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Noise and Under-Sampled Scenario Olivier Besson, Senior Member, IEEE, and Yuri Abramovich, Fellow, IEEE Abstract-The problem of adaptive detection of a signal of interest embedded in elliptically distributed noise with unknown scatter matrix is addressed, in the speciÞc case where the number of training samples is less than the dimension of the observations. In this under-sampled scenario, whenever is treated as an arbitrary positive deÞnite Hermitian matrix, one cannot resort directly to the generalized likelihood ratio test (GLRT) since the maximum likelihood estimate (MLE) of is not well-deÞned, the likelihood function being unbounded. Indeed, inference of can only be made in the subspace spanned by the observations. In this letter, we present a modiÞcation of the GLRT which takes into account the speciÞc features of under-sampled scenarios. We come up with a test statistic that, surprisingly enough, coincides with a subspace detector of Scharf and Friedlander: the detector proceeds in the subspace orthogonal to the training samples and then compares the energy along the signal of interest to the total energy. Moreover, this detector does not depend on the density generator of the noise elliptical distribution. Numerical simulations illustrate the performance of the test and compare it with schemes based on regularized estimates of . Index Terms-Adaptive detection, elliptically contoured distributions, generalized likelihood ratio test, under-sampled scenarios.

I. INTRODUCTION AND PROBLEM STATEMENT

W E consider a conventional radar problem where pres- ence of a target, with signature , is to be detected from the observation of the radar return in a range cell under test (CUT) [START_REF] Kelly | An adaptive detection algorithm[END_REF]. As usually done [START_REF] Kelly | An adaptive detection algorithm[END_REF], we assume that a set of training samples , , obtained from cells adjacent to the CUT, contain noise only, and share the same statistics as the noise in the CUT. The problem can be formulated as the following hypotheses testing problem [START_REF] Scharf | Statistical Signal Proc.: Detection, Estimation and Time Series Analysis[END_REF] (1) where denotes the unknown target complex amplitude, and and are independent and identically distributed (i.i.d.) random noise vectors. When the latter follow a complex Gaussian distribution and , the generalized likelihood ratio test (GLRT) was derived and analyzed by Kelly [START_REF] Kelly | An adaptive detection algorithm[END_REF]. An alternative 2-step GLRT solution was proposed in [START_REF] Robey | A CFAR adaptive matched Þlter detector[END_REF] which is referred to as the adaptive matched Þlter (AMF). However, when is slightly larger but of the order of , their performance has been observed to deteriorate. Moreover, when , they cannot be implemented mainly because the maximum likelihood estimate (MLE) of the noise covariance matrix is not deÞned. To circumvent this problem, either a parametric model or regularization can be advocated. For instance, in [START_REF] Steiner | Fast converging adaptive processor of a structured covariance matrix[END_REF], [START_REF] Gerlach | Fast converging adaptive detection of Doppler-shifted range-distributed targets[END_REF], a low-rank plus white noise structure is assumed for the noise covariance matrix and a fast ML estimator is derived, which in turn yields the GLRT under this assumption. Other parametric models can be used, e.g., Toeplitz matrices [START_REF] Fuhrmann | Application of Toeplitz covariance estimation to adaptive beamforming and detection[END_REF], autoregressive models [START_REF] Abramovich | Time-varying autoregressive (TVAR) models for multiple radar observations[END_REF], low-rank Toeplitz structures [START_REF] Kang | Rank-constrained maximum likelihood estimation of structured covariance matrices[END_REF]. The alternative approach, namely regularization, is treated in detail in [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF] where diagonally loaded versions of the AMF are proposed, i.e., the sample covariance matrix is regularized by adding a scaled identity matrix. The expected likelihood (EL) principle developed in [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF] is then used to obtain a statistically sound value of the loading factor. Regularization is somehow a necessity when and the EL approach was extended to under-sampled Gaussian scenarios in [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF] and used to provide efÞcient regularized estimates.

In this paper, we consider the problem in (1) for the speciÞc case where and are i.i.d. random vectors drawn from a complex multivariate elliptically contoured distribution (ECD) [START_REF] Anderson | Theory and applications of elliptically contoured and related distributions[END_REF], [START_REF] Fang | Generalized Multivariate Analysis[END_REF], see also the recent excellent survey in [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF] for properties and applications of EC distributions. The literature about adaptive detection in ECD is much less abundant than that for the Gaussian case. In [START_REF] Richmond | A note on non-Gaussian adaptive array detection and signal parameter estimation[END_REF], Richmond showed that the GLRT in vector elliptical distributions is still Kelly's detector, and in [16, chapter 4] he investigated an AMF-type approach but faced the problem that the Þrst step is not tractable unless the density generator of the ECD is known.

II. MODIFIED GLRT

Assuming that and are i.i.d. random vectors drawn from a complex multivariate EC distribution with zero mean and positive deÞnite scatter matrix , the joint distribution of and , under hypotheses , , is given by [START_REF] Fang | Generalized Multivariate Analysis[END_REF], [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF] (2) where means proportional to. In (2), is called the density generator and satisÞes Þnite moment condition to ensure integrability of . Similarly to [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF], we make the technical assumption that the function , where , is non-decreasing. Moreover, we consider here the under-sampled scenario for which : this scenario is very relevant in most applications, especially with large .

As said previously, when no assumption is made on , i.e., it is a completely arbitrary positive deÞnite Hermitian (PDH) matrix, then the maximum likelihood estimate (MLE) of is not deÞned, since the likelihood function is unbounded above, see below for details. Usually, is found under a set of constraints, typically assuming a parametric or regularized model , which ensures that is uniquely identiÞable from snapshots. However, whatever the model, arbitrary PDH or , inference about the scatter matrix can only be made in the low-dimensional subspace spanned by the observations, and this is inherent to the fact that . While cannot be recovered from its projection on this subspace, it may be possible that projection of enables to identify the latter. Herein, rather than enforcing a constraint on , we do not make any assumption and follow the lines of [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF], viz. consider (a modiÞcation of) the generalized likelihood ratio test in the under-sampled case for arbitrary , knowing that identiÞability issues exist.

Let us start with hypothesis . Let denote the thin singular value decomposition of the whole data matrix, where (the rank of is with probability 1) and is a unitary matrix. Let be the matrix whose columns form an orthonormal basis for the subspace orthogonal to and let . Let us rewrite as [START_REF] Robey | A CFAR adaptive matched Þlter detector[END_REF] and let us deÞne so that can be parameterized by , and . Under , (2) can be rewritten as [START_REF] Steiner | Fast converging adaptive processor of a structured covariance matrix[END_REF] where, with some slight abuse of notation, we set . Consider Þrst maximization with respect to . It is well known that the maximum likelihood estimator of is the solution to the following implicit equation [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF] (5)

Let us now show that the solution is given by where is deÞned next. Indeed, let us investigate a solution of the form . Since it follows that and

It ensues that where is the unique solution to . We would like to emphasize that does only depend on

. Consequently, we get [START_REF] Abramovich | Time-varying autoregressive (TVAR) models for multiple radar observations[END_REF] where stands for the product of the positive eigenvalues of a matrix. Note that the maximum is achieved for any , such that and hence with no loss of generality we can set so that is the MLE of . Observe also that ( 7) is unbounded above, implying that is not identiÞable. Let us consider the equivalent problem under . Using the same reasoning, it comes that [START_REF] Kang | Rank-constrained maximum likelihood estimation of structured covariance matrices[END_REF] provided that the rank of the matrix is . For this latter condition not to be fulÞlled, should belong to the range space of , or equivalently would reside in the range space of , and the latter occurs with probability zero, unless . Consequently, the -th root of the modiÞed generalized likelihood ratio (MGLR) is deÞned as [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF] where . As said previously, the exact GLR is not well-deÞned since the likelihood is unbounded under both hypotheses due to the term . However, the latter is the same under both hypotheses and therefore, one may argue that should be selected the same under and : anyhow nothing can be inferred about the projection of onto the subspace orthogonal to the observations. With this constraint, (9) can be viewed as a likelihood ratio.

Before pursuing our derivation, it is noteworthy that the above detector does not depend on : hence, in under-sampled scenarios, the detector does not depend on the speciÞc form of the density generator. In order to come up with the MGLRT, it now remains to solve the minimization problem at the denominator of (9). For any PDH matrix whose rank is and whose eigenvalues are , we have and . Therefore, it follows that [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF] The previous equation is now used to obtain a more convenient expression for [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF]. Let be an arbitrary vector in and let [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF] denote the eigenvalue decomposition of with the diagonal matrix of its eigenvalues. One can write [START_REF] Anderson | Theory and applications of elliptically contoured and related distributions[END_REF] where we used Sylvester's determinant theorem. It ensues that [START_REF] Fang | Generalized Multivariate Analysis[END_REF] where denote the projection onto the space orthogonal to . Equation ( 9) can thus be rewritten as [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF] where and stands for the orthogonal projector onto . Note that is the part of in the subspace orthogonal to . Some observations are noteworthy regarding [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF]. First, observe that the MGLR is a ratio of energies: the denominator is the energy of in while the numerator measures the energy of along the component of within . Note that, since the columns of contain noise only, the detector operates in the subspace orthogonal to them and look there for energy along . Surprisingly enough, this detector coincides with Scharf and Friedlander GLRT for detecting a known signal ( ) in subspace interference (spanned by the columns of ) and white noise of unknown level, see [17, eqn. (6.2)], i.e., it is the GLRT for the detection problem [START_REF] Richmond | A note on non-Gaussian adaptive array detection and signal parameter estimation[END_REF] This is quite a remarkable result as the initial detection problem is very different from [START_REF] Richmond | A note on non-Gaussian adaptive array detection and signal parameter estimation[END_REF]. However, it is not illogical in view of the above discussion.

The MGLR does not depend on the density generator of the CES distribution. This means, that in the under-sampled scenario, the underlying distribution of the data does not account as much as the subspace where the data lies. Additionally, the probability density function (p.d.f.) of MGLR under does not depend on

. Indeed, under the stated assumptions about and , they admit the following stochastic representation [START_REF] Fang | Generalized Multivariate Analysis[END_REF], [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF] and where means "has the same distribution as". The non-negative real random variable is referred to as the modular variate and is independent of the complex random vector , which is uniformly distributed on the complex -sphere. Using the fact that where , we can equivalently write and . This implies that where . Consequently, the range space of is the same as that of , which implies that : hence, the distribution of does not depend on and is the same as that when is Gaussian distributed. The same reasoning holds for since . Finally, the ratio does not depend on and is independent of the density generator. Consequently, the distribution of under is independent of .

Finally, note that the speciÞc form in ( 14) is inherently due to the fact that we consider an arbitrary PDH matrix rather than investigating directly a regularized or parameterized form for , e.g., as in [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF]. It remains to evaluate the respective merit of each method, which is what we do in the next section through simulations.

III. NUMERICAL SIMULATIONS

The modiÞed GLR as given by ( 14) should be compared to possible competitors as well as a reference. The latter is provided by the matched Þlter (MF) which is given by [START_REF] Richmond | Adaptive array signal processing and performance analysis in non-Gaussian environments[END_REF] (16)

For a Student distribution with degrees of freedom that will be considered in the sequel, the MF amounts to [START_REF] Scharf | Matched subspace detectors[END_REF] The matched Þlter assumes that both and the density generator are known, which is unrealistic but can serve as a reference. For a fair comparison with MGLRT, some adaptive detection schemes ought to be investigated. A natural method is the AMF which consists in replacing in ( 17) by an estimate based on . Since , the sample covariance matrix obtained from is singular and, hence, regularization is somehow needed. An effective approach, often advocated in Gaussian settings, consists in using shrinkage of the sample covariance matrix [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF] as an estimate of . More precisely, one can consider [START_REF] Scharf | Adaptive matched subspace detectors and adaptive coherence estimators[END_REF] where . The parameter is selected according to the expected likelihood (EL) principle [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF], i.e., is such that [START_REF] Kraut | The CFAR adaptive subspace detector is a scale-invariant GLRT[END_REF] where is the Gaussian likelihood ratio (LR) for testing [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF], is the scenario-invariant p.d.f. of the -th root of evaluated at the true covariance matrix , and stands for the median value. Another possibility is to consider the adaptive coherence estimator (ACE) [START_REF] Scharf | Adaptive matched subspace detectors and adaptive coherence estimators[END_REF], [START_REF] Kraut | The CFAR adaptive subspace detector is a scale-invariant GLRT[END_REF] (also called normalized AMF), or more precisely a regularized version of it [START_REF] Besson | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach -Part 2: The under-sampled case[END_REF] The use of in [START_REF] Scharf | Adaptive matched subspace detectors and adaptive coherence estimators[END_REF] and ( 20) is suitable when follows a Gaussian distribution, and indeed relies on this assumption. In order to account for a possibly complex elliptical distribution, yet without needing to estimate , a pertinent choice is to normalize the training samples and proceed with [START_REF] Besson | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach -Part 2: The under-sampled case[END_REF]. The vector follows a complex angular central Gaussian (ACG) distribution [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF], [START_REF] Tyler | Statistical analysis for the angular central Gaussian distribution on the sphere[END_REF] which does no longer depend on . An efÞcient regularization scheme for estimating from has been proposed in [START_REF] Abramovich | Diagonally loaded normalised sample matrix inversion (LNSMI) for outlier-resistant adaptive Þltering[END_REF], [START_REF] Wiesel | UniÞed framework to regularized covariance estimation in scaled Gaussian models[END_REF], and referred to as the Þxed point diagonally loaded estimator (FP-DL) in [START_REF] Besson | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach -Part 2: The under-sampled case[END_REF]. Let us denote it by -. The value of can again be chosen according to the EL principle . [START_REF] Besson | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach -Part 2: The under-sampled case[END_REF]. The matrix can be used in place of in [START_REF] Scharf | Adaptive matched subspace detectors and adaptive coherence estimators[END_REF] and ( 20) to yield

- - - (21) 
- - - - - - - (22) 
The two adaptive detectors do not require knowledge of to estimate and ( 20) does not need it at all. Comparison of ( 18) and ( 21) will allow one to quantify the gain/loss achieved by using the normalized samples instead of the original samples .

The above detectors are now compared under the following scenario. We consider an array of elements separated a half-wavelength apart. The signal of interest impinges with a direction of arrival of so that where . We consider a covariance matrix of the type . The parameter is chosen as . As for , we set it to . The signal to noise ratio is deÞned as . We consider that the data follow Student distribution, with degree of freedom. Finally, the probability of false alarm is set to . The results are shown in Fig. 1. The following main observations can be made.

When , MGLRT is an interesting solution as it performs as well as the best regularized schemes, yet with a lower computational complexity. When increases, regularization appears to be more effective. In fact, MGLRT does not really improve when increases while the other detectors tend to perform better.

Regularized estimation of from either or results in the same probability of detection for RAMF and RACE, whatever the underlying distribution of . From EL point of view, any solution with the targeted LR value is statistically as "likely as the truth". Yet some of them could be better than others, if regularization matches the actual structure of the covariance matrix. For example, for AR covariance matrices, TVAR regularization can provide better detection performance than diagonal loading with the same EL threshold. Herein, the same type of regularization was used (diagonal loading) which results in similar performance for the direct and Þxed point regularization. For under-sampled scenarios when the subspace spanned by the training data does not depend on the relative powers of the samples, this is not so surprising. In fact, it is reminiscent of the fact that made the MGLR detector does not dependent on . The conclusion might be different for over-sampled scenarios.

IV. CONCLUDING REMARKS

We investigated the adaptive detection of a signal of interest buried in noise with an elliptically contoured distribution, when the number of training samples is much less than the size of the observation space. In this under-sampled scenario, inference about the scatter matrix can be made only in the -dimensional subspace spanned by the training samples, and therefore considering as arbitrary leads to identiÞability issues. Since the latter are the same under both hypotheses, we proposed a modiÞed GLR test. This test does not depend on the density generator of the noise EC distribution but is based on projection onto the subspace orthogonal to the training samples, followed by energy search along a direction, similarly to a test derived by Scharf and Friedlander in the context of matched subspace detection. The new detector is very simple from a computational point of view and it is seen to offer a valuable solution when is very low. When increases however, it appears that regularization offers a better solution.
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