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Adaptive Detection in Elliptically Distributed

Noise and Under-Sampled Scenario
Olivier Besson, Senior Member, IEEE, and Yuri Abramovich, Fellow, IEEE

Abstract—The problem of adaptive detection of a signal of
interest embedded in elliptically distributed noise with unknown
scatter matrix is addressed, in the speciÞc case where the
number of training samples is less than the dimension of
the observations. In this under-sampled scenario, whenever
is treated as an arbitrary positive deÞnite Hermitian matrix,
one cannot resort directly to the generalized likelihood ratio test
(GLRT) since the maximum likelihood estimate (MLE) of is not
well-deÞned, the likelihood function being unbounded. Indeed,
inference of can only be made in the subspace spanned by the
observations. In this letter, we present a modiÞcation of the GLRT
which takes into account the speciÞc features of under-sampled
scenarios. We come up with a test statistic that, surprisingly
enough, coincides with a subspace detector of Scharf and Fried-
lander: the detector proceeds in the subspace orthogonal to the
training samples and then compares the energy along the signal
of interest to the total energy. Moreover, this detector does not
depend on the density generator of the noise elliptical distribution.
Numerical simulations illustrate the performance of the test and
compare it with schemes based on regularized estimates of .

Index Terms—Adaptive detection, elliptically contoured distri-

butions, generalized likelihood ratio test, under-sampled scenarios.

I. INTRODUCTION AND PROBLEM STATEMENT

W E consider a conventional radar problem where pres-
ence of a target, with signature , is to be detected from

the observation of the radar return in a range cell under
test (CUT) [1]. As usually done [1], we assume that a set of
training samples , , obtained from cells adjacent
to the CUT, contain noise only, and share the same statistics as
the noise in the CUT. The problem can be formulated as the fol-
lowing hypotheses testing problem [2]

(1)

where denotes the unknown target complex amplitude, and
and are independent and identically distributed (i.i.d.)

random noise vectors. When the latter follow a complex
Gaussian distribution and , the generalized likelihood
ratio test (GLRT) was derived and analyzed by Kelly [1]. An
alternative 2-step GLRT solution was proposed in [3] which
is referred to as the adaptive matched Þlter (AMF). However,
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when is slightly larger but of the order of , their per-
formance has been observed to deteriorate. Moreover, when

, they cannot be implemented mainly because the
maximum likelihood estimate (MLE) of the noise covariance
matrix is not deÞned. To circumvent this problem, either a para-
metric model or regularization can be advocated. For instance,
in [4], [5], a low-rank plus white noise structure is assumed for
the noise covariance matrix and a fast ML estimator is derived,
which in turn yields the GLRT under this assumption. Other
parametric models can be used, e.g., Toeplitz matrices [6],
autoregressive models [7], low-rank Toeplitz structures [8].
The alternative approach, namely regularization, is treated in
detail in [9] where diagonally loaded versions of the AMF are
proposed, i.e., the sample covariance matrix is regularized by
adding a scaled identity matrix. The expected likelihood (EL)
principle developed in [10] is then used to obtain a statistically
sound value of the loading factor. Regularization is somehow a
necessity when and the EL approach was extended to
under-sampled Gaussian scenarios in [11] and used to provide
efÞcient regularized estimates.

In this paper, we consider the problem in (1) for the speciÞc
case where and are i.i.d. random vectors drawn from a
complex multivariate elliptically contoured distribution (ECD)
[12], [13], see also the recent excellent survey in [14] for prop-
erties and applications of EC distributions. The literature about
adaptive detection in ECD is much less abundant than that for
the Gaussian case. In [15], Richmond showed that the GLRT in
vector elliptical distributions is still Kelly’s detector, and in [16,
chapter 4] he investigated an AMF-type approach but faced the
problem that the Þrst step is not tractable unless the density gen-
erator of the ECD is known.

II. MODIFIED GLRT

Assuming that and are i.i.d. random vectors drawn from
a complex multivariate EC distribution with zero mean and pos-
itive deÞnite scatter matrix , the joint distribution of and

, under hypotheses , , is
given by [13], [14]

(2)

where means proportional to. In (2), is
called the density generator and satisÞes Þnite moment condi-
tion to ensure integrability of

. Similarly to [14], we make the technical assumption
that the function , where , is non-de-
creasing. Moreover, we consider here the under-sampled sce-
nario for which : this scenario is very relevant in most
applications, especially with large .



As said previously, when no assumption is made on , i.e., it
is a completely arbitrary positive deÞnite Hermitian (PDH) ma-
trix, then the maximum likelihood estimate (MLE) of is not
deÞned, since the likelihood function is unbounded above, see
below for details. Usually, is found under a set of constraints,
typically assuming a parametric or regularized model ,
which ensures that is uniquely identiÞable from snapshots.
However, whatever the model, arbitrary PDH or , infer-
ence about the scatter matrix can only be made in the low-di-
mensional subspace spanned by the observations, and this is in-
herent to the fact that . While cannot be recovered
from its projection on this subspace, it may be possible that pro-
jection of enables to identify the latter. Herein, rather than
enforcing a constraint on , we do not make any assumption
and follow the lines of [11], viz. consider (a modiÞcation of)
the generalized likelihood ratio test in the under-sampled case
for arbitrary , knowing that identiÞability issues exist.

Let us start with hypothesis . Let

denote the thin singular value decomposition of

the whole data matrix, where (the rank of
is with probability 1) and is a unitary matrix. Let

be the matrix whose columns form an
orthonormal basis for the subspace orthogonal to and let

. Let us rewrite as

(3)

and let us deÞne so that can
be parameterized by , and . Under , (2) can be
rewritten as

(4)

where, with some slight abuse of notation, we set . Con-
sider Þrst maximization with respect to . It is well known
that the maximum likelihood estimator of is the solution
to the following implicit equation [14]

(5)

Let us now show that the solution is given by
where is deÞned next. Indeed, let us investigate a solution of

the form . Since

it follows that and

(6)

It ensues that where is the unique solution to
. We would like to emphasize that does only

depend on . Consequently, we get

(7)

where stands for the product of the positive eigenvalues of
a matrix. Note that the maximum is achieved for any ,

such that and hence with no loss
of generality we can set so that is the MLE

of . Observe also that (7) is unbounded above,

implying that is not identiÞable.
Let us consider the equivalent problem under . Using the

same reasoning, it comes that

(8)

provided that the rank of the matrix is . For
this latter condition not to be fulÞlled, should belong
to the range space of , or equivalently would reside in the

range space of , and the latter occurs with probability zero,
unless . Consequently, the -th root of the
modiÞed generalized likelihood ratio (MGLR) is deÞned as

(9)

where . As said previously, the exact GLR is not
well-deÞned since the likelihood is unbounded under both hy-
potheses due to the term . However, the latter is the
same under both hypotheses and therefore, one may argue that

should be selected the same under and : anyhow
nothing can be inferred about the projection of onto the sub-
space orthogonal to the observations. With this constraint, (9)
can be viewed as a likelihood ratio.

Before pursuing our derivation, it is noteworthy that
the above detector does not depend on : hence, in
under-sampled scenarios, the detector does not depend on
the speciÞc form of the density generator. In order to come
up with the MGLRT, it now remains to solve the mini-
mization problem at the denominator of (9). For any PDH
matrix whose rank is and whose eigenvalues are

, we

have and .
Therefore, it follows that

(10)

The previous equation is now used to obtain a more convenient
expression for (9). Let be an arbitrary vector in and let

(11)

denote the eigenvalue decomposition of with the
diagonal matrix of its eigenvalues. One can write

(12)



where we used Sylvester’s determinant theorem. It ensues that

(13)

where denote the projection onto the space or-
thogonal to . Equation (9) can thus be rewritten as

(14)

where and stands for the orthog-

onal projector onto . Note that is the part of in the sub-
space orthogonal to . Some observations are noteworthy re-
garding (14). First, observe that the MGLR is a ratio of ener-
gies: the denominator is the energy of in while the
numerator measures the energy of along the component of

within . Note that, since the columns of contain
noise only, the detector operates in the subspace orthogonal to
them and look there for energy along . Surprisingly enough,
this detector coincides with Scharf and Friedlander GLRT for
detecting a known signal ( ) in subspace interference (spanned
by the columns of ) and white noise of unknown level, see
[17, eqn. (6.2)], i.e., it is the GLRT for the detection problem

(15)

This is quite a remarkable result as the initial detection problem
is very different from (15). However, it is not illogical in view
of the above discussion.

The MGLR does not depend on the density generator of
the CES distribution. This means, that in the under-sampled sce-
nario, the underlying distribution of the data does not account as
much as the subspace where the data lies. Additionally, the prob-
ability density function (p.d.f.) of MGLR under does not de-
pend on . Indeed, under the stated assumptions about and

, they admit the following stochastic representation [13], [14]

and where means “has the same
distribution as”. The non-negative real random variable

is referred to as the modular variate and is independent of
the complex random vector , which is uniformly distributed on

the complex -sphere. Using the fact that where

, we can equivalently write and

. This implies that where

. Consequently, the range space of is the

same as that of , which implies that :

hence, the distribution of does not depend on and is
the same as that when is Gaussian distributed. The same rea-
soning holds for since . Finally, the ratio

does not depend on and is independent of the density gen-
erator. Consequently, the distribution of under is
independent of .

Finally, note that the speciÞc form in (14) is inherently due
to the fact that we consider an arbitrary PDH matrix rather
than investigating directly a regularized or parameterized form
for , e.g., as in [9]. It remains to evaluate the respective merit
of each method, which is what we do in the next section through
simulations.

III. NUMERICAL SIMULATIONS

The modiÞed GLR as given by (14) should be compared to
possible competitors as well as a reference. The latter is pro-
vided by the matched Þlter (MF) which is given by [16]

(16)

For a Student distribution with degrees of freedom that will
be considered in the sequel, the MF amounts to

(17)

The matched Þlter assumes that both and the density gen-
erator are known, which is unrealistic but can serve as a
reference. For a fair comparison with MGLRT, some adaptive
detection schemes ought to be investigated. A natural method is
the AMF which consists in replacing in (17) by an estimate
based on . Since , the sample covariance matrix ob-
tained from is singular and, hence, regularization is somehow
needed. An effective approach, often advocated in Gaussian set-
tings, consists in using shrinkage of the sample covariance ma-
trix [9] as an estimate of . More precisely, one can consider

(18)

where . The parameter
is selected according to the expected likelihood (EL) principle
[11], i.e., is such that

(19)

where is the Gaussian likelihood ratio (LR)

for testing [11], is the
scenario-invariant p.d.f. of the -th root of evalu-
ated at the true covariance matrix , and stands for the
median value. Another possibility is to consider the adaptive
coherence estimator (ACE) [18], [19] (also called normalized
AMF), or more precisely a regularized version of it

(20)
The use of in (18) and (20) is suitable when fol-
lows a Gaussian distribution, and indeed relies on this assump-
tion. In order to account for a possibly complex elliptical dis-
tribution, yet without needing to estimate , a pertinent
choice is to normalize the training samples and proceed with

[20]. The vector follows a complex angular
central Gaussian (ACG) distribution [14], [21] which does no
longer depend on . An efÞcient regularization scheme for
estimating from has been proposed in
[22], [23], and referred to as the Þxed point diagonally loaded
estimator (FP-DL) in [20]. Let us denote it by - .
The value of can again be chosen according to the EL principle



Fig. 1. Probability of detection of the various detectors versus . (a)

, (b) .

[20]. The matrix - can be used in place of
in (18) and (20) to yield

-

- - (21)

-

- -

- - - -

(22)

The two adaptive detectors do not require knowledge of
to estimate and (20) does not need it at all. Comparison of
(18) and (21) will allow one to quantify the gain/loss achieved
by using the normalized samples instead of the original
samples .

The above detectors are now compared under the fol-

lowing scenario. We consider an array of el-

ements separated a half-wavelength apart. The signal of

interest impinges with a direction of arrival of so that

where .

We consider a covariance matrix of the type

. The parameter

is chosen as . As for , we set it to . The

signal to noise ratio is deÞned as . We

consider that the data follow Student distribution, with

degree of freedom. Finally, the probability of false alarm is set

to . The results are shown in Fig. 1. The following

main observations can be made.

When , MGLRT is an interesting solution as it per-

forms as well as the best regularized schemes, yet with a lower

computational complexity. When increases, regularization

appears to be more effective. In fact, MGLRT does not really

improve when increases while the other detectors tend to per-

form better.

Regularized estimation of from either or

results in the same probability of detection for RAMF and

RACE, whatever the underlying distribution of . From EL

point of view, any solution with the targeted LR value is statis-

tically as “likely as the truth”. Yet some of them could be better

than others, if regularization matches the actual structure of the

covariance matrix. For example, for AR covariance matrices,

TVAR regularization can provide better detection performance

than diagonal loading with the same EL threshold. Herein,

the same type of regularization was used (diagonal loading)

which results in similar performance for the direct and Þxed

point regularization. For under-sampled scenarios when the

subspace spanned by the training data does not depend on the

relative powers of the samples, this is not so surprising. In fact,

it is reminiscent of the fact that made the MGLR detector does

not dependent on . The conclusion might be different for

over-sampled scenarios.

IV. CONCLUDING REMARKS

We investigated the adaptive detection of a signal of interest

buried in noise with an elliptically contoured distribution, when

the number of training samples is much less than the size of

the observation space. In this under-sampled scenario, inference

about the scatter matrix can be made only in the -dimen-

sional subspace spanned by the training samples, and therefore

considering as arbitrary leads to identiÞability issues. Since

the latter are the same under both hypotheses, we proposed a

modiÞed GLR test. This test does not depend on the density

generator of the noise EC distribution but is based on projection

onto the subspace orthogonal to the training samples, followed

by energy search along a direction, similarly to a test derived by

Scharf and Friedlander in the context of matched subspace de-

tection. The new detector is very simple from a computational

point of view and it is seen to offer a valuable solution when

is very low. When increases however, it appears that regular-

ization offers a better solution.
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