEng ’12), Sep 2012, paris, France. pp.153-156, �10.1145/2361354.2361390�. �hal-01071178�

https://hal.science/hal-01071178
https://hal.archives-ouvertes.fr




Figure 1: A Manifestation is an embodiment of an
Expression of a Work

These systems are well designed to manage content, but
are not made to manage documents. In the above cases, the
system manages content components but does not consider
the set of components as a document entity. The approach
is to define a document as the rendition of some content [7],
where a document is similar to the web page displayed to a
user. Using an different approach, a library system consid-
ers a document to be a reference card including metadata
and a pointer to the document itself through some kind of
identifier. These systems manage document metadata but
not their content.

We need an hybrid approach to define and manage digital
documents. Documents on the web should not be treated
as mere content, but as an information container where the
information is both content and metadata. The next sec-
tion presents how the Sydonie framework implements this
concept.

3. SYDONIE
Sydonie, a Document Management System for Publishing

on the Web1, is a web development framework [3]. Sydonie is
developed within the University of Caen Basse-Normandie,
in conjunction with C&F éditions2, a publishing partner de-
veloping online services based on Sydonie. Sydonie3 is open
source software made available under a GPL license. Imple-
mented in PHP and relying on a mySQL database, Sydonie
can run on any basic LAMP server. This section introduces
the core concepts of the framework.

3.1 Document model
From the CMS world, Sydonie’s document model inher-

its the approach of using an online editing system to pro-
duce a web rendering document (i.e. the HTML version of
a document). From the library world, it uses the metadata
model and the Functional Requirements for Bibliographic
Records (FRBR) [6]. The FRBR conceptual model intro-
duces three groups of entities to capture bibliographic data.
FRBR group 1 contains four hierarchical entity levels Work,
Expression, Manifestation and Item which represent the dif-
ferent aspects of intellectual or artistic works.

Using the guidelines for group 1 entities from the FRBR
report, Sydonie defines a document model with the entity

1In French: SYstème de gestion de Documents Numériques

pour l’Internet et l’Édition
2http://cfeditions.com
3http://sydonie.net, under construction

fr−FR

John Doe

Gilles Durand

mime type

title

language

Stop this crisis!

Attribute Type object

application/pdf File format
Attribute Type object

Attribute Type object
Language

Text
Attribute Type object

Text

Attribute Type object

Text

Attribute Type object

x32b.pdf
Resource

publication date

Person

Attribute Type object

Attribute Type object
Person

uniform title

Stop a la crise

april 2012

contentResource

translator

translator

Figure 2: Branch of a document with its attributes

levels Work, Expression and Manifestation to represent in-
tellectual or physical aspects of a document. Sydonie’s model
considers a document as the complete tree, as shown in fig-
ure 1. A document is thus defined by a tree composed of
Work, Expression and Manifestation entity nodes. The set
of data attached to each node represents a document’s data
and metadata. Language negotiation and content negoti-
ation are used to determine which Manifestation is to be
served to a user. This process is also used within composite
documents [5].

3.2 Document attributes
In order to manage any kind of application, a framework

must be able to manage different kinds of documents. Using
Sydonie’s document model, a class of document is the def-
inition of what information each entity level may contain.
The kind of information associated to each node may vary
depending on the class of document.

To provide a generic way to manage the information at-
tached to a node, Sydonie uses an attribute-value based
model. The framework provides a data structure that can
adapt to any kind of information to be attached to a node.
Each node has a list of attributes where the attribute points
to an object that models the attached information. Within
the framework, similarly to RDF, attributes are triples (sub-
ject, predicate, object) where:

• subject is an instance of a document entity node, i.e.
a Work, Expression or Manifestation node;

• predicate is the name of the attribute, i.e. the name
of the relation;

• object is the value. It is an object (in the OO sense).
Its class models the information it represents. It can
also be a list of objects when a predicate represents
multiple values.

Figure 2 illustrates this model in the case of an article.
The flexibility of the approach resides in the fact that entity
nodes are generic objects used by all classes of documents.
The DocumentEntity class represents a node of the docu-
ment tree (i.e. either a Work, Expression or Manifestation
node). The list of attributes is managed at the framework
level and is composed of an array of attributes objects rep-
resenting the named relations between a document entity
and some data. The associated data are instances of objects



Figure 3: Relations between entity nodes (Work,
Expression or Manifestation) and attribute types

Figure 4: SydonieDocument abstract class and some
document types

inheriting from an AttributeType abstract class. These chil-
dren classes can model scalar data, such as text or integer,
or more complex structures, such as a price or an address
for example. Figure 3 shows the relations between entity
nodes and AttributeType children classes. The framework
provides predefined AttributeType classes. New types can
be defined at the application level, allowing any document
type to naturally “fit in” Sydonie’s document model.

To create a class of documents, a developer needs to define
what AttributeType objects each entity level may accept.
The next section shows how to create classes of documents
in a declarative manner.

3.3 Classes of documents
As explained in section 3.1, a document is a tree of en-

tity nodes linked to AttributeType objects. The frame-
work provides the model and routines for document reifi-
cation through the abstract class SydonieDocument. The
SydonieDocument class is the base class for all documents in
Sydonie. It defines the tree structure of documents, the ar-
ticulation between document entities (Work, Expression or
Manifestation nodes), their attributes and the AttributeType
objects that contain the document’s data and metadata.
Figure 4 shows the relation between the SydonieDocument

and DocumentEntity classes. Any class of documents must
inherit from SydonieDocument. Similarly to AttributeType

objects, the framework provides some predefined classes of
documents, as shown in figure 4.

A class of documents is the definition of what data each
entity level nodes may contain. This information, the entity
level and the type of data each attribute points to, must
be defined in order for the framework to manage the doc-
ument reification. An XML configuration file defines the
needed information in a declarative way, therefore allowing
a developer to learn and create a class of documents from
existing examples. An example of configuration file is shown
in figure 5. To declare a class of document, the configura-
tion file specifies for each possible attribute: the predicate
(name of the attribute); the entity level (Work, Expression
or Manifestation); the multiplicity (the attribute can ap-

<configuration>
<class>Article</class>
<extends>SydonieDocument</extends>
<attribute entityLevel="expression" minOccur="1"

maxOccur="1" >
<predicate>title</predicate>
<objectClass>Text</objectClass>

</attribute>
<attribute entityLevel="work" minOccur="0"

maxOccur="1000" >
<predicate>link</predicate>
<objectClass>Website</objectClass>
<!-- list mandatory information of

the AttributeType object.
Here, only the url property of a Website
object will be mandatory -->

<mandatoryProp><prop>url</prop></mandatoryProp>
</attribute>

</configuration>

Figure 5: Example of configuration file for an Article

class of documents

pear 0, 1 or more times); the AttributeType class that con-
tains the object value and the mandatory information the
AttributeType will require.

Even though the XML file is simple to create, a developer
must be able to reuse already defined classes of documents.
Sydonie’s architecture allows component reuse and custom-
ization. Existing classes of documents can be reused and
finely tuned using Sydonie’s inheritance model, introduced
in the next section.

4. INHERITANCE MODEL
Sydonie uses its own inheritance model to determine, at

the application level, the information a document may con-
tain. A class of documents can be defined at the framework
level or at the application level. Classic object oriented in-
heritance is not sufficient to manage document definition.
For example, the framework’s document layer defines a ba-
sic Article class of documents. Let us suppose that, when
creating an application, a developer needs to use article doc-
uments with more information (i.e. more attributes). Us-
ing classic object oriented inheritance, one could create a
MyArticle class of documents that inherits from the Article
class. The MyArticle class would then define the changes
made to the parent class. The trouble would appear when
the developer wishes to reuse some already defined routines
for Article documents: since MyArticle is a different docu-
ment class, these routines may not work any more. A simple
example is listing Articles: the framework would then list
only the Article instances, but not MyArticle instances.
This behavior would be fine if the application needs a new
class of documents, but not if it only needs to alter an ex-
isting class.

In order to allow alteration as shown in the above ex-
ample, Sydonie provides its own inheritance model. The
classic object oriented inheritance model is used to allow
the creation of new classes of documents. These classes in-
herit the properties of their parent class and add or alter
properties. Sydonie’s inheritance model adds new features
to allow fine tuning of existing classes of documents. In our
example, the Article class inherits the abstract base class
SydonieDocument introduced in section 3.3. At the frame-
work level, SydonieDocument declares common attributes to
all classes of documents: firstPublished at the Work level,
title and language at the Expression level and content-



SydonieDocument

Article

class hierarchy attributes found in configuration files

Application Layer Document Layer

links: Website

firstPublished: Date

description: Text

title: Text
language: Lang
content: Resource

firstpublished: Text

1 2

3 4

(black: added attributes; strikethrough grey: ignored attributes)

Figure 6: Sydonie’s inheritance model

Resource at the Manifestation level. This information is
specified in SydonieDocument’s configuration file. At the
framework level, the Article class adds the description

attribute at the Expression level, using classic inheritance
(i.e. by specifying that Article inherits SydonieDocument

as illustrated by figure 4). Using the inheritance declaration,
the framework compiles these two files to define the Article

class.
Sydonie’s inheritance model, shown in figure 6, named

“cascading” inheritance, allows a web designer to enhance
the already defined Article class. To alter the definition
of Article in the application layer, the developer creates
a configuration file for the Article class. The framework
will process this file on top of the existing one. For exam-
ple, the application needs Article documents to have the
firstPublished attribute to be a Date attribute type ob-
ject instead of Text, and to have a links attribute to add
references to web sites (using the Website attribute type).
The application will only need to specify the changes to
firstPublished and the addition of a links attribute to
the Article class of documents. Whenever the applica-
tion uses an Article document, the framework will check
the presence of a configuration file for each class and at
each level, going from child to parent class and from ap-
plication level to framework level. For each file, it will
add the defined attributes that are not defined yet. It is
important to note that, if firstPublished is specified as
Date in the SydonieDocument configuration file in this ap-
plication (instead of the Article configuration), then the
firstPublished attribute type would be a Date for all classes
of documents in the application built, as shown in figure 6.

5. CASE STUDY
The proposed model and architecture are implemented in

the framework and have been tested with several applica-
tions. The Craham4 is a historical and archaeological re-
search unit at the University of Caen Basse-Normandie. It
manages a collection of photographs of archaeological sites,
and an application was built with Sydonie to manage the
digital versions of the scanned slides5. It mostly relies on
the framework’s image class and uses Sydonie’s metadata
model and management within images using XMP. This ap-
plication uses the framework’s image class of documents,
enhancing its default model with attributes to reflect on the
specific data needed (e.g. archeological site, location, etc.).

4http://www.unicaen.fr/crahm/
5http://craham.info.unicaen.fr (under development)

C&Féditions created two applications using Sydonie. Po-
lifile6 is an application to create eBooks online using a WYSI-
WYG editor. It relies on Sydonie to manage users, and uses
Sydonie’s document layer for eBooks and images. In the
application layer, it interacts with an ePub library to cre-
ate ePub files. Mémoire des Catastrophes7 is an applica-
tion to collect witness stories about disasters that occured
in France. It uses Sydonie’s document layer for images and
articles. In the application layer, classes of documents were
created to model disasters and witness stories. The next
version of the site will use the application profile layer to
provide a blog. A third application, companion website of
the Net.Lang book8, is currently under development.

6. CONCLUSIONS
In this paper, we present two main contributions. First,

we propose a document model implemented in the Sydonie
web development framework. Sydonie uses a tree model
based on FRBR and a RDF-like structure to allow docu-
ments to contain any kind of information. Document con-
tent and metadata are stored at different entity levels to
express their level of abstraction. Then, we propose an ar-
chitecture and development model. The layered architec-
ture and cascading inheritance model is applied for classes
of documents, and also for templates, form bindings and in-
teractions, as well as for actions on documents. Sydonie’s
model focuses on providing web designers with document
and application models that they can easily adapt to their
specific needs.

7. REFERENCES
[1] Drupal cck module, 2012.

[2] Drupal open source cms, 2012.

[3] Sydonie framework, 2012.

[4] Symfony framework, 2012.

[5] J.-M. Lecarpentier, C. Bazin, and H. Le Crosnier.
Multilingual composite document management
framework for the internet: an frbr approach. In
Proceedings of DocEng 2010, page 13, Sept. 2010.

[6] O. Madison. Functional Requirements for Bibliographic
Records. K. G. Saur, Munich, Germany, 1998.

[7] R. T. Pédauque. Le document à la lumière du
numérique. C&F éditions, 2006.

6http://polifile.fr
7http://memoiredescatastrophes.org
8http://www.net-lang.net




