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Best decay rate, observability and open-loop
admissibility costs: discussions and numerical
study

Kais AMMARI * and Arnaud MUNCH T

Abstract. We show that the best decay rate can be estimated by the observability (or
controllability) cost and open-loop admissibility cost. Moreover, we propose a numerical strategy
to give an estimation for the best decay rate for a large class of evolution systems. Some examples
are given to illustrate this new method.

AMS subject classification (2010): 35B35, 35B40, 35F05, 37L15.
Key words and phrases: best decay rate, observability cost, open-loop admissibility cost,
numerical study.

1 Introduction and main results

Let H be a Hilbert space equipped with the norm ||.||z, and let A : D(A) C H — H be
self-adjoint, positive and with boundedly invertible operator. We introduce the scale of Hilbert
spaces Hg, 3 € R, as follows: for every 3 > 0, Hz = D(AP), with the norm |z||g = || Az u.
The space H_p is defined by duality with respect to the pivot space H as follows: H_g = Hj
for > 0. The operator A can be extended (or restricted) to each Hpg, such that it becomes a
bounded operator

A2H5—>Hg,1 V3 eR. (11)

Let a bounded linear operator B : U — H _ L where U is another Hilbert space which will
be identified with its dual.

The systems we consider are described by

Z(t) + Az(t) = Bu(t), (1.2)
2(0) = xo, #(0) = a1, (1.3)
and
Z(t) + Az(t) + BB*%(t) =0, (1.4)
z(0) = xo, £(0) = 1, (1.5)

where ¢ € [0,00) is the time and v € L} (RT,U) which denoted the control function.
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We can rewrite the system (1.2) as a first order differential equation, by putting z(t) =
z(t)
©(t) )

() + Az(t) = Bu(t), 2(0) = 2o = ( o ) : (1.6)

1
where
A:( 0 —I ) . D(A) = Hy x Hy C H—H, x H—H, B = ( 0 ) € LU H_),
A 0 2 2 B
Hoi=HXxH ;.
By the same way the system (1.4)-(1.5) can be also rewritten by :
2(t) + Aqz(t) = 0, 2(0) = zo, (1.7)

where

21

AdZA-‘rBB*:D(Ad):{( )EH;XH;,A21+BB*Z2€H}CH—>H.

22

It is clear that the operator A is skew-adjoint on H and hence, it generates a strongly
continous group of unitary operators on H, denoted by (S(t)):cr and have a natural extensions
to the Hilbert space H_1.

It is easy to see that, if zo € H and u € L} (RT,U), then z is C([0,T],H-1), VT > 0 and

loc

given by
¢
z(t) = S(t)z0 + / S(t — s)Bv(s)ds.
0
If B were an admissible control operator for (S(¢))ter *, then z € C([0,T],H), VT > 0.

Since Ay is dissipative and onto, it generates a contraction semigroup on H, denoted by
(Sa(t))rer+-
The system (1.4)-(1.5) is well-posed. More precisely, the following classical result, holds.

Proposition 1.1. Suppose that (zo,x1) € H. Then the problem (1.4)-(1.5) admits a unique
solution
(x, &) € C([0,00); H).

Moreover (z(t),z(t)) satisfies, for all t > 0, the energy estimate

B0) = B() = [ 15°#(3) s (18)

where B(t) = 5 [|(x(t), #(t)) 13-

*B is an admissible control operator for (S(t)):cr means that : if for all T > 0 there exists a constant C' > 0
such that for all zg € H1 = H1 X H1, we have:
2

T
/0 1B*S()z20]1%, dt < C |20l



From (1.8) it follows that the mapping ¢ — |/(z(t),%(¢))||3, is non increasing. In many
applications it is important to know if this mapping decays exponentially when t — oo, i.e. if
the system (1.4)-(1.5) is exponentially stable. One of the methods currently used for proving such
exponential stability results is based on an observability inequality for the undamped system
associated to the initial value problem

(t) + Ap(t) = 0, (1.9)

$(0) = zo, $(0) = 1. (1.10)

It is well known that (1.9)-(1.10) is well-posed in H; = Hy X Hy and in H. The result below,
proved in [4], shows that the exponential stability of (1.4)-(1.5) is equivalent to an observability
inequality for (1.9)-(1.10).

Theorem 1.2 (Ammari-Tucsnak [5]). Suppose that for all o > 0 fized,

(H) Sup ()]l 227y < 0 (1.11)

where H(s) = B*s(s*I + A)™1B € L(U), YRs > 0.
Then, the system described by (1.4)-(1.5) is exponentially stable in H if and only if there exists
T,Cr > 0 such that

T
CT/ IB* S0l dt > ll%l2, V7 € Ha. (1.12)
0

In this paper we study the best decay rate of the damped evolution system (1.4)-(1.5).

In order to state our result, we define the best decay rate, depending on B, as
w(B) = inf{w| there exists C' = C(w) > 0 such that E(t) < C(w) e***F(0),
for every solution of (1.4)-(1.5) with initial data in H}. (1.13)

Let us now recall the following related properties:

e System (1.6) is exactly controllable in time T if for all zg € H_1, thereisav € L2([0,T],U),
v(t) = 0Vt ¢ [0,T], such that z(T') = 0. The controllability cost for (1.6) in time 7" is the
smallest positive constant k7 in the following inequality for all such v and zy:

T
2 2
/0 Lo dt < kr 20l2 . (1.14)

The observability cost for (1.9)-(1.10) in time T, is the smallest positive constant C such
that the inequality (1.12) is satisfied, and is equal to the controllability cost for system
(1.6) in time T

e On the other hand, the open-loop system (1.6), with 2o = 0, is admissible for (S(t))er if
for all T > 0 there exists a constant C' > 0 such that for all v € L?(0,T,U) we have

T
/0 1B*2(1)% dt < C [oll2ao o) (1.15)

The open-loop admissibility cost, denoted by l;;, for (1.6), with zg = 0, in time T, is the
smallest positive constant C' such that the inequality (1.15) is satisfied.



The idea now is to use the observability (means an optimal-observability) to give an estima-
tion of the best decay rate.

The problem of finding the optimal decay rate is difficult and has not a complete answer
in the general case. We refer to [4], [6], [12], [14], [9] and to references therein. The main
novelties brought in by this paper is that, according to Theorem 1.2, to propose a theoretical
and numerical method to give a good estimation for the best decay rate for a large class of
evolution systems in function of the observability and open-loop admissibility costs. In other
words, we give a relation between the (best)-exact observability and the best decay rate.

Our main results, on the estimation of the best decay rate, are

Theorem 1.3. If the assumption (1.11) and observability inequality (1.12) are hold then,

1 1
B) < inf — 1-—
w(B) < a>o,HTlobs>0 2T 2 <0,
kr |1+ ( sup HB*)\()\ZI—i—A)_lBHL(U))
RA=«

(1.16)

where Tops > 0 is such that the inequality (1.12) is holds.

2.
. 1 1
wB)< inf |[—=In|l- —— 0, (1.17)
T>T,, | 2T kr (kr 4+ 1)

where Ty, > 0 is the smallest time such that the inequality (1.12) holds.

In other words, if all finite energy solutions of (1.4)-(1.5) are exponentially stable then the
best decay rate of the solutions of (1.4)-(1.5) satisfies (1.16) and (1.17).

Remark 1.4. The inequalities (1.16) and (1.17) are equivalent, see the proof. But, for the
applications, we can use the first or the second one in function of the complexity of the case
where we can compute kr, kr or the transfer function H(X) defined in Theorem 1.2.

The paper is organized as follows. Section 2 contains some background, on control, observ-
ability and stabilization, needed in the following sections. Section 3 is devoted to the proof of
Theorem 1.3. Some applications and numerical study are given in Sections 4 and 5.

2 Some background on observability and on stability (see [1, 5])

Consider the evolution problem
i(t) + Ay(t) = Bo(t), (2.1)

y(0) =5(0) = 0. (2.2)

A natural question is the regularity of y when v € L?(0,7;U). By applying standard energy
estimates we can easily check that y € C(0,T;H) N C(0,T; Hf%). However if B satisfies a
certain admissibility condition then y is more regular. More precisely the following result, which
is a version of the general transposition method, holds true.



Lemma 2.1. Suppose that v € L*(0,T;U) and that the solutions ¢ of (1.9)-(1.10) are such that
B*¢(.) € HY(0,T;U) and there exists a constant C > 0 such that

1(B*9) ()l 2(0.7:0) < Cll(wo, @1) 1, V (zo,21) € H. (2.3)
Then the problem (2.1)-(2.2) admits a unique solution having the reqularity
y € C(0,T;Hy)N CH0,T; H). (2.4)

Proof. Let
D(A) =Hy

and denote by H_; the dual space of H; with respect to the pivot space H.

If we put Z = < z ) it is clear that (2.1)-(2.2) can be written as

Z + AZ(t) = Bo(t), Z(0) =0,

where
0 —-I
A:(A 0 ):HCH_1—>H_1,
0
B—<B>:UHH_1.

It is well known that A is a skew adjoint operator so it generates a group of isometries in H_1,
denoted by S(t).

After simple calculations we get that the operator B* : H; — U is given by

W(“):Bmvmmemm.

v

This implies that
Zo

my@<

with ¢ satisfying (1.9)-(1.10). From the inequality above and (2.3) we deduce that there exists
a constant C' > 0 such that

/OT B*S*(1) ( ifl) )

According to Theorem 3.1 in [8, p.187] the inequality above implies the interior regularity
(2.4). O

) — B*$, ¥ (20, 21) € D(A),

I

2
dt < C H(a:o,xl)H%, Y (zo,x1) € D(A).
U

Proposition 2.2. Suppose thatv € L*(0,T;U) and that the problem (2.1)-(2.2) admits a unique
solution having the reqularity

y € C(0,T; Hy) N C*0,T; H). (2.5)

Then hypothesis (H) holds if and only if B*y(.) € H'(0,T;U) and there evists a constant
C = sup [|H(s)| ) > 0 such that
Rs=a

I B*5() | 20,750y < Cllvll 200,10y Vv e L*0,T;U). (2.6)



Proof. As equation (2.1) is time reversible, after extending v by zero for t € R\ [0, 7], we can
solve (2.1)-(2.2), for t € R. By this way, we obtain a function, denoted also by y, such that

yEC(R;H%)ﬁCl(R;H)ﬁLQ(R;H%),

y(t) =0, Vit<0, 27)

and y satisfies (2.1)-(2.2) for all ¢t € R.

Let g(\), where A = v+in, v > 0 and 5 € R, be the Laplace (with respect to t) transform of y.
Since y satisfies (2.7), estimate (2.6) is equivalent to the fact that the function ¢ — e~ 7" B*y(t)
belongs to H'(R;U) and that there exists a constant M; > 0 such that

lle™ Byl @y < MallvC)IILe @o)-

Equivalently, by the Parseval identity (see for instance Doetsch [13, p.212]), it suffices to prove
that the function

n— (v +in) B*Y(y +in)
belongs to L?(R,; U), for some ~ > 0, and that there exists a constant M, > 0 such that

1y + i) B Gy + i), ) < Mo / :O 1[50y + im)| [ dn. (2.8)

It can be easily checked that 7 satisfies:
N2G(N) + AG(N) = Bo(\), ¥ ReX > 0. (2.9)

Relation above implies, for ReA > 0 that
AB*y(A) = HA)D(X), YRe A > 0, (2.10)

where H(\) is defined in (1.11). Assumption (H) implies the existence of a constant My > 0
such that (2.8) holds true. This ends the proof of the fact that assumption (H) implies that
(2.6) holds for all finite energy solution of (2.1)-(2.2).

Suppose now that (2.6) holds true. By using the time reversibility and the invariance with
respect to translations (in time) of (2.1) we obtain that (2.1)-(2.2) is well posed for all input
v € L}(R,U), v compactly supported. More precisely, we have

/ (B 3(0)|[3 dt < C / fo(t)|[3 dt,
supp(v) supp(v)

for all compactly supported v € L?(R,U), with the same constant as in (2.6).
Using (2.10) it follows that

1H (y + in)o(y + in)l[22z, .0y < CIONZ2, 0): (2.11)

for all compactly supported v € L?(R, U).
By density it follows that (2.11) holds for all v € L?(R,U). We have thus proved that (2.6)
implies that (H) holds true.

O
Proposition 2.3. Suppose that hypothesis (H) is satisfied. Then for (xg,x1) € Hy x H we have

that B*¢(.) € HY(0,T;U) and there exist C,T > 0 such that the solution ¢(t) of (1.9)-(1.10)
satisfies (2.3). In the other words assumption (H) implies (2.3).



Proof. Suppose that hypothesis (H) is satisfied. Let z(t) € C(0,T;Hy) N CY(0,T; H) be the
unique solution of (1.4)-(1.5). By Proposition 1.1 we know that B*x € H'(0,T;U) and that
(1.8) holds true. Let ¢ be the solution of (1.9)-(1.10). We clearly have ¢) = x—¢ € C(0,T; H1)N
C1(0,T; H) and 1) satisfies

G(t) + Ap(t) = BB*i(t), in C(0,T; H_y),
¥(0) = ¢(0) =0.

By applying now Proposition 2.2 with v = B*# € L?(0,T;U) we obtain that

T T
| i a<c [ i (212)

Since B*¢ = B*x — B*y relations (1.8) and (2.12) imply the conclusion of the proposition.
O

Corollary 2.4. Suppose that assumption (H) is satisfied. Then, for all v € L?(0,T;U), (2.1)-
(2.2) admits a unique solution y satisfying (2.5) and (2.6).

Proof. Suppose that assumption (H) is satisfied. Then Proposition 2.3 and Lemma 2.1 imply
that problem (2.1)-(2.2) admits a unique solution y satisfying (2.5). Finally Proposition 2.2
implies that y satisfies (2.6). O

Let 2(t) € C(0, T Hy)N C1(0,T; H) be the solution of (1.4)-(1.5). Then x(t) can be written

a(t) = o(t) + (1), (2.13)

where ¢(t) satisfies (1.9)-(1.10) and (t) satisfies
D(t) + Ap(t) = —BB*(t), (2.14)
(0) = 4(0) = 0. (2.15)

3 Proof of Theorem 1.3

The main ingredient of the main results is the following result.

Lemma 3.1. Let (zg,z1) € H and suppose that (H) is verified. Then the solution x(t) of
(1.4)-(1.5) and the solution ¢(t) of (1.9)-(1.10) satisfy

1.
1 T )
' A|ww@%w
21+ <S§;l_Pa ||H(8)|c(U)) 1 (3.16)
T T
sé|w%w%ws4l|www%ﬁ.
2.
1 T * ] 2 r * v 2 T * 2
- [Eéwipas [ IBawla<a [Bowkda @
2 (1 +kT) 0 0 0



Remark 3.2. By Proposition 1.1, B*i(-) € L*(0,T;U). So, equation (2.14) makes sense. The
result above shows that the L? norm of ||B*%(-)||v is equivalent to the L? norm of ||B*¢(-)||v
(notice that ||B*¢(-)||v € L*(0,T) by Proposition 2.3).

Proof of Lemma 8.1. We prove (3.16) for x(t) satisfying (1.4)-(1.5) and ¢(¢) solution of (1.9)-
(1.10).
Relation (2.13) implies that

r ] 2 T * o 2 T * ] 2
/O ||B*¢<->|Udts2{/0 1B x<->||Udt+/0 1B ¢<->||Udt}-

Estimate above combined with inequality (2.6) in Proposition 2.2 implies that

1

1+ (;up ||H(5)||£(U)>

T ) T
2 / 1(B*¢()l|dt < / (B () [dt. (3.18)
5 ] 0 0

On the other hand, according to Remark 3.2 and to relation (2.13) we have that
1B*¢(-)llv € L*(0,T).

This means that (2.14) can be rewritten as

P(t) + Ap(t) + BB*j(t) = —BB*(t). (3.19)

We denote now by w(t) the extension of B*¢ obtained by defining w(t) =0, ¢t € R\ [0,7]. We
still denote by 1 (t) the solution of

{ V(1) + AY(t) + BB*(t) = — Bu(t), t € R, (3.20)
P(0) =9(0) = 0. '
We clearly have ¢(t) =0 for t € R\ [0, T].
Taking the Laplace transform we get
A2 () + AY(A) + ABB*$(N) = — BH(A\), YA =+ in, v > 0.
The equality above holds in H e
By applying ;\zZ eH 1 to the equality above, we get
~ — 1~ % ~ — % ~
AP+ AMAZON]E + B YN = — <w(X),AB*%(\) >u .
Taking the real part of each term, we get
o 2 1 ~ 2 1 * 2
IAB w(A)Iludn§§ Hw(>‘)|‘Ud77+§ A B*p(A)][7 dn.-
n Rn ]R”
Parseval identity implies
.2 L2
BH(1)| < |[Béw) . 3.21
H () L2(0,T5U) o(t) L2(0,T;U) (3:21)
Relation (2.13) and inequality above imply that
2
* . 2 * ]
1B 000y < 4 [ B0 (3.22)
Inequalities (3.18) and (3.22) obviously yield the conclusion (3.16).
By the same way we obtain (3.17). O



We can now prove the main results.

Proof of Theorem 1.3. All finite energy solutions of (1.4)-(1.5) satisfy the estimate
E(t) < Me**'E(0), Vit>0, (3.23)

where M, —w > 0 are constants independent of (zg,x1), if and only if there exist a time T > 0
and a constant C' > 0 (depending on T') such that

B(0) — E(T) > C E(0), Y (20, 21) € H.

By (1.8) relation above is equivalent to the inequality
T
/ 1B i(s)|[3ds > C B(0), ¥ (0, 21) € H,
0

ln(lfi) C

and w = —5

From Lemma 3.1 it follows that the system (1.4)-(1.5) is exponentially stable if and only if

T
| Bd)pds = CBO), (@) €
0

holds true. By density it follows that (1.4)-(1.5) is exponentially stable if and only if (1.12)
holds true.

Thus, if the exact observability of the system (1.9)-(1.10) is satisfied, i.e.

T
kr / IB*S(t)z0ll7 dt > 203, ¥ 20 € Ha.
0

then according to Lemma 3.1 it follows that

1

2
1+ (;,u_p ||H(S)||£(U)>

T
/0 1B (s)| 2 ds > E(0),

kr

and

T 1
| 1B s > ——— Fo).

kT (1 + ];3;)
This implies that

In(1-2)
w(B)Sw:TC

with C' = 1 s— respectively ———.
kr (1+k
kr [1+<£‘UP ”H(S)HL(U)) ] 7 (1)
S=

This ends up the proof of Theorem 1.3. O

4 Applications and numerical study

We now give some applications and numerical validations of Theorem 1.3.



4.1 First example: Stabilization of a string

We consider the following initial and boundary problem:

8%u  0%u  Ou
ﬁ — @ + E(f,t) (55 = 0, (l‘,t) S (0,1) X (0,+OO),
u(0,t) = ,%(1,& =0, t€(0,+00), (4.1)

0
u(z,0) = u’(z), %(z,O) =ul(z), z € (0,1),

where £ € (0,1) and d¢ is the Dirac mass concentrated in the point £ € (0,1).

In this case, we have:
H=170,1), U =R, Hy={ue H'(0,1), u(0) =0}

and 2

— o

Then, A, is given by

du

A= D(A) = {u€H2(O,1)ﬂH1, d(l)O},Bkkég,VkeR. (4.2)
2 X

The system described by (4.1) is exponentially stable in Hy x L?(0,1) if and only if £ € (0,1)
admits a co-prime factorization
¢ = £ with p odd. (4.3)
q

In the case where & = %, the estimation of the best decay rate of (4.1) is then an immediate
consequence of Theorem 1.3.

The following result holds true.

1 4
w(é:) <inf [—In|1—-——F5—1].
2 a>0 4 5+ ShQ(%)

Remark 4.2. According to [4, Theorem 1.2], w(B) = —3 In(3) ~ —0.549306. Therefore, Theorem
1.3 provides a rather satisfactory estimate of the best decay rate w(B) since we compute that

Theorem 4.1.

o1 4 1

+

The observability system associated to (4.1) reads as follows:

2 2
% - % =0, (0,1) x (0, +00), (4.5)
#(0,t) =0, %(1,0 =0, (0, +00), (4.6)
é(x,0) = u’(x), %(LO) =u'(2), (0,1). (4.7)

10



Lemma 4.3. The operators A and B defined by (4.2) satisfy assumption (1.11).

Proof. Let k € R. It can be easily checked that v = (A\? + A)~! Bk satisfies:

M o(z) — %(x) =0, 2 € (0,§) U (£1), Rel > 0, (4.8)
w(0) =0, %) =0, (19)
dv
v 0, |—| =k, 4.10
=0, |z (1.10)

where we denote by [g] the jump of the function g at the point &.
The solutions of (4.8)-(4.9) have the form

o(z) = { Ay sh(dx), z € (0,6),
AschiMx — 1), z € (£, 1),

where Ai, Ay are constants.
Consequently, the solutions of (4.8)-(4.10) have the following form

v(z) = {

Then, the function H()\) = A B*(\?+A)~! B associated to problem (4.1) is given by the following
expression

hME=DIshQ2) g e (0, ¢),

B AN a1
SIESEIRCEI R

e

A) ch]A(€ —1)]
ch(\)

HOy = M , Re\ > 0.
We easily check that
ch(ag) chla(§ —1)]
3 H\)| < .
,\be%ja' Wl < sh(a)

Thus the assumption (H) is satisfied.
We remark that for £ =  we have that

1

1
sup 1OV < 7 (14 5z )
sup [HOP < ¢ (1 s

O

The observability inequality concerning the trace at the point x = £ of the solutions of
(4.5)-(4.7) is given in the proposition below.

Proposition 4.4. Let T > 2 be fixed. Then the following assertion hold true.
For all £ € (0,1) satisfying (4.3) the solution ¢ of (4.5)-(4.7) satisfies
[ 5 en] d= Cer @)l ooy, 0Pt € 1y x 220,1),

where Ce 7 > 0 is a constant depending only on & and T'.

11



Proof. If we put

u’(z) = Z ay, sin((n + %)Wx), ul(x) = Z by, sin((n + %)7‘(1‘) (4.11)
n=0 n=0

with 1
((n + 5)man), (bn) C *(R),

then we clearly have

g—f(f,t) = 7;) (—(n + %)71’ ap, sin((n + %)ﬂt) + by, cos((n + ;)m)) sin((n + %)7‘(5). (4.12)

From Ingham’s inequality [17] we obtain, for all T' > 2, the existence of a constant Cp > 0 such
that the solution ¢ of (4.5)-(4.7) satisfies

T 1 9¢ 2 1 1 2
/ [at(f,t)] dt > Cr Z ((n + 5)2 a2 + bi) sin ((n + 2)775) . (4.13)
0 n>0
Relations (4.13) implies the existence of a constant C¢ r > 0 such that
" Tog ? = 1
/ [at(@t)} dt > Crge Z ((n + 5)2 72 a? + bi) , iff € € (0,1) satisfied (4.3),
0 n=0
which is exactly (4.4). O

We remark, according to the above proof, that in case where & = % and T = 2, we have

oo

2199 1 .17 Lio 2 o 2 0, 1y[2
/o a(i’t) dt:z (”+§) T ay, + by, :H(U’U)HH%XLZ(OJ)’

n=0

and the observability cost kr = 1.

Proof of Theorem 4.1. According to Theorem 1.3,

1 4
J<-l{1-———), Va>o
4 5+ P
sh(z)

We end up in this way the proof of theorem. O

w(d

Nl

4.2  Second example: Interior stabilization of the wave equation
4.2.1 One-dimentional case

We consider the following initial and boundary value problem:

O2u(w,t) — O2u(x,t) + 2a(x)0u(z,t) =0, 0<xz<1,t>0, (4.14)
w(0,t) =u(l,t) =0, ¢t>0, (4.15)
u(z,0) = u’(z), Owu(z,0)=u'(z), 0<z<l, (4.16)
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where a € L*°(0,1) is non-negative and satisfies that there exist an non empty open set I of
(0,1) and a constant ¢ > 0 such that a(z) > ¢ for all z € I. Here we assume that the string is
of length 1.

In this case, we have:

H =L*0,1), U=L*0,1), Hy = Hy(0,1)
and 2
A=——m, D) = H%(0,1) N HL(0,1), B = B* = v2a € L(L?*(0,1)). (4.17)

If w is a solution of (4.14)-(4.16), we define the energy of u at instant ¢ by

E(t) = %/0 ((@u(x,t))z + (azu(x,t))z) dz. (4.18)

Simple formal calculations shows that a sufficiently smooth solution of (4.14)-(4.16) satisfies the
energy estimate

E(0) - E(t) = 2/0 /Ia(x) [Byu(x, s)]* dueds, Vt>0. (4.19)

In particular, the previous estimate implies that £ (t) <FE (O) for all t > 0. Moreover, estimate
(4.19) suggests that the natural well-posedness space for (4.14)-(4.16) is H}(0,1) x L2(0,1). The
inner product on Hg(0,1) x L?(0,1) is defined by

< [f.q],[u,v] > = /01 (f’(x)m—i—g(x)@) dx, for all [f,g],[u,v] in H3(0,1) x L?(0,1).

We have the following well-posedness result:

Proposition 4.5. Assume that (u°,u') € H}(0,1) x L?(0,1). Then the problem (4.14)-(4.16)
admits a unique solution u € C ([0, +oo[; H}(0,1)) N C* ([0, 400[; L*(0,1)). Moreover u satisfies
the energy estimate (4.19).

We define the best decay rate, as a function of a, as
w(a) = inf {w; there exists C = C(w) > Osuch that E(t) < C(w)e” E(0),
for every solution u of (4.14)-(4.16) with initial data in HJ(0,1) x L*(0, 1)}

(4.20)

According to (4.19), w(a) < 0 for all nonnegative damped a(x) which satisfies the above
condition, see [16] and also [5].

By the same way as the first application we have the following

Theorem 4.6.

. 1 1
wa) <inf —In{l—-—] <0,
17>2 2T kr(1 4 k7)
where kr and I;; are defined in Section 1 (see the following section for their numerical evalua-
tion,).
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We can obtain the same result for the Euler-Bernoulli beam equation, i.e.,

O2u(x,t) + Otu(x,t) + 2a(x)Ou(z,t) =0, 0<xz<1,t>0, (4.21)
u(0,t) = u(1,t) = 0, 92u(0,t) = O?u(1,t) =0, >0, (4.22)
u(z,0) =u’(z), Owu(z,0)=ul(z), 0<z<I, (4.23)

where a € L*°(0, 1) is non-negative and satisfies the same condition as above.

We can compare with the result obtained in [2] and [3] recently and Theorem 1.3. More
precisely, according to [2] and [3], the best decay rate w(a) is given by the spectral abscissa so
we can compare numerically between the sepctral abscissa and the bound given by Theorem 1.3.

4.2.2 High-dimentional case

We consider the following initial and boundary value problems:

O2u(z,t) — Au(w,t) + 2a(x) dpu(x,t) =0, (z,t) € Q x (0, +00), (4.24)
u=0, 99 x (0,+00), (4.25)
u(z,0) =u’(z), Opu(z,0) =ul(x), z€Q, (4.26)
and
O2u(w,t) + A%u(x,t) + 2a(z) dpu(z,t) =0, (z,t) € Q x (0,400), (4.27)
u=0, 99 x (0,400), (4.28)
u(z,0) =u’(z), Opu(z,0) =ul(x), z€Q, (4.29)
where a € L*°(Q) and satisfy some geometric control condition, see [18] for more details.
Here,
H=L*Q),H, = Hy(Q), U= L*Q)
and

A=-A:D(A) = H*(Q)NHy(Q) C L*(Q) — L*(Q), B = B* = V2a € L(L*(Q)).
According to [18] w(a) is given by the minimum between a spectral abscissa of the dissipative

operator and some geometrical quantity (which is linked to the Birkhoff limit of the damping
coefficient 2a under the bicaracteristics). We have the following estimation of w(a).

1 1
w(a) < inf —In[1—-—<] <0,
T2Top 2T kr(1+ kr)

where k7 and l/c; are defined in Section 1 (see the following section for their numerical evalua-
tions).

5 Numerical evaluation of the constants kr and E

We introduce in this section iterative methods to evaluate numerically, for any 7' > 0 large
enough, the two constants kz and kr which appear in the inequality (1.17).
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5.1 Evaluation of the constant k; : the internal damping case

We consider the wave equation with the damping term:

OFu(w,t) — Au(x,t) +2a(z)Ou(x,t) =0, (2,t) € QAx (0,T) := Qr,
uw(0,t) =u(l,t) =0, ¢€(0,T), (5.30)
u(z,0) = u’(z), Owu(z,0) =ul(x), x€Q.

We first discuss the evaluation of the constant kp which appears in the inequality:

I, rgcarnren < br [ 2a(oliod? dod (5.31)
T
where ¢ solves the homogeneous equation

8752410(1:)t) - A¢($>t) =0, (l‘,t) € Qr,
©(0,t) = ¢(1,t) =0, te(0,7T), (5.32)
<p(x,0) = (po(x)v atQO((E,O) = 901(1')’ x € Q,

kr is an observability constant related to the wave equation and we may write

0%, 1%
o — sup HY(Q)xL2(9)

. (5.33)
(¢%,p1)eH (2)x L2(£2) ﬂQT 20’(55)‘90”2 dx dt

and also, using by reducing the norm,

o — sup H(PO7Q01||2L2(Q)><H’1(Q) (5 34)
T —_— . .
(p9,p1)EL2(Q)XxH~1(Q) »ﬂQT 2a(x)|90|2 dx dt

For simple geometry, the constant kr may be evaluated easily using a Fourier analysis (we refer
to the Appendix for the 1D case). In the general case, we may proceed as follows.

First, we define by y the solution of the backward problem
Ly = —a(z)p in Qr
y=0 on Xr (5.35)
(y(7T)7yt(aT)) = (0’0) in O

and then the operator Ar : L?(2) x H 1(Q) — HZ(Q) x L*(Q) defined by Ar(po, 1) =
(y1, —Yo). The following equality

(A7 (o, ¢1): (Y0, 01)) 2 () x L2(Q),L2 () x H-1(Q) = // a(x)||? dudt (5.36)
T
allows to reformulate the inequality

oo 112 g2 < b / / a(2)|pf? ddt (5.37)

T

as follows

<(800»901)7(<P0,801)> <kr <AT(<P07<P1), (9007@1)>

L2(Q)x H-1(Q) HE(Q)x L2(Q),L2(Q)x H—1(Q)

(5.38)
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for all (¢o, 1) in L?(Q) x H~1(Q). Recalling that the operator Az defines, for T large enough,
a symmetric, positive isomorphism from L2(Q) x H=1(Q) into H}(Q) x L2(2) (see [19], chapter
7), the evaluation of the constant kr is reduced to the resolution of a generalized eigenvalue
problem. Precisely, (k7)~! coincides with the smallest eigenvalue of the operator Ar. In order
to evaluate this smallest eigenvalue, we may use the inverse power iteration method (we refer to
[10]) assuming that this eigenvalue is simple: in our context, the algorithm reads as follows:

Let (¢8,Y) € L2(2) x H~Y(Q) be any function; compute (¢9,19) € L*(Q) x H~1(Q) defined
by

X%,
¥, ¢Y) = : 5.39
Wo,91) ||(LP8’90(1J)||L2(Q)><H*1(Q) ( )

Then, for any k£ > 1, compute

ok b) = A#( Alzw’f—l),
(5.40)

H(‘Plgv410]16)||L2(Q)><H*1(Q)
If the smallest eigenvalue of the operator Ar is isolated, then the sequences converge and the
following property holds :

i (47, 06, 0h) S R YY)
—oo L2(Q)x H-1(Q),L2(Q) x H=1(Q)

Remark 5.1. The first step of the algorithm requires to solve a null controllability problem :
find (pf, %) € L2 x H™! such that

Ar(pf, of) = (W, —A~ 1Y), (5.42)

that is, find the null control (of the form —a(x)p) for y solution of (5.85) with the initial data
(A=Lpk wk)y € HE(Q) x L2(Q). We shall use the direct method developed in [11] which is very
appropriate since it approzimates the operator Ar explicitly (for iterative indirect method, we
refer to [15, 20]) and which ensures the strong convergence of the approzimation.

5.2 Evaluation of the constant E : the internal damping case

The constant l;:\;; which appears in the inequality

/ 20(2) [ua[? dadt < Frllol2 0, (5.43)

T

where u solves
Ofu(x,t) — Oou(x,t) = /2a(z)v, (x,t) € Qr
uw(0,t) =u(l,t) =0, te(0,7), (5.44)
u(z,0) =0, Owu(z,0)=0, z€Q,
can be defined as :
— foT 2a(x) |ug|*dxdt

kr = sup 5 . (5.45)
veL2(QT) HU”Lz(QT)

I;; is the constant of continuity of a linear map in v. Again, for simple geometry, we may employ
Fourier decomposition. We refer to the Appendix for the 1D situation. As before, in the general
case, we may proceed as follows.
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First, we introduce the function ¥ solution of

Ly = —2a(x)%(ut), in Qr,
b= on . (5.46)

As in [19] (see page 416), the derivate is defined by duality so that
9]
< a(x)a(wt), w>=— // a(x)pyw, dedt, Yw e HY(0,T; L*(Q)). (5.47)
T

The function ¢ is defined by transposition, so that in particular, we have

//T 2a(z) |ug|* dedt = //QT V2a(z) o de dt.

Therefore, defining the operator Br : L*(Qr) — L*(Qr) by Br(v) := \/2a(x)¥, we get
(BTUM))L?(QT) < /;;(U,U)L2(QT) (5.48)

so that the constant l;; may again be approximated by the power iteration method, which reads
as follows:

Let v” any function in L*(Qr). We define w® = v°/|[v°(|2(g,) in L*(Qr) and then for any

k>,
{ o = Brot, (5.49)
w* = 0% /0*[| 12(@r)- '
Then, if the largest eigenvalue of Br is isolated, the sequences {v*}x~0, {w*}r>o converge and
Jim (7 w¥) 2 = b (5.50)

We easily check that the operator is symmetric: (Brv,v) = (v, B(®)) for all v,v € L*(Qr).
Moreover, clearly (Br(v),v) > 0 for all v € L?(Qr). Finally, the equality (Br(v),v) = 0 implies
that a(z)us = 0 on Qr. If a(x) > 0 almost everywhere in €, then u; = 0 on Qr, then since
u(-,0) = 0 on Q, this implies that © = 0 in Qr, then Lu = 0 in Q7 then y/a(x)v =0 in Q1 and
then finally v = 0 in Q7. The same conclusion holds if suppa # Q (for instance a(z) = 1, (),
w C Q).

5.3 Internal damping term: a numerical illustration in 1D

We consider = (0,1), 2a(z) = 1,(x) with w = (0.1,0.3). The minimal time for which the
observability inequality holds is Tpps = 1.4. Proceeding as in [7, 21], we obtain the following
approximation of the spectral abscissa (which is egal to w(v/2a), see [12]):

u(A) = sup {Re(A\); A € 0(A)} ==~ —T7.131 x 102, (5.51)

where o(A) denotes the spectrum of A.

Tables 1 collects some values of kp with respect to T' > 1.4. In particular, we check that for
T large enough, kr behaves like 1/T for T large. Similarly, Table 2 collects some values of kp
with respect to T', for which we observe that kr behaves likes T2 for T large.
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T 14 1.405 1.41 1.42 1.45 1.5 1.75 2 2.5 3
kr | 546.66 298.74 187.95 100.41 41.336 25.52 14.50 7.033 6.724 5.564

T 4 ) 6 8 10 12 14 16 20 25 30
kr | 3.516 298 2344 1.758 1.406 1.172 1.004 0.879 0.703 0.563 0.468

Table 1: kr vs. T > 1.4.

T 1.4 1.45 1.5 1.75 2 2.5 4 8 16
kr | 0.112 0.128 0.137 0.187 0.243 0377 0.966 3.540 11.369

Table 2: kg vs. T > 1.4.

Consequently, if we note

2T kr(1+ kr)

we get the values reported in Table 3. We check, in agreement with the estimate (1.17), that

T 1.4 1.45 1.5 1.75 2
Cr | =5.88x107% —747x10"% —1.168x 1072 —1.71x10"2 —3.03x1072

T 2.5 4 8 16
Cr | =228 x1072 —1.95x10"2 —836x10"3 —3.01 x1073

Table 3: Cr vs. T for Q = (0,1) and w = (0.1,0.3).

~ —7. 2 < ~ —3. —2 .
pA) = ~T131 x 1072 < _inf O ~ —=3.03 x 10 (5.52)

and that infrs>; 4 Cr provides a satisfactory upper estimate of p(A).

5.4 Internal damping term: numerical illustrations in 2D

We now consider the two dimensional case: first, we assume that Q is the unit square, Q = (0, 1),
and 2a(x) = 101,,(z) with
w={(z1,22) € 2,21 € (0.1,0.3), 22 € (0,1)} U {(x1,22) € Q, 21 € (0.,1.),22 € (0.1,0.3)}.
(5.53)
The minimal time for the observability inequality holds is Tpys = 7v/2/5 ~ 1.97.

Proceeding as in [21], we obtain the following approximation of the corresponding spectral

abcsissa :
p(A) ~ —9.91 x 1071, (5.54)

Similarly, Table 4 reports the values of Cr we obtain for T' < T,;s: Again, in agreement with
the estimate (1.17), we observe that infr>p, Cr is a reasonable estimation by above of p(A),
obtained for T around T = 2.3: infr>7,, Cr ~ —5.2 x 1071

Finally, we have repeated the computations for the geometry €2, subset of (0, 1)? described on
Figure 1 (Left), considered in [21]. The support w of the damping function is given on Figure 1
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T 2. 2.1 2.2 2.25 2.3
Cr | —82x1072 —-18x10"t —-28x10"! —41x10"! —-52x101

T 2.35 2.4 2.5 3 4
Cr | =35x1071 —76x1072 —-39x10"% —21x10"3 —7.32x 10~

Table 4: Cr vs. T for Q = (0,1)? and w defined by (5.53).

Figure 1: Domain Q C (0,1)? (left) and support w C Q (right).

(right). For such subdomain w, the controllability cost k7, introduced in (1.14) is finite as soon
as T is large enough ( of the order T,, ~ 2 here). With again, a(z) = 101,(z), we compute in
[21] u(A) ~ —1.89 x 1071, while the computation of various Cr leads to infr Cp ~ —7.49 x 1072
reached approximatively for 7' = 3.1.

6 Appendix: evaluation of the constant in 1D using Fourier Decom-
position

6.1 Evaluation of kr in 1-D: internal damping case

For some simple geometry, we may approximate the constant kr, which appears in (5.31), by
explicit Fourier representation of the homogeneous solution ¢ of (5.32). We assume for simplicity
that the damping function is constant such that 2a(z) =1, x € w C (0,1).

We first note (ay, b, )p>0 the Fourier coefficients in 1?(N) x A~ (N) of the initial state (¢q, ¢1) €
L?(0,1) x H=1(0,1), such that (po(z),¢1(z)) = > p>0(ap; bp) sin(prz). The adjoint state ¢
takes the form

by . :
o(z,t) = 1;) (ap cos(pmt) + o sm(pm‘)) sin(prz).
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We get
// ppdrdt = Z aply // cos(prt) cos(gmt) sin(pra) sin(gra) dx dt

qr p,q>0
) )
+ apby cos p7rt sin(prx) sin(grz) dx dt
p,q>0
S t
+ Z bpag // sin(prt) cos(gmt) sin(prx) sin(qrz) dx dt
p,q>0 ar P

t
+ Z bpby // sin pmf sin qﬂ-) sin(prx) sin(gmzx) dz dt,

p,q>0

and

o, 0) 1220,y = D lapl®s e )11 Z\

p>0 p>0
bpby
(50,205 0)z201) = D aply; (00,8 0)m101) = Y %
p,q>0 pa>o P4

We may therefore introduce a matrix Mg, such that
{@g}q>0 ) ( {ap}p>o ) // _
< — , M >= podrdt
( {bq}q>0 " {bp}p>0 qr

and a matrix By, such that
{agteo ) ( {ap}p>0 >
< = ,B >=
( {bq}q>0 {bp}p>0

(¢(-,0),2(-,0))2() + (¢ (,0), 8, (-,0) >p-1(0) (= ||</70||L2(Q) + [le1lIF )

The inequality (5.31) then rewrite as follows :

(@) s )> < (e ) om (e ) >

for all {a,},~0 and {b,},~0 and is therefore the solution of the generalized eigenvalue problem

kr = sup{)\ 1 Blen} = Mg {en}t, V{en} = {an, bn}" € R\ {0}}
solved using the power iteration method (assuming that the largest eigenvalue is simple). Remark
that the matrix M., is symmetric, definite positive and full while the matrix B is diagonal.
6.2 Evaluation of k7 in 1-D: the internal damping case

In the 1D setting, the constant l;\;; in (5.43) may also be approximated by the way of Fourier
expansion. We assume that v € L2(Q7) can be written as follows

/U('T5 t) = Z Um,nfm(t)gn(x)a U’H'L,n e R

m,n>0

where {fn}m>o0 and {g, }n>0 denote a basis of L?(0,T) and L?(0, 1) respectively.
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We then expand the solution of the non homogeneous wave equation as follows: wu(z,t) =

> ps00p(t)sin(pmx). We get that b, solves the differential equation

b, (t) + (qm)?by(t) =2 va’nfm(t)/o v 2a(x)gn(x) sin(gra)dz, ¢>0
= Z Um,ncn,qu(t)

m,n>0

with ¢, ; = 2 fol v/ 2a(x)gn(x) sin(grx) dz leading to

Therefore, if we denote by d 4(w) := [ sin(prx) sin(gmrz)dz, we have

T
/ / ug(,t)|?drdt = Z va,n Moy w7 Vmm (6.55)
w JO

m,n m,n

Moin = 3 engenadya(@) [ ([ costomtt= ) mtsias ) ([ cosam(t—o) s .

p,q>0
Similarly, we obtain

T
||’U($,t)||%2(qT) = 5 Z Z Um,n 6m,ﬁdn,ﬁ(w) Um,m- (656)

m,n>0m,n>0

Eventually, using (6.55) and (6.56), the constant K (see (5.43)) can be reformulated as
the solution of a generalized eigenvalue problem, as in Section (6.1). In practice, we may use
fm(t) = sin(mnt/T), m > 0 and g, (x) = sin(nwz), n > 0.

References

[1] K. AMMARI AND S. NICAISE, Stabilization of elastic systems by collocated feedback, Lec-
ture Notes in Mathematics, vol. 2124, Springer-Verlag, Berlin, 2015.

[2] K. AMMARI, M. DiMASST AND M. ZERZERI, The rate at which energy decays in a viscously
damped hinged Euler-Bernoulli beam, Journal of Differential Equations, 257 (2014), 3501—
3520.

[3] K. AMMARI, M. DIMASSI AND M. ZERZERI, Rate of decay of some Petrowsky-like dissi-
pative systems, arXiv:1407.2172.

[4] K. AMMARI, A. HENROT, AND M. TUCSNAK, Asymptotic behaviour of the solutions and

optimal location of the actuator for the pointwise stabilization of a string, Asymptot. Anal.,
28 (2001), pp. 215-240.

21



[5]

[10]

[11]

K. AMMARI AND M. TUCSNAK, Stabilization of second order evolution equations by a
class of unbounded feedbacks, ESAIM Control Optim. Calc. Var., 6 (2001), pp. 361-386
(electronic).

K. AMMARI, M. TUCSNAK, AND A. HENROT, Optimal location of the actuator for the
pointwise stabilization of a string, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), pp. 275~
280.

M. AscH AND G. LEBEAU, The spectrum of the damped wave operator for a bounded
domain in R?, Experiment. Math., 12 (2003), pp. 227-241.

A. BENSOUSSAN, G. DA PraTO, M. C. DELFOUR, AND S. K. MITTER, Representation
and control of infinite-dimensional systems. Vol. 1, Systems & Control: Foundations &
Applications, Birkhduser Boston Inc., Boston, MA, 1992.

C. CASTRO AND S. J. CoX, Achieving arbitrarily large decay in the damped wave equation,
SIAM J. Control Optim., 39 (2001), pp. 1748-1755 (electronic).

F. CHATELIN, Spectral approximation of linear operators, Computer Science and Applied
Mathematics, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York,
1983. With a foreword by P. Henrici, With solutions to exercises by Mario Ahués.

N. CINDEA AND A. MUNCH, A mized formulation for the direct approximation of
the control of minimal L?-norm for linear type wave equations, To appear in Calcolo,
http://hal.archives-ouvertes.fr/hal-00853767.

S. Cox AND E. ZUAzuA, The rate at which energy decays in a damped string, Comm.
Partial Differential Equations, 19 (1994), pp. 213-243.

G. DOETSCH, Introduction to the theory and application of the Laplace transformation,
Springer-Verlag, New York, 1974. Translated from the second German edition by Walter
Nader.

P. FREITAS, Optimizing the rate of decay of solutions of the wave equation using genetic
algorithms: a counterezample to the constant damping conjecture, STAM J. Control Optim.,
37 (1999), pp. 376-387 (electronic).

R. GLowinskI, J.-L. LioNs, AND J. HE, Fzact and approximate controllability for dis-
tributed parameter systems, vol. 117 of Encyclopedia of Mathematics and its Applications,
Cambridge University Press, Cambridge, 2008. A numerical approach.

A. HArRAUX, Une remarque sur la stabilisation de certains systémes du deuziéeme ordre en
temps, Portugal. Math., 46 (1989), pp. 245-258.

A. E. INGHAM, Some trigonometrical inequalities with applications to the theory of series,
Math. Z., 41 (1936), pp. 367-379.

G. LEBEAU, E‘quatz’on des ondes amorties, in Algebraic and geometric methods in mathe-
matical physics (Kaciveli, 1993), vol. 19 of Math. Phys. Stud., Kluwer Acad. Publ., Dor-
drecht, 1996, pp. 73—109.

J.-L. Lions, Contrélabilité exvacte, perturbations et stabilisation de systémes distribués.
Tome 1, vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathe-
matics], Masson, Paris, 1988. Controlabilité exacte. [Exact controllability], With appendices
by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch.

22



[20] A. MUNCH, A uniformly controllable and implicit scheme for the 1-D wave equation, M2AN
Math. Model. Numer. Anal., 39 (2005), pp. 377-418.

[21] A. MUNCH AND A. F. PazoTo, Uniform stabilization of a viscous numerical approzimation
for a locally damped wave equation, ESAIM Control Optim. Calc. Var., 13 (2007), pp. 265—
293 (electronic).

23



