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ENDLESS CONTINUABILITY AND CONVOLUTION

PRODUCT

by

Yafei Ou & Eric Delabaere

Abstract. — We provide a rigorous analysis for the so-called endlessly continuable
germs of holomorphic functions or in other words, the Ecalle’s resurgent functions. We
follow and complete an approach due to Pham, based on the notion of discrete filtered
set Ω⋆ and the associated Riemann surface defined as the space of Ω⋆-homotopy
classes of paths. Our main contribution consists in a complete though simple proof of
the stability under convolution product of the space of endlessly continuable germs.
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1. Introduction

Today, the resurgence theory of Ecalle has demonstrated its efficiency in many

instances for dealing with divergent series arising from differential and difference

equations, PDEs, semiclassical analysis, etc.. see for instance [11, 9, 15, 16, 4, 5,

24] and references therein. In particular, this theory provides the necessary tools for

understanding the nonlinear Stokes phenomena in asymptotic analysis and leads up

to both theoretical results and even numerical methods, see e.g. [8].

In its simplest form, the Ecalle’s theory generalizes the Borel resummation theory,

whose main objects are 1-Gevrey formal series ϕ̃(z) =
∑

n≥1

an
zn

∈ C[[z−1]], that is the

formal Borel transform ϕ̂(ζ) =
∑

n≥1

an
(n− 1)!

ζn ∈ C{ζ} defines a germ of holomorphic

functions at the origin. The formal series ϕ̃ is said to be resurgent if ϕ̂ is “endlessly
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continuable”. Roughly speaking, ϕ̂ is endlessly continuable if ϕ̂ can be analytically

continued along any path on C avoiding a set of possibly singular points, each of

them being locally isolated. However, this set may be everywhere dense and is so for

many important applications, in particular those stemming from high energy physics,

string theory and related models [6, 7, 1, 19, 10]

It turns out that the Cauchy product (ϕ̃.ψ̃)(z) of 1-Gevrey formal series becomes

the convolution product ϕ̂ ∗ ψ̂(ζ) =

∫ ζ

0
ϕ̂(η)ψ̂(ζ − η) dη of germs of holomorphic

functions by Borel transformation. Since the Ecalle’s theory aims at analyzing non-

linear problems, it is an essential demand that the convolution product preserves the

notion of endless continuability. This ends up with the definition of various subalge-

bras of resurgent functions in the so-called Borel ζ-plane and their counterpart in the

initial z-plane, as well as alien operators designed for encoding the singularities by

microlocalisation and describing the nonlinear Stokes phenomena [12, 13, 2, 24, 5].

As a matter of fact, there exist various definitions of “endless continuability” in

the literature. The more general one is that of Ecalle [12, 13]. Another one is due

to Pham et al. [3, 2], is easier to handle with and is based on the construction of a

Riemann surface governed by the datum of a discrete filtered set. This provides the

notion of endless Riemann surface. A germ of holomorphic functions that can be an-

alytically continued to such a Riemann surface is by definition endlessly continuable.

This is this second approach that we use in this paper.

As already said, the endless continuability and its stability under convolution

product are key-properties at the very root of the resurgence theory. Unfortunately,

the existing proofs for the stability in its full generality [12, 2] are difficult and

subject to controversy. Our main goal in this article is to show in a simple and

rigorous way that the convolution product of any two endlessly continuable functions

is endlessly continuable. Though inspired by [2], our methods differ from these

authors for key-arguments. The method that we present in this paper can be seen as

an extension of ideas detailed in [20, 22, 24] for the case of holomorphic functions

that can be analytically continued along any path avoiding closed discrete subsets

of C. Consequently, we thought that our results were worth the attention of the

specialists in this field of research.

The paper is organized as follows. We introduce the notion of discrete filtered sets

and their associated Riemann surfaces that we study properly (Sect. 2). We define

endless Riemann surfaces and endlessly continuable germs of holomorphic functions

and we make a link with the endlessly continuable functions of Ecalle (Sect. 3). The

main result of the paper concerns the stability under convolution product and this

is detailed in Sect. 4. We end the paper with some open problems.

2. Discrete filtered set and associated Riemann surface

2.1. Discrete filtered sets. — The following definitions are adapted from [2].
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Definition 2.1. — A discrete filtered set Ω⋆ centred at ω ∈ C is an increasing

sequence of finite sets ΩL ⊂ C, L > 0, such that :

– for any L > 0, ΩL belongs to the open disc centred at ω with radius L;

– if L1 ≤ L2 then ΩL1 j ΩL2 ;

– for L > 0 small enough, ΩL = {ω}.

For L > 0, we denote Ω⋆L = ΩL \ {ω}. The number ρΩ⋆(ω) = sup{L > 0 | Ω⋆L = ∅}

is called the distance of ω to Ω⋆.

Definition 2.2. — Let Ω⋆ and Ω′
⋆ be two discrete filtered sets centred at ω ∈ C.

Their union Ω⋆ ∪ Ω′
⋆ is the discrete filtered set centred at ω defined by : for every

L > 0, (Ω⋆ ∪ Ω′
⋆)L = ΩL ∪ Ω′

L. Their sum Ω⋆ + Ω′
⋆ is the filtered set centred

at ω defined by : for every L > 0, (Ω⋆ + Ω′
⋆)L = {−ω + ΩL + Ω′

L} ∩ D(ω,L).

Their fine sum Ω⋆ ∗ Ω
′
⋆ is the filtered set centred at ω given by : for every L > 0,

(Ω⋆ ∗Ω
′
⋆)L = {ζ = −ω + ω1 + ω2 | ω1 ∈ ΩL1 , ω2 ∈ Ω′

L2
, L1 + L2 = L}.

If Ω⋆ is a discrete filtered set, we remark that
⋃
L>0ΩL can be dense in C as it is

shown in the following example.

Example 2.3. — Assume that ω1 ∈ C⋆ and define

– for any L ∈]0, |ω1|], ΩL = {0},

– for any n ∈ N⋆ and any L ∈]n|ω1|, (n + 1)|ω1|], ΩL = {0,±ω1, · · · ,±nω1}.

This define a discrete filtered set Ω1⋆ centred at 0.

Assume now that ω1, ω2, ω3 ∈ C⋆ are rationally independent, that is linearly inde-

pendent over Z. We consider the three discrete filtered sets Ω1⋆, Ω2⋆ and Ω3⋆ centred

at 0 defined as above. We note Ω⋆ = Ω1⋆ + Ω2⋆ + Ω3⋆ their sum. Then
⋃
L>0 ΩL is

everywhere dense in C. The conclusion is the same when Ω⋆ = Ω1⋆ ∗ Ω2⋆ ∗ Ω3⋆ is

defined by fine sums.

For a given discrete filtered set Ω⋆ centred at ω, its iterated fine sums∑
n∗Ω⋆ = Ω⋆ ∗ · · · ∗ Ω⋆︸ ︷︷ ︸

n times

makes a direct system (for the injections

(
∑

n∗ Ω⋆)L →֒
(∑

(n+1)∗ Ω⋆

)
L
, for every L > 0). The fine sums enjoyes the

following property (the proof is left to the reader):

Proposition 2.4. — Let Ω⋆ be a discrete filtered set Ω⋆ centred at ω. Then the

direct limit Ω∞
⋆ = lim

→

∑

n∗

Ω⋆ is a discrete filtered set at ω.

Definition 2.5. — The discrete filtered set Ω∞
⋆ is called the saturated of Ω⋆.

2.2. Reminder about paths. — In what follows, a path λ in a topological space

X is any continuous function λ : [a, a + l] → X, where [a, a+ l] ⊂ R is a (compact)

interval possibly reduced to {a}. We often work with standard paths, that is paths

defined on [0, 1]. The path λ : t ∈ [0, 1] 7→ λ(a+ tl) is the standardized path of λ.
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For two paths λ1 : [a, a+ l] → X, λ2 : [b, b + k] → X so that λ1(a+ l) = λ2(b), one

defines their product (or concatenation) by

λ1λ2 : t ∈ [a, a+ l + k] 7→

{
λ1(t), t ∈ [a, a+ l]

λ2(t− a− l + b), t ∈ [a+ l, a+ l + k]

When the two paths λ1, λ2 have same extremities, they are homotopic when there

exists a continuous map H : [0, 1]× [0, 1] → X that realizes a homotopy between the

standardized paths λ1 and λ2. We recall that any path λ : I → C can be uniformaly

approached by C∞-paths. When λ : I → C is piecewise C1, we denote its length by

Lλ.

2.3. Ω⋆-allowed path, Ω⋆-homotopy. — The following definitions are inspired

from [2] but for slight modifications (1).

Definition 2.6. — For Ω⋆ a discrete filtered set centred at ω ∈ C, one denotes by

RΩ⋆(L) the set of paths λ : I → C starting from ω and such that :

– λ is C1 piecewise and its length satisfies Lλ < L;

– λ is the constant path or there exists t0 ∈ [0, 1[ such that λ([0, t0]) = {ω} and

λ(]t0, 1]) ⊂ D(ω,L) \ΩL.

A path λ is said to be Ω⋆-allowed if λ ∈ RΩ⋆(L) for some L > 0. We denote by

RΩ⋆ =
⋃
L>0 RΩ⋆(L) the set of Ω⋆-allowed paths.

Definition 2.7. — Let Ω⋆ be a discrete filtered set centred at ω ∈ C. A continuous

map H : (s, t) ∈ [0, 1]2 7→ Ht(s) ∈ C is a Ω⋆-homotopy if H has a continuous partial

derivative
∂H

∂s
and, for every t ∈ [0, 1], the path Ht is Ω⋆-allowed.

Two Ω⋆-allowed paths λ0 and λ1 with same extremities are Ω⋆-homotopic when

there exists a Ω⋆-homotopy that realises a homotopy between the standardized paths

λ0 and λ1.

For λ a Ω⋆-allowed path, we denote by cl(λ) its equivalence class for the relation ∼Ω⋆

of Ω⋆-homotopy of paths in RΩ⋆ with fixed extremities.

It is quite important to understand what is the Ω⋆-homotopy and we make the

following remark that we formulate as a lemma:

Lemma 2.8. — Assume that Ω⋆ be a discrete filtered set centred at ω ∈ C and let

H be a Ω⋆-homotopy. Then there exists a good (2) open covering (Ii)0≤i≤n of [0, 1]

and real positive numbers L0, L1, · · · , Ln such that,

– for every i = 0, · · · , n and every t ∈ Ii, Ht belongs to RΩ⋆(Li).

– for every i = 0, · · · , n−1 and for every t ∈ Ii∩Ii+1, Ht ∈ RΩ⋆(Li)∩RΩ⋆(Li+1).

Proof. — From the very definition of a discrete filtered set, one can define an in-

creasing sequence of real numbers 0 = l−1 < l0 < l1 < l2 < · · · with the properties:

– Ωl0 = {ω} and for any integer i ≥ 1, Ωli−1
$ Ωli ;

1. These definitions are less general than those of [2] but sufficient in practice as far as we know.

2. By “good”, we mean that the covering has finite elements, that each of these element Ii is a

connected interval and that there are no 3-by-3 intersections.
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– ΩL = Ωli for every L ∈]li−1, li], i ∈ N.

Pick any t⋆ ∈ [0, 1] and assume that LHt⋆
∈ [li−1, li[ for some i ∈ N. One has

Ht⋆ ∈ RΩ⋆(li) necessarily since Ht⋆ is Ω⋆-allowed. We say that Ht ∈ RΩ⋆(li) for

any t ∈ [0, 1] close enough to t⋆. Indeed, we remark that the map t ∈ [0, 1] 7→ LHt

is continuous because of the existence and the continuity of the partial derivative
∂H

∂s
. Thus, if LHt⋆

∈]li−1, li[, then LHt ∈]li−1, li[ for t close enough to t⋆. Now if

LHt⋆
= li−1 (i ≥ 1), then LHt ∈]li−2, li[ for t close enough to t⋆. However, LHt

belongs also to RΩ⋆(li) for t close enough to t⋆ because of the continuity of H (the

euclidean distance d(Ht⋆ ,Ωli) of the path Ht to the set Ωli is > 0, so does d(Ht,Ωli)

for t close enough to t⋆). This way one gets an open covering of [0, 1] from which

one deduces a finite open covering by compacity. One easily concludes.

ω1

ω2

λ1

λ3

λ2
ω3

ω4

0

   

Figure 1. We assume that Ω⋆ is a discrete filtered set centred at 0. For
0 < L1 < L2, ΩL1

= {0, ω1, ω2}, ΩL2
= ΩL1

∪ {ω3, ω4}. The paths
λ1, λ2 ∈ RΩ⋆

(L1) are Ω⋆-homotopic, the paths λ2, λ3 ∈ RΩ⋆
(L2) are Ω⋆-

homotopic, thus λ1 and λ3 are Ω⋆-homotopic despite the fact that

λ1 /∈ RΩ⋆
(L2).

From lemma 2.8, observe that if L2 > L1, a path λ1 ∈ RΩ⋆(L1) can be Ω⋆-

homotopic to another path λ2 ∈ RΩ⋆(L2) and at the same time λ1 not being homo-

topic to λ2 in the usual way, when both are seen as paths in RΩ⋆(L2). Even, we may

have λ1 /∈ RΩ⋆(L2), see Fig. 1.

2.4. Riemann surface associated with a discrete filtered set. —

Definition 2.9. — Let Ω⋆ be a discrete filtered set centred at
•
ω ∈ C. We set:

RΩ⋆ = {ζ = cl(λ) | λ ∈ RΩ⋆} and p : ζ = cl(λ) 7→
•
ζ = λ(1) ∈ C.

Remark that p−1(
•
ω) is reduced to a single point ω = cl(constant path). This is

why one usually considers RΩ⋆ as a pointed space (R, ω).

Let Ω⋆ be a discrete filtered set centred at
•
ω ∈ C, and set ω = p−1(

•
ω). One

can endow RΩ⋆ with a separated topology, a basis B = {U } of open sets defining
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this topology being given as follows (3). (We adapt the classical construction of a

universal covering [17]). Let us consider a point ζ ∈ RΩ⋆ .

– Assume that ζ = ω. For some L > 0 we consider
•

U ⊂ D(
•
ω,L) \ Ω⋆L a star-

shaped domain with respect to
•
ω. Let U ⊂ RΩ⋆ be the set of all ξ = cl(λ)

where λ ∈ RΩ⋆(L) is any path ending at
•
ξ ∈

•
U and whose image is the line

segment [ω,
•
ξ]. (For a given

•
ξ, the length of these paths is |

•
ξ| < L and all these

paths belong to the same Ω⋆-homotopy class).

– Suppose that ζ 6= ω. We choose a path λ1 ∈ RΩ⋆(L) such that cl(λ1) = ζ. For

some L2 > 0 such that Lλ1+L2 < L, we consider
•

U ⊂ D(
•
ζ, L2) \ΩL ⊂ D(

•
ω,L) \ ΩL

such that
•

U is a star-shaped domain with respect to
•
ζ = λ1(1). For

•
ξ ∈

•
U ,

consider a path λ2 starting from
•
ζ, ending at

•
ξ and whose image is the line

segment [
•
ζ,

•
ξ]. Then the product λ1λ2 belongs to RΩ⋆(L) and we consider its

Ω⋆-homotopy class ξ = cl(λ1λ2). We note U the set of such points ξ.

We show that the system B = {U } made of these sets provides a basis for a

topology on RΩ⋆ . Obviously, every element ξ ∈ RΩ⋆ belongs to at least one U ∈ B.

Now assume that ξ ∈ U ∩ V , U ,V ∈ B.

– If ξ = ω, then necessarily
•

U and
•

V are two star-shaped domains with respect

to
•
ω,

•
U is a subset of D(

•
ω,L1) \ Ω⋆L1

and
•

V is a subset of D(
•
ω,L2) \Ω

⋆
L2

.

Set L = max{L1, L2}. Then
•

W =
•

U ∩
•

V ⊂ D(
•
ω,L) \ Ω⋆L is also a star-shaped

domain with respect to
•
ω to which is associated a W ∈ B that satisfies: ξ ∈

W ⊂ U ∩ V .

– Otherwise ξ 6= ω and ξ ∈ U ∩ V . There is no loss of generality in assuming

also that ω /∈ U ∩ V . Thus :

• for some L > 0,
•

U ⊂ D(
•
ζ1, L2)\ΩL is a star-shaped domain with respect

to
•
ζ1 = λ1(1) where λ1 ∈ RΩ⋆(L) satisfies Lλ1 + L2 < L. Also we

have ξ = cl(λ1λ2) where λ2 starts from
•
ζ1, ends at

•
ξ and is such that

λ2([0, 1]) = [
•
ζ1,

•
ξ].

• for some L′ > 0,
•

V ⊂ D(
•
ζ ′1, L

′
2)\ΩL′ is a star-shaped domain with respect

to
•
ζ ′1 = λ′1(1) where λ′1 ∈ RΩ⋆(L

′) satisfies Lλ′1 + L′
2 < L′. Also ξ =

cl(λ′1λ
′
2) where λ′2 starts from

•
ζ ′1, ends at

•
ξ and is such that λ′2([0, 1]) =

[ζ ′1, ξ].

Now choose L′′
2 > 0 such that Lλ1λ2 + L′′

2 < L and Lλ′1λ′2 + L′′
2 < L′. Consider

•
W ⊂

•
U ∩

•
V ∩D(

•
ξ, L′′

2) a star-shaped domain with respect to
•
ξ. To

•
W is

associated W ∈ B and ξ ∈ W ⊂ U ∩ V .

We show that the topology thus defined by B is Hausdorff. We consider two points ζ

and ζ ′ in RΩ⋆ . Clearly if
•
ζ 6=

•
ζ ′, then ζ and ζ ′ have disjoints neighbourhoods. Thus

3. This topoloy is not detailed in [2].
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assume that
•
ζ =

•
ζ ′ (6=

•
ω, say) but ζ 6= ζ ′. Suppose the existence of a neighbourhood

U ∈ B of ζ, a neighbourhood U ′ ∈ B of ζ ′ such that U ∩U ′ 6= ∅. This means that

there exists ξ ∈ U ∩ U ′ that satisfies:

– ξ = cl(λ1λ2) with ζ = cl(λ1), λ2 starting from
•
ζ, ending at

•
ξ with image the

line segment [
•
ζ,

•
ξ] ⊂

•
U ;

– ξ = cl(λ′1λ
′
2) with ζ ′ = cl(λ′1), λ

′
2 starting from

•
ζ ′ =

•
ζ, endings at

•
ξ the line

segment [
•
ζ,

•
ξ] ⊂

•
U

′ for its range.

This implies that λ1 and λ′1 are in the same class, that is ζ = ζ ′ and we get a

contradiction.

The topological space RΩ⋆ is obviously (arc)connected. Also, by the very con-

struction of the topology, for every U ∈ B, the restriction p|U : ζ 7→
•
ζ ∈

•
U is a

homeomorphism. This means that RΩ⋆ is an étalé space on C (but of course not a

covering space). We have thus shown the following proposition.

Proposition 2.10. — Let Ω⋆ be is a discrete filtered set. The (pointed) space RΩ⋆

is a topologically (arc)connected separated space. With the projection p, the space

RΩ⋆ is an étalé space on C.

When pulling back by p the complex structure of C, RΩ⋆ becomes a Riemann

surface. This Riemann surface is the smallest in the following sense:

Lemma 2.11. — Let (R′, p′, ω′) be a Riemann surface over C, with p′(ω′) =
•
ω.

We suppose that any Ω⋆-allowed path can be lifted on R′ from ω′ with respect to p′.

Then (RΩ⋆ , p, ω) is contained in (R′, p′, ω′), that is there exists a continuous map

τ : RΩ⋆ → R′ such that p′ ◦ τ = p and τ(ω) = ω′.

Proof. — From the very definition of the Riemann surface (RΩ⋆ , p) associated with

a discrete filtered set Ω⋆ centred at
•
ω ∈ C, every Ω⋆-allowed path can be lifted with

respect to p into a path on RΩ⋆ with initial point ω = p−1(
•
ω). Indeed, assume

that λ ∈ RΩ⋆(L) and define λt : s ∈ [0, 1] 7→ λt(s) = λ(ts) for t ∈ [0, 1]. Then

λt ∈ RΩ⋆(L) and the mapping Λ : t ∈ [0, 1] 7→ Λ(t) = cl(λt) is continuous and is a

lifting of λ from ω. This lifting is unique thanks to the uniqueness of lifting [17]. Pick

any Ω⋆-allowed path λ. Its lifting with respect to p from ω ends at ζ while its lifting

with respect to p′ from ω′ ends at ξ. This gives a mapping τ : ζ ∈ RΩ⋆ 7→ ξ ∈ R′

which is well-defined and injective (uniqueness of lifting), continuous (we work with

étalé spaces) and preserves fibers.

Definition 2.12. — Let Ω⋆ be a discrete filtered set centred at
•
ω. Any Riemann

surface (R′, p′, ω′) over C which is isomorphic to (RΩ⋆ , p, ω), is called a Riemann

surface associated with Ω⋆.

In this definition, isomorphic means the existence of a fiber preserving homeomor-

phism τ : RΩ⋆ → R′.

We would like to point out a consequence of the topology considered on these

Riemann surfaces. On Fig. 2, we consider a discrete filtered set Ω⋆ centred at 0
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such that, for 0 < L1 < L2, ΩL1 = {0, ω1, ω2}, ΩL2 = ΩL1 ∪ {ω3, ω4}. We have

drawn two paths λ1, λ2 ∈ RΩ⋆(L1) ending at the same point ζ and Ω⋆-homotopic,

cl(λ1) = cl(λ2). Also we have drawn a path λ3 starting at ζ and ending at ξ such

that the product path λ2λ3 belongs to RΩ⋆(L2). We remark that λ1λ3 /∈ RΩ⋆(L2).

The path λ1, resp. λ2, can be lifted with respect to p to a path Λ1, resp. Λ2, on

RΩ⋆ with initial point 0 = p−1(0) and common end point cl(λ1) = cl(λ2). From

that point, λ3 can be lifted with respect to p to a path Λ3 ending at cl(λ2λ3). We

thus see that the path Λ1Λ3 is well defined and p(Λ1Λ3) = λ1λ3. This means that

λ1λ3 can be lifted on RΩ⋆ with respect to p from 0 despite the fact that λ1λ3 is not

Ω⋆-allowed. We say that ω3 is a “removable Ω⋆-point” for λ1λ3.

λ2

λ1

ω1

ω2ω3

ω4
λ3

ζ ξ
0

Figure 2

Definition 2.13. — Let Ω⋆ be a discrete filtered set centred at
•
ω0 ∈ C and (RΩ⋆ , p)

its associated Riemann surface. Let Λ be a piecewise C1 path on RΩ⋆ starting from

ω0 = p−1(
•
ω0) and λ = p ◦ Λ. Let L > Lλ. If λ meets a point ω ∈ ΩL, then ω is

called a removable Ω⋆-point for λ.

2.5. Distance of a path to Ω⋆. — Let Ω⋆ be a discrete filtered set. We consider

a point ζ ∈ RΩ⋆ . For r > 0 small enough and since a disc is a star-shaped domain

with respect to its origin, there exists a connected neighbourhood U ⊂ RΩ⋆ of ζ so

that p|U : U → D(
•
ζ, r) is a homeomorphism.

Definition 2.14. — For any ζ ∈ RΩ⋆ and for r > 0 small enough, the ball D(ζ, r)

centred at ζ with radius r is the connected neighbourhood of ζ so that p|D(ζ,r) :

D(ζ, r) → D(
•
ζ, r) ⊂ C is a homeomorphism. The distance ρΩ⋆(ζ) of ζ to Ω⋆ is the

supremum of the r > 0 such that ζ has a neighbourhood of the form D(ζ, r).

In other words, ρΩ⋆(ζ) is the distance of ζ (for the norm |.|) to the boundary of

RΩ⋆ . If Ω⋆ is centred at
•
ω = p(ω), then of course ρΩ⋆(

•
ω) = ρΩ⋆(ω) and there is no risk

of misunderstanding. Notice that the mapping ζ ∈ RΩ⋆ 7→ ρΩ⋆(ζ) is continuous since

p is continuous. This implies that t ∈ [0, 1] 7→ ρΩ⋆

(
Λ(t)

)
is a continuous mapping

when Λ on RΩ⋆ starting from ω, thus inft∈[0,1] ρΩ⋆

(
Λ(t)

)
> 0 by compactness.

Definition 2.15. — Let Ω⋆ be a discrete filtered set centred at
•
ω = p(ω) ∈ C.

For any path λ issued from
•
ω that can be lifted to RΩ⋆ with respect to

p from ω into the path Λ, one defines the distance d(λ,Ω⋆) of λ to Ω⋆ by

d(λ,Ω⋆) = inft∈[0,1] ρΩ⋆

(
Λ(t)

)
> 0.
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2.6. Some properties of the Riemann surface RΩ⋆. —

Proposition 2.16. — The Riemann surface RΩ⋆ associated with the discrete fil-

tered set Ω⋆ is simply connected.

Thus RΩ⋆ is conformally equivalent to the open unit disc as a consequence of the

uniformization theorem.

Proof. — Let Ω⋆ be a discrete filtered set Ω⋆ centred at
•
ω ∈ C and let (RΩ⋆ , p) be its

associated pointed Riemann surface, ω = p−1(
•
ω). Pick a non-constant closed curve

Λ on RΩ⋆ . We want to show that Λ is null-homotopic. Since RΩ⋆ is arcconnected,

one can suppose that Λ starts and ends at ω and there is no loss of generality in

assuming that Λ does not meet ω apart from its extremities. Also, up to making a

slight deformation of Λ in its homotopy class, one can assume that λ = p ◦ Λ is C1,

with length Lλ < L for some L > 0 and that λ|]0,1[ avoids ΩL. One can write Λ under

the form (4) Λ = Λ1Λ
−1
2 where both Λ1, Λ2 are paths starting from ω and ending at

a point ζ ∈ RΩ⋆ with ζ 6= ω. We set λ1 = p ◦ Λ1 and λ2 = p ◦ Λ2. Both λ1, λ2 are

Ω⋆-allowed paths, precisely their belong to RΩ⋆(L). The path λ1, resp. λ2, can be

lifted with respect to p from ω and, by uniqueness of lifting, corresponds to Λ1, resp.

Λ2. This implies that λ1 and λ2 are Ω⋆-homotopic with ζ = cl(λ1) = cl(λ2). The

Ω⋆-homotopy between λ1 and λ2 can be lifted with respect to p and this provides a

homotopy between Λ1 and Λ2. Therefore, Λ = Λ1Λ
−1
2 is null-homotopic.

Proposition 2.17. — Let (RΩ⋆ , p) be the Riemann surface associated with a dis-

crete filtered set Ω⋆ = Ω⋆(ω) centred at
•
ω. Then, for every ζ ∈ RΩ⋆, there exists

a discrete filtered set Ω⋆(ζ) centred at
•
ζ = p(ζ) such that every Ω⋆(ζ)-allowed path

starting from
•
ζ can be lifted on RΩ⋆ from ζ with respect to p.

Proof. — We consider the Riemann surface (RΩ⋆ , p) associated with a discrete fil-

tered set Ω⋆ centred at
•
ω ∈ C and set ω = p−1(

•
ω). Pick a point ζ ∈ RΩ⋆ with ζ 6= ω

and assume that ζ = cl(λ0), λ0 ∈ RΩL0
for some L0 > 0. We consider a path λ

(C1 piecewise) starting form
•
ζ and of length Lλ. If Lλ < ρΩ⋆(ζ), then λ can be lifted

from ζ with respect to p : this is just a consequence of the topology considered on

RΩ⋆ .

Assume now that λ satisfies the properties : λ(0) =
•
ζ, λ(]0, 1]) ⊂ C \ ΩL0+L and

Lλ < L for some L > 0. For ε > 0 small enough, one can construct a Ω⋆-homotopy

H : t ∈ [0, 1] 7→ Ht ∈ RΩ⋆ such that

– H0 = λ0;

– for every t ∈ [0, ε], Ht ∈ RΩ⋆(L0) and Ht(1) = λ(t);

– Hε belongs to RΩ⋆(L0) ∩RΩ⋆(L0 + L);

– for every t ∈ [ε, 1], Ht ∈ RΩ⋆(L0 + L) and Ht(1) = λ(t).

4. Λ−1
2 is the inverse path, Λ−1

2 (s) = Λ−1
2 (1− s).
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Indeed, for t ∈ [0, ε], Ht realizes a small deformation of λ0 so as to avoid the points

of ΩL0+L while for t ∈ [ε, 1], Ht is for instance the standardized product of Hε

with λ|[ε,t]. This Ω⋆-homotopy can be lifted with respect to p into a homotopy

H : t ∈ [0, 1] 7→ Ht where, for every t ∈ [0, 1], Ht : [0, 1] → RΩ⋆ is a path starting at

ω. Therefore, the path Λ : t ∈ [0, 1] 7→ Ht(1) ∈ RΩ⋆ is a lifting of λ from ζ. This has

the following consequences. There exists a discrete filtered set Ω⋆(ζ) centred at
•
ζ,

– for L > 0 small enough, ΩL(ζ) = {ζ},

– for L > 0 large enough, ΩL(ζ) =
(
ΩL0+L ∩D(

•
ζ, L)

)
∪ {ζ}

such that every Ω⋆(ζ)-allowed path can be lifted on RΩ⋆ with respect to p from ζ.

2.7. Seen and glimpsed points. — We denote by S1 ⊂ C the circle of directions

about 0 of half-lines on C. We usually identify S1 with R/2πZ.

Definition 2.18. — Let I ⊂ S1 be an open arc, L > 0 and ω ∈ C. We denote by

s
L
ω(I) the following open sector adherent to ω:

s
L
ω(I) = {ζ = ω + ξeiθ ∈ C | θ ∈ I, 0 < ξ < L}.

Assume that Ω⋆ is a discrete filtered set centred at ω ∈ C, θ ∈ S1 is a given direc-

tion and L > 0. Since ΩL is a finite set, observe that ΩL ∩ s
L
ω(I) = ΩL∩]ω, ω + eiθL[

when I =]− α+ θ, θ + α[ with α > 0 chosen small enough.

Definition 2.19. — Let Ω⋆ be a discrete filtered set centred at ω ∈ C, θ ∈ S1

and L > 0. We denote Ω⋆L(θ) = ΩL∩]ω, ω + eiθL[. One says that α ∈]0, π2 [ is a

Ω⋆(θ, L)-angle if ΩL ∩ s
L
ω(I) = Ω⋆L(θ) with I =]− α+ θ, θ + α[.

Definition 2.20. — Let Ω⋆ be a discrete filtered set centred at ω ∈ C, θ ∈ S1 and

L > 0. We denote by R(Ω⋆, θ, L) the set of piecewise C1 paths λ that satisfy the

conditions:

– λ(0) = ω and Lλ < L;

– for every t ∈ [0, 1], the right and left derivatives λ′(t) do not vanish;

– there exists a Ω⋆(θ, L)-angle α ∈]0, π2 [ such that for every t ∈ [0, 1],

arg λ′(t) ∈]− α+ θ, θ + α[.

Remark that, apart from its origin, a path λ ∈ R(Ω⋆, θ, L) stays in an open sector

of the form s
L
ω(I), I =]−α+ θ, θ+α[, with a α a Ω⋆(θ, L)-angle. Moreover λ always

moves forward in that sector.

Proposition 2.21. — Let Ω⋆ be a discrete filtered set centred at ω0 ∈ C and θ ∈ S1

a direction. There exists a uniquely defined discrete and closed set GLIMP⋆Ω⋆
(θ) ⊂ C

that satisfies the following conditions for any L > 0:

– GLIMP⋆Ω⋆
(θ, L) ⊂ Ω⋆L(θ), where GLIMP⋆Ω⋆

(θ, L) = GLIMP⋆Ω⋆
(θ) ∩D(0, L);

– any path belonging to R(Ω⋆, θ, L) that circumvents to the right or the left the

set GLIMP⋆Ω⋆
(θ, L), can be lifted on the Riemann surface (RΩ⋆ , p) with respect

to p from p−1(ω0).

– when at least one point is removed from GLIMP⋆Ω⋆
(θ), then the above property

is no more satisfied.



ENDLESS CONTINUABILITY AND CONVOLUTION PRODUCT 11

Proof. — We show proposition 2.21 by constructing GLIMP⋆Ω⋆
(θ).

If
⋃
L>0Ω

⋆
L(θ) = ∅, then GLIMP⋆Ω⋆

(θ) = ∅. Otherwise, from the very definition of

Ω⋆, one can define an increasing sequence 0 = L−1 < L0 < L1 < L2 < · · · such that

– Ω⋆L0
(θ) = ∅,

– for every i ∈ N⋆, Ω⋆Li
(θ) = Ω⋆Li−1

(θ)∪ {ωi1 , · · · , ωil} with {ωi1 , · · · , ωil} a finite

subset of ]ω0, ω0 + eiθLi−1];

– Ω⋆L(θ) = Ω⋆Li
(θ) for every L ∈]Li−1, Li] and every i ∈ N.

We construct GLIMP⋆Ω⋆
(θ) by induction on i ∈ N.

Case i = 0. Since Ω⋆L0
(θ) = ∅, then for every L ≤ L0, every λ ∈ R(Ω⋆, L, θ) is

Ω⋆-allowed and thus can be lifted on RΩ⋆ with respect to p from p−1(ω). Therefore,

we set GLIMP⋆Ω⋆
(θ, L) = ∅ for L ≤ L0.

Case i = 1. From the above property, if ω ∈ Ω⋆L1
(θ) satisfied |ω| < L0, then it

is a removable Ω⋆-point for every path λ ∈ R(Ω⋆, θ, L) with L ≤ L1. Let us take

L ∈]L0, L1], so that Ω⋆L(θ) = Ω⋆L1
(θ):

– either there is ω ∈ Ω⋆L1
(θ) of the form ω = L0e

iθ. In this case the condition

GLIMP⋆Ω⋆
(θ, L) = GLIMP⋆Ω⋆

(θ, L0) ∪ {ω} is both needed and sufficient so as

to ensure that for every L ≤ L1, any path λ ∈ R(Ω⋆, θ, L) that circumvents

GLIMP⋆Ω⋆
(θ, L) to the right or the left can be lifted on RΩ⋆ ;

– or we set GLIMP⋆Ω⋆
(θ, L) = GLIMP⋆Ω⋆

(θ, L0) = ∅.

Induction. Pick some i ∈ N⋆ and suppose that the following properties are valid

for every integer j ∈ [1, i]:

– for every L ∈]Lj−1, Lj], GLIMP⋆Ω⋆
(θ, L) = GLIMP⋆Ω⋆

(θ, Lj) ⊂ Ω⋆Lj
(θ);

– GLIMP⋆Ω⋆
(θ, Lj)∩]ω0, ω0 + eiθLj−1[= GLIMP⋆Ω⋆

(θ, Lj−1);

– for every L ≤ Li, any path λ ∈ R(Ω⋆, L, θ) that circumvents GLIMP⋆Ω⋆
(θ, L)

to the right or the left, can be lifted on RΩ⋆ with respect to p from p−1(ω0).

From these properties, every ω ∈ Ω⋆Li+1
(θ) \GLIMP⋆Ω⋆

(θ, Li) such that |ω| < Li is a

removable Ω⋆-point for every path λ ∈ R(Ω⋆, θ, L) with L ≤ Li+1. From the fact

that Ω⋆L,θ = Ω⋆Li+1,θ
for every L ∈]Li, Li+1]:

– either there is ω ∈ Ω⋆Li+1
(θ) of the form ω = Lie

iθ. In that case one sets

GLIMP⋆Ω⋆
(θ, L) = GLIMP⋆Ω⋆

(θ, Li) ∪ {ω} for L ∈]Li, Li+1] and this provides a

necessary and sufficient condition to ensure that any path λ ∈ R(Ω⋆, θ, L) that

circumvents GLIMP⋆Ω⋆
(θ, L) to the right or the left, can be lifted on RΩ⋆ , for

every L ≤ Li+1;

– or we simply set GLIMP⋆Ω⋆
(θ, L) = GLIMP⋆Ω⋆

(θ, Li) for L ∈]Li, Li+1].

This ends the proof.

Definition 2.22. — Let Ω⋆ be a discrete filtered set centred at ω0 ∈ C, θ ∈ S1. The

discrete and closed set (5) GLIMP⋆Ω⋆
(θ) = {ωi ∈]ω0, ω0 + eiθ∞[, ω0 ≺ ω1 ≺ ω2 · · · }

given by proposition 2.21 is the set of glimpsed Ω⋆-points in the direction

5. The symbol ≺ stands for the total order on [ω0, ω0+eiθ∞[ induced by r ∈ [0,∞] 7→ ω0+reiθ ∈

[ω0, ω0 + eiθ∞[.
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θ. The glimpsed point ω1 is the seen Ω⋆-point in the direction θ. The com-

pleted set of glimpsed Ω⋆-points GLIMPΩ⋆(θ) in the direction θ is defined by

GLIMPΩ⋆(θ) = GLIMP⋆Ω⋆
(θ) ∪ {ω0}.

Remark 2.23. — The notion of glimpsed point can be defined in a simpler way but

the presentation we have made here is fitted to the methods that we develop in the

paper.

3. Endless continuability

3.1. Endless Riemann surface. —

Definition 3.1 (Endless Riemann surface). — A Riemann surface (R, p),

given as an étalé space on C, is said to be endless if for every ζ ∈ R, there exists a

discrete filtered set Ω⋆(ζ) centred at
•
ζ = p(ζ) so that every Ω⋆(ζ)-allowed path can

be lifted on R with respect to p from ζ.

Example 3.2. — Let Ω be a closed discrete subset of C. Then the universal covering

C̃ \Ω of C \ Ω is an endless Riemann surface.

The following result is a direct consequence of proposition 2.17.

Proposition 3.3. — Let Ω⋆ be a discrete filtered set. Then the associated Riemann

surface (RΩ⋆ , p) is endless.

3.2. Endless continuability. —

Definition 3.4 (Endless continuability). — A germ of holomorphic functions

ϕ̂ ∈ Oω at ω ∈ C is endlessly continuable on C if ϕ̂ can be analytically continued to

an endless Riemann surface. One denotes by R̂ω,endl the space of germ of holomorphic

functions at ω that are endlessly continuable on C. When ω = 0 we use the abridged

notation R̂endl = R̂0,endl.

Proposition 3.5. — A germ of holomorphic functions ϕ̂ ∈ Oω at ω ∈ C is endlessly

continuable on C if and only if there exists a discrete filtered set Ω⋆ centred at ω such

that ϕ̂ can be analytically continued along any Ω⋆-allowed path.

Proof. — We suppose that ϕ̂ ∈ O•

ω
is endlessly continuable, thus ϕ̂ can be analyti-

cally continued to an endless Riemann surface (R, p). This means that there exist a

neighbourhood
•

U ⊂ C of
•
ω = p(ω) and a neighbourhood U ⊂ R of ω such that the

restriction p|U : U →
•

U is a homeomorphism, and there is a function Φ holomorphic

on R so that φ = Φ◦p|−1
U

represents the germ ϕ̂. By the very definition of an endless

Riemann surface, one can find a discrete filtered set Ω⋆ centred at
•
ω so that every

Ω⋆-allowed path λ can be lifted with respect to p into a path Λ starting at ω. Since Φ

can be analytically continued along Λ, one gets that ϕ̂ can be analytically continued

along λ as an upshot.
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We now suppose that ϕ̂ ∈ O•

ω
can be analytically continued along any Ω⋆-allowed

path, where Ω⋆ is a discrete filtered set Ω⋆ centred at
•
ω. By proposition 2.17, the

Riemann surface (RΩ⋆ , p) associated with this discrete filtered set is endless. To ϕ̂ is

associated a germ of holomorphic functions Φ at ω,
•
ω = p(ω) that can be analytically

continued along the path Λ starting from ω and deduced from any Ω⋆-allowed path

λ. Since RΩ⋆ is simply connected, this implies that Φ can be analytically continued

to a function holomorphic on RΩ⋆ .

Definition 3.6. — If Ω⋆ is a discrete filtered set centred at ω, one denotes by R̂Ω⋆

the space of germs of holomorphic functions at ω that can be analytically continued

to the Riemann surface RΩ⋆ .

3.3. Seen and glimpsed points. — We have introduced the notion of glimpsed

Ω⋆-points (definition 2.22) associated with a discrete filtered set Ω⋆ centred at ω0. If ϕ̂

is an endless continuable germ at ω0 that belongs to R̂Ω⋆ then, by the very definition

of GLIMP⋆Ω⋆
(θ), ϕ̂ can be analytically continued along any path that closely follows

the half-line [ω0, ω0+e
iθ∞[ in the forward direction, while circumventing to the right

or to the left each point from the set GLIMP⋆Ω⋆
(θ). However, this set is not always

the smaller one and one easily gets the following proposition.

Proposition 3.7. — Let ϕ̂ ∈ R̂ω,endl be an endlessly continuable germ of holomor-

phic functions at ω ∈ C and let θ ∈ S1 be a direction. There exists a uniquely defined

discrete and closed set GLIMP⋆ϕ̂(θ) = {ωi ∈]ω0, ω0 + eiθ∞[, ω0 ≺ ω1 ≺ ω2 · · · } such

that:

– ϕ̂ can be analytically continued along any path that closely follows the half-line

[ω0, ω0 + eiθ∞[ in the forward direction, while circumventing (to the right or to

the left) each point of the set GLIMP⋆ϕ̂(θ).

– this property is no more valid if at least one point is removed from GLIMP⋆ϕ̂(θ).

If Ω⋆ a discrete filtered set centred at ω0, then GLIMP⋆ϕ̂(θ) ⊆ GLIMP⋆Ω⋆
(θ) for any

ϕ̂ belonging to R̂Ω⋆.

Definition 3.8. — The elements of GLIMP⋆ϕ̂(θ) are called the glimpsed singu-

lar points in the direction θ ∈ S1 for the endlessly continuable germ ϕ̂ ∈ R̂ω,endl.

Specifically, ω1 is the seen singular point in the direction θ for ϕ̂.

3.4. Continuability without cut. — We complete this Sect. with a brief com-

parison to Ecalle’s endless continuability.

Definition 3.9 (Riemann surface without cut [12]). — Let (R, p) be a Rie-

mann surface given as an étalé space on C. This surface is said to be without cut

if for every ω ∈ R, there exists a closed and discrete set sing(ω) ⊂ C that satisfies

the following properties. Introducing
•
ω = p(ω):

1. if the line segment [
•
ω,

•
ω
′
] ⊂ C does not meet sing(ω), then [

•
ω,

•
ω
′
] can be lifted

homeomorphically on R with respect to p from ω.
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2. for every line segment [
•
ω,

•
ω
′
] ⊂ C that meets the points

•
ω1, · · · ,

•
ωr of sing(ω),

there exists an open rectangle W neighbourhood of [
•
ω,

•
ω
′
] such that each of the

2r simply connected open sets Wj deduced from W by making lateral cuts at
•
ω1, · · · ,

•
ωr (see Fig. 3) can be lifted homeomorphically on R with respect to p

to an open set Wj ⊂ R containing ω.

3. if at least one point is removed from sing(ω), then properties 1-2 are no more

satisfied.

One says that the point
•
ω1 ∈ sing(ω) is seen from ω if [

•
ω,

•
ω1] ∩ sing(ω) = {

•
ω1}.

Otherwise the points
•
ωj ∈ sing(ω) are glimpsed from ω.

ω1 ω2 ω3 ω4 ωω

     

   
     

     

Figure 3

We note that in Definition 3.9, condition 3 is added so as to define the seen and

glimpsed singular points.

Definition 3.10 (Continuability without cut). — A germ of holomorphic

functions ϕ̂ ∈ O0 at 0 ∈ C is said to be analytically continuable without cut

on C if its Riemann surface is without cut.

There is the following relationship between endless continuability in the sense of

definition 3.1 and continuability without cut.

Proposition 3.11. — Let (R, p) be a Riemann surface. If R is endless, then R is

without cut.

Proof. — We assume that the Riemann surface (R, p) is endless. We consider a

point ω ∈ R,
•
ω = p(ω) : there exists a discrete filtered set Ω⋆ centred at

•
ω such that

every Ω⋆-allowed path λ ∈ R⋆
Ω⋆

can be lifted on R from ω with respect to p. We

consider the line segment [
•
ω,

•
ω
′
] ⊂ C and L > l > 0 where l = |

•
ω
′
−

•
ω|.

1. Assume that the line segment [
•
ω,

•
ω
′
] does not meet ΩL apart from

•
ω. Then the

path λ : t ∈ [0, 1] 7→
•
ω+ t(

•
ω
′
−

•
ω) belongs to RΩ⋆(L) and thus can be lifted by

p from ω.

2. Assume that the line segment [
•
ω,

•
ω
′
] meets the points

•
ω,

•
ω1, · · · ,

•
ωr of ΩL.

Consider an open rectangle W centred on (and thus neighbourhood of) [
•
ω,

•
ω
′
],

of length l+2l′ and width 2l′ where l′ > 0 satisfies l+2l′ > L. For l′ small enough

one has W ∩ ΩL = {
•
ω,

•
ω1, · · · ,

•
ωr} and for every

•
ζ ∈W \ {

•
ω1, · · · ,

•
ωr}, there

exists a path λ ∈ RΩ⋆(L)
⋆ such that λ([0, 1]) ⊂ W \ {

•
ω1, · · · ,

•
ωr}, λ(0) =

•
ω

and λ(1) =
•
ζ.
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Now assume that Wj is one of the 2r simply connected open sets Wj deduced

from W by making lateral cuts at
•
ω1, · · · ,

•
ωr (see Fig. 3). Then for every

•
ζ ∈Wj, there exists a path λ ∈ RΩ⋆(L) such that λ([0, 1]) ⊂Wj, λ(0) =

•
ω and

λ(1) =
•
ζ. This path can be lifted with respect to p into a path starting from ω

and ending at a point ζ such that p(ζ) =
•
ζ. We note Wj the set of these points

ζ.

By its very definition, Wj is an open arcconnected subset of R such that

p(Wj) = Wj. Moreover p|Wj
is injective. Indeed, if one considers two paths

λ0, λ1 ∈ RΩ⋆(L) such that λ1([0, 1]) ⊂ Wj and λ2([0, 1]) ⊂ Wj and end-

ing at the same point
•
ζ ∈ Wj, one can easily constructs a Ω⋆-homotopy

Γ : t ∈ [0, 1] 7→ Γt ∈ RΩ⋆(L) between λ0 and λ1, because Wj is simply con-

nected. Finally, since p is a local homeomorphism, p|Wj
is a homeomorphism

between Wj and Wj.

4. Endless continuability and convolution product

For two germs ϕ̂, ψ̂ ∈ Oω of holomorphic functions at ω ∈ C, their convolution

product ϕ̂∗ψ̂ ∈ Oω is the germ of holomorphic functions at ω defined by the integral,

(1) ϕ̂ ∗ ψ̂(ζ) =

∫ ζ

ω

ϕ̂(η)ψ̂(ζ + ω − η)dη,

for ζ close enough to ω.

4.1. Endless continuability, stability under convolution product. — We

state the main result of the paper.

Theorem 4.1. — Let ϕ̂, ψ̂ ∈ R̂ω,endl be two endlessly continuable germs of holomor-

phic functions at ω. Then their convolution product ϕ̂ ∗ ψ̂ is endlessly continuable

as well, ϕ̂ ∗ ψ̂ ∈ R̂ω,endl. More precisely, let Ω⋆ and Ω′
⋆ be two discrete filtered sets

centred at ω. If ϕ̂ ∈ R̂Ω⋆ and ψ̂ ∈ R̂Ω′
⋆
, then their convolution product ϕ̂ ∗ ψ̂ belongs

to R̂Ω⋆∗Ω′

⋆
where Ω⋆ ∗ Ω

′
⋆ is the fine sum of the two discrete filtered sets.

This theorem has an obvious but interesting corollary.

Corollary 4.2. — Let Ω⋆ be a discrete filtered sets centred at ω and ϕ̂ ∈ R̂Ω⋆. Then

the iterated convolution products ϕ̂∗n belong to R̂Ω∞

⋆
with Ω∞

⋆ the saturated of Ω⋆.

Theorem 4.1 is given in [2] and proved there up to sometimes alluded-to key-points

arguments. The rest of this section is devoted to showing this result rigorously. Our

method differs from that of [2].

Up to making a translation, one can suppose that ω = 0 and this is what we do

in the sequel. For ϕ̂ ∈ R̂Ω⋆ and ψ̂ ∈ R̂Ω′

⋆
, notice that the convolution product (1)

provides a holomorphic function on D(0, ρΩ⋆(0)) ∩D(0, ρΩ′

⋆
(0)) since ϕ̂, resp. ψ̂ can

be represented by a holomorphic function on D(0, ρΩ⋆(0)), resp. D(0, ρΩ′
⋆
(0)).
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4.2. (Ω⋆∗Ω
′
⋆)-homotopy. — The following definition generalizes a definition from

[22, 24].

Definition 4.3. — Let Ω⋆, Ω
′
⋆ be two discrete filtered sets centred at 0, (RΩ⋆ , p),

(RΩ′
⋆
, p′) their associated Riemann surfaces. LetH : (s, t) ∈ [0, 1]2 7→ H(s, t) = Ht(s) ∈ C

be a continuous map and H⋆ : (s, t) ∈ [0, 1]2 7→ H⋆(s, t) = H⋆
t (s) ∈ C the continuous

map deduced from H through the identity (6) H⋆
t (s) = Ht(1) − H−1

t (s). One says

that H is a (Ω⋆ ∗ Ω
′
⋆)-homotopy if the following conditions are satisfied for every

t ∈ [0, 1]:

– Ht(0) = 0;

– Ht can be lifted with respect to p on RΩ⋆ from 0 = p−1(0);

– H⋆
t can be lifted with respect to p′ on RΩ′

⋆
from 0 = p′−1(0);

The path H0 is the initial path, H1 is the final and the path t ∈ [0, 1] 7→ Ht(1) is the

endpoint path of H.

4.3. Usefull lemmas. — We start with a technical lemma.

Lemma 4.4. — Let H be a (Ω⋆ ∗ Ω
′
⋆)-homotopy. Then inft∈[0,1] d(Ht,Ω⋆) > 0 and

inft∈[0,1] d(H
⋆
t ,Ω

′
⋆) > 0.

Proof. — Let (RΩ⋆ , p) be the Riemann surface associated with Ω⋆. Since Ht can be

lifted with respect to p on RΩ⋆ from 0 for every t ∈ [0, 1] and using the homotopy

lifting theorem, the (Ω⋆ ∗Ω
′
⋆)-homotopy H can be lifted with respect to p into a

(unique) homotopy H : (s, t) ∈ [0, 1]2 7→ H(s, t) = Ht(s) such that Ht(0) = 0 for

every t ∈ [0, 1]. Since the mapping ζ ∈ RΩ⋆ 7→ d(ζ,Ω⋆) is continuous, one concludes

that inf(s,t)∈[0,1]2 d(H(s, t),Ω⋆) > 0 by compactness. Thus inft∈[0,1] d(Ht,Ω⋆) > 0.

The same reasoning holds for inft∈[0,1] d(H
⋆
t ,Ω

′
⋆).

Lemma 4.5. — Let Ω⋆, Ω′
⋆ be two discrete filtered sets centred at 0 and γ be

a piecewise C1 path such that |γ(0)| < min{ρΩ⋆(0), ρΩ′

⋆
(0)}. We suppose the

existence of a (Ω⋆ ∗ Ω
′
⋆)-homotopy H whose endpoint path is γ and such that

H0([0, 1]) ⊂ D(0, ρΩ⋆(0)) and H⋆
0 ([0, 1]) ⊂ D(0, ρΩ′

⋆
(0)). Then, for any ϕ̂ ∈ R̂Ω⋆ and

any ψ̂ ∈ R̂Ω′

⋆
, their convolution product ϕ̂ ∗ ψ̂ can be analytically continued along γ.

Proof. — Just adapt the proof of a similar lemma given in [22, 24] when Ω⋆, Ω
′
⋆ are

closed discrete subsets of C, with the help of lemma 4.4.

We now state the main lemma of this Sect.

Lemma 4.6 (key-lemma). — Let Ω⋆, Ω
′
⋆ be two discrete filtered sets centred at 0.

Let λ0 and γ be two paths subject to the following conditions:

– λ0 satisfies λ0 : s ∈ [0, 1] 7→ λ0(s) = sγ(0);

– γ(0) satisfies |γ(0)| < min{ρΩ⋆(0), ρΩ′
⋆
(0)};

– the product path λ0γ is (Ω⋆ ∗Ω
′
⋆)-allowed.

6. Remember that H
−1
t (s) = Ht(1− s).
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Then there exists a (Ω⋆ ∗ Ω′
⋆)-homotopy H with endpoint path γ and intial path

H0 = λ0.

Proof. — Part of our arguments comes from [21, 5]. We also use a construction

made in [22, 24] for the case where Ω⋆, Ω
′
⋆ are closed discrete subsets of C, and that

simplifies the proof. The later is new up to our knowledge.

We first assume that the product path λ0γ is (Ω⋆+Ω′
⋆)-allowed. Therefore, there

exists L > 0 such that λ0γ ∈ RΩ⋆+Ω′
⋆
(L). In particular, Lλ0γ < L and γ avoids the

set (Ω⋆ +Ω′
⋆)L,

(Ω⋆ +Ω′
⋆)L = {ζ = ω + ω′ | ω ∈ ΩL, ω

′ ∈ Ω′
L and |ζ| < L}.

Making a slight deformation of γ (an homotopy in C \ (Ω⋆ + Ω′
⋆)L with fixed ex-

tremities), we can assume that γ is C1. (There is no loss of generality with this

assumption).

We pick two functions ηΩL
: C → R+ and ηΩ′

L
: C → R+, both continuous and

locally Lipschitz, which furthermore satisfy:

{ζ ∈ C | ηΩL
(ζ) = 0} = ΩL, {ζ ∈ C | ηΩ′

L
(ζ) = 0} = Ω′

L.

(For instance, ηΩL
(ζ) = d(ζ,ΩL) where d is the euclidean distance). Remark that

the mapping χ : (ζ, t) ∈ C × [0, 1] 7→ ηΩL
(ζ) + ηΩ′

L
(γ(t) − ζ) ∈ R+ never vanishes :

χ(ζ, t) = 0 means ζ = ω and γ(t) − ζ = ω′ for some ω ∈ ΩL and ω′ ∈ Ω′
L, and this

implies γ(t) = ω + ω′ which contradicts the hypotheses made on λ0γ. This implies

that the following non-autonomous vector field,

X : (ζ, t) ∈ C× [0, 1] 7→ X(ζ, t) =
ηΩL

(ζ)

ηΩL
(ζ) + ηΩ′

L
(γ(t)− ζ)

γ′(t)

is well-defined, continuous, everywhere locally Lipschitz with respect to ζ and

bounded, |X(ζ, t)| ≤ |γ′(t)| ≤ max[0,1] |γ
′|. Therefore, its associated flow

gX : (t0, t, ζ) ∈ [0, 1]2 × C 7→ gt0,tX (ζ) ∈ C is C1 and globally defined as a conse-

quence of the Cauchy-Lipschitz theorem and the Grönwall lemma.

We start with H0 = λ0 and for every t ∈ [0, 1], we consider the deformation

Ht of H0 along the flow X, precisely we set Ht = g0,tX (H0). We get a mapping

H : (s, t) ∈ [0, 1]2 7→ H(s, t) = Ht(s) with the following properties for every t ∈ [0, 1]

(check them or see [22, 24]):

– H is of class C1;

– Ht(0) = 0 and Ht(]0, 1]) ∈ C \ ΩL;

– H0 = λ0 and the endpoint path t ∈ [0, 1] 7→ Ht(1) coincides with the path γ.

Let us now consider the family of paths Hs : t ∈ [0, 1] 7→ Hs(t) = H(s, t), for

s ∈ [0, 1]. These paths satisfy the following properties. For every s ∈ [0, 1]:

– Hs is of C1-class, Hs(0) = λ0(s) = H0(s);

–
dHs(t)

dt
= X

(
Hs(t), t

)
, thus

∣∣∣dH
s(t)
dt

∣∣∣ ≤ |γ ′(t)| and this implies that LHs ≤ Lγ ;

– H0 ≡ 0 and Hs([0, 1]) ⊂ C \ΩL for s 6= 0;

The product of paths F s = H0|[0,s]H
s is well-defined and has the following properties,

for any s ∈]0, 1]:
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1. F s is piecewise C1;

2. F 0 ≡ 0 otherwise for s > 0, F s(0) = 0 and F s(]0, 1]) ⊂ C \ΩL;

3. LF s = LH0|[0,s] + LHs , hence LF s ≤ Lλ0γ < L;

Therefore for any s ∈]0, 1], F s belongs to RΩ⋆(L), thus is Ω⋆-allowed and can be

lifted with respect to p from 0. This implies that Hs can be lifted from cl(λ0|[0,s])

with respect to p and this eventually provides a lifting H of the mapping H. One

concludes that for every t ∈ [0, 1], the path Ht has a (unique) lifting Ht with respect

to p from 0.

Look at the mapping H⋆ : (s, t) ∈ [0, 1]2 7→ H⋆(s, t) = H⋆
t (s) deduced from H by

H⋆
t (s) = Ht(1) −H−1

t (s). It is easy to see that the family of paths H⋆
t = g0,tX⋆(H⋆

0 )

is obtained by deformation of H⋆
0 , where gX⋆ : (t0, t, ζ) ∈ [0, 1]2 × C 7→ gt0,tX⋆ (ζ) is the

flow associated with the non-autonomous vector field,

X⋆ : (ζ, t) ∈ C× [0, 1] 7→ X(ζ, t) =
ηΩ′

L
(ζ)

ηΩ′

L
(ζ) + ηΩL

(γ(t)− ζ)
γ′(t).

The above reasoning can be applied as it stands for H⋆ and H⋆
t has a (unique) lifting

H⋆
t with respect to p′ from 0.

We set H⋆s(t) = H⋆(s, t), thus H⋆(1−s)(t) = γ(t) − Hs(t). From the

identities
dHs(t)

dt
= X

(
Hs(t), t

)
and

dH⋆(1−s)(t)

dt
= X⋆

(
H⋆(1−s)(t), t

)
, one

easily gets :

∣∣∣∣
dHs(t)

dt

∣∣∣∣ +

∣∣∣∣∣
H⋆(1−s)(t)

dt

∣∣∣∣∣ = |γ ′(t)|. The path H⋆(1−s) starts

from the point H⋆(1−s)(0) = λ0(1− s) = H0(1− s), thus the product of paths

F ⋆(1−s) = H0|[0,1−s]H
⋆(1−s) is well-defined and

LF s + LF ⋆(1−s) = Lλ0γ < L.

The upshot is that for any s ∈]0, 1[, F s belongs to RΩ⋆(L1) and F ⋆(1−s) belongs to

RΩ′

⋆
(L2) with L1+L2 ≤ L. Therefore, only the points of the form (Ω⋆∗Ω

′
⋆)L actually

matter for γ to get the homotopies H and H⋆. This property allows to extend the

above construction when the product path λ0γ is (Ω⋆ ∗Ω
′
⋆)-allowed. Indeed, denote

by KL ⊂ C × [0, 1] the subset made of the (ζ, t) ∈ C × [0, 1] such that ζ = ω,

γ(t) − ζ = ω′, ω + ω′ ∈ (Ω⋆ + Ω′
⋆)L \ (Ω⋆ ∗ Ω′

⋆)L. It is sufficient to remark that

the restriction X| of X to C × [0, 1] \ KL is still continuous, locally Lipschitz and

bounded, and the above arguments show that the deformation Ht = g0,t
X|(H0) of H0

along the flow X| can be defined as well, and similarly for H⋆
t . This ends the proof

of the lemma.

4.4. The proof of theorem 4.1. — Theorem 4.1 is a straightforward consequence

of lemma 4.5 and lemma 4.6.

4.5. Convolution product and glimpsed points. — The ideas developed in

the proof of theorem 4.1 can be easily adapted to get the following informations on

glimpsed points where, to simplify, we only consider discrete filtered sets centred

at 0.
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Proposition 4.7. — Let Ω⋆, Ω′
⋆ be two discrete filtered sets centred at 0 and

GLIMPΩ⋆(θ), GLIMPΩ′
⋆
(θ) their respective completed sets of glimpsed points, for

a given direction θ ∈ S1. For any two endlessly continuable germs ϕ̂ ∈ R̂Ω⋆

and ψ̂ ∈ R̂Ω′
⋆
, the set GLIMP⋆

ϕ̂∗ψ̂
(θ) of glimpsed singular points in the di-

rection θ ∈ S1 for the convolution product ϕ̂ ∗ ψ̂, satisfies the condition :

GLIMP⋆
ϕ̂∗ψ̂

(θ) ⊆ {GLIMPΩ⋆(θ) + GLIMPΩ′
⋆
(θ)} \ {0}.

Proof. — It is sufficient to consider product paths λ0γ of the following form:

– λ0 satisfies λ0 : s ∈ [0, 1] 7→ λ0(s) = sγ(0) and γ(0) satisfies the conditions :

γ(0) ∈]0, eiθ∞[ and |γ(0)| < min{ρΩ⋆(0), ρΩ′

⋆
(0)};

– γ avoids the set {GLIMPΩ⋆(θ) + GLIMPΩ′
⋆
(θ)} \ {0};

– λ0γ belongs to R(Ω⋆, θ, L) ∩R(Ω′
⋆, θ, L) for some L > 0;

– γ is of class C1, its derivative γ′ do not vanish and there exists α ∈]0, π/2[ small

enough such that for every t ∈ [0, 1], arg γ′(t) ∈]− α+ θ, θ + α[.

We go back to the proof of the key-lemma 4.6 where we replace ΩL by GLIMPΩ⋆(θ)

and Ω′
L by GLIMPΩ′

⋆
(θ). We follow the construction of the mapping H. It is easy to

see that for every t ∈ [0, 1], arg
dHs(t)

dt
∈]−α+θ, θ+α[. Defining F s like in the proof

of lemma 4.6, the upshot is that F s belongs to R(Ω⋆, θ, L) and avoids GLIMPΩ⋆(θ),

for any s ∈]0, 1]. This implies that the mapping H has a (unique) lifting H with

respect to p with Ht(0) = 0 for every t ∈ [0, 1]. The same result occurs for the

mapping H⋆. One concludes with lemma 4.5.

One can draw the following consequences from both theorem 4.1 and proposi-

tion 4.7, where we use classical notations in resurgence theory for which we refer to

[24, 5] :

Corollary 4.8. — The space of endlessly continuable functions R̂endl makes a dif-

ferential convolution algebra (without unit) on which the alien operators act. In

particular, if Ω⋆, Ω
′
⋆ are two discrete filtered sets centred at 0, then for any ϕ̂ ∈ R̂Ω⋆,

ψ̂ ∈ R̂Ω′
⋆

and any ω ∈ C1

•
, the alien operator ∆+

ω acts on
▽
ϕ ∗

▽

ψ with
▽
ϕ= ♭ϕ̂,

▽

ψ= ♭ψ̂

and the following identity holds:

(2) ∆+
ω (

▽
ϕ ∗

▽

ψ) = (∆+
ω

▽
ϕ)∗

▽

ψ +
∑

•

ω1+
•

ω2=
•

ω

(
∆+
ω1

▽
ϕ
)
∗
(
∆+
ω2

▽

ψ
)
+

▽
ϕ ∗

(
∆+
ω

▽

ψ
)
.

In (2), the sum runs over all
•
ω1 ∈ GLIMP⋆Ω⋆

(θ̇),
•
ω2 ∈ GLIMP⋆Ω′

⋆
(θ̇) with θ̇ = π̇(θ)

and θ = arg(ω) ∈ S1
•

.

5. Conclusion

This article contributes to the resurgence theory in showing rigorously the stabil-

ity under convolution product of endlessly continuable functions, thus adds a piece

to the very foundation of this theory. We mention that the notion of endless con-

tinuability used in this paper is less general that this in [2] and a fortiori the endless
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continuability of Ecalle. We do not know whether our method could be applied to

these more general frames or not, however we know no application where such a

generality is needed.

Since theorem 4.1 brings in fine sums of discrete filtered sets, series like
∑

n anϕ̂
∗n,

an ∈ C can be defined on the endless Riemann surface RΩ∞
⋆

provided the uniform

convergence of the series of any compact set of RΩ∞

⋆
. Such a result is given in [2] but

for mistakes that have been corrected by Sauzin [23] for the case where Ω⋆ stands

for a closed discrete subset of C. Considering the natural link between our method

and [23], it is likely that Sauzin’s work can be generalized to endlessly continuable

functions.

Finally, and like mentioned in [21, 23], extensions of theorem 4.1 for the so-called

weighted products [13, 14] would be welcome so as to contribute to the knowledge

on the exact WKB analysis or coequational resurgence [11, 6, 7, 9, 15, 16], see

also [18]. We hope to make some advances toward that direction in a near future.
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