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Abstract—This paper introduces a new descriptor for charac-
terizing and classifying the pixels of texture images by means of
General Adaptive Neighborhoods (GANs). The GAN of a pixel
is a spatial region surrounding it and fitting its local image
structure. The features describing each pixel are then region-
based and intensity-based measurements of its corresponding
GAN. In addition, these features are combined with the gray-
level values of adaptive mathematical morphology operators using
GANs as structuring elements. The classification of each pixel
of images belonging to five different textures of the VisTex
database has been carried out to test the performance of this
descriptor. For the sake of comparison, other adaptive neighbor-
hoods introduced in the literature have also been used to extract
these features from: the Morphological Amoebas (MA), adaptive
geodesic neighborhoods (AGN) and salience adaptive structuring
elements (SASE). Experimental results show that the GAN-based
method outperforms the others for the performed classification
task, achieving an overall accuracy of 97.25% in the five-way
classifications, and area under curve values close to 1 in all the
five ”one class vs. all classes” binary classification problems.

Keywords—Pixel description; adaptive neighborhoods;
Minkowski functionals; morphometrical functionals; adaptive
mathematical morphology.

I. INTRODUCTION

The so-called General Adaptive Neighborhood Image Pro-
cessing (GANIP) approach has been developed by Debayle
and Pinoli [1] for the adaptive processing and analysis of gray-
level images. In this framework an image is represented as a
set of adaptive neighborhoods (i.e. a surrounding region for
each pixel, fitting its local spatial structures). Mathematically,
a General Adaptive Neighborhood (GAN) is a connected
component whose point intensity values (measured in relation
to a certain criterion such as luminance, contrast, etc.) fit
within a specific range of homogeneity tolerance. It makes
GAN adaptive with respect to the spatial structures and defined
from the gray-level image itself. Thereafter, GANs can be
used as operational windows for adaptive image processing and
analysis. For example, these GANs have been used as struc-
turing elements for adaptive mathematical morphology [2].
In addition, geometrical and morphometrical measurements of
GANs have also been used for characterizing gray-level images
[3], [4].

In the literature, other adaptive neighborhoods have been
proposed for image processing. Lerallut et al. introduced
the concept of morphological amoebas (for defining mor-
phological operators) whose shape is locally adapted to the

image contour variations by means of a weighted geodesic
distance [5]. Grazzini and Soille also proposed a filtering
approach based on adaptive neighborhoods obtained by means
of a geodesic distance criterion [6] which achieved an edge-
preserving smoothing. Recently, Ćurić et al. presented the
salience adaptive structuring elements, that vary both their
shape and size according to the salience of edges in the image
[7]. Note that all these adaptive neighborhoods have been
mostly used as adaptive structuring elements in morphological
operators.

The purpose of this paper is to characterize and classify
pixels of texture images. In order to describe them, some
local information around the pixels are taken into account. In
this way, region-based and intensity-based measurements of
the GANs (which fit to the local image structures) are used
as pixel descriptors. More precisely, the features describing
each pixel are geometrical (using Minkowski functionals [3])
and morphometrical functionals [4] of its corresponding GAN.
These features are combined with the gray-level values of
GAN-based adaptive morphological operations of the image
at that point. Therefore, these descriptors characterize both
the geometry, morphometry and intensities of local structures
surrounding the pixels. For the sake of comparison, this de-
scriptors have also been computed from Morphological Amoe-
bas [5], Adaptive Geodesic Neighborhoods [6], and Salience
Adaptive Structuring Elements [7].

The paper is organized as follows: First, a brief review
of the General Adaptive Neighborhood Image Processing
(GANIP) framework is made in section II. Thereafter, some
theoretical aspects of the proposed descriptor are given in
section III. Section IV depicts a summary of the other adaptive
neighborhoods, and then the experimental framework and
results are presented in section V. Finally, the conclusions are
presented in section VI.

II. GENERAL ADAPTIVE NEIGHBORHOOD IMAGE
PROCESSING (GANIP)

The GANIP approach [1] provides a general framework for
multiscale, local and adaptive image processing and analysis
of gray-level images. It is based on extracting spatial neigh-
borhoods called General Adaptive Neighborhoods (GANs)
from the points of the image as the size and shape of the
neighborhoods are adapted to the local features of the image.
Specifically, a GAN is a subset of the spatial support D ⊆ R2



constituted by connected points whose values in relation to a
selected criterion (luminance, contrast,...) fit within a homo-
geneity tolerance. As a result, GANs are adaptive with the
spatial structures and defined from the gray-level image itself.

Let f be an image defined in D with range in R, and let
h be a criterion mapping, also defined in D and valued in R,
based on local measurements such as luminance, contrast, etc.
For each point x ∈ D, the GANs (denoted V hm(x)) are subsets
in D built upon h in relation to a homogeneity tolerance m ∈
R+. More precisely, V hm(x) fulfills two conditions:

• The measurement of the criterion mapping of its points
is close to the one of x

∀y ∈ V hm(x), |h(y)− h(x)| ≤ m

• The GAN is a path-connected set (according to the
usual Euclidean topology on D ⊆ R2)

Thus, the GANs are formally defined as:

V hm(x) = C{y∈D: |h(y)−h(x)|≤m}(x) (1)

where CX(x) denotes the path connected component of
X ⊆ D containing x ∈ D. Therefore, it is ensured that
∀x ∈ D x ∈ V hm(x).

However, these GANs do not satisfy the symmetry property,
defined as:

∀ x, y ∈ D y ∈ A(x) ⇐⇒ x ∈ A(y) (2)

where {A(x)}x∈D is a collection of subsets A(x) ⊆ D. For
this reason, GANs defined in equation (1) are called Weak
General Adaptive Neighborhoods (W-GANs).

In order to get this property satisfied, a new set of GANs,
called Strong General Adaptive Neighborhoods (S-GANs) is
defined as:

Nh
m(x) =

⋃
z∈D
{V hm(z) : x ∈ V hm(z)}. (3)

The reader interested in further theoretical aspects on
GANs is referred to [1].

III. GAN-BASED DESCRIPTOR

As it has been previously pointed out, each pixel will
be described by means of geometrical and morphometrical
functionals computed from its corresponding GAN, combined
with the gray-level of the results of some GAN-based adaptive
morphological operations at that point. This section explains
these methods.

A. GAN-based Minkowski functionals

Integral geometry provides a suitable family of geometrical
and topological descriptors of 2-D and 3-D spatial patterns,
known as Minkowski functionals [8]. In 2-D, there are three
Minkowski functionals: area, perimeter and Euler number,
denoted respectively A, P and χ.

These functionals are defined on the class of nonempty
compact convex sets in R2. They have been extended to the
convex ring [9], i.e. the set of all finite unions of convex bodies,

which may be considered as a realistic Euclidean model for
digital images.

In this paper the densities of these functionals are used, (i.e.
the ratios of the intensities and the area of the spatial support
D). The density of the area, perimeter and Euler number are
denoted AA, PA and χA, respectively.

The GAN-based Minkowski maps [3] are defined by as-
signing to each point x ∈ D the Minkowski density functional
V hm(x). More explicitly, the GAN-based Minkowski map of a
gray-level image, denoted by µhm, is defined by:

µhm(x) = µ(V hm(x)) (4)

where µ denotes a Minkowski density functional (i.e. µ ≡ AA,
µ ≡ PA or µ ≡ χA).

B. GAN-based morphometrical functionals

For a simply connected compact set in R2, the relationships
between the six geometrical functionals area (A), perimeter
(P ), radii of the inscribed and circumscribed circles (r and R
respectively) and the minimum and maximum Feret diameters
(ω and d, respectively) are constrained by some geometric
inequalities. Some of these inequalities are restricted to convex
sets.

The inequalities that link geometrical functionals by pairs
actually determine the so-called extremal connected compact
sets, which are the sets for which the inequalities become
equalities. Furthermore, they allow to determine morphome-
trical functionals, which are invariant under similitude trans-
formations and, therefore, do not depend on the global size
of the compact set. Morphometrical functionals are defined as
ratios between the corresponding geometrical functionals in
which the units are dimensionally homogeneous, so the result
is dimensionless. Moreover, a normalization by a constant
value leave those ratios in the interval [0, 1].

The inequalities between geometrical functionals along
with the corresponding morphological functionals and ex-
tremal connected compact sets are shown in table I. It is
necessary to point out that these inequalities are not restricted
to convex sets. The extremal sets shown in this table are disks
(C), line segments (L), the constant width compact sets (W),
compact sets of diameter d containing an equilateral triangle
of side-length d (Z), simply connected compact sets (Y) and
some compact convex sets (X).

The morphometrical functionals can be classified according
to their concrete meanings:

• Roundness: 4πA/P 2, 4A/πd2, πr2/A, A/πR2

• Circularity: 2πr/P , r/R, 2r/d, ω/2R

• Diameter constancy: πω/P , ω/d

• Thinness: 2d/P , 4R/P

In addition, the functional
√

3R/d expresses both the
equilateral triangularity and the diameter constancy. The ratios
2r/ω and d/2R do not have a concrete meaning, and they are
equal to one for many compact sets.

Similar to what was done with the Minkowski maps,
adaptive morphometrical maps of an image can be defined [4]



TABLE I. INEQUALITIES BETWEEN GEOMETRICAL FUNCTIONALS AND
THE CORRESPONDING MORPHOMETRICAL FUNCTIONALS, NOT

RESTRICTED TO COMPACT CONVEX SETS.

Geometrical
functionals Inequalities Morphological

functionals
Extremal

sets
r, R r ≤ R r/R C
ω, R ω ≤ 2R ω/2R C
A, R A ≤ πR2 A/πR2 C
d, R d ≤ 2R d/2R Y
r, d 2r ≤ d 2r/d C
ω, d ω ≤ d ω/d W
A, d 4A ≤ πd2 4A/πd2 C
R, d

√
3R ≤ d

√
3R/d Z

r, P 2πr ≤ P 2πr/P C
ω, P πω ≤ P πω/P W
A, P 4πA ≤ P 2 4πA/P 2 C
d, P 2d ≤ P 2d/P L
R, P 4R ≤ P 4R/P L
r, A πr2 ≤ A πr2/A C
r, ω 2r ≤ ω 2r/ω X

by assigning to each point x the corresponding morphometrical
functional of the GAN of that point.

The reader interested in further theoretical details about ge-
ometrical and morphometrical functionals of GANs is referred
to [3], [4].

C. GAN-based mathematical morphology

Mathematical Morphology is a theory developed from the
ideas of Matheron [10] and Serra [11] for binary images,
and generalized to gray-level images later [12]. The two
fundamental morphological operators are erosion and dilation,
defined respectively as:

EB(f(x)) = inf{f(w) : w ∈ B(x)} (5)

DB(f(x)) = sup{f(w) : w ∈ B̌(x)} (6)

where B(x) denotes the structuring element B whose origin
is located at point x, and B̌(x) stands for the reflection of B,
i.e. B̌(x) = {z ∈ D : x ∈ B(z)}.

The idea behind the General Adaptive Neighborhood Math-
ematical Morphology (GANMM) [1], [2] is to substitute the
usual structuring elements by the adaptive ones at each pixel
of the image.

The S-GANs (see equation (3)) are autoreflected subsets
(a subset A(x) is autoreflected if and only if Ǎ(x) = A(x),
∀x ∈ D), which have been used as adaptive structuring ele-
ments for GANMM. Therefore, GAN-based adaptive erosion
and dilation can be expressed as:

Ehm(f)(x) = inf
w∈Nh

m(x)
(f(w)) (7)

Dh
m(f)(x) = sup

w∈Nh
m(x)

(f(w)) (8)

Thereafter, more advanced adaptive morphological op-
erators can be defined (e.g. openings, closings, alternating
sequential filters, etc.) [2].

An example of a Minkowski functional map, a morphome-
trical functional map and the adaptive dilation of an image is
shown in Fig. 1.

(a) Original im-
age f

(b) (AA)f30 (c) 4R/P (d) GAN-based
dilation

Fig. 1. Examples of the GAN-based Minkowski map of the area, AA,
(b), GAN-based morphometrical functional map 4R/P (c) and GAN-based
dilation (d). The GANs were computed with respect to the luminance criterion
(h ≡ f ) using a homogeneity tolerance m = 30. Each pixel is then described
by geometrical, morphometrical and intensity features.

IV. OTHER ADAPTIVE NEIGHBORHOODS

Other adaptive neighborhoods defined in the literature will
be used to compute the Minkowski and morphometrical func-
tionals and as adaptive structuring elements in morphological
operations. The aim is to compare the resulting descriptors
with the GAN-based ones in the pixel classification task. These
adaptive neighborhoods are the Morphological Amoebas (MA)
[5], the Adaptive Geodesic Neighborhoods (AGN) [6] and the
Salience Adaptive Structuring Elements [7] (SASE).

A gray-level image f can also be represented as a surface
S with two spatial coordinates in D and other coordinate
corresponding to the intensity value of the image at these co-
ordinates. The geodesic distance between two points (x, f(x))
and (y, f(y)) on S is the minimum cost to travel from one to
the other along the surface. Since digital images are considered
in this paper, discrete paths have been used.

Let Pxy be a geodesic path connecting x and y. It can
be considered as a set {x1, x2, ..., xn+1} with x1 = x and
xn+1 = y. The cost of the geodesic path connecting two
adjacent points, c(xi, xi+1), i ∈ {1, 2, ..., n}, should take into
account both (a) the spatial distance between xi and xi+1 and
(b) the distance between their corresponding gray-level values
f(xi) and f(xi+1). The cost, C, of the path Pxy is

C(Pxy) =

n∑
i=1

c(xi, xi+1)

and the geodesic distance between x and y is

d(x, y) = min
Pxy

C(Pxy). (9)

Keeping this in mind, the next sections briefly present how
amoebas, AGNs and SASEs are defined and how these costs
are computed for each method.

A. Morphological Amoebas

As it is defined in [5], a morphological amoeba centered
in x ∈ D is:

Ar(x) = {y ∈ D : d(x, y) < r} (10)

where r is the so-called radius of the amoeba.

For this method the cost between two adjacent points is
defined by:

c(xi, xi+1) = ‖xi − xi+1‖Z2 + λ|f(xi)− f(xi+1)| (11)



where λ > 0.

In this work the considered discrete spatial distance ‖xi−
xi+1‖Z2 is the 〈3, 4〉 distance, and λ = 0.25, as done in [7].

B. Adaptive Geodesic Neighborhoods

Grazzini and Soille use the same principle for their locally
Adaptive Geodesic Neighborhoods [6], but they propose two
different ways of computing the cost. The first one is called
the ∆-time, which is defined as:

c(xi, xi+1) =
1

2
|f(xi)− f(xi+1)| · ‖xi − xi+1‖Z2 (12)

where the 〈3, 4〉 distance has been considered as the discrete
spatial distance ‖x− y‖Z2 [7].

The second one is called the Σ-time. The difference with
the ∆-time is that the image gradient ∇f is used instead of
the image itself f .

Both cost functions have been assessed for this particular
application, and it was found that the ∆-time outperformed
the Σ-time in terms of classification accuracy. Therefore, the
results shown in this paper have been achieved using the cost
function defined in equation (12).

C. Salience Adaptive Structuring Elements

Ćurić et al. proposed other adaptive structuring elements,
obtained by computing the distances between the points using
the Salience Distance Transform (SDT) [7], thus, weighting
the edges of the image by their importance, or salience.

To compute the Salience Map (SM) of the image, first
of all, the edges in the input image are extracted using the
gradient estimation and the non-maximal suppression from the
Canny edge detector. Let NMS(f) be the resulting ”edge im-
age”. Then, the Salience Distance Transform [13] is computed
taking −NMS(f) as input, getting non-zero values for the edge
pixels. Finally, the Salience Maps (SM) are the inverted values
of the SDT shifted to positive values. Therefore, the highest
values in SM correspond to the strongest edges in the images.
Finally, the SM can be written in the following mathematical
formulation:

SM(y) = Offset + sup
x∈D
{NMS(f)(x)− ‖x− y‖Z2}, (13)

where y ∈ D and Offset = infy∈D supx∈D{NMS(f)(x) −
‖x−y‖Z2}. Once again, the considered discrete spatial distance
‖x− y‖Z2 is the 〈3, 4〉 distance.

Thereafter, the cost of the path between adjacent points is
defined as:

c(xi, xi+1) = SM(xi) + SM(xi+1). (14)

Finally, the salience adaptive structuring element (SASE)
with origin at x is defined as:

Sr(x) = {y : d(x, y) < r} (15)

where d(x, y) is computed using equation (9).

In this case the radii of the SASEs are spatially variant:
the higher the value of a point on the SM, the closer it is to
a salient edge and thus, its corresponding structuring element

(a) FaBa (b) FaWo (c) FoBe (d) FoSw (e) Stone

Fig. 2. Examples of used the VisTex sub-categories with their names.

should have a smaller radius. In this paper the maximum of
the SM is used to derive the radii of the SASEs, therefore:

r(x) = k ·max(SM)− SM(x) (16)

where k ≥ 1 is a parameter that regulates the size of the
SASEs.

V. EXPERIMENTS AND RESULTS

This section presents the pixel classification in gray-level
textures. Concretely, each pixel has been described by means
of some features (region-based and intensity-based) computed
from its corresponding adaptive neighborhood (of different
sizes). Afterwards, this feature vector has been classified
by means of a neural network, so the pixel is assigned to
a class. The next sections describe the images, descriptors,
classification stage and results.

A. Texture database

Five different classes have been extracted from the MIT
VisTex1 database. Textures in this database are taken from
different materials and divided into several categories. Within
some of them there are different sub-categories, so they have
been divided as it was done in [14].

Each original image has a spatial resolution of 512 × 512
pixels, and was divided into 25 sub-images of 102 × 102
pixels, with no overlapping among themselves. Thereafter, five
images were randomly chosen from each class to be used in the
experiment (i.e. 25 images are used in the experiment). It may
seem the number of images is not enough for a classification
task, but it is necessary to remember that the classification is
not carried out on the images but on the pixels. Therefore,
the dataset has 25× 102× 102 = 260100 elements. In Fig. 2
a sub-image from each of the classes that have been used is
shown.

B. Pixel-level description

Each pixel of the image is characterized by a feature vector
constructed by a concatenation of (i) the mean and standard
deviation of the Minkowski density functionals (AA, PA and
χA) of adaptive neighborhoods of different sizes whose origin
is placed at that pixel (i.e. 6 features), (ii) the mean and
standard deviation of the 15 morphometrical functionals shown
in table I of the same adaptive neighborhoods (i.e. 30 features)
and (iii) the gray-level values of the considered point in the
original image and the corresponding adaptive erosions and
dilations using adaptive neighborhoods with increasing sizes
as structuring elements.

1http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html



TABLE II. MEAN AND STANDARD DEVIATION OF THE ACCURACY
OVER THE 10 CLASSIFICATIONS FOR THE DIFFERENT SCENARIOS OF

NEURONS IN THE HIDDEN LAYER / TRAINING CYCLES.

MA AGN SASE GAN
Cycles Neurons Acc. Std Acc. Std Acc. Std Acc. Std

500 9 90.37 0.02 73.42 0.02 66.65 0.11 95.92 0.02
600 9 89.93 0.01 72.87 0.02 60.65 0.09 95.58 0.02
700 9 89.74 0.02 74.08 0.03 68.18 0.09 97.25 0.01
500 11 89.93 0.01 73.00 0.02 63.44 0.07 96.39 0.01
600 11 89.60 0.02 72.89 0.02 61.52 0.08 96.19 0.02
700 11 89.75 0.01 73.67 0.03 62.53 0.08 96.43 0.02
500 13 90.17 0.01 72.39 0.03 64.17 0.09 95.40 0.02
600 13 89.85 0.01 73.44 0.02 64.46 0.07 95.64 0.03
700 13 90.68 0.01 75.04 0.02 63.23 0.08 96.07 0.02
500 15 90.15 0.01 74.47 0.02 60.22 0.10 96.73 0.02
600 15 91.13 0.02 74.18 0.01 67.71 0.08 96.32 0.02
700 15 89.89 0.01 74.01 0.01 64.88 0.11 94.47 0.02

The adaptive neighborhoods have been computed from the
images themselves (e.g. h ≡ f in GANs). In order to make
the size of the neighborhoods vary, different values for the
tolerance m in the case of the GANs, radius r for the amoebas
or AGNs or the parameter k for the SASEs (see eq. (16))
have been used. Several values for these parameters have been
tested for all methods, but the best results have been achieved
for values from 5 to 100 in steps of 5 (i.e. 20 different values).

Therefore, each pixel is described by a vector of 77
features.

C. Classification

All these descriptors have been classified using a feed-
forward Artificial Neural Network [15] with one hidden layer,
and softmax activation function in the hidden and output layers
(to guarantee that outputs satisfy the probability constraints)
[16].

The learning of the network has been carried out using
momentum and adaptive learning rate algorithm. Different
combinations of training cycles and neurons in the hidden
layer have been used, in order to assess the impact of this
configuration in the results. Concretely, 9, 11, 13 and 15
neurons and 500, 600 and 700 cycles have been used.

The training have been carried out using the descriptors of
the pixels of 3 images per class (chosen randomly) and the
pixels of the other 2 have been used as test set. This process
has been repeated during 10 times, to avoid possible random
effects in the classification. Data were normalized previous
to classification, so that they have zero mean and standard
deviation equals to one.

D. Results

The mean and standard deviation of the accuracy (i.e. the
ratio of well classified pixels), in %, over the 10 classification
iterations are shown in table II, for the different classification
scenarios (i.e. neurons in the hidden layer/training cycles). The
first row shows the different types of adaptive neighborhoods
that have been tested i.e., Morphological Amoebas (MA),
Adaptive Geodesic Neighborhoods (AGN), Salience Adaptive
Structuring Elements (SASE) and the general adaptive neigh-
borhoods (GAN).

First of all, it is remarkable the good performance of the
descriptor based on the GANs compared to the other methods:

TABLE III. AREA UNDER THE ROC CURVES OF THE CLASSIFIER
GENERATED BY EACH DESCRIPTOR FOR EACH BINARY PROBLEM

MA AGN SASE GAN
FaBa vs. non-FaBa 0.9781 0.9561 0.9552 0.9972

FaWo vs. non-FaWo 0.9948 0.9279 0.9222 0.9996
FoBe vs. non-FoBe 0.9884 0.8832 0.8807 0.9955
FoSw vs. non-FoSw 0.9788 0.9613 0.9599 0.9987
Stone vs. non-Stone 0.9962 0.9597 0.9547 0.9997

they achieve a maximum accuracy of 97.25% (with a neural
network configuration of 9 neurons in the hidden layer and
700 training cycles), whereas the descriptors based on MAs,
AGNs and SASEs achieve maximum accuracies of 91.13%,
75.04% and 68.18%, respectively.

Some authors claim that the hit rate is not the most suitable
measure to illustrate the performance of a classifier, and that
a ROC analysis would be more convenient [17]. However,
this is not a binary classification problem as, indeed, a five-
way classifier has been used, so it is not straightforward to
carry out such analysis. In this case, a ROC analysis of each
”binarized” problem (i.e. one class vs. the others) has been
made, as it is done in [16]. The ROC space for each problem
is presented in Fig. 3. Therefore, subfigure 3(a) display the
FaWi versus non-FaWi (class 1 versus clases 2 to 5) binary
ROCs achieved with the classifiers generated by each of the
assessed descriptors. Similarly, the FaWo versus non-FaWo,
FoBe versus non-FoBe, FoSw versus non-FoSw and Stone
versus non-Stone comparisons are shown in subfigures 3(b),
3(c), 3(d), and 3(e), respectively. In addition, the areas under
these curves (AUC) are shown in table III.

Regarding these results in table III, the classifiers generated
using GAN-based descriptors achieve the best AUCs (ROC
curves in these cases are, actually, close to ideal curves, as
their AUC is close to 1). Although always below GANs,
amoeba-based classifiers also achieve excellent performances
(comparable to GANs in Stone and FaWo problems, as it
is depicted in Fig. 3). The less successful classifiers are the
ones based on AGNs and SASEs, depending on the problem.
It is remarkable the difference in AUC between GANs and
amoebas compared to its difference in accuracy. It actually
shows that classifiers generated by amoeba-based descriptors
are very successful when classifying a pixel as belonging or not
to one class. However, when assigning them to one amongst
other classes, GAN-based descriptors seem more efficient.

With respect to the computational complexity, the average
computation time necessary to describe all pixels has been
computed. The fastest method was the GAN-based one (70.47
seconds against 311.65 for the MA, 279.42 for the AGN and
601.35 for the SASE).

VI. CONCLUSION

In this paper a new pixel descriptor based on the General
Adaptive Neighborhood (GAN) framework for gray-level im-
ages has been presented. Concretely, each pixel is described
by a concatenation of integral geometry and morphometrical
functionals measured from GANs of different sizes and gray-
level values of GAN-based adaptive erosions and dilations.

For the sake of comparison, other adaptive neighbor-
hoods proposed in the literature have been used to compute
this descriptor: Morphological Amoebas, Adaptive Geodesic



(a) (b) (c)

(d) (e)

Fig. 3. Top-left part of the ROC graphs for the classifiers generated with the data corresponding to the compared methods for each binary classification problem:
FaBa vs. non-FaBa (a), FaWo vs. non-FaWo (b), FoBe vs. non-FoBe (c), FoSw vs. non-FoSw (d) and Stone vs. non-Stone (e).

Neighborhood and Salience Adaptive Structuring Elements.
These four methods were compared using textures from five
different classes extracted from the VisTex database.

The GAN-based descriptor achieved an overall accuracy of
97.25%, while amoebas, AGN or SASE ones achieved 91.13%,
75.04% and 68.18%, respectively.

In future work, the extension of this descriptor for color
images will be addressed by using the generalization of GANs
to color images [18]. In addition, this method may be a really
good asset for image segmentation applications, or even for
texture classification (e.g. using the histogram or other features
from the maps of the texture). Therefore, its application to this
kind of problems will be tackled.
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