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We describe a method for distribution function and density estimation with Bernstein polynomials. We take advantage of results about the eigenstructure of the Bernstein operator to refine the Sevy's convergence acceleration method, based on iterates of this operator; the original Sevy's algorithm is improved by introducing fractional operators. The proposed algorithm has better convergence properties than the classical one; the price to pay is a controllable loss of the shape-preserving properties of the Bernstein approximation (monotonicity and positivity in the Density Estimation setting). The method is tested on simulated data.

Introduction

Bernstein simultaneously introduced in 1912 the polynomials and the operator that bear his name in a famous paper [START_REF] Bernstein | Démonstration du théoreme de Weierstrass fondée sur le calcul des probabilités[END_REF]. But, as Farouki [START_REF] Farouki | The Bernstein polynomial basis: a centennial retrospective[END_REF] noticed, this approximation has been seldom used, due to its slow convergence. For instance, to approach f (t) = t 2 on the unit interval with a maximal error of 10 -4 , we need a polynomial of degree 2500 [START_REF] Farouki | The Bernstein polynomial basis: a centennial retrospective[END_REF] ! Nevertheless, this operator (denoted B n ) has attractive shape-preserving properties: if f is positive (or monotone, or convex), its image B n [f ] is so (see [START_REF] Davis | Interpolation and approximation[END_REF] for further properties). Consequently, the structure of a distribution function (d.f.) is preserved by B n ; this point strongly motivated the use of the Bernstein approximation in Density Estimation [START_REF] Vitale | A Bernstein polynomial approach to density function estimation[END_REF]1,[START_REF] Bouezmarni | Bernstein estimator for unbounded density function[END_REF][START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF][START_REF] Leblanc | On estimating distribution functions using Bernstein polynomials[END_REF][START_REF] Leblanc | On the boundary properties of Bernstein polynomial estimators of density and distribution functions[END_REF].

Notations

We will work in the Banach space C [0, 1] of continuous functions on [0, 1], equipped with the norm ∥f ∥ := max x∈[0,1] |f (x)|. The subspace of polynomials of degree ≤ n will be denoted P n , and P n will be the supplementary of P 1 in P n . We will denote F + the closed convex cone of positive functions of C [0, 1], and F 1 the closed convex set of functions of C [0, 1] integrating to 1.

Consider an operator U : C [0, 1] → C [0, 1]; for n ≥ 2 (fixed), its restriction to P n will be denoted

• U , and its restriction to P n will be denoted U . For the sake of simplicity, the restrictions of the identity operator to these subspaces will be denoted 1 instead of • 1 or 1; M at (U ; B 1 , B 2 ) will denote the matrix representation of U with respect to the bases B 1 and

B 2 of C [0, 1]. We will use the matrix p-norms ∥U ∥ p := sup v̸ =0 ∥U (v)∥ p ∥v∥ p
where ∥v∥ p is the usual

vector ℓ p -norm. Notice that ∥U ∥ 1 := max 1≤k≤dim(U ) ∑ dim(U ) j=1 |U j,k |, ∥U ∥ 2 is the spectral norm, and 
∥U ∥ ∞ := max 1≤j≤xdim(U ) ∑ dim(U ) k=1
|U j,k | (see [START_REF] Farouki | On the stability of transformations between power and Bernstein polynomials forms[END_REF]).

Expression of powers of the Bernstein operator into different bases

The Bernstein operator [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF][START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF][START_REF] Sevy | Lagrange and least-squares polynomials as limits of linear combinations of iterates of Bernstein and Durrmeyer polynomials[END_REF]:

B n : C [0, 1] → C [0, 1] is defined by
B n [f ] (x) := n ∑ j=0 w n,j (x)f ( j n ) with w n,j (x) := ( n j ) x j (1 -x) n-j ; its range R (B n ) ⊆ P n .
Cooper and Waldron [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF] gave its spectral decomposition, which can be also written into the form hereunder [START_REF] Manté | Iterated Bernstein operators for bona fide distribution function and density estimation[END_REF].

Theorem 2.1. The Bernstein operator can be represented in the diagonal form

B n [f ] = n ∑ j=0 λ [n] j π [n] j ⊗ π * [n] j (L n [f ]) where f ∈ C [0, 1], λ [n] j = n!
(n-j)! n j ∈ ]0, 1] and π

[n] j ∈ P n are its eigenvalues and eigenvectors, π * [n] j

is the dual vector of π

[n] j , and u ⊗ v * (w) := u ⟨v * , w⟩.

We will need the Lagrange interpolation operator (equispaced case)

L n : C [0, 1] → C [0, 1] defined by: L n [f ] (x) := n ∑ j=0 ℓ n,j (x) f ( j n ), with ℓ n,j (x) := n ∏ k=0 k̸ =j n x -k j -k .
Three bases of P n will be needed:

1. the Bernstein's basis W n := {w n,j (x) , 0 ≤ j ≤ n} 2. the Lagrange's basis

L n := {ℓ n,j (x) , 0 ≤ j ≤ n} 3. the eigenvectors of B n , Π [n] := { π [n] j (x) , 0 ≤ j ≤ n } .
Let us denote LW [n] the transformation matrix associated with the bases L n and W n , whose j th column consists in the coordinates of w n,j in the basis L n . The following results can be easily demonstrated [START_REF] Manté | Iterated Bernstein operators for bona fide distribution function and density estimation[END_REF]:

Lemma 2.2. M at ( • B n ; L n , W n ) = I n and M at ( • B n ; W n , W n ) = LW [n] .
Thank to this lemma, we obtain for any k ≥ 2 a first matrix representation of B k n from the diagram:

B k n : C [0, 1] Ln -→ (P n , L n ) In -→ (P n , W n ) LW k-1 [n] -→ (P n , W n ) . (1) 
Besides, Theorem 2.1 gives an alternative representation of this operator:

B k n : C [0, 1] Ln -→ (P n , L n ) LΠ [n] -→ ( P n , Π [n] ) Λ k [n] -→ ( P n , Π [n] ) ΠW [n] -→ (P n , W n ) (2)
where Λ [n] is the diagonal matrix associated with the vector

( 1, 1, 1 -1/n, ( 3n -2)/n 2 ) , • • • , n!/n n )
of eigenvalues of B n , and LΠ [n] and ΠW [n] are transformation matrices associated with the three bases.

Sevy's sequences for d.f. and density approximation

We saw that in the elementary case f (t) = t 2 , the speed of convergence of

B n [f ] towards f is only O [ 1 n ] [ 8 
]; the situation is worse in the special case of d.f.s, since it can be proven [START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF] that one should rather expect O

[ 1 √ n ] .
To get a sequence of approximations converging faster than B n , Sevy [START_REF] Sevy | Convergence of iterated boolean sums of simultaneous approximants[END_REF] proposed to supersede B n by the iterated operator

I I n := ( 1 -(1 -B n ) I ) (3) 
and proved the following result.

Theorem 3.1. ( [START_REF] Sevy | Lagrange and least-squares polynomials as limits of linear combinations of iterates of Bernstein and Durrmeyer polynomials[END_REF], see also [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF]) For n ≥ 1 fixed, and any function F defined on [0,1], we have:

I I n [F ] -L n [F ] -→ 0 I→∞ .
Such a sequence build a bridge between

I 1 n [F ] = B n [F ] and L n [F ]. It is worth noting that L n [F ]
interpolates the data but can be very bumpy and that in the equispaced case, the interpolation errors are maximal ([6, Ch. 2]; [START_REF] Laurent | Approximation et optimisation[END_REF]Ch. 5]). Suppose now F is a d.f.; B n [F ] is also a d.f., but in general L n [F ] will not share the same characteristics. Thus, it is natural to try to determine some optimal number of iterations I * ≥ 1 in order that I I * n [F ] has the structure of a d.f., while I I * +1 n [F ] has not. In other words, the density approximation f n [START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF]).

(I * ) (x) := d dx I I * n [F ] (x) should be bona fide, i.e. should belong to F + ∩ F 1 , while f n (I * +1) / ∈ F + ∩ F 1 (see
@ COMPSTAT 2014

4 Interpolating Sevy's sequences (see [START_REF] Manté | Iterated Bernstein operators for bona fide distribution function and density estimation[END_REF])

To refine Sevy's sequences, we build for K ≥ 2 the K th "root" of the operator G n := (1 -B n ) involved in Formula 3. Because B n only preserves P 1 , the eigenvalues of G n belong to ]0, 1[. Thus, thanks to classical results about convergent series of operators (see [START_REF] Kato | Perturbation theory for linear operators[END_REF] for instance), one may consistently define the fractional operator

G n (1/K) := exp ( 1 K log ( G n ) ) . (4) 
One can easily verify the following lemma.

Lemma 4.1. ∀ I ≥ 1,

I I n = ( 1 -(1 -B n ) I ) = ( 1 - ( 1 - • B n ) I ) • L n .
Consequently, we can proceed as if f ∈ R (L n ) and don't have to worry about the "Lagrange residual" f -L n [f ]. Since P 1 is preserved by B n and because of Lemma 4.1,

I k n (f ) = L 1 [f ] + I k n (L n [f ] -L 1 [f ]
), and we can set the definition of K-fractional Sevy's sequences. 

I j n;K [f ] := L 1 [f ] + ( 1 -G n (j/K) ) (L n [f ] -L 1 [f ]) , j ≥ 1.
Such a sequence interpolates the original one, since I j K n;K [f ] = I j n (f ). Its matrix representation stems from diagram 2.

Lemma 4.3. M at ( • I j n;K ; L n , W n ) = ΠW [n] •Λ (j/K) [n]
•LΠ [n] , where Λ

(j/K) [n]
is the diagonal matrix associated with the vector (

1, 1, 1 - ( 1 n ) (j/K) , 1 - ( 3n -2 n 2 ) (j/K) , • • • , 1 - ( 1 - n! n n ) (j/K) )
.

Numerical issues

Because of Lemmas 2.2 and 4.1, building a classical Sevy's sequence amounts to compute powers of the transformation matrix LW [n] (see diagram 1). The condition number of this matrix in the ℓ 2 -norm is [START_REF] Farouki | On the stability of transformations between power and Bernstein polynomials forms[END_REF]:

∥LW [n] ∥ 2 LW -1 [n] 2 = λ [n] 0 λ [n] n = n n n! ≈ e n √
2πn (asymptotically -see [START_REF] Impens | Stirling's series made easy[END_REF]). Thus, LW [n] is ill-conditioned, and one must expect to meet numerical problems when n is big. The situation is potentially worse for fractional sequences, since Lemma 4.3 shows that the matrix of the restricted operator depends on both the ill-conditioned transformation matrices LΠ [n] and ΠW [n] (see Figure 1). 

( • B n ; L n , W n ) = I n (Lemma 2.
2), while on the other hand

M at ( • B n ; L n , W n ) = ΠW [n] • Λ [n] • LΠ [n] (diagram 2)
. Consequently, the matrix norms

ΠW [n] • Λ [n] • LΠ [n] -I n 1 ΠW [n] • Λ [n] • LΠ [n] -I n ∞ (5)
are convenient indicators of loss of numerical accuracy imputable to the ill-conditioning of the transformation matrices. Since the only easy-to-handle basis is the power basis, the transformation matrices P L [n] , P Π [n] and P W [n] are straightforwardly computed, and we can write:

ΠW [n] = P Π -1 [n] • P W [n] LΠ [n] = P L -1 [n] • P Π [n] (6) 
(formally). But we can derive from Figure 1 that these inverse matrices cannot be computed with sufficient accuracy in general. Thus, it's necessary to supersede in [START_REF] De Boor | A practical guide to splines[END_REF] the inverse matrices by the Moore-Penrose generalized inverses P Π +

[n] and P L + [n] . This gives rise to the regularized operators:

ΠW [n] := P Π + [n] • P W [n] LΠ [n] := P L + [n] • P Π [n] . (7) 
On Figure 2, we plotted the logarithm of the second indicator of Formula ( 5), for n ranging from 1 to 35 (a similar graph can be obtained for the first indicator). Two cases must be distinguished on this plot: the "symbolic" one, where polynomial eigenfunctions were computed from the recurrence formula given by [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF], and the "numerical" one, where they were computed by polynomial interpolation of the eigenvectors of LW [n] , giving rise to the alternative basis

Π [n] := { π[n] j (x) , 0 ≤ j ≤ n } . Of course, we should have π[n] j = ±π [n]
j ∀ 0 ≤ j ≤ n if there were @ COMPSTAT 2014 

{ Log ( ΠW [n] • Λ T r [n] • LΠ [n] -I n ∞ ) , 1 ≤ n ≤ 35 } and { Log ( ΠW [n] • Λ T r [n] • L Π [n] -I n ∞ ) , 1 ≤ n ≤ 35 } ; Λ T r [n]
is the diagonal matrix obtained by setting to zero each eigenvalue < 10 -12 . not different roundoff errors on both sides, imputable to different algorithms! That is why we took into account the numerical rank of • B n , discarding from the computation of Formula (5) eigenvectors associated with eigenvalues smaller than 10 -12 (see Figure 2 and its legend).

It is worth noting that the computational cost in the symbolic case is considerable: it took about 6600 seconds to produce the symbolic part of Figure 2, while the numeric part was obtained in 80 seconds.

6 Application to density an d.f. estimation Suppose F is some differentiable d.f. associated with a random variable X defined on [0, 1], and that S N := {X 1 , • • • X N } is a N -sample of X, giving rise to the empirical d.f. F N (x). Babu et al. [1] proposed to estimate F by a Bernstein polynomial F N,m of degree m: As an illustration, we displayed first on Figure 3 the results obtained with a sample of size 200 of β [START_REF] Bouezmarni | Bernstein estimator for unbounded density function[END_REF][START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF], with K = 10. We found that I * = 32 iterations of the fractional operator (4) simultaneously corresponded to a satisfactory fit of the e.d.f. and an approximately bona fide density estimation. Thus, in this case, the fractional number of iterations was r * = 1 + 22 10 . On this plot, we superimposed to the true d.f. three estimators: the Babu's one, of degree m 0 = 38, Approximation with d 34 and r 3.2

F N,m (x) := m ∑ k=0 F N ( k m ) w m,k (x) = B m [F N ] (8 
the Bernstein estimator of degree m = 34, and the iterated estimator (black), of degree 34 too. The density estimators are derivatives of these d.f.s In addition, we collected in Table 1 results from simulations carried on with 30 samples of size N = 150 (⇒ m 0 = 30) of four Beta distributions. For sake of simplicity, we fixed I * = 20 (see [START_REF] Manté | Iterated Bernstein operators for bona fide distribution function and density estimation[END_REF] for a theoretical justification). For each one of these samples and for each estimator (4 estimators of the d.f. and 3 estimators of the density, since the e.d.f. is not differentiable), the Integrated Squared Error (ISE) ∫ ( F (x) -F (x) ) 2 dx and the L1 error norm ∫ f (x) -f (x) dx were computed. Clearly, even in this suboptimal situation (I * = 20 ), the proposed estimators outperformed classical ones, excepted in the very simple case β (1, 2) (uniform distribution). Notice the honorable performances of the good old e.d.f.! 1 Table 1. Simulations results. First group of colums: the distribution simulated, and optimal value of m (for further details, see [START_REF] Manté | Iterated Bernstein operators for bona fide distribution function and density estimation[END_REF]); second group: median of 10 
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 1 Figure 1. Logarithm of the condition numbers of the transformation matrices P L [n] , P Π [n] and LW [n] ; the continuous line corresponds to the asymptotic value n -1 2 Log (2πn).
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 3 Figure 3. Estimation of the β (3, 12) d.f. and density from a sample. Left panel: the true d.f. (orange), the Babu's one (gray and dashed, of degree m 0 = ⌈200/Log (200)⌉ = 38), the classical Bernstein estimator of degree m = 34 (gray), and the proposed one (black), of degree 34 too. Right panel: density estimators obtained by deriving the d.f.s estimated.

  3 .ISE of estimated distribution functions; third group: median of the L 1 error norms for estimated densities. Best result are in bold characters. Babu, G. J., Canty, A. J. and Chaubey, Y. P. (2002) Application of Bernstein polynomials for smooth estimation of a distribution and density function. Journal of Statistical Planning

	Probability m * e.d.f. B 30	B m *	I 20 m *	B ′ 30	B ′ m *	I ′ 20 m *
	β (1, 2)	16 0.497 0.415 0.38 0.569	0.1	0.09 0.108
	β (2, 4)	18	0.6	0.51	0.56 0.368 0.108 0.12 0.099
	β (3, 12)	25	0.32 0.783 0.908 0.258 0.197 0.207 0.118
	β (10, 10)	25 0.318 1.16	1.37 0.289 0.248 0.263 0.153
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In Section 6, the default iteration number has been erroneouly set to

The correct value is indeed 2! @ COMPSTAT 2014