
HAL Id: hal-01071003
https://hal.science/hal-01071003

Submitted on 10 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SecFuNet : Embedded Framwork in OpenSSL to support
Smart Cards

Hassane Aissaoui-Mehrez, Pascal Urien, Guy Pujolle

To cite this version:
Hassane Aissaoui-Mehrez, Pascal Urien, Guy Pujolle. SecFuNet : Embedded Framwork in OpenSSL
to support Smart Cards. 30TH Annual Computer Security Applications Conference (ACSAC-2014),
Dec 2014, New Orleans- Louisiana, United States. �hal-01071003�

https://hal.science/hal-01071003
https://hal.archives-ouvertes.fr

SecFuNet : Embedded Framwork in OpenSSL to

support Smart Cards

Hassane Aissaoui-Mehrez & Pascal Urien

IMT-TELECOM-ParisTech Institute: Network Computer

Science Department and LTCI CNRS Laboratory,

46 rue Barrault 75634 Paris France

{hassane.aissaoui, pascal.urien}@telecom-paristech.fr

Guy Pujolle

Pierre and Marie Curie University CNRS LIP6/UPMC

Laboratory (PHARE TEAM),

4 Place Jussieu, 75005 Paris, France

guy.pujolle@lip6.fr

Abstract—Smartcards are becoming increasingly popular as a

means for personal identification and authentication in many

secure application areas such as e-Banking and e-Commerce.

Millions of users have a smart card in their pocket without even

knowing it.

The SecFuNet project proposes solutions for integrating

secure microcontrollers in order to develop a security framework

for Cloud Computing and virtual environment. This framework

introduces, among its many services: authentication and

authorization functions for virtual environments, based on

Remote Grid of Secure Elements (RG0SE). The objective is to

implement an open standard framework, based on smart cards

and OpenSSL. This framework provides TLS secure channels for

establishing trust relationships among Users, Virtual Machines

(VMs), Hypervisor (XEN) and RG0SE. The authentication is

done directly between smart cards (owned by users or associated

to VM) and SecFuNet Identity Management (IdM).

This framework concerns a highly secure authentication with

secure microcontrollers allowing users' (or VMs') strong mutual

authentication with SecFuNet Services and provides some

libraries to the developers. It defines and describes the features

and the modules added to OpenSSL in order to supply easily the

Application Protocol Data Unit (APDU) - described by the ISO

7816 standard - transferred to smart cards.

Keywords—Cloud Computing; Virtual Environment; Secure

Element; SDK SmartCard; Hypervisor Xen; HSM; OpenSSL; TLS.

I. INTRODUCTION

The SecFuNet objective is to implement an open standard
framework, based on the authentication servers and smart
cards. The proposed SecFuNet framework provides TLS secure
channels for establishing trust relationships among Users,
Virtual Machines (VMs), Hypervisor (XEN) and Remote Grid
of Secure Element (R-GoSE). The authentication is done
directly between Smart Card (owned by users or associated to
VM) and SecFuNet Identity Management (IdM).

This paper concerns a highly secure authentication with
secure microcontrollers allowing users' or (VM) strong mutual
authentication with SecFuNet Services and provides some
libraries to the developers. It defines and describes the features

and the modules added to OpenSSL in order to supply easily
the APDU commands transferred to smart cards.

This paper describes how to integrate a Hardware Security
Module (HSM) – EAP-TLS Smart Card – within the OpenSSL
tool kit using libraries of Smart Card API on the one hand and
the new “s_scard and s_hypervisor” command lines to test
connection with SSL/TLS server developed in SecFuNet
Project on the other hand. The “s_scard and s_hypervisor”
programs may be used for evaluation EAP-TLS Smart Card
purposes, for any use. EAP-TLS Smart Card is designed to
perform sensitive cryptographic tasks and to securely manage
cryptographic keys and data. The security-relevant actions can
be executed and security relevant information can be stored. It
can be used as a universal, independent security component for
heterogeneous computer systems.

The first part of paper concerns the definition of the
primitive functions and libraries. The second part describable
the implementation of “s_scard and s_hypervisor” command
lines to use with EAP-TLS Smart Card.

II. CONCEPTS AND STATE OF ART

To address some of the security issues, we explore the
application of secure elements, such as Smart Cards, to
improve the trustworthiness of network infrastructure services
for future networks.

Two classes of secure microcontrollers have been studied,
smart cards and TPMs (Trusted Platform Modules). These
electronics chips have different computing capabilities, smart
cards usually run a Java Virtual Machine (JVM) and therefore
are able to execute complex procedures (such as the TLS
protocol), while TPMs are dedicated to the RSA algorithm.
However, these devices may be used in order to enforce trust
for the TLS protocol or to guarantee secure storage for
cryptographic keys. These security properties are directly
provided by smart cards (thanks to dedicated embedded
software), but require additional software components for
TPMs.

In this document we call secure element a device such as
Smart Card, which is able to totally or partially handle the TLS
protocol and to realize the secure storage or computing of a

cryptographic key. The main goal of this section is to briefly
overview the EAP-TLS smart cards services.

A. Eap-Tls Smart Card

EAP [1] is a universal and flexible authentication
framework. Because it can transport about any authentication
protocol, it solves the interoperability concerns that their
number and their disparity had risen. Formally, EAP protocol
is built on three kinds of messages: requests delivered by
servers; responses returned by clients; and notifications issued
by servers in order to indicate success or failure of
authentication procedures.

The EAP-TLS smartcards functionality and binary
encoding interface are detailed in [2]. These devices process
EAP methods and act as server or client entity. They
communicate via a serial link, whose throughput ranges
between 9600 and 230,000 bauds. There are two classes of
operations, sending data (writing to smart card) and receiving
data (reading from smart card); information is segmented in
small blocks (up to 256 bytes) named APDUs, described by the
ISO 7816 standard.

A smartcard [3] is a tamper resistant device, including
CPU, RAM and non-volatile memory. Packets exchanged
to/from this device are named APDUs and are detailed by the
ISO7816 standard. Security is enforced by multiple physical
and logical countermeasures. To interface with smart card and
smart card reader, we can use PC/SC (short for "Personal
Computer/Smart Card") specification for smart-card
integration into computing environments without any change.
Most of these electronic chips support a Java Virtual machine
(JVM) and execute software written in this programming
language [4]. The use of smartcards in TLS authentication has
now a rather long history and has been largely developed
according to different models. These devices run the
OpenEapSmartcard JAVA open stack, introduced in [5] and
which comprises four logical components “Fig. 1”:

1) The EAP Engine Object is mostly in charge of the I/O
management (i.e. APDUs exchange). It is also responsible of
EAP messages segmentation and reassembly. In fact, the
APDU payloads maximum length is 255 bytes for input data
and 256 bytes for output data, while EAP packets maximum
length is about 1300 bytes of data. Consequently, EAP packets
are split into several ISO 7816 units, and the Engine entity
parses them in order to rebuild the proper EAP packet.

Fig. 1. The EAP-TLS Smartcard components and grids architecture

2) The Credential Object holds all the credentials required
by EAP-TLS method, that is to say: the Certification Authority
certificate, the server Certificate and its associated private key.
The EAP-TLS State Machine is reset and its according method
is initialized with appropriate credentials, each time an EAP-
Identity.Response message is received. This object also works
as an Identity module. For now, it only holds a unique server
Identity but one could possibly load different server Identities
issued by several companies which, upon success, would grant
different kind of access or services depending of the Client’s
Identity and its subscription to one or several companies’
Network.

3) The Authentication Interface object implements all
services fulfilled by EAP-TLS methods, whose main
procedures are initialization, packet processing or MSK key
downloading.

4) Lastly, the EAP-TLS object is in charge of packets
processing, as specified in EAP standard [8]. Since TLS
packets size may exceed the Ethernet frame capacity, EAP-
TLS supports internal segmentation and reassembly
mechanisms.

B. PC/SC Standard

PC/SC is a standard proposed by the PC/SC workgroup
which is a conglomerate of representative from major smart
card manufacturers and other companies. This specification
tries to abstract the smart card layer into a high level API so
that smart cards and their readers can be accessed in a
homogeneous fashion.

PC/SC is the de-facto standard to interface Personal
Computers with Smart Cards (and smartcard readers of
course). This high-level and standardized API allows the
developer to focus on the smartcard itself, without dealing with
various aspects of every smartcard reader. PC/SC is available
on Windows integrated in the OS, available through
winscard.dll library. Thanks to open-source PC/SC-Lite
project, PC/SC is also implemented on numerous UNIX
platforms (including GNU/Linux and Mac OS X).

It is formed by a server deamon (pcscd) and a client library
(libpcsclite.so) that communicates via IPC. This toolkit was
written in ANSI C that can be used with most compilers and
does NOT use complex and large data structures such as
vectors, etc.

The PC/SC advantage is that applications do not have to
acknowledge the details corresponding to the smart card reader
when communicating with the smart card.

C. APDU Commands

To handle or invoke smart cards, we use the APDU
commands (Application Protocol Data Unit). The APDU is the
communication unit between a smart card reader and a smart
card. The structure of the APDU is defined by ISO/IEC 7816-
4. According to the ISO7816 standards secure element process
ISO7816 request messages and return ISO7816 response
messages, named APDU. An APDU request comprises two
parts: an optional body that may be empty. Its maximum size is
255 bytes and the header is a set of four or five bytes noted:

 CLA indicates the class of the request, and is usually
bound to standardization committee (00 for example
means ISO request).

 INS indicates the type of request, for example B0 for
reading or D0 for writing.

 P1/P2 gives additional information for the request (such
index in a file or identifier of cryptographic
procedures).

 P3 indicates the length of the request body (from P3=01
to P3=FF), or the size of the expected response body (a
null value meaning 256 bytes). Short ISO7816 requests
may comprise only 4 bytes.

An APDU response comprises two parts an optional body and
a mandatory status word.

 The optional body is made of 256 bytes at the most.

 The response ends by a two byte status noted SW. SW1
refers the most significant byte and SW2 the less
significant byte.

D. OpenSSL Project

The OpenSSL Project is a collaborative effort to develop
robust applications. The project is managed by a worldwide
community of volunteers that use the Internet to communicate,
plan, and develop the OpenSSL toolkit and its related
documentation. OpenSSL is based on the excellent SSLeay
library developed by Eric A. Young and Tim J. Hudson. The
toolkit is licensed under an Apache-style license, which
basically means that you are free to get and use it for
commercial and non-commercial purposes subject to some
simple license conditions. This software package uses strong
cryptography, so even if it is created, maintained and
distributed from liberal countries in Europe (where it is legal to
do this), it falls under certain export/import and/or use
restrictions in some other parts of the world. OpenSSL is full-
featured, and Open Source implementing the Secure Sockets
Layer (SSL v2/v3) and Transport Layer Security (TLSv1)
network protocols as well as a full-strength general purpose
cryptography library and related cryptography standards. The
openssl program is a command line tool for using the various
cryptography functions of OpenSSL's crypto library from the
shell. It can be used for:

 Creation and management of private keys, public keys
and parameters;

 Creation of X.509 certificates, CSRs and CRLs;

 Public key cryptographic operations;

 Calculation of Message Digests;

 Encryption and Decryption with Ciphers;

 Handling of S/MIME signed or encrypted mail;

 Time Stamp requests, generation and verification;

 s_client and s_server commands are two applications
Client/Server to test the SSL/TLS protocols.

III. SMART CARDS SUPPORT EMBEDDED WITHIN OPENSSL

The OpenSSL program provides a rich variety of basic
cryptography library, certificate services and commands, each
of which often has a wealth of options and arguments. In most
cases its just used to provide the backend for SSL enhanced
protocols like https or ssh. But it also offers a standardized API
to other solutions.

The only lack of OpenSSL as a security suite is its tight
strings to keys that are stored on a hard disk. This might
become a huge security concern, as in most cases anyone with
access to the system can just grab the key files and walk away.
There are a lot of things an administrator (or a virus with root
privileges) can do to steal your key, then the attacker has all
time to decrypt the data. That’s typically without anyone
notifying that the keys and data have been stolen. If the key is
on a smart card there is usually no way to export the private
key, so if you pull the card from the reader no one can use your
keys. And if you use a certified and sealed reader device you
can even be reasonably sure that no one can steal your PIN.

The OpenSSL project offers the possibility to source out
cryptographic functionality to plug-in specific modules.
Usually there is one of two reasons for doing this, performance
and security. The performance reason is rather obvious,
specialized hardware can do cryptography much faster than a
general purpose computer. The reason for using a smart card
typically is a security reason. So it is essential to store such
keys in a secure manner that requires much more effort to
access the keys and ideally disallows the keys to be copied off
in an insecure or unattended manner. One solution is to bind
OpenSSL to a security device like a TPM, Smartcard, USB
Token… or a so called Secure Element (SE) or Hardware-
Security-Module (HSM). As a result the key is stored inside
such a device and all operations with that key are also done
within the secure boundaries. Additional benefits are also, that
a key cannot be easily taken away by someone with access to
the system, if configured properly it can also not be extracted
in any insecure way from the HSM.

Many applications have been written supporting smart
cards for various purposes. The most solutions to get the HSM
hooked up are based on OpenSSL’s engine concept.

However, OpenSSL does not include smart card support.
Therefore application developers had to resort to creating their
own Software Development kit (SDK) wrappers to access the
native PC/SC API for Smart Cards. It is a difficult and time
consuming task, time that would better be spent on developing
the application itself.

Indeed, some vendors supply their own patches that would
require OpenSSL to be modifed and re-compiled. These
vendors spend significant resources on developing and
maintaining such patches, with the claim that it would be
supported.

Our approach is to introduce the SDK Smart Cards API
(SDK-SC-API) within OpenSSL that we are developed in
SecFuNet project. The SDK-SC-API consists on adding to
OpenSSL several primitives in order to handle smart card and
to supply packets exchanged to/from the Smart Card device.
The SDK-SC-API is a set of procedures written in ANSI C that

can be used with most compilers and for easy access to smart
cards from OpenSSL toolkit. This SDK-SC-API implements
wrapper functions for accessing GSM SIM and 3GPP USIM
cards through PC/SC smartcard library. As this moment, these
functions are used to implement authentication routines for
EAP-TLS Smart Card based on SSL stack.

These procedures are based on routines specified in
winscard like those in the winscard API provided under
Windows(R). These procedures are mainly an abstraction of
smart cards. It gives a common API for management to most
smart cards (EAP-TLS Smart Card, SIM, USIM...) in a
homogeneous fashion. Using the SDK-SC-API, an application
developer no longer needs to create their own SDK, but rather
uses a convenient API that provides a level of abstraction than
the native PC/SC API. So instead of patching, modifying and
re-compiling your OpenSSL, which might break some system
dependencies, make use of standard API’s and wrappers.

A. SDK-SC-API Product Offerings

SDK-SC-API is not just a wrapper for the PC/SC but
provides a framework that can be extended to support any
Smart Card authentication (i.e. Using a 2G SIM card. It is
described in RFC 4186 from the IETF or using UMTS 3rd
generation USIM functionality.

It is described in RFC 4187). Indeed, it is sufficient that
smart card reader must comply with the PC/SC standard.

OpenSSL already support third party crypto providers
using its engine concept and a command line tool for using the
various cryptography functions of OpenSSL's crypto library
from the shell. In our proposition “Fig 2”, the additional SDK-
SC-API to OpenSSL is available as a source code implemented
in C and thus it is managed code in:

 scard_pcsc_api directory, located in OpenSSL source
code, for accessing Smart Cards and managing Smart
Cards, this directory contains several files.

 This program provides a test of SSL/TLS protocols with
EAP-TLS Smart Card features. It is associated to
tls_scard_ctnt.c library dealing with s_scard command
to perform EAP-TLS smart card handshake. It is
intended for use by any individual involved with
integrating smart cards based SSL stack, into an identity
and authentication management process. These files are
detailed in the next section.

The changes are minor in openssl in order to not impact its
structure. Indeed, we have first added two variables in SSL
structure:

 SCard_Is_On for indicate to the program (i.e. s_scard)
to initialize smartcard reader.

 Reader_nbr for indicate witch smart card reader index
to handle.

The second modification consists to modify Makefile in
order to build OpenSSL with SDK-SC-API. This SDK has
many advanced features, such as support for secure PIN entry.
The following list is an overview of the more important files:

Fig. 2. The Additional modification added to OpenSSL

 eap_packet: This file implements all methods that can
be used for EAP Full Authenticator state machine with
EAP-TLS Smart Cards stack. This state machine is
based on the full authenticator state machine defined in
RFC 4137.

 scarddebug: supplies methods to manage a reader’s
events and debug it. These functions are used to print
conditional debugging and error messages. The output
may be directed to stdout, stderr.

 scardpcsc: contents all procedures and methods which
supplies functions to manage readers and to connect to
the inserted smart card. Gives the list of readers plugged
to the Xen Server and the list of readers having a smart
card plugged-in active.

 s_hypervisor: is proxy server, contents all procedures
and methods which supplies functions to manage
remote readers and associate Smart Card to the
authenticated VM. When a VM needs to open a TLS
session, the proxy parses all requests (i.e: ClientHello,
Certificate Exchange, Client key Exchange…) coming
from VM in order to perform this connection using
Smart Card associated to this VM.

The SDK module includes sample implementations
showing how to achieve complete EAP-TLS Smart Card
authentication with an OpenSSL Server.

An Example is making available in the “s_scard.c”
program and its “tls_scard_clnt.c” library. The s_scard
command is an implementation to test the EAP-TLS Smart
Card authentication with an OpenSSL Server.

B. Authentication With "s_scard" command

s_scard.c program has been built in a way that makes it
easy to customize and modify to suit each developer’s
requirements. Developers can write and test a custom module
according to their own unique requirements.

This program shows how to interact with an OpenSSL
Server, how to store keys, and to request TLS/SSL connection.
This program can serve as a starting point for developing a

specific module. It should be noted that the “s_scard”
command include just an implementation with EAP-TLS
Smart Card with an EAP-TLS Smart Card stack “Fig. 1”. This
program handles locally connected smart card, and can be used
for end-to-end testing of TLS client authentication.

As mentioned above, the EAP-TLS Smart Card is an EAP-
TLS stack embedded in Smart Card which functions according
to the ISO 7816 standard.

For working with EAP-TLS Smart Cards using any PC/SC
Smart Card reader, you need make an easy configuration. The
use of the PC/SC interface must be enabled and the functions
which encapsulate the PC/SC interface have to be adapted so
that they can handle the responses from the Smart Card.

IV. PLATFORM DESIGN AND USE CASE

The platform we have designed for experimental purposes
and performances evaluation is represented in “Fig, 3”, and is
built on three main components:

 TLS Server based on OpenSSL, come with a number of
tools to facilitate testing, in particular with a TLS/SSL
Server environment called “s_server” program.

 EAP-TLS Smart Card device running the
OpenEapSmartcard JAVA open stack [5].

 The client host where the Smart Card device is docked
and managed by a specific dedicated program.
“s_scard.c”, which we will call TLS Proxy Client (TLS-
PC) for comprehension purposes.

The TLS-PC accesses our EAP-TLS Smart Card, either
remotely, or on an internal bus if the TLS server and the TLS-
PC are located on the same host. To test the TLS/SSL session
with our “s_scard” command line, first, we launch a TLS/SSL
Server thanks “openssl s_server” command line.

In our testing example the TLS/SSL Server is running with
the following arguments. Ensure that you are familiar with the
OpenSSL ToolKit :

#./openssl s_server -msg –debug –tls1 -accept 443 -verify 1 -CAfile root.pem -
cert tls_server_cert.pem –key tls_server_key.pem –pass pass:pwd

Fig. 3. The Platform design and experimental of “s_scard” command

In client side, “openssl s_scard” command line is running
with the following arguments:

#. /openssl s_scard -tls1-debug -connect remote_tls_server:443 pin_code

This command executes the TLS client session between the
EAP-TLS smart card and the TLS server on port 443. Note that
the TLS Client only needs the remote server name and PIN
code.

Our TLS-PC program intermediate between TLS Server
and EAP-TLS Smart Card to create TLS/SSL connections,
whose TLS messages are encapsulated into EAP packets and
then, which are forwarded to the EAP-TLS Smart Card thanks
to “tls_scard_clnt.c” library dedicated to Smart Cards
management.

Once it has been launched, the TLS-PC creates a new
connection which will initiate a TLS connection with the TLS
Server “Fig, 4”. The last server generates a thread on port 443,
waiting for socket connections. Each time it receives a
connection on this port with EAP-TS Smart Cards according to
the main following procedures implemented in “s_scard.c”
program and its “tls_scard_clnt.c” library:

 It generates stream sockets connected with the distant
TLS Server. Those sockets are used to receive and send
the TLS datagram to the TLS Server.

 It checks the datagram, parses it and verifies if it is a
proper TLS datagram, or corresponding to an
encapsulated EAP message incoming from smart card.

 It splits the EAP message into the appropriate number
of APDUs. The EAP message is transported by APDUs
thanks to an EAP-Process command, created for that
purpose.

 It generates an appropriate context for the APDUs so
that they shall be recognized by the Smart Card, which
redirects the incoming connection to the proper EAP-
TLS Smart Card and whose syntax is specific.

 Upon answer from the smartcard, it parses and
reassemblies the EAP packets, in case it has been split
by the smartcard into several APDUs, and waits until all
the EAP-Request packets have been transmitted.

 It checks the incoming EAP packet from EAP-TLS
Smart Card, retrieves the TLS message and
encapsulates it into a TLS datagram, and forwards it to
the TLS Server.

Once the authentication is successful (or not) and once the
keys (key blocs and MSK) have been generated, the Smart
Card associated to a TLS session is released and free to be
used by a new incoming session. This procedure is renewed
as often as necessary until all sessions have been treated
and client authenticated.

Fig. 4. The Interaction between “s_scard” command and tls server

V. CONCLUSION

The strong authentication based on smart card has become
a critical factor of good system design, it expands as the
primary medium for secure communication. In this paper, our
contribution consists to add a software development kit “SDK-
SC-API” within OpenSSL in order to make easy a
development of smart card and to give to developers the
possibility to enable a test with smart cards. Furthermore, the
security and the advantages it provides shall be a great addition
to OpenSSL Toolkits in general as well as a key asset to
securing Cloud Computing infrastructures.

We have concluded that the benefits of implementing SDK-
SC-API into OpenSSL have many advanced features, such as
support for secure PIN entry. The following list is an overview
of the more important advantages:

 The client private key is secretly stored and used by
the smartcard. The client certificate is autonomously
checked by the TLS Server.

 Reduces development time by eliminating the need to
create your own SDK wrapper.

 Makes your applications independent of the
underlaying smart card devices. The application can
be used with PC/SC API and our SDK-SC-API
without any change of OpenSSL.

 EAP-TLS Smart Card and (U)SIM can be written on
top of SDK-SC-API and can be supported via custom
modules.

ACKNOWLEDGMENT

This work has had financial support from CNPQ through
process 590047/2011-6 (SecFuNet project) and also through
processes 307588/2010-6 and 384858/2012-0. We also thank
CAPES for the financial support with PhD scholarship.

REFERENCES

[1] RFC 3748, "Extensible Authentication Protocol, (EAP)", June 2004.

[2] IETF draft, "EAP‐Support in Smart card", draft-urien-eap-smartcard-
25.txt, July 2013.

[3] Jurgensen, T.M. et. al., "Smartcards: The Developer's Toolkit", Prentice
Hall PTR, ISBN 0130937304, 2002.

[4] D. Recordon and D. Reed, “Openid 2.0: A platform for user-centric
identity management,” in Proceedings of the Second ACM Workshop on
Digital Identity Management, DIM ’06, (New York, NY, USA), pp. 11–
16, ACM, 2006.

[5] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in xen,” in Proceedings of the annual conference on
USENIX ’06 Annual Technical Conference, ATEC’ 06, (Berkeley, CA,
USA), pp. 2–2, USENIX Association, 2006.

[6] Urien, P., "Cloud of Secure Elements, Perspectives for Mobile and
Cloud Applications Security", First IEEE Conference on
Communications and Network Security” IEEE CNS 2013, 16-19
october 2013, DC USA.

[7] R. Couto, M. Campista, and L. H. M. K. Costa, “Xtc: A throughput
control mechanism for xen-based virtualized software routers,” in
Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE, pp. 1–6, 2011.

[8] P.Urien, ‘Remote APDU Call Secure », draft-urien-core-racs-00.txt,
August 201

