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Density and Distribution Function
estimation through iterates of
fractional Bernstein Operators

Claude Manté, Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD,
MIO, UM 110, Campus de Luminy Marseille, France, claude.mante@mio.osupytheas.fr

Abstract. We describe a method for distribution function and density estimation with Bern-
stein polynomials. We take advantage of results about the eigenstructure of the Bernstein
operator to refine the Sevy’s convergence acceleration method, based on iterates of this opera-
tor; the original Sevy’s algorithm is improved by introducing fractional operators. The proposed
algorithm has better convergence properties than the classical one; the price to pay is a control-
lable loss of the shape-preserving properties of the Bernstein approximation (monotonicity and
positivity in the Density Estimation setting). The method is tested on simulated data.

Keywords. Density Estimation, Bernstein operator, root of operators, Bernstein polynomials,
Lagrange polynomials

1 Introduction

Bernstein simultaneously introduced in 1912 the polynomials and the operator that bear his
name in a famous paper [2]. But, as Farouki [8] noticed, this approximation has been seldom
used, due to its slow convergence. For instance, to approach f(t) = t2 on the unit interval
with a maximal error of 10−4, we need a polynomial of degree 2500 [8] ! Nevertheless, this
operator (denoted Bn) has attractive shape-preserving properties: if f is positive (or monotone,
or convex), its image Bn [f ] is so (see [5] for further properties). Consequently, the structure of
a distribution function (d.f.) is preserved by Bn; this point strongly motivated the use of the
Bernstein approximation in Density Estimation [19, 1, 3, 12, 13, 14].

Notations

We will work in the Banach space C [0, 1] of continuous functions on [0, 1], equipped with the
norm ∥f∥ := max

x∈[0,1]
|f (x)|. The subspace of polynomials of degree ≤ n will be denoted Pn, and
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Pn will be the supplementary of P1 in Pn. We will denote F+ the closed convex cone of positive
functions of C [0, 1], and F1 the closed convex set of functions of C [0, 1] integrating to 1.

Consider an operator U : C [0, 1] → C [0, 1]; for n ≥ 2 (fixed), its restriction to Pn will

be denoted
◦
U , and its restriction to Pn will be denoted U . For the sake of simplicity, the

restrictions of the identity operator to these subspaces will be denoted 1 instead of
◦
1 or 1;

Mat (U ;B1, B2) will denote the matrix representation of U with respect to the bases B1 and

B2 of C [0, 1]. We will use the matrix p-norms ∥U∥p := sup
v ̸=0

∥U(v)∥p
∥v∥p

where ∥v∥p is the usual

vector ℓp-norm. Notice that ∥U∥1 := max
1≤k≤dim(U)

∑dim(U)
j=1 |Uj,k|, ∥U∥2 is the spectral norm, and

∥U∥∞ := max
1≤j≤xdim(U)

∑dim(U)
k=1 |Uj,k| (see [7]).

2 Expression of powers of the Bernstein operator into different
bases

The Bernstein operator Bn : C [0, 1] → C [0, 1] is defined by [4, 15, 18]:

Bn [f ] (x) :=
n∑

j=0

wn,j(x)f(
j

n
)

with wn,j(x) :=
(
n
j

)
xj (1− x)n−j ; its range R (Bn) ⊆ Pn. Cooper and Waldron [4] gave its

spectral decomposition, which can be also written into the form hereunder [16].

Theorem 2.1. The Bernstein operator can be represented in the diagonal form

Bn [f ] =

n∑

j=0

λ
[n]
j π

[n]
j ⊗ π

∗[n]
j (Ln [f ])

where f ∈ C [0, 1], λ
[n]
j = n!

(n−j)! nj ∈ ]0, 1] and π
[n]
j ∈ Pn are its eigenvalues and eigenvectors,

π
∗[n]
j is the dual vector of π

[n]
j , and u⊗ v∗ (w) := u ⟨v∗, w⟩.

We will need the Lagrange interpolation operator (equispaced case) Ln : C [0, 1] → C [0, 1]

defined by: Ln [f ] (x) :=

n∑

j=0

ℓn,j (x) f(
j

n
), with

ℓn,j (x) :=
n∏

k=0
k ̸=j

nx− k

j − k
.

Three bases of Pn will be needed:

1. the Bernstein’s basis Wn := {wn,j (x) , 0 ≤ j ≤ n}

2. the Lagrange’s basis Ln := {ℓn,j (x) , 0 ≤ j ≤ n}

3. the eigenvectors of Bn, Π[n] :=
{
π
[n]
j (x) , 0 ≤ j ≤ n

}
.
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Let us denote LW[n] the transformation matrix associated with the bases Ln and Wn , whose

jth column consists in the coordinates of wn,j in the basis Ln. The following results can be easily
demonstrated [16]:

Lemma 2.2. Mat

( ◦
Bn;Ln,Wn

)
= In and Mat

( ◦
Bn;Wn,Wn

)
= LW[n].

Thank to this lemma, we obtain for any k ≥ 2 a first matrix representation of Bk
n from the

diagram:

Bk
n : C [0, 1]

Ln−→ (Pn, Ln)
In−→ (Pn,Wn)

LW k−1
[n]

−→ (Pn,Wn) . (1)

Besides, Theorem 2.1 gives an alternative representation of this operator:

Bk
n : C [0, 1]

Ln−→ (Pn, Ln)
LΠ[n]
−→

(
Pn,Π[n]

) Λk
[n]

−→
(
Pn,Π[n]

) ΠW[n]
−→ (Pn,Wn) (2)

where Λ[n] is the diagonal matrix associated with the vector

(
1, 1, 1− 1/n,

(
3n− 2)/n2

)
, · · · , n!/nn

)

of eigenvalues of Bn, and LΠ[n] and ΠW[n] are transformation matrices associated with the
three bases.

3 Sevy’s sequences for d.f. and density approximation

We saw that in the elementary case f(t) = t2, the speed of convergence of Bn [f ] towards f is
only O

[
1
n

]
[8]; the situation is worse in the special case of d.f.s, since it can be proven [15] that

one should rather expect O
[

1√
n

]
. To get a sequence of approximations converging faster than

Bn, Sevy [17] proposed to supersede Bn by the iterated operator

IIn :=
(
1− (1−Bn)

I
)

(3)

and proved the following result.

Theorem 3.1. ([18], see also [4]) For n ≥ 1 fixed, and any function F defined on [0,1], we
have:

∥∥IIn[F ]− Ln [F ]
∥∥ −→ 0

I→∞
.

Such a sequence build a bridge between I1n[F ] = Bn [F ] and Ln [F ]. It is worth noting
that Ln [F ] interpolates the data but can be very bumpy and that in the equispaced case, the
interpolation errors are maximal ([6, Ch. 2]; [11, Ch. 5]). Suppose now F is a d.f.; Bn [F ] is also
a d.f., but in general Ln [F ] will not share the same characteristics. Thus, it is natural to try to
determine some optimal number of iterations I∗ ≥ 1 in order that II

∗

n [F ] has the structure of a

d.f., while II
∗+1

n [F ] has not. In other words, the density approximation f̂n
(I∗)

(x) := d
dxI

I∗
n [F ] (x)

should be bona fide, i.e. should belong to F+ ∩ F1, while f̂n
(I∗+1)

/∈ F+ ∩ F1 (see [15]).
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4 Interpolating Sevy’s sequences (see [16])

To refine Sevy’s sequences, we build for K ≥ 2 the Kth “root” of the operator Gn := (1−Bn)
involved in Formula 3. Because Bn only preserves P1, the eigenvalues of Gn belong to ]0, 1[.
Thus, thanks to classical results about convergent series of operators (see [10] for instance), one
may consistently define the fractional operator

Gn
(1/K)

:= exp

(
1

K
log
(
Gn

))
. (4)

One can easily verify the following lemma.

Lemma 4.1. ∀ I ≥ 1,

IIn =
(
1− (1−Bn)

I
)
=

(
1−

(
1−

◦
Bn

)I
)

◦ Ln.

Consequently, we can proceed as if f ∈ R (Ln) and don’t have to worry about the “Lagrange
residual” f − Ln [f ]. Since P1 is preserved by Bn and because of Lemma 4.1, Ikn (f) = L1 [f ] +
Ikn (Ln [f ]− L1 [f ]), and we can set the definition of K-fractional Sevy’s sequences.

Definition 4.2. Let K ≥ 2, and f ∈ C [0, 1]. The K-fractional Sevy’s sequence of approxima-
tions of f is:

I
j
n;K [f ] := L1 [f ] +

(
1−Gn

(j/K)
)
(Ln [f ]− L1 [f ]) , j ≥ 1.

Such a sequence interpolates the original one, since I
j K
n;K [f ] = I

j
n (f). Its matrix representa-

tion stems from diagram 2.

Lemma 4.3. Mat

(◦
I
j

n;K ;Ln,Wn

)
= ΠW[n]◦Λ

(j/K)
[n] ◦LΠ[n], where Λ

(j/K)
[n] is the diagonal matrix

associated with the vector

(
1, 1, 1−

(
1

n

)(j/K)

, 1−

(
3n− 2

n2

)(j/K)

, · · · , 1−

(
1−

n!

nn

)(j/K)
)
.

5 Numerical issues

Because of Lemmas 2.2 and 4.1, building a classical Sevy’s sequence amounts to compute powers
of the transformation matrix LW[n] (see diagram 1). The condition number of this matrix in

the ℓ2-norm is [7]:
∥LW[n]∥2
∥

∥

∥
LW−1

[n]

∥

∥

∥

2

=
λ
[n]
0

λ
[n]
n

= nn

n! ≈ en√
2πn

(asymptotically - see [9]). Thus, LW[n] is

ill-conditioned, and one must expect to meet numerical problems when n is big. The situation
is potentially worse for fractional sequences, since Lemma 4.3 shows that the matrix of the
restricted operator depends on both the ill-conditioned transformation matrices LΠ[n] and ΠW[n]

(see Figure 1).
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Figure 1. Logarithm of the condition numbers of the transformation matrices PL[n], PΠ[n] and

LW[n] ; the continuous line corresponds to the asymptotic value n− 1
2Log (2πn).
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But the point for us is merely to control numerical errors in computing I
j
n;K [f ]! No-

tice that on the one hand Mat

( ◦
Bn;Ln,Wn

)
= In (Lemma 2.2), while on the other hand

Mat

( ◦
Bn;Ln,Wn

)
= ΠW[n] ◦ Λ[n] ◦ LΠ[n] (diagram 2). Consequently, the matrix norms

∥∥ΠW[n] ◦ Λ[n] ◦ LΠ[n] − In
∥∥
1∥∥ΠW[n] ◦ Λ[n] ◦ LΠ[n] − In
∥∥
∞

(5)

are convenient indicators of loss of numerical accuracy imputable to the ill-conditioning of the
transformation matrices. Since the only easy-to-handle basis is the power basis, the transforma-
tion matrices PL[n], PΠ[n] and PW[n] are straightforwardly computed, and we can write:

ΠW[n] = PΠ−1
[n] ◦ PW[n]

LΠ[n] = PL−1
[n] ◦ PΠ[n]

(6)

(formally). But we can derive from Figure 1 that these inverse matrices cannot be computed
with sufficient accuracy in general. Thus, it’s necessary to supersede in (6) the inverse matrices
by the Moore-Penrose generalized inverses PΠ+

[n] and PL+
[n]. This gives rise to the regularized

operators:

Π̃W [n] := PΠ+
[n] ◦ PW[n]

L̃Π[n] := PL+
[n] ◦ PΠ[n].

(7)

On Figure 2, we plotted the logarithm of the second indicator of Formula (5), for n ranging
from 1 to 35 (a similar graph can be obtained for the first indicator). Two cases must be
distinguished on this plot: the “symbolic” one, where polynomial eigenfunctions were computed
from the recurrence formula given by [4], and the “numerical” one, where they were computed
by polynomial interpolation of the eigenvectors of LW[n], giving rise to the alternative basis

Π̂[n] :=
{
π̂
[n]
j (x) , 0 ≤ j ≤ n

}
. Of course, we should have π̂

[n]
j = ±π

[n]
j ∀ 0 ≤ j ≤ n if there were

@ COMPSTAT 2014



6 Density and d.f. estimation through iterated Bernstein Operators
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Figure 2. The sequences
{
Log

(∥∥∥Π̃W [n] ◦ Λ
Tr
[n] ◦ L̃Π[n] − In

∥∥∥
∞

)
, 1 ≤ n ≤ 35

}
and

{
Log

(∥∥∥∥
˜̂
ΠW [n] ◦ Λ

Tr
[n] ◦ L̃Π̂[n] − In

∥∥∥∥
∞

)
, 1 ≤ n ≤ 35

}
; ΛTr

[n] is the diagonal matrix obtained by

setting to zero each eigenvalue < 10−12.

not different roundoff errors on both sides, imputable to different algorithms! That is why we

took into account the numerical rank of
◦
Bn, discarding from the computation of Formula (5)

eigenvectors associated with eigenvalues smaller than 10−12 (see Figure 2 and its legend).

It is worth noting that the computational cost in the symbolic case is considerable: it took
about 6600 seconds to produce the symbolic part of Figure 2, while the numeric part was
obtained in 80 seconds.

6 Application to density an d.f. estimation

Suppose F is some differentiable d.f. associated with a random variable X defined on [0, 1], and
that SN := {X1, · · ·XN} is a N -sample of X, giving rise to the empirical d.f. FN (x). Babu et
al. [1] proposed to estimate F by a Bernstein polynomial F̃N,m of degree m:

F̃N,m(x) :=
m∑

k=0

FN (
k

m
)wm,k(x) = Bm[FN ] (8)

with m ≤ m0 := ⌈N/Log (N)⌉. The proposed method consists in superseding Bm0 [FN ] by
some II

∗

m∗;K [FN ], where m∗ ≤ m0 and I∗ ≥ K (fixed) are convenient values of the degree of the
estimator and of the number of iterations in Definition 4.2.

As an illustration, we displayed first on Figure 3 the results obtained with a sample of size
200 of β (3, 12), with K = 10. We found that I∗ = 32 iterations of the fractional operator (4)
simultaneously corresponded to a satisfactory fit of the e.d.f. and an approximately bona fide
density estimation. Thus, in this case, the fractional number of iterations was r∗ = 1 + 22

10 . On
this plot, we superimposed to the true d.f. three estimators: the Babu’s one, of degree m0 = 38,

COMPSTAT 2014 Proceedings
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Figure 3. Estimation of the β (3, 12) d.f. and density from a sample. Left panel: the true d.f.
(orange), the Babu’s one (gray and dashed, of degree m0 = ⌈200/Log (200)⌉ = 38), the classical
Bernstein estimator of degree m = 34 (gray), and the proposed one (black), of degree 34 too.
Right panel: density estimators obtained by deriving the d.f.s estimated.
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Approximation with d=34 and r *= 3.2

the Bernstein estimator of degree m = 34, and the iterated estimator (black), of degree 34 too.
The density estimators are derivatives of these d.f.s

In addition, we collected in Table 1 results from simulations carried on with 30 samples of
size N = 150 (⇒ m0 = 30) of four Beta distributions. For sake of simplicity, we fixed I∗ = 20
(see [16] for a theoretical justification). For each one of these samples and for each estimator (4
estimators of the d.f. and 3 estimators of the density, since the e.d.f. is not differentiable), the

Integrated Squared Error (ISE)
∫ (

F̂ (x)− F (x)
)2

dx and the L1 error norm
∫ ∣∣∣f̂(x)− f(x)

∣∣∣ dx
were computed. Clearly, even in this suboptimal situation (I∗ = 20 ), the proposed estimators
outperformed classical ones, excepted in the very simple case β (1, 2) (uniform distribution).
Notice the honorable performances of the good old e.d.f.! 1

Table 1. Simulations results. First group of colums: the distribution simulated, and optimal
value of m (for further details, see [16]); second group: median of 103.ISE of estimated distri-
bution functions; third group: median of the L1 error norms for estimated densities. Best result
are in bold characters.

Probability m∗ e.d.f. B30 Bm∗ I20m∗ B′
30 B′

m∗ I′20m∗

β (1, 2) 16 0.497 0.415 0.38 0.569 0.1 0.09 0.108
β (2, 4) 18 0.6 0.51 0.56 0.368 0.108 0.12 0.099

β (3, 12) 25 0.32 0.783 0.908 0.258 0.197 0.207 0.118

β (10, 10) 25 0.318 1.16 1.37 0.289 0.248 0.263 0.153
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