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Best decay rate, observability and open-loop

admissibility costs: discussions and numerical

study
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Abstract. We show that the best decay rate can be estimated by the observability (or

controllability) cost and open-loop admissibility cost. Moreover, we propose a numerical strategy

to give an estimation for the best decay rate for a large class of evolution systems. Some examples

are given to illustrate this new method.
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1 Introduction and main results

Let H be a Hilbert space equipped with the norm ||.||H , and let A : D(A) ⊂ H → H be

self-adjoint, positive and with boundedly invertible operator. We introduce the scale of Hilbert

spaces Hβ , β ∈ R, as follows: for every β ≥ 0, Hβ = D(Aβ), with the norm ‖z‖β = ‖Aβz‖H .

The space H−β is defined by duality with respect to the pivot space H as follows: H−β = H∗
β

for β > 0. The operator A can be extended (or restricted) to each Hβ , such that it becomes a

bounded operator

A : Hβ →Hβ−1 ∀ β ∈ R . (1.1)

Let a bounded linear operator B : U→H− 1
2
, where U is another Hilbert space which will

be identified with its dual.

The systems we consider are described by

ẍ(t) +Ax(t) = Bv(t) , (1.2)

x(0) = x0, ẋ(0) = x1, (1.3)

and

ẍ(t) +Ax(t) + BB∗ẋ(t) = 0 , (1.4)

x(0) = x0, ẋ(0) = x1, (1.5)

where t ∈ [0,∞) is the time and v ∈ L2
loc(R

+, U) which denoted the control function.
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We can rewrite the system (1.2) as a first order differential equation, by putting z(t) =(
x(t)

ẋ(t)

)
:

ż(t) + Az(t) = Bv(t) , z(0) = z0 =

(
x0

x1

)
, (1.6)

where

A =

(
0 −I
A 0

)
: D(A) = H1 ×H 1

2
⊂ H = H 1

2
×H → H, B =

(
0

B

)
∈ L(U,H−1),

H−1 = H ×H− 1
2
.

By the same way the system (1.4)-(1.5) can be also rewritten by :

ż(t) + Adz(t) = 0 , z(0) = z0, (1.7)

where

Ad = A + BB∗ : D(Ad) =

{(
z1
z2

)
∈ H 1

2
×H 1

2
, Az1 +BB∗z2 ∈ H

}
⊂ H → H.

It is clear that the operator A is skew-adjoint on H and hence, it generates a strongly

continous group of unitary operators on H, denoted by (S(t))t∈R and have a natural extensions

to the Hilbert space H−1.

It is easy to see that, if z0 ∈ H and u ∈ L2
loc(R

+, U), then z is C([0, T ],H−1), ∀T > 0 and

given by

z(t) = S(t)z0 +

∫ t

0

S(t− s)Bv(s)ds.

If B were an admissible control operator for (S(t))t∈R
∗, then z ∈ C([0, T ],H), ∀T > 0.

Since Ad is dissipative and onto, it generates a contraction semigroup on H, denoted by

(Sd(t))t∈R+ .

The system (1.4)-(1.5) is well-posed. More precisely, the following classical result, holds.

Proposition 1.1. Suppose that (x0, x1) ∈ H. Then the problem (1.4)-(1.5) admits a unique

solution

(x, ẋ) ∈ C([0,∞);H).

Moreover (x(t), ẋ(t)) satisfies, for all t ≥ 0, the energy estimate

E(0) − E(t) =

∫ t

0

‖B∗ẋ(s)‖2
U ds, (1.8)

where E(t) = 1
2 ‖(x(t), ẋ(t))‖2

H.

∗B is an admissible control operator for (S(t))t∈R means that : if for all T > 0 there exists a constant C > 0

such that for all z0 ∈ H1 = H1 × H 1
2

, we have:

Z

T

0

‖B∗S(t)z0‖
2

U
dt ≤ C ‖z0‖

2

H .
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From (1.8) it follows that the mapping t 7→ ‖(x(t), ẋ(t))‖2
H is non increasing. In many

applications it is important to know if this mapping decays exponentially when t → ∞, i.e. if

the system (1.4)-(1.5) is exponentially stable. One of the methods currently used for proving such

exponential stability results is based on an observability inequality for the undamped system

associated to the initial value problem

φ̈(t) +Aφ(t) = 0, (1.9)

φ(0) = x0, φ̇(0) = x1. (1.10)

It is well known that (1.9)-(1.10) is well-posed in H1 = H1 ×H 1
2

and in H. The result below,

proved in [4], shows that the exponential stability of (1.4)-(1.5) is equivalent to an observability

inequality for (1.9)-(1.10).

Theorem 1.2 (Ammari-Tucsnak [5]). Suppose that for all α > 0 fixed,

(H) sup
ℜs=α

‖H(s)‖L(U) <∞, (1.11)

where H(s) = B∗s(s2I +A)−1B ∈ L(U), ∀ℜs > 0.

Then, the system described by (1.4)-(1.5) is exponentially stable in H if and only if there exists

T,CT > 0 such that

CT

∫ T

0

||B∗S(t)z0||2U dt ≥ ||z0||2H ∀ z0 ∈ H1. (1.12)

In this paper we study the best decay rate of the damped evolution system (1.4)-(1.5).

In order to state our result, we define the best decay rate, depending on B, as

ω(B) = inf{ω| there exists C = C(ω) > 0 such that E(t) ≤ C(ω) e2ωtE(0),

for every solution of (1.4)-(1.5) with initial data in H}. (1.13)

Let us now recall the following related properties:

• System (1.6) is exactly controllable in time T if for all z0 ∈ H−1, there is a v ∈ L2([0, T ], U),

v(t) = 0∀t /∈ [0, T ], such that z(T ) = 0. The controllability cost for (1.6) in time T is the

smallest positive constant kT in the following inequality for all such v and z0:

∫ T

0

‖v(t)‖2
U dt ≤ kT ‖z0‖2

H
−1
. (1.14)

The observability cost for (1.9)-(1.10) in time T , is the smallest positive constant CT such

that the inequality (1.12) is satisfied, and is equal to the controllability cost for system

(1.6) in time T .

• On the other hand, the open-loop system (1.6), with z0 = 0, is admissible for (S(t))t∈R if

for all T > 0 there exists a constant C > 0 such that for all v ∈ L2(0, T, U) we have

∫ T

0

‖B∗z(t)‖2
U dt ≤ C ‖v‖2

L2(0,T,U) . (1.15)

The open-loop admissibility cost, denoted by k̃T , for (1.6), with z0 = 0, in time T , is the

smallest positive constant C such that the inequality (1.15) is satisfied.
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The idea now is to use the observability (means an optimal-observability) to give an estima-

tion of the best decay rate.

The problem of finding the optimal decay rate is difficult and has not a complete answer

in the general case. We refer to [4], [6], [12], [14], [9] and to references therein. The main

novelties brought in by this paper is that, according to Theorem 1.2, to propose a theoretical

and numerical method to give a good estimation for the best decay rate for a large class of

evolution systems in function of the observability and open-loop admissibility costs. In other

words, we give a relation between the (best)-exact observability and the best decay rate.

Our main results, on the estimation of the best decay rate, are

Theorem 1.3. If the assumption (1.11) and observability inequality (1.12) are hold then,

1.

ω(B) ≤ inf
α>0,Tobs>0




1

2T
ln




1 − 1

kT

[
1 +

(
sup
ℜλ=α

∥∥B∗λ(λ2I +A)−1B
∥∥
L(U)

)2
]






< 0,

(1.16)

where Tobs > 0 is such that the inequality (1.12) is holds.

2.

ω(B) ≤ inf
T≥Top

[
1

2T
ln

(
1 − 1

kT (k̃T + 1)

)]
< 0, (1.17)

where Top > 0 is the smallest time such that the inequality (1.12) holds.

In other words, if all finite energy solutions of (1.4)-(1.5) are exponentially stable then the

best decay rate of the solutions of (1.4)-(1.5) satisfies (1.16) and (1.17).

Remark 1.4. The inequalities (1.16) and (1.17) are equivalent, see the proof. But, for the

applications, we can use the first or the second one in function of the complexity of the case

where we can compute kT , k̃T or the transfer function H(λ) defined in Theorem 1.2.

The paper is organized as follows. Section 2 contains some background, on control, observ-

ability and stabilization, needed in the following sections. Section 3 is devoted to the proof of

Theorem 1.3. Some applications and numerical study are given in Sections 4 and 5.

2 Some background on observability and on stability (see [1, 5])

Consider the evolution problem

ÿ(t) +Ay(t) = Bv(t), (2.1)

y(0) = ẏ(0) = 0. (2.2)

A natural question is the regularity of y when v ∈ L2(0, T ;U). By applying standard energy

estimates we can easily check that y ∈ C(0, T ;H) ∩ C1(0, T ;H− 1
2
). However if B satisfies a

certain admissibility condition then y is more regular. More precisely the following result, which

is a version of the general transposition method, holds true.
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Lemma 2.1. Suppose that v ∈ L2(0, T ;U) and that the solutions φ of (1.9)-(1.10) are such that

B∗φ(.) ∈ H1(0, T ;U) and there exists a constant C > 0 such that

‖(B∗φ̇)(·)‖L2(0,T ;U) ≤ C‖(x0, x1)‖H, ∀ (x0, x1) ∈ H. (2.3)

Then the problem (2.1)-(2.2) admits a unique solution having the regularity

y ∈ C(0, T ;H 1
2
) ∩ C1(0, T ;H). (2.4)

Proof. Let

D(A) = H1

and denote by H−1 the dual space of H1 with respect to the pivot space H.

If we put Z =

(
y

ẏ

)
it is clear that (2.1)-(2.2) can be written as

Ż + AZ(t) = Bv(t), Z(0) = 0,

where

A =

(
0 −I
A 0

)
: H ⊂ H−1 → H−1,

B =

(
0

B

)
: U → H−1.

It is well known that A is a skew adjoint operator so it generates a group of isometries in H−1,

denoted by S(t).

After simple calculations we get that the operator B∗ : H1 → U is given by

B∗

(
u

v

)
= B∗v, ∀ (u, v) ∈ D(A).

This implies that

B∗S∗(t)

(
x0

x1

)
= B∗φ̇, ∀ (x0, x1) ∈ D(A),

with φ satisfying (1.9)-(1.10). From the inequality above and (2.3) we deduce that there exists

a constant C > 0 such that

∫ T

0

∣∣∣∣
∣∣∣∣B

∗S∗(t)

(
x0

x1

)∣∣∣∣
∣∣∣∣
2

U

dt ≤ C ||(x0, x1)||2H, ∀ (x0, x1) ∈ D(A).

According to Theorem 3.1 in [8, p.187] the inequality above implies the interior regularity

(2.4).

Proposition 2.2. Suppose that v ∈ L2(0, T ;U) and that the problem (2.1)-(2.2) admits a unique

solution having the regularity

y ∈ C(0, T ;H 1
2
) ∩ C1(0, T ;H). (2.5)

Then hypothesis (H) holds if and only if B∗y(.) ∈ H1(0, T ;U) and there exists a constant

C = sup
ℜs=α

‖H(s)‖L(U) > 0 such that

‖B∗ẏ(·)‖L2(0,T ;U) ≤ C‖v‖L2(0,T ;U), ∀ v ∈ L2(0, T ;U). (2.6)
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Proof. As equation (2.1) is time reversible, after extending v by zero for t ∈ R \ [0, T ], we can

solve (2.1)-(2.2), for t ∈ R. By this way, we obtain a function, denoted also by y, such that

y ∈ C(R;H 1
2
) ∩ C1(R;H) ∩ L2(R;H 1

2
),

y(t) = 0, ∀ t ≤ 0,
(2.7)

and y satisfies (2.1)-(2.2) for all t ∈ R.

Let ŷ(λ), where λ = γ+iη, γ > 0 and η ∈ R, be the Laplace (with respect to t) transform of y.

Since y satisfies (2.7), estimate (2.6) is equivalent to the fact that the function t→ e− γ tB∗y(t)

belongs to H1(R;U) and that there exists a constant M1 > 0 such that

‖e− γ .B∗y(·)‖2
H1(R;U) ≤M1‖v(·)‖2

L2(R;U).

Equivalently, by the Parseval identity (see for instance Doetsch [13, p.212]), it suffices to prove

that the function

η → (γ + iη)B∗ŷ(γ + iη)

belongs to L2(Rη;U), for some γ > 0, and that there exists a constant M2 > 0 such that

‖(γ + iη)B∗ŷ(γ + iη)‖2
L2(Rη ;U) ≤M2

∫ +∞

−∞

||v̂(γ + iη)||2Udη. (2.8)

It can be easily checked that ŷ satisfies :

λ2ŷ(λ) +Aŷ(λ) = Bv̂(λ), ∀Reλ > 0. (2.9)

Relation above implies, for Reλ > 0 that

λB∗ŷ(λ) = H(λ)v̂(λ), ∀Reλ > 0, (2.10)

where H(λ) is defined in (1.11). Assumption (H) implies the existence of a constant M2 > 0

such that (2.8) holds true. This ends the proof of the fact that assumption (H) implies that

(2.6) holds for all finite energy solution of (2.1)-(2.2).

Suppose now that (2.6) holds true. By using the time reversibility and the invariance with

respect to translations (in time) of (2.1) we obtain that (2.1)-(2.2) is well posed for all input

v ∈ L2(R, U), v compactly supported. More precisely, we have
∫

supp(v)

||(B∗ẏ(t)||2U dt ≤ C

∫

supp(v)

||v(t)||2U dt,

for all compactly supported v ∈ L2(R, U), with the same constant as in (2.6).

Using (2.10) it follows that

||H(γ + iη)v̂(γ + iη)||2L2(Rη,U) ≤ C ||v̂(λ)||2L2(Rη,U), (2.11)

for all compactly supported v ∈ L2(R, U).

By density it follows that (2.11) holds for all v ∈ L2(R, U). We have thus proved that (2.6)

implies that (H) holds true.

Proposition 2.3. Suppose that hypothesis (H) is satisfied. Then for (x0, x1) ∈ H 1
2
×H we have

that B∗φ(.) ∈ H1(0, T ;U) and there exist C, T > 0 such that the solution φ(t) of (1.9)-(1.10)

satisfies (2.3). In the other words assumption (H) implies (2.3).
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Proof. Suppose that hypothesis (H) is satisfied. Let x(t) ∈ C(0, T ;H 1
2
) ∩ C1(0, T ;H) be the

unique solution of (1.4)-(1.5). By Proposition 1.1 we know that B∗x ∈ H1(0, T ;U) and that

(1.8) holds true. Let φ be the solution of (1.9)-(1.10). We clearly have ψ = x−φ ∈ C(0, T ;H 1
2
)∩

C1(0, T ;H) and ψ satisfies

{
ψ̈(t) +Aψ(t) = BB∗ẋ(t), in C(0, T ;H− 1

2
),

ψ(0) = ψ̇(0) = 0.

By applying now Proposition 2.2 with v = B∗ẋ ∈ L2(0, T ;U) we obtain that

∫ T

0

||B∗ψ̇(t)||2U dt ≤ C

∫ T

0

||B∗ẋ(t)||2U dt. (2.12)

Since B∗φ = B∗x−B∗ψ relations (1.8) and (2.12) imply the conclusion of the proposition.

Corollary 2.4. Suppose that assumption (H) is satisfied. Then, for all v ∈ L2(0, T ;U), (2.1)-

(2.2) admits a unique solution y satisfying (2.5) and (2.6).

Proof. Suppose that assumption (H) is satisfied. Then Proposition 2.3 and Lemma 2.1 imply

that problem (2.1)-(2.2) admits a unique solution y satisfying (2.5). Finally Proposition 2.2

implies that y satisfies (2.6).

Let x(t) ∈ C(0, T ;H 1
2
)∩C1(0, T ;H) be the solution of (1.4)-(1.5). Then x(t) can be written

as

x(t) = φ(t) + ψ(t), (2.13)

where φ(t) satisfies (1.9)-(1.10) and ψ(t) satisfies

ψ̈(t) +Aψ(t) = −BB∗ẋ(t), (2.14)

ψ(0) = ψ̇(0) = 0. (2.15)

3 Proof of Theorem 1.3

The main ingredient of the main results is the following result.

Lemma 3.1. Let (x0, x1) ∈ H and suppose that (H) is verified. Then the solution x(t) of

(1.4)-(1.5) and the solution φ(t) of (1.9)-(1.10) satisfy

1.
1

2

[
1 +

(
sup
ℜs=α

‖H(s)‖L(U)

)2
]
∫ T

0

||B∗φ̇(t)||2U dt

≤
∫ T

0

||B∗ẋ(t)||2U dt ≤ 4

∫ T

0

||B∗φ̇(t)||2U dt.

(3.16)

2.
1

2
(
1 + k̃T

)
∫ T

0

||B∗φ̇(t)||2U dt ≤
∫ T

0

||B∗ẋ(t)||2U dt ≤ 4

∫ T

0

||B∗φ̇(t)||2U dt. (3.17)
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Remark 3.2. By Proposition 1.1, B∗ẋ(·) ∈ L2(0, T ;U). So, equation (2.14) makes sense. The

result above shows that the L2 norm of ||B∗ẋ(·)||U is equivalent to the L2 norm of ||B∗φ̇(·)||U
(notice that ||B∗φ̇(·)||U ∈ L2(0, T ) by Proposition 2.3).

Proof of Lemma 3.1. We prove (3.16) for x(t) satisfying (1.4)-(1.5) and φ(t) solution of (1.9)-

(1.10).

Relation (2.13) implies that

∫ T

0

||B∗φ̇(·)||2Udt ≤ 2

{∫ T

0

||B∗ẋ(·)||2U dt +

∫ T

0

||B∗ψ̇(·)||2U dt
}
.

Estimate above combined with inequality (2.6) in Proposition 2.2 implies that

1

2

[
1 +

(
sup
ℜs=α

‖H(s)‖L(U)

)2
]
∫ T

0

||(B∗φ̇(·)||2Udt ≤
∫ T

0

||(B∗ẋ(·)||2Udt. (3.18)

On the other hand, according to Remark 3.2 and to relation (2.13) we have that

||B∗φ̇(·)||U ∈ L2(0, T ).

This means that (2.14) can be rewritten as

ψ̈(t) +Aψ(t) +BB∗ψ̇(t) = −BB∗φ̇(t). (3.19)

We denote now by w(t) the extension of B∗φ̇ obtained by defining w(t) = 0, t ∈ R \ [0, T ]. We

still denote by ψ(t) the solution of
{
ψ̈(t) +Aψ(t) +BB∗ψ̇(t) = −Bw(t), t ∈ R,

ψ(0) = ψ̇(0) = 0.
(3.20)

We clearly have ψ(t) = 0 for t ∈ R \ [0, T ].

Taking the Laplace transform we get

λ2 ψ̂(λ) +Aψ̂(λ) + λBB∗ψ̂(λ) = −Bŵ(λ), ∀λ = γ + iη, γ > 0.

The equality above holds in H− 1
2
.

By applying λ̄
¯̂
ψ ∈ H 1

2
to the equality above, we get

λ |λ|2 ||ψ̂(λ)||2X + λ̄ ||A 1
2 ψ̂(λ)||2X + ||λB∗ψ̂(λ)||2U = − < w(λ), λ̄ B∗ ¯̂

ψ(λ) >U .

Taking the real part of each term, we get
∫

Rη

||λB∗ψ̂(λ)||2U dη ≤ 1

2

∫

Rη

||ŵ(λ)||2U dη +
1

2

∫

Rη

||λB∗ψ̂(λ)||2U dη.

Parseval identity implies
∥∥∥B∗ψ̇(t)

∥∥∥
2

L2(0,T ;U)
≤
∥∥∥B∗φ̇(t)

∥∥∥
2

L2(0,T ;U)
. (3.21)

Relation (2.13) and inequality above imply that

‖B∗ẋ(t)‖2
L2(0,T ;U) ≤ 4

∥∥∥B∗φ̇(t)
∥∥∥

2

L2(0,T ;U)
. (3.22)

Inequalities (3.18) and (3.22) obviously yield the conclusion (3.16).

By the same way we obtain (3.17).
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We can now prove the main results.

Proof of Theorem 1.3. All finite energy solutions of (1.4)-(1.5) satisfy the estimate

E(t) ≤Me2ωtE(0), ∀ t ≥ 0, (3.23)

where M,−ω > 0 are constants independent of (x0, x1), if and only if there exist a time T > 0

and a constant C > 0 (depending on T ) such that

E(0) − E(T ) ≥ C E(0), ∀ (x0, x1) ∈ H.

By (1.8) relation above is equivalent to the inequality

∫ T

0

||B∗ẋ(s)||2Uds ≥ C E(0), ∀ (x0, x1) ∈ H,

and w =
ln(1− 1

C )
2T

> 0,M = C
C−1 > 0.

From Lemma 3.1 it follows that the system (1.4)-(1.5) is exponentially stable if and only if

∫ T

0

||B∗φ̇(s)||2Uds ≥ C E(0), ∀ (x0, x1) ∈ H1

holds true. By density it follows that (1.4)-(1.5) is exponentially stable if and only if (1.12)

holds true.

Thus, if the exact observability of the system (1.9)-(1.10) is satisfied, i.e.

kT

∫ T

0

‖B∗S(t)z0‖2
U dt ≥ ‖z0‖2

H , ∀ z0 ∈ H1.

then according to Lemma 3.1 it follows that

∫ T

0

||B∗ẋ(s)||2Uds ≥
1

kT

[
1 +

(
sup
ℜs=α

‖H(s)‖L(U)

)2
] E(0),

and ∫ T

0

||B∗ẋ(s)||2Uds ≥
1

kT

(
1 + k̃T

) E(0).

This implies that

w(B) ≤ w =
ln
(
1 − 1

C

)

2T

with C = 1

kT

"
1+

 
sup
ℜs=α

‖H(s)‖L(U)

!
2
# respectively 1

kT (1+fkT )
.

This ends up the proof of Theorem 1.3.

4 Applications and numerical study

We now give some applications and numerical validations of Theorem 1.3.
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4.1 First example: Stabilization of a string

We consider the following initial and boundary problem:




∂2u

∂t2
− ∂2u

∂x2
+
∂u

∂t
(ξ, t) δξ = 0, (x, t) ∈ (0, 1) × (0,+∞),

u(0, t) = 0,
∂u

∂x
(1, t) = 0, t ∈ (0,+∞),

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ (0, 1),

(4.1)

where ξ ∈ (0, 1) and δξ is the Dirac mass concentrated in the point ξ ∈ (0, 1).

In this case, we have:

H = L2(0, 1), U = R, H 1
2

=
{
u ∈ H1(0, 1), u(0) = 0

}

and

A = − d2

dx2
, D(A) =

{
u ∈ H2(0, 1) ∩H 1

2
,
du

dx
(1) = 0

}
, Bk = k δξ, ∀ k ∈ R. (4.2)

Then, Ad is given by

Ad

(
u

v

)
=

(
v

d2u
dx2 − v(ξ) δξ

)
,

∀ (u, v) ∈ D(Ad) =
{

(u, v) ∈ [H 1
2
∩H2(0, ξ) ∩H2(ξ, 1)] ×H 1

2
,
du

dx
(ξ+) − du

dx
(ξ−) = v(ξ)

}
.

The system described by (4.1) is exponentially stable in H 1
2
×L2(0, 1) if and only if ξ ∈ (0, 1)

admits a co-prime factorization

ξ =
p

q
with p odd. (4.3)

In the case where ξ = 1
2 , the estimation of the best decay rate of (4.1) is then an immediate

consequence of Theorem 1.3.

The following result holds true.

Theorem 4.1.

w(δ 1
2
) ≤ inf

α>0

[
1

4
ln

(
1 − 4

5 + 1
sh2( α

2
)

)]
.

Remark 4.2. According to [4, Theorem 1.2], w(B) = − 1
2 ln(3) ≈ −0.549306. Therefore,Theorem

1.3 provides a rather satisfactory estimate of the best decay rate w(B) since we compute that

inf
α

1

4
ln

(
1 − 4

5 + 1
sh2( α

2
)

)
= −1

4
ln(5) ≈ −0.402359. (4.4)

The observability system associated to (4.1) reads as follows:

∂2φ

∂t2
− ∂2φ

∂x2
= 0, (0, 1) × (0,+∞), (4.5)

φ(0, t) = 0,
∂φ

∂x
(1, t) = 0, (0,+∞), (4.6)

φ(x, 0) = u0(x),
∂φ

∂t
(x, 0) = u1(x), (0, 1). (4.7)

10



Lemma 4.3. The operators A and B defined by (4.2) satisfy assumption (1.11).

Proof. Let k ∈ R. It can be easily checked that v = (λ2 +A)−1Bk satisfies:

λ2 v(x) − d2v

dx2
(x) = 0, x ∈ (0, ξ) ∪ (ξ, 1), Reλ > 0, (4.8)

v(0) = 0,
dv

dx
(1) = 0, (4.9)

[v]ξ = 0,

[
dv

dx

]

ξ

= k, (4.10)

where we denote by [g] the jump of the function g at the point ξ.

The solutions of (4.8)-(4.9) have the form

v(x) =

{
A1 sh(λx), x ∈ (0, ξ),

A2 ch[λ(x− 1)], x ∈ (ξ, 1),

where A1, A2 are constants.

Consequently, the solutions of (4.8)-(4.10) have the following form

v(x) =

{
1
λ

ch[λ(ξ−1)] sh(λx)
sh(λ) k, x ∈ (0, ξ),

1
λ

sh(λξ) ch[λ(x−1)]
sh(λ) k, x ∈ (ξ, 1),

Then, the functionH(λ) = λB∗(λ2+A)−1B associated to problem (4.1) is given by the following

expression

H(λ) =
sh(λξ) ch[λ(ξ − 1)]

ch(λ)
, Reλ > 0.

We easily check that

sup
λ∈Cα

|H(λ)| ≤ ch(αξ) ch[α(ξ − 1)]

sh(α)
.

Thus the assumption (H) is satisfied.

We remark that for ξ = 1
2 we have that

sup
λ∈Cα

|H(λ)|2 ≤ 1

4

(
1 +

1

sh2(α
2 )

)
.

The observability inequality concerning the trace at the point x = ξ of the solutions of

(4.5)-(4.7) is given in the proposition below.

Proposition 4.4. Let T ≥ 2 be fixed. Then the following assertion hold true.

For all ξ ∈ (0, 1) satisfying (4.3) the solution φ of (4.5)-(4.7) satisfies

∫ T

0

[
∂φ

∂t
(ξ, t)

]2
dt ≥ Cξ,T ‖(u0, u1)‖2

H 1
2

×L2(0,1), ∀(u0, u1) ∈ H 1
2
× L2(0, 1),

where Cξ,T > 0 is a constant depending only on ξ and T .

11



Proof. If we put

u0(x) =

∞∑

n=0

an sin((n+
1

2
)πx), u1(x) =

∞∑

n=0

bn sin((n+
1

2
)πx) (4.11)

with

((n+
1

2
)π an), (bn) ⊂ l2(R),

then we clearly have

∂φ

∂t
(ξ, t) =

∑

n≥0

(
−(n+

1

2
)π an sin((n+

1

2
)πt) + bn cos((n+

1

2
)πt)

)
sin((n+

1

2
)πξ). (4.12)

From Ingham’s inequality [17] we obtain, for all T ≥ 2, the existence of a constant CT > 0 such

that the solution φ of (4.5)-(4.7) satisfies

∫ T

0

[
∂φ

∂t
(ξ, t)

]2
dt ≥ CT

∑

n≥0

(
(n+

1

2
)2 π2 a2

n + b2n

) ∣∣∣∣sin
(

(n+
1

2
)πξ

)∣∣∣∣
2

. (4.13)

Relations (4.13) implies the existence of a constant Cξ,T > 0 such that

∫ T

0

[
∂φ

∂t
(ξ, t)

]2
dt ≥ CT,ξ

∞∑

n=0

(
(n+

1

2
)2 π2 a2

n + b2n

)
, iff ξ ∈ (0, 1) satisfied (4.3),

which is exactly (4.4).

We remark, according to the above proof, that in case where ξ = 1
2 and T = 2, we have

∫ 2

0

[
∂φ

∂t
(
1

2
, t)

]2
dt =

∞∑

n=0

(
(n+

1

2
)2 π2 a2

n + b2n

)
=
∥∥(u0, u1)

∥∥2

H 1
2

×L2(0,1)
,

and the observability cost kT = 1.

Proof of Theorem 4.1. According to Theorem 1.3,

w(δ 1
2
) ≤ 1

4
ln

(
1 − 4

5 + 1
sh2( α

2
)

)
, ∀α > 0.

We end up in this way the proof of theorem.

4.2 Second example: Interior stabilization of the wave equation

4.2.1 One-dimentional case

We consider the following initial and boundary value problem:

∂2
t u(x, t) − ∂2

xu(x, t) + 2 a(x)∂tu(x, t) = 0, 0 < x < 1, t > 0, (4.14)

u(0, t) = u(1, t) = 0, t > 0, (4.15)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), 0 < x < 1, (4.16)

12



where a ∈ L∞(0, 1) is non-negative and satisfies that there exist an non empty open set I of

(0, 1) and a constant c > 0 such that a(x) ≥ c for all x ∈ I. Here we assume that the string is

of length 1.

In this case, we have:

H = L2(0, 1), U = L2(0, 1), H 1
2

= H1
0 (0, 1)

and

A = − d2

dx2
, D(A) = H2(0, 1) ∩H1

0 (0, 1), B = B∗ =
√

2a ∈ L(L2(0, 1)). (4.17)

If u is a solution of (4.14)-(4.16), we define the energy of u at instant t by

E
(
t
)

=
1

2

∫ 1

0

((
∂tu(x, t)

)2
+
(
∂xu(x, t)

)2)
dx. (4.18)

Simple formal calculations shows that a sufficiently smooth solution of (4.14)-(4.16) satisfies the

energy estimate

E
(
0
)
− E

(
t
)

= 2

∫ t

0

∫

I

a(x) [∂tu(x, s)]
2
dx ds, ∀t ≥ 0. (4.19)

In particular, the previous estimate implies that E
(
t
)
≤ E

(
0
)

for all t ≥ 0. Moreover, estimate

(4.19) suggests that the natural well-posedness space for (4.14)-(4.16) is H1
0 (0, 1)×L2(0, 1). The

inner product on H1
0 (0, 1) × L2(0, 1) is defined by

〈
[f, g] , [u, v]

〉
:=

∫ 1

0

(
f ′(x)u′(x) + g(x)v(x)

)
dx, for all [f, g], [u, v] in H1

0 (0, 1) × L2(0, 1).

We have the following well-posedness result:

Proposition 4.5. Assume that (u0, u1) ∈ H1
0 (0, 1) × L2(0, 1). Then the problem (4.14)-(4.16)

admits a unique solution u ∈ C
(
[0,+∞[;H1

0 (0, 1)
)
∩C1

(
[0,+∞[;L2(0, 1)

)
. Moreover u satisfies

the energy estimate (4.19).

We define the best decay rate, as a function of a, as

ω(a) = inf
{
ω; there exists C = C(ω) > 0 such thatE

(
t
)
≤ C(ω)e2ωtE

(
0
)
,

for every solution u of (4.14)-(4.16) with initial data inH1
0 (0, 1) × L2(0, 1)

}
.

(4.20)

According to (4.19), w(a) < 0 for all nonnegative damped a(x) which satisfies the above

condition, see [16] and also [5].

By the same way as the first application we have the following

Theorem 4.6.

w(a) ≤ inf
T≥2

1

2T
ln

(
1 − 1

kT (1 + k̃T )

)
< 0,

where kT and k̃T are defined in Section 1 (see the following section for their numerical evalua-

tion).
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We can obtain the same result for the Euler-Bernoulli beam equation, i.e.,

∂2
t u(x, t) + ∂4

xu(x, t) + 2 a(x)∂tu(x, t) = 0, 0 < x < 1, t > 0, (4.21)

u(0, t) = u(1, t) = 0, ∂2
xu(0, t) = ∂2

xu(1, t) = 0, t > 0, (4.22)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), 0 < x < 1, (4.23)

where a ∈ L∞(0, 1) is non-negative and satisfies the same condition as above.

We can compare with the result obtained in [2] and [3] recently and Theorem 1.3. More

precisely, according to [2] and [3], the best decay rate w(a) is given by the spectral abscissa so

we can compare numerically between the sepctral abscissa and the bound given by Theorem 1.3.

4.2.2 High-dimentional case

We consider the following initial and boundary value problems:

∂2
t u(x, t) − ∆u(x, t) + 2 a(x) ∂tu(x, t) = 0, (x, t) ∈ Ω × (0,+∞), (4.24)

u = 0, ∂Ω × (0,+∞), (4.25)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω, (4.26)

and

∂2
t u(x, t) + ∆2u(x, t) + 2 a(x) ∂tu(x, t) = 0, (x, t) ∈ Ω × (0,+∞), (4.27)

u = 0, ∂Ω × (0,+∞), (4.28)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω, (4.29)

where a ∈ L∞(Ω) and satisfy some geometric control condition, see [18] for more details.

Here,

H = L2(Ω), H 1
2

= H1
0 (Ω), U = L2(Ω)

and

A = −∆ : D(A) = H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω) → L2(Ω), B = B∗ =

√
2a ∈ L(L2(Ω)).

According to [18] w(a) is given by the minimum between a spectral abscissa of the dissipative

operator and some geometrical quantity (which is linked to the Birkhoff limit of the damping

coefficient 2a under the bicaracteristics). We have the following estimation of w(a).

w(a) ≤ inf
T≥Top

1

2T
ln

(
1 − 1

kT (1 + k̃T )

)
< 0,

where kT and k̃T are defined in Section 1 (see the following section for their numerical evalua-

tions).

5 Numerical evaluation of the constants kT and k̃T

We introduce in this section iterative methods to evaluate numerically, for any T > 0 large

enough, the two constants kT and k̃T which appear in the inequality (1.17).
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5.1 Evaluation of the constant kT : the internal damping case

We consider the wave equation with the damping term:





∂2
t u(x, t) − ∆u(x, t) + 2 a(x)∂tu(x, t) = 0, (x, t) ∈ Ω × (0, T ) := QT ,

u(0, t) = u(1, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω.

(5.30)

We first discuss the evaluation of the constant kT which appears in the inequality:

‖ϕ0, ϕ1‖2
H1

0
(Ω)×L2(Ω) ≤ kT

∫∫

QT

2a(x)|ϕt|2 dx dt (5.31)

where ϕ solves the homogeneous equation





∂2
t ϕ(x, t) − ∆ϕ(x, t) = 0, (x, t) ∈ QT ,

ϕ(0, t) = ϕ(1, t) = 0, t ∈ (0, T ),

ϕ(x, 0) = ϕ0(x), ∂tϕ(x, 0) = ϕ1(x), x ∈ Ω,

(5.32)

kT is an observability constant related to the wave equation and we may write

kT = sup
(ϕ0,ϕ1)∈H1

0
(Ω)×L2(Ω)

‖ϕ0, ϕ1‖2
H1

0
(Ω)×L2(Ω)∫∫

QT
2a(x)|ϕt|2 dx dt

. (5.33)

and also, using by reducing the norm,

kT = sup
(ϕ0,ϕ1)∈L2(Ω)×H−1(Ω)

‖ϕ0, ϕ1‖2
L2(Ω)×H−1(Ω)∫∫

QT
2a(x)|ϕ|2 dx dt . (5.34)

For simple geometry, the constant kT may be evaluated easily using a Fourier analysis (we refer

to the Appendix for the 1D case). In the general case, we may proceed as follows.

First, we define by y the solution of the backward problem





Ly = −a(x)ϕ in QT

y = 0 on ΣT

(y(·, T ), yt(·, T )) = (0, 0) in Ω

(5.35)

and then the operator ΛT : L2(Ω) × H−1(Ω) → H1
0 (Ω) × L2(Ω) defined by ΛT (ϕ0, ϕ1) :=

(y1,−y0). The following equality

(ΛT (ϕ0, ϕ1), (ϕ0, ϕ1))H1
0
(Ω)×L2(Ω),L2(Ω)×H−1(Ω) =

∫∫

QT

a(x)|ϕ|2 dxdt (5.36)

allows to reformulate the inequality

‖ϕ0, ϕ1‖2
L2×H−1 ≤ kT

∫∫

QT

a(x)|ϕ|2 dxdt (5.37)

as follows
(

(ϕ0, ϕ1), (ϕ0, ϕ1)

)

L2(Ω)×H−1(Ω)

≤ kT

(
ΛT (ϕ0, ϕ1), (ϕ0, ϕ1)

)

H1
0
(Ω)×L2(Ω),L2(Ω)×H−1(Ω)

(5.38)
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for all (ϕ0, ϕ1) in L2(Ω)×H−1(Ω). Recalling that the operator ΛT defines, for T large enough,

a symmetric, positive isomorphism from L2(Ω)×H−1(Ω) into H1
0 (Ω)×L2(Ω) (see [19], chapter

7), the evaluation of the constant kT is reduced to the resolution of a generalized eigenvalue

problem. Precisely, (kT )−1 coincides with the smallest eigenvalue of the operator ΛT . In order

to evaluate this smallest eigenvalue, we may use the inverse power iteration method (we refer to

[10]) assuming that this eigenvalue is simple: in our context, the algorithm reads as follows:

Let (ϕ0
0, ϕ

0
1) ∈ L2(Ω)×H−1(Ω) be any function; compute (ψ0

0 , ψ
0
1) ∈ L2(Ω)×H−1(Ω) defined

by

(ψ0
0 , ψ

0
1) =

(ϕ0
0, ϕ

0
1)

‖(ϕ0
0, ϕ

0
1)‖L2(Ω)×H−1(Ω)

. (5.39)

Then, for any k ≥ 1, compute




(ϕk
0 , ϕ

k
1) = Λ−1

T

(
ψk−1

0 ,−∆−1ψk−1
1

)
,

(ψk
0 , ψ

k
1 ) =

(ϕk
0 , ϕ

k
1)

‖(ϕk
0 , ϕ

k
1)‖L2(Ω)×H−1(Ω)

(5.40)

If the smallest eigenvalue of the operator ΛT is isolated, then the sequences converge and the

following property holds :

lim
k→∞

(
(ϕk+1

0 , ϕk+1
1 ), (ψk

0 , ψ
k
1 )

)

L2(Ω)×H−1(Ω),L2(Ω)×H−1(Ω)

= (kT )−1. (5.41)

Remark 5.1. The first step of the algorithm requires to solve a null controllability problem :

find (ϕk
0 , ϕ

k
1) ∈ L2 ×H−1 such that

ΛT (ϕk
0 , ϕ

k
1) = (ψk

0 ,−∆−1ψk
1 ), (5.42)

that is, find the null control (of the form −a(x)ϕ) for y solution of (5.35) with the initial data

(∆−1ψk
1 , ψ

k
0 ) ∈ H1

0 (Ω) × L2(Ω). We shall use the direct method developed in [11] which is very

appropriate since it approximates the operator ΛT explicitly (for iterative indirect method, we

refer to [15, 20]) and which ensures the strong convergence of the approximation.

5.2 Evaluation of the constant k̃T : the internal damping case

The constant k̃T which appears in the inequality
∫

QT

2a(x)|ut|2 dxdt ≤ k̃T ‖v‖2
L2(QT ) (5.43)

where u solves 



∂2
t u(x, t) − ∂2

xu(x, t) =
√

2a(x)v, (x, t) ∈ QT

u(0, t) = u(1, t) = 0, t ∈ (0, T ),

u(x, 0) = 0, ∂tu(x, 0) = 0, x ∈ Ω,

(5.44)

can be defined as :

k̃T = sup
v∈L2(QT )

∫∫
QT

2a(x)|ut|2dxdt
‖v‖2

L2(QT )

. (5.45)

k̃T is the constant of continuity of a linear map in v. Again, for simple geometry, we may employ

Fourier decomposition. We refer to the Appendix for the 1D situation. As before, in the general

case, we may proceed as follows.
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First, we introduce the function ψ solution of




Lψ = −2a(x)
d

dt
(ut), in QT ,

ψ = 0, on ΣT ,

ψ(·, T ) = ψt(·, T ) = 0.

(5.46)

As in [19] (see page 416), the derivate is defined by duality so that

< a(x)
∂

∂t
(ψt), w >= −

∫∫

QT

a(x)ψtwt dx dt, ∀w ∈ H1(0, T ;L2(Ω)). (5.47)

The function ψ is defined by transposition, so that in particular, we have
∫∫

QT

2a(x)|ut|2 dxdt =

∫∫

QT

√
2a(x)ψv dx dt.

Therefore, defining the operator BT : L2(QT ) → L2(QT ) by BT (v) :=
√

2a(x)ψ, we get

(BT v, v)L2(QT ) ≤ k̃T (v, v)L2(QT ) (5.48)

so that the constant k̃T may again be approximated by the power iteration method, which reads

as follows:

Let v0 any function in L2(QT ). We define w0 = v0/‖v0‖L2(QT ) in L2(QT ) and then for any

k ≥ 1, {
vk = BTw

k−1,

wk = vk/‖vk‖L2(QT ).
(5.49)

Then, if the largest eigenvalue of BT is isolated, the sequences {vk}k>0, {wk}k>0 converge and

lim
k→∞

(vk+1, wk)L2(QT ) = k̃T . (5.50)

We easily check that the operator is symmetric: (BT v, v) = (v,B(v)) for all v, v ∈ L2(QT ).

Moreover, clearly (BT (v), v) ≥ 0 for all v ∈ L2(QT ). Finally, the equality (BT (v), v) = 0 implies

that a(x)ut = 0 on QT . If a(x) > 0 almost everywhere in Ω, then ut = 0 on QT , then since

u(·, 0) = 0 on Ω, this implies that u = 0 in QT , then Lu = 0 in QT then
√
a(x)v = 0 in QT and

then finally v = 0 in QT . The same conclusion holds if supp a 6= Ω (for instance a(x) = 1ω(x),

ω ⊂ Ω).

5.3 Internal damping term: a numerical illustration in 1D

We consider Ω = (0, 1), 2a(x) = 1ω(x) with ω = (0.1, 0.3). The minimal time for which the

observability inequality holds is Tobs = 1.4. Proceeding as in [7, 21], we obtain the following

approximation of the spectral abscissa (which is egal to w(
√

2a), see [12]):

µ(A) = sup {Re(λ); λ ∈ σ(A)} =≈ −7.131 × 10−2, (5.51)

where σ(A) denotes the spectrum of A.

Tables 1 collects some values of kT with respect to T ≥ 1.4. In particular, we check that for

T large enough, kT behaves like 1/T for T large. Similarly, Table 2 collects some values of k̃T

with respect to T , for which we observe that k̃T behaves likes T 2 for T large.
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T 1.4 1.405 1.41 1.42 1.45 1.5 1.75 2 2.5 3

kT 546.66 298.74 187.95 100.41 41.336 25.52 14.50 7.033 6.724 5.564

T 4 5 6 8 10 12 14 16 20 25 30

kT 3.516 2.98 2.344 1.758 1.406 1.172 1.004 0.879 0.703 0.563 0.468

Table 1: kT vs. T ≥ 1.4.

T 1.4 1.45 1.5 1.75 2 2.5 4 8 16

k̃T 0.112 0.128 0.137 0.187 0.243 0.377 0.966 3.540 11.369

Table 2: k̃T vs. T ≥ 1.4.

Consequently, if we note

CT :=
1

2T
ln

(
1 − 1

kT (1 + k̃T )

)

we get the values reported in Table 3. We check, in agreement with the estimate (1.17), that

T 1.4 1.45 1.5 1.75 2

CT −5.88 × 10−4 −7.47 × 10−3 −1.168 × 10−2 −1.71 × 10−2 −3.03 × 10−2

T 2.5 4 8 16

CT −2.28 × 10−2 −1.95 × 10−2 −8.36 × 10−3 −3.01 × 10−3

Table 3: CT vs. T for Ω = (0, 1) and ω = (0.1, 0.3).

µ(A) ≈ −7.131 × 10−2 ≤ inf
T ≥1.4

CT ≈ −3.03 × 10−2 (5.52)

and that infT≥1.4 CT provides a satisfactory upper estimate of µ(A).

5.4 Internal damping term: numerical illustrations in 2D

We now consider the two dimensional case: first, we assume that Ω is the unit square, Ω = (0, 1),

and 2a(x) = 10 1ω(x) with

ω = {(x1, x2) ∈ Ω, x1 ∈ (0.1, 0.3), x2 ∈ (0, 1)} ∪ {(x1, x2) ∈ Ω, x1 ∈ (0., 1.), x2 ∈ (0.1, 0.3)}.
(5.53)

The minimal time for the observability inequality holds is Tobs = 7
√

2/5 ≈ 1.97.

Proceeding as in [21], we obtain the following approximation of the corresponding spectral

abcsissa :

µ(A) ≈ −9.91 × 10−1. (5.54)

Similarly, Table 4 reports the values of CT we obtain for T ≤ Tobs: Again, in agreement with

the estimate (1.17), we observe that infT≥Tobs
CT is a reasonable estimation by above of µ(A),

obtained for T around T = 2.3: infT≥Tobs
CT ≈ −5.2 × 10−1.

Finally, we have repeated the computations for the geometry Ω, subset of (0, 1)2 described on

Figure 1 (Left), considered in [21]. The support ω of the damping function is given on Figure 1
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T 2. 2.1 2.2 2.25 2.3

CT −8.2 × 10−2 −1.8 × 10−1 −2.8 × 10−1 −4.1 × 10−1 −5.2 × 10−1

T 2.35 2.4 2.5 3 4

CT −3.5 × 10−1 −7.6 × 10−2 −3.9 × 10−3 −2.1 × 10−3 −7.32 × 10−4

Table 4: CT vs. T for Ω = (0, 1)2 and ω defined by (5.53).

Figure 1: Domain Ω ⊂ (0, 1)2 (left) and support ω ⊂ Ω (right).

(right). For such subdomain ω, the controllability cost kT , introduced in (1.14) is finite as soon

as T is large enough ( of the order Top ≈ 2 here). With again, a(x) = 10 1ω(x), we compute in

[21] µ(A) ≈ −1.89×10−1, while the computation of various CT leads to infT CT ≈ −7.49×10−2

reached approximatively for T = 3.1.

6 Appendix: evaluation of the constant in 1D using Fourier Decom-

position

6.1 Evaluation of kT in 1-D: internal damping case

For some simple geometry, we may approximate the constant kT , which appears in (5.31), by

explicit Fourier representation of the homogeneous solution ϕ of (5.32). We assume for simplicity

that the damping function is constant such that 2a(x) = 1, x ∈ ω ⊂ (0, 1).

We first note (ap, bp)p>0 the Fourier coefficients in l2(N)×h−1(N) of the initial state (ϕ0, ϕ1) ∈
L2(0, 1) × H−1(0, 1), such that (ϕ0(x), ϕ1(x)) =

∑
p>0(ap, bp) sin(pπx). The adjoint state ϕ

takes the form

ϕ(x, t) =
∑

p>0

(
ap cos(pπt) +

bp
pπ

sin(pπt)

)
sin(pπx).
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We get ∫∫

qT

ϕϕdx dt =
∑

p,q>0

apaq

∫∫

qT

cos(pπt) cos(qπt) sin(pπx) sin(qπx) dx dt

+
∑

p,q>0

apbq

∫∫

qT

cos(pπt)
sin(qπt)

qπ
sin(pπx) sin(qπx) dx dt

+
∑

p,q>0

bpaq

∫∫

qT

sin(pπt)

pπ
cos(qπt) sin(pπx) sin(qπx) dx dt

+
∑

p,q>0

bpbq

∫∫

qT

sin(pπt)

pπ

sin(qπt)

qπ
sin(pπx) sin(qπx) dx dt,

and

‖ϕ(·, 0)‖2
L2(0,1) =

∑

p>0

|ap|2, ‖ϕt(·, 0)‖2
H−1(0,1) =

∑

p>0

| bp
pπ

|2

(ϕ(·, 0), ϕ(·, 0))L2(0,1) =
∑

p,q>0

apaq, (ϕt(·, 0), ϕt(·, 0))H−1(0,1) =
∑

p,q>0

bpbq
pπqπ

We may therefore introduce a matrix MqT
such that

<

(
{aq}q>0

{bq}q>0

)
,MqT

(
{ap}p>0

{bp}p>0

)
>=

∫∫

qT

ϕϕdx dt

and a matrix BqT
such that

<

(
{aq}q>0

{bq}q>0

)
,B
(

{ap}p>0

{bp}p>0

)
>=

(ϕ(·, 0), ϕ(·, 0))L2(Ω) + (ϕt(·, 0), ϕt(·, 0) >H−1(Ω) (= ‖ϕ0‖2
L2(Ω) + ‖ϕ1‖2

H−1(Ω))

The inequality (5.31) then rewrite as follows :

<

(
{ap}p>0

{bp}p>0

)
,B
(

{ap}p>0

{bp}p>0

)
> ≤ kT <

(
{ap}p>0

{bp}p>0

)
,MqT

(
{ap}p>0

{bp}p>0

)
>

for all {ap}p>0 and {bp}p>0 and is therefore the solution of the generalized eigenvalue problem

kT = sup

{
λ : B{ch} = λMqT

{ch}, ∀{ch} = {ah, bh}T ∈ R \ {0}
}

solved using the power iteration method (assuming that the largest eigenvalue is simple). Remark

that the matrix MqT
is symmetric, definite positive and full while the matrix B is diagonal.

6.2 Evaluation of k̃T in 1-D: the internal damping case

In the 1D setting, the constant k̃T in (5.43) may also be approximated by the way of Fourier

expansion. We assume that v ∈ L2(QT ) can be written as follows

v(x, t) =
∑

m,n>0

vm,nfm(t)gn(x), vm,n ∈ R

where {fm}m>0 and {gn}n>0 denote a basis of L2(0, T ) and L2(0, 1) respectively.
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We then expand the solution of the non homogeneous wave equation as follows: u(x, t) =∑
p>0 bp(t) sin(pπx). We get that bp solves the differential equation

b′′q (t) + (qπ)2bq(t) = 2
∑

m,n

vm,nfm(t)

∫ 1

0

√
2a(x)gn(x) sin(qπx)dx, q > 0

=
∑

m,n>0

vm,ncn,qfm(t)

with cn,q = 2
∫ 1

0

√
2a(x)gn(x) sin(qπx) dx leading to

b′q(t) =
∑

m,n>0

vm,ncn,q

∫ t

0

cos(qπ(t− s))fm(s)ds,

ut(x, t) =
∑

p>0

b′p(t) sin(pπx).

Therefore, if we denote by dp,q(ω) :=
∫

ω
sin(pπx) sin(qπx)dx, we have

∫

ω

∫ T

0

|ut(x, t)|2dxdt =
∑

m,n

∑

m,n

vm,nMm,n,m,n vm,n (6.55)

with

Mm,n,m,n =
∑

p,q>0

cn,pcn,qdp,q(ω)

∫ T

0

(∫ t

0

cos(pπ(t−s))fm(s)ds

)(∫ t

0

cos(qπ(t−s))fm(s)ds

)
dt.

Similarly, we obtain

‖v(x, t)‖2
L2(qT ) =

T

2

∑

m,n>0

∑

m,n>0

vm,n δm,mdn,n(ω) vm,n. (6.56)

Eventually, using (6.55) and (6.56), the constant K̃T (see (5.43)) can be reformulated as

the solution of a generalized eigenvalue problem, as in Section (6.1). In practice, we may use

fm(t) = sin(mπt/T ), m > 0 and gn(x) = sin(nπx), n > 0.
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