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Abstract. A localized method to distribute paths on random graphs is devised, aimed at
finding the shortest paths between given source/destination pairs while avoiding path overlaps
at nodes. We propose a method based on message-passing techniques to process global
information and distribute paths optimally. Statistical properties such as scaling with system
size and number of paths, average path-length and the transition to the frustrated regime are
analyzed. The performance of the suggested algorithm is evaluated through a comparison
against a greedy algorithm.
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1. Introduction

Among the various computationally-hard constraint satisfaction problems, routing and path
optimization have attracted particular attention in recent years due to their non-localized
nature and interdisciplinary relevance. The node-disjoint path (NDP) problem on graphs
studied here, aims at finding a set of paths linking specified pairs of nodes (communications)
such that no two paths share a node; the problem is classified among the NP-complete class [1]
of hard combinatorial problems. This has not only been studied as a purely theoretical
problem by mathematicians in the series of graph minors [2] under the name of subgraph
homeomorphism problem, but also by practitioners due to its wide applicability to various
fields. For instance, in communication systems where the network performance is often
strictly related to capacity limits, traffic congestion and the rate of information flow; and in
problems of virtual circuit routing where switches located at nodes may become bottlenecks.
Moreover, due to their distributive nature NDP is more resilient to failure and represents one
aspect of optimal routing where network robustness is the main objective.

One specific communication application where efficient and effective NDP algorithms
are essential is in the area of optical networks where transmissions using the same wavelength
cannot share the same edge or vertex, hence all communications of the same wavelength must
be non-overlapping (disjoint). Consequently, such an algorithm impacts on the achievable
network capacity and transmission rate. In this field of routing and wavelength assignment [3],
the objective is to find a routing assignment that minimizes the number of wavelengths used.
Different techniques that exploit disjoint paths heuristic algorithms have been proposed to
tackle this problem; for instance, greedy algorithms [4, 5], approximations based on rounding
integer linear programming formulations [6, 7], post-optimization methods [8], bin packing
algorithms [9], various heuristic genetic algorithms such as ant colony optimization [10] and
differential evolution [11].

Another important application of NDP is in the design of very large system integrated
circuits (VLSI), where one searches for non-overlapping wired paths to connect different in-
tegrated hardware components, to avoid cross-path interference.
Similarly, in wireless ad-hoc communication networks [12, 13, 14], where each node can act
as a router, path overlaps imply signal interference and low transmission quality, whereas
longer paths imply poor signal to noise ratio due to multiple relays and higher transmission
power; hence the need to consider both path length and transmission overlaps to be minimized
is essential for routing problems. Solutions to the NDP problem also provide fault tolerant
routes due to the optimal separation of communication paths all over the network, so that if
a node (router) fails, as frequently happens in wireless networks due to the mobility of hosts,
only few communications will be affected [15, 16]. This feature is particularly important
when quality of service (QoS) is one of the main requirements in the set up of a communica-
tion network, along with the load-balancing feature of NDP that prevents network congestion
by establishing non-overlapping routes. This is especially relevant to connection-oriented net-
works [17] that are strongly affected by node failures and congestion [18].
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Practical algorithms for various applications often depend on the specific network
topologies considered [19] and mostly focus on the optimization version of the problem, i.e.
maximizing the number of paths routed [20]. The satisfiability version of the problem, i.e.
whether all paths can be routed successfully without overlap, is not considered; theoretical
studies often give bounds to the achievable approximation instead of providing a practical
algorithm for individual instances and fail to calculate path lengths and possible overlaps at
the same time as part of the optimization process observables. Given that paths are constrained
to be contiguous and interaction between paths is non-localized, a local protocol is insufficient
and global optimization is required. The computational complexity is determined by the fact
that such a global optimization problem has to consider all variables simultaneously in order
to minimize a cost function with non local interactions between variables.

Unlike other constrained satisfaction problems on networks, NDP has received little
attention within the statistical physics community. In this paper we consider a random version
of NDP on regular graphs (Reg), Erdős Rényi (ER) [21] and a dedicated type of random
graph (RER) described in Section 4, with the aim of testing the efficacy of statistical physics-
based methods derived in the context of spin glass theory [22] such as belief propagation or
message-passing (MP) cavity method [23, 24] as viable alternatives to greedy algorithms; we
also study statistical and scaling properties of quantities of interest as a function of network
size and number of paths. We study sparse regular, ER and RER random graphs as they are
the most interesting for the problem at hand, but the methodology can be easily extended to
accommodate other sparsely connected architectures. Clearly, due to the hard constraint of
node disjoint paths, typically no solutions would be found in graphs having a non negligible
number of nodes with degree k = 1, 2. Moreover, graphs with a small number of high degree
nodes (hubs) or with high modularity measure, such as scale-free or planar graphs, are not
interesting for the node-disjoint routing problem since when a paths passes through one of
these special nodes it leads directly to graph fragmentation, hence frustration. The situation
would be very different for constraints on edges instead, but this variant of the problem is left
for future work. Finally, the requirement for the graph to be sparse is suggested by restrictions
on the validity of the cavity method which is based on fast decaying correlation functions, i.e.
a negligible number of loops in the graph.

Numerical simulations indicate that MP outperforms greedy breadth-first search
algorithms not only in finding better solution but also in reaching a higher frustration
threshold. Moreover, we find scaling of the expected total length of the NDP as a function of
the system size and graph connectivity that goes as M log V

V logγ(k−1) with exponent γ that depends on
the type of graph, where V is the number of nodes and M the number of paths. We find good
agreements between theory and simulation data for graphs of average degrees k = 3, 5, 7 and
sizes V = 1000, 2000, 4000, 5000, 10000. Finally, we study statistical properties of physical
quantities observed a posteriori, i.e. when a solution is found, such as path length distribution,
degree distribution and maximum cluster size for the case of regular graphs.

The reminder of the paper is organized as follows: in Section 2 we will introduce
the model used followed by the algorithmic solution in Section 3. Results obtained from
numerical studies will be presented in Section 4 followed by conclusions and future research
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directions in Section 5.

2. Model

Given an undirected graph (or network) G = (V,E) characterized by V = |V| nodes and
E = |E| edges we define a set of M communications C as paths on edges of the graph, each of
which originates from a source node S and terminates in a receiver node R. We introduce a
variable Λµi to characterize each node i ∈ V:

Λ
µ
i =


+1 if i is a sender for communication µ
−1 if i is a receiver for communication µ
0 if i is neither a sender nor a receiver for communication µ

(1)

The full node characterization is specified by a vector Λ̄i := (Λ1
i , . . . ,Λ

M
i ) of modulus

||Λ̄i|| :=
∑M
µ=1 |Λ

µ
i | ∈ {0, 1}, where |Λµi | denotes the absolute value of Λµi ; ||Λ̄i|| is 0 if i is neither

a sender nor a receiver for any communication, termed a transit node, and 1 if i is either a
sender or a receiver of some communication. In this way each node can send or receive at
most one communication.

For a given set of M sender-receiver pairs (S µ,Rµ) with µ = 1, . . . ,M we address the
problem of finding a set of communications that optimize a cost function which penalizes
path length and prevents communications overlap (traffic). The state of the network can be
specified by introducing a variable Iµi j for each edge (i j) ∈ E and for each communication µ,
which specifies whether communication µ passes through edge (i j) and in which direction:

Iµi j =


+1 if µ passes through (i j) from i to j
−1 if µ passes through (i j) from j to i
0 if µ does not pass through (i j)

(2)

Notice that in this formalism Iµi j = −Iµji. We term these variables currents and define for each
edge (i j) a vector Īi j := (I1

i j, . . . , I
M
i j ) that collects information on all currents involved in that

edge. Currents are subject to Kirchhoff law:∑
j ∈∂ i

Iµi j − Λ
µ
i = 0 ∀µ = 1, . . . ,M . (3)

For a given path optimization problem we seek the communication configuration C∗ that
minimizes a cost function c({Īi j}), which penalizes path length and traffic congestion:

c({Īi j}) =
∑

(i j)∈E
f (||Īi j||) (4)

where f (||Īi j||) is a monotonically increasing function of ||Īi j|| :=
∑M
µ=1 |I

µ
i j|, that penalizes both

congestion and path length; where |Iµi j| denotes the absolute value of Iµi j.
We would like now to search for approximate solutions to this problem by message-passing
equations [23]. To derive a distributed algorithm it is useful first to consider tree-like graphs
T , for which one can derive exact recursive equations, and later on use these equations as an
approximation for arbitrary graphs G.
If T is a tree, the removal of any edge (i j) ∈ E divides T in two disjoint subtrees Ti and T j (see
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figure 1). We can define Êi j(Ī) as the optimized cost on Ti when the current Ī flows through
on the edge (i j); in this way we can write the message sent from node i to his neighbor j when
the current Īi j flows through the edge (i j) as Ei j(Īi j) := Êi j(Īi j) + f (||Īi j||).

i j

Ti Tj

Figure 1: Subtree division. Ti is the subtree rooted in i when the edge (i j) is removed. Conversely, T j

is the subtree rooted in j after the same edge removal.

The messages Ei j(Īi j) admit the min-sum [23] recursion relation:

Ei j(Īi j) = min
Īki |constraint

∑k∈∂i\ j

Eki(Īki)

 + f (||Īi j||) , (5)

where the symbol ∂i stands for the set of neighbors of node i and the constraint is the Kirchoff
law (3).
In the following we will use the recursion equation (5) on arbitrary random graphs to
approximate the constrained minimum of c({Īi j}), the cost defined in equation (4). Namely:

c∗ := min
Ī

1
E

∑
(i j)∈E

{
Ei j(Ī) + E ji(−Ī) − f (||Ī||)

}
(6)

where the last subtracted term is introduced to avoid double counting the cost of edge (i j).
Unfortunately, the computational complexity of this algorithm is exponential in the number
of communications M. In fact, messages Ei j(Īi j) can a priori take 3M values corresponding
to all possible currents passing through a single edge (i j). Therefore, we cannot generally
treat even moderately large values of M [25]. The problem can be simplified if we introduce
the hard constraint that paths cannot overlap on nodes (and thus neither on edges). This
has the important consequence of reducing the configuration space from 3M to 2M + 1
and the computational complexity becomes linear in M. This restricted version of the
path optimization problem is called the node-disjoint path problem (NDP), as we already
mentioned in the introduction, and is the problem we address here. Notice that since we
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impose the node-disjoint constraint for the communications, then one communication at most
flows through the edges, so that ||Īi j|| =

∑M
µ=1 |I

µ
i j| ∈ {0, 1}. This corresponds to taking:

f (||Ī||) =


∞ if ||Ī|| ≥ 2
1 if ||Ī|| = 1
0 if ||Ī|| = 0

(7)

so that the cost function (4) represents indeed the total path length.
In order to solve equation (5) iteratively we define a protocol for taking into account only
the allowed configurations at each edge given the current value Ī passing through it and Λ̄i at
vertex i.

If |Λ̄i| = 0 then:

Eil(Īil = 0̄) = min

∑j∈∂i\l E ji(Ī ji = 0̄), (8)

min
j1, j2∈∂i\l;µ∈M

E j1i(I
µ
j1i = +1) + E j2i(I

µ
j2i = −1) +

∑
k∈∂i\l, j1, j2

Eki(Ī ji = 0̄)




Eil(I
µ
il = ±1) = min

j∈∂i\l

E ji(I
µ
ji = ±1) +

∑
k∈∂i\l, j

Eki(Īki = 0̄)

 + 1 (9)

If Λµi = ±1 then:

Eil(Īil = 0̄) = min
j∈∂i\l

E ji(I
µ
ji = ∓1) +

∑
k∈∂i\l, j

Eki(Īki = 0̄)

 (10)

E ji(Iνji = ±1) = +∞ (ν , µ) (11)

E ji(I
µ
ji = ∓1) = +∞ (12)

E ji(I
µ
ji = ±1) =

∑
j∈∂i\l

E ji(0̄) + 1 (13)

The constant +1 that appears equations (9) and (13) are the costs assigned for a unit of current
passing through the considered edge (i.e. f (1) = 1). This cost is the one required for the
shortest paths but can be generalized to other arbitrary types of costs.

Equation (8) represents the case where i is a transit node and no current passes through
edge (i j), then the allowed configurations are that either no currents pass through the
remaining neighboring edges (first term inside curly brackets) or one current enters and
then exits i through a pair of neighboring edges, all others edges being unused (second
term inside brackets). In figure 2 you can see a diagram representing the different allowed
configurations for a transit node. Equation (9) represents the case where i is a transit node and
the communication µ passes through edge (i j); in this case the only allowed configuration is
that where the same communication µ enters/exits from one of the other neighboring edges,
all others being unused. Similar considerations are used to formulate the equations (10-13)
for senders and receivers.

The procedures of applying the algorithm can be summarized as follows:
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"!!

ii i i

j2j1 j

l l l

k j

Figure 2: Transit node cavity diagram. Left and center represent the two terms inside the min brackets
in equation (8). Right represents equation (9) .

• Initialize messages at random.

• Pick in random order all i ∈ V and update messages using (8), (9) and (10-13) until
convergence is reached (i.e., message changes are below a given threshold).

• Use the converged messages to calculate physical observables.
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Figure 3: Edge-disjoint routes. For a single instance of a graph of size V = 20 and M = 3
communications we have on the left the shortest paths and on the right the optimal non-overlapping
solutions. We can see that the green path has to be re-routed to avoid both blue and red
communications. Also the red one cannot take its shortest path because the sender of the green
communication is on that path.



Shortest node-disjoint paths on random graphs 8

3. Obtaining a solution

Once the iterative equations (8), (9) and (10-13) have converged, the resulting messages can
be used to calculate the solution. We define the energy per link [24]:

ELink
i j (Ī) :=

{
Ei j(Ī) + E ji(−Ī) − ||Ī||

}
(14)

where the last term on the right ||Ī|| is subtracted to avoid double counting as it appears in both
of the previous two terms. To find a solution we calculate:

E∗Link
i j := min

Ī
ELink

i j (Ī) (15)

for each link in the graph and store the current values that minimize the energy per link for
each edge:

Ī∗i j := arg minĪ ELink
i j (Ī) . (16)

Eventually, we sum over all (i j) ∈ E to find the different paths and total length:

Ltot :=
∑

(i j)∈E
||Ī∗i j|| . (17)

In the cavity formalism [24] this is equivalent to calculating the quantity:

Ei := min
Īki |constraint

∑
k∈∂i

Eki(Īki) , (18)

which represents the energy per node. Finally, the total energy (or path length) is the
combination of the two, which in the case of a k−regular graph establishes the formal relation:

Et =
∑
i∈V

Ei −
k
2

∑
(i j)∈E

ELink
i j . (19)

Notice that the calculation of ELink∗
i j is carried out link by link as if the energies per

link were statistically independent. It is not intuitively clear that doing this will result in
the optimal paths which do not overlap and are also fully connected from the source to the
receiver. This is a consequence of having used messages which implicitly contain global
information on the constraints and path lengths, so that the energies per link are indeed
globally interdependent albeit in a non-obvious manner.

To fully characterize the solutions statistically we calculate also other observables as
explained below. Finally, we calculate the paths and corresponding lengths in a sequential
order using a greedy breadth first-search local algorithm (BFS) to compare the results obtained
against our MP-based algorithm.

3.1. Algorithmic complexity

The node-disjoint constraint is very restrictive and algorithmically helpful in comparison to
other routing models where overlaps are allowed but minimized [25, 26]. This hard constraint
is indeed paramount in reducing considerably the algorithm’s computational complexity. If
we allow for overlaps we need to span a configuration space of the order of 3M at each
cavity iteration, leading to a complexity of O(N (3M)k−1), where the exponent k − 1 explores
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the different flux combinations for each of the k − 1 independent neighboring sites of the
considered message; there are order of N such messages. In order to tackle this issue proper
approximations have to be introduced as in [25, 26] where they use techniques from polymer
physics [25] or convexity properties of the cost function [26]. On the contrary when the
overlap is prohibited we reduce the configuration space from 3M to (2M + 1), as this is
the number of allowed configurations (the term 2M is derived from the number of possible
currents Iµ = ±1 and the additional +1 is due to the configuration of all 0), hence there is no
need for approximations because the entire configuration space can be efficiently calculated
by the cavity equation. Actually, the use of cavity MP implicitly requires one important
approximation as it assumes that when node i ∈ V is removed, all its neighbors are statistically
independent. This is equivalent of having fast decaying correlation function between these
neighboring nodes. This hypothesis is verified in trees and in locally tree-like sparse graphs.

For the same reason is important to distinguish between edge and node overlaps. In
this work we chose to consider constraints on nodes motivated by the reduced complexity as
explained before; in case of edge constraints one has to consider a much bigger configuration
space where all configurations with different communications entering and exiting the same
transit node must be considered in the optimization routine. For this reason approximations
should be introduced as in the case of the models which minimize overlap. The edge-disjoint
variant of the problem will be left for future work.

We performed single instance simulations to find optimal microscopic solutions; to
obtain macroscopic averages one would usually use population dynamics, one of the most
commonly used numerical tools in statistical mechanics literatures [27, 23] for studying
similar models. Population dynamics is considered when the thermodynamic limit V → ∞
is taken and the system size is not fixed a priori as in the single instance algorithm. In our
model the use of population dynamics does not make much sense since the parameter M
enters explicitly in the expressions of the messages because it represents the domain of the
fluxes, which is of size 2M + 1. But when we fix M at the same time we are fixing a system
size V , because we extract random pairs (S ,R) with density M/V . Hence, it is impossible to
decouple the messages domain from the system size, preventing us to properly employ the
thermodynamic limit through population dynamics. There is also another problem, that such
a macroscopic oriented approach would introduce averages over all possible configurations
(S ,R), including both frustrated and unfrustrated configurations with much higher energies.
Thus the macroscopic averages are highly biased by the fewer frustrated configurations and
more complex algorithm should be designed to discard such cases. For these two reasons
we did not consider in the following the population dynamic counterpart of the algorithm but
focused only on averages over single instances.

3.2. Greedy algorithm

To test the performance of the algorithm we compared the results obtained with those given by
a greedy algorithm (or its variant) that is often used in literatures to solve the NDP problem in
different contexts [12, 13, 4, 5]. The greedy protocol considers only local information around
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the sources and then builds up a solution step by step recursively, hence reducing considerably
the complexity but at the same time completely ignoring other communication positions in the
network.

A typical greedy algorithm works in the following way: start by choosing an arbitrary
pair (S ,R), find the shortest path linking the two nodes and then remove nodes belonging to
this path from the available network nodes. Choose a second pair and repeat the procedures
until either all the M paths from sources to destinations have been established or no solution
can be found due to frustration. Clearly, the performance of this algorithm is strictly
dependent on the order in which we choose the pairs. For instance, in the extreme case the
first pair selected is the one with the longest shortest path among all the M communications;
this implies that we have effectively a more restricted graph and choice of paths, leading for a
long second path and even more restricted choice of paths later on.

4. The results

We performed numerical simulations on three types of random graphs. Standard regular
random graphs (Reg): each node has fixed degree k; Erdős Rényi random graphs (ER)
[21]: edges are drawn at random between each pair of nodes with probability p = ⟨k⟩/V;
a decorated random graph (RER): starting from a regular random graph of degree k1 (which
is the minimum degree of this graphs), we then randomly add new edges as in the ER model
until the final average connectivity is ⟨k⟩ = k > k1. Notice that the degree distribution
in this case can be obtained by writing k = k1 + d where d is Poisson distributed with
⟨d⟩ = k − k1. The parameters used were average degrees ⟨k⟩ = 3, 5, 7 and system sizes of
V = 1000, 2000, 4000, 5000, 10000. We calculated averages over [50 − 500] realizations for
both the MP and the greedy algorithms; we used a smaller number of realizations for cases
of higher complexity (as for V = 104 and k = 7). Nevertheless, results in all cases are stable
and with small error bars with respect to the symbols used. We omitted the error bars from
the figures for clarity.

We found a system size scaling that is a cubic function of the variable x := M log V
V logγ (k−1) .

A qualitative explanation of the scaling is as follows. The average path length in random
graphs goes as ⟨l⟩ ∼ log V/ log⟨k⟩ (see [28] for an extensive review of graphs properties)
and in our case we have M paths to consider.We can refine the dependence on k using
instead ⟨l⟩ ∼ log V/ log (k − 1). Now, suppose all communications take their shortest path, the
quantity x = M log V/ logγ (k − 1) would be a good estimate of graph occupancy for the NDP,
where the exponent γ has been introduced as a free parameter to account for the approximation
in the expression for ⟨l⟩ as a function of k for different types of graphs. Furthermore, if we
divide by the number of available nodes V we can define the occupancy ratio as M log V

V logγ (k−1) = x.
Therefore in this simple case we would expect Ltot/V increasing linearly in x. If overlaps
are prohibited, for a sufficiently high value of M the communications are increasingly forced
to take longer routes, leading to a faster than linear increase in the scaling variable x. From
numerical simulations we found for the NDP a cubic increase Ltot

V = ax + cx3 in the scaling
variable x = M log V

V logγ (k−1) . For small M this function agrees well with the linear shortest path
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Figure 4: Expected total normalized path length - regular graphs (Reg). We obtained results for regular
graphs of fixed degree k = 3, 5, 7 and for system size V = 2000, 4000, 5000, 10000. We found a global
scaling rule with respect to the variable x := M log V l/V logγ(k − 1), with l = 1.00 and γ = 0.87. In
black (solid line) we draw the cubic fit ax + cx3, with a = 0.910 ± 0.001 and c = 0.660 ± 0.009. The
dotted-dashed line represent the shortest path (not considering overlap) trivial solution. Error are not
reported because smaller or comparable to point sizes.

behavior but for values of x > 0.2 the steeper increase of Ltot becomes predominant. Figures
4 and 5 show a good data collapse of the normalized expected total length per node Ltot/V as
a function of the scaling variable x for different graph connectivities for Reg and ER graphs
respectively. We notice a first regime where the curves follow the linear behavior of the
dashed line representing the shortest paths. The term “sparse regime” is used since paths are
sufficiently far apart, M is small, and then no re-routing is needed as each communication
will simply take its shortest path. For x > 0.2 the curves show the cubic steeper behavior that
represents the increase in path lengths to avoid overlaps. The term “dense phase” reflects the
increase in path density; M is sufficiently high so that shortest-path choices induce conflicting
demands and communications are rerouted, taking longer paths to avoid overlaps.

Finally, for large M we can identify different frustration points, represented by vertical
lines in figure 4, that connect the largest M for which solutions have been found with the
points where frustration is reached and the length is set to 0 by convention. We see that
the frustration points do not collapse and that the bigger the graph size V and the higher the
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Figure 5: Expected total normalized path length - Erdős Rényi (ER). We obtained results for ER
graphs of expected degree ⟨k⟩ = 3, 5, 7 and for system size V = 1000, 2000, 4000, 5000. We found a
global scaling rule with respect to the variable x := M log V l/V logγ(k−1), with l = 1.00 and γ = 0.69.
In black (solid line) we draw the cubic fit ax + cx3, with a = 0.77 ± 0.01 and c = 0.96 ± 0.03. The
dotted-dashed line represent the shortest path (not considering overlap) trivial solution.

connectivity k, the earlier frustration sets in (as a functions of x). Arguably, this is due to
algorithmic convergence rather than theoretical arguments. In fact the higher V and k are,
the higher the corresponding algorithmic complexity, and hence the larger the number of
iterations required to reach convergence. Due to the prohibitive computation cost we ran a
smaller number of instances for higher values of V and k, and without increasing the preset
maximum convergence time. We suspect that convergence can be reached in these cases
albeit in a much longer times, and hence a solution could be found as well in theory, but has
not been found due to the computational limits imposed. Hence we can not provide a precise
measure for the frustration transitions nor make further statements regarding their collapses
for different systems sizes and connectivities.

In figure 6 we can see the scaling behavior for Reg, ER and RER of given average
connectivity and different system sizes; we fixed γ = 0 arbitrarily to highlight the dependence
on V . We can notice how different types of graph, although having different average lengths,
follow the same cubic scaling in x. The steeper slope of the ER graphs shows the smaller
number of paths choices in this type of graphs that forces the path to rewire in increasingly
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more convoluted patterns and hence also reach frustration earlier.
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Figure 6: Scaling in total length. We plotted the scaling of the total length per node as a function
of M log V/V for Reg, ER and RER graphs of different system sizes; ⟨k⟩ = 3 for Reg and ER and
⟨k⟩ = 4 for RER. We can see different slopes in the cubic fits of the various curves, for instance ER
graphs achieve shorter lengths but with higher cubic slope, meaning that their length increases faster
with traffic due to the smaller number of path choices.

We found that our MP algorithm outperforms the greedy BFS both in finding a better
solution (smaller Ltot) and in reaching higher values of the frustration transitions. In figures 7,
8 and 9 we plotted the expected normalized total length for both greedy and MP algorithms,
for the three graph types, fixed connectivity and different system sizes. We focused on the
case ⟨k⟩ = 3 for Reg and ER and ⟨k⟩ = 4 for RER because of its lower complexity compared
to higher k; nevertheless, simulations for different k values indeed agree with the suggested
scaling and exhibit the same behavior. Initially, in the x range where solutions exist the
greedy algorithm gives the same total length as the global algorithm up to a certain value
of M (and x). The explanation is that in this interval the graph is sparse, communications
typically do not interact and shortest paths can be selected. This also shows that for a small
number of paths the global procedure reduces to act similarly to the greedy algorithm does,
e.g. when rerouting is required it involves only two paths, the optimal solution will adopt the
shortest path for one and will reroute the second. When M increases, we see that the global
optimization algorithm outperforms the greedy approach in both finding the optimal solution
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and in achieving a higher frustration threshold. In the regime where the global algorithm gives
a better solution (i.e. shorter total length) we see that it is more efficient to globally reroute
paths rather than taking the shortest path of selected paths and adapt the other paths. This
means that the optimal solution is not a simple superposition of the first n-shortest path of the
M communications, but is a more complex solution.
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Figure 7: Expected total normalized path length - greedy vs global optimization algorithms - Reg
graphs. We compared results obtained by a greedy BFS algorithm and our global optimization for
system size V = 2000, 4000, 5000, 10000,γ = 0.87 and degree k = 3. We can identify the sparse
interval where the algorithms give similar results because communications are far apart and take the
shortest paths. As the number of communications grow we observe an intermediate regime where
global optimization performs better than BFS; and finally the dense regime where the greedy BFS
algorithm fails to find a solution whereas the global optimization algorithm succeeds up to a critical M
value. Cubic fits are also plotted (solid black line for global optimization, dashed line for the greedy
BFS algorithm) whereas the dotted line represents the shortest path (not considering overlap) trivial
solution, i.e. the sum of the M shortest path lengths, which is linear in x. Vertical lines show the
frustration points where no solution is found and the total path length is set to zero. Inset: Ratio
Lgreedy/LMP − 1 is plotted as a function of x. Notice the worse performance of the greedy algorithm.

Figure 10 shows the failure ratio defined as the number of unsuccessful instances (for
which a solution is not found) over the total number of realizations as a function of the scaling
variable x. We notice that the greedy algorithm reaches the frustration point (as a function of
x) earlier than the corresponding global MP algorithm, regardless the system sizes or graph
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Figure 8: Expected total normalized path length - greedy vs global optimization algorithms ER.
System sizes V = 1000, 2000, 4000, 5000, γ = 0.69 and degree ⟨k⟩ = 3. Inset: the ratio Lgreedy/LMP−1
is plotted as a function of x. Notice the worse performance of the greedy.

type.
This shows that, if a solution exists, a global management of the entire set of

communications is required in order to find an optimal solution. Whereas if each
communication acts selfishly, seeking the corresponding shortest path, unsolvable overlaps
between communications emerge at lower x values. Both algorithms show an increased failure
rate as the system size increases, presumably due to the unscaled limit on the number of
iterations allowed and possibly inherent finite-size effects.

4.1. A posteriori statistics: maximum cluster size and degree distribution (regular graph
case).

To better understand the optimization process and characterize the solutions obtained we
carried out a statistical analysis of the solution a posteriori. Given the clearer statistical
interpretation of the results obtained (due to the limited number of possible connectivity values
and their evolution, and the higher frustration threshold for a given connectivity), we chose to
study regular graphs. In this case one can gain more insights into the type of routes formed and
the reduced effective graphs that emerge for any number of communications. By a posteriori
we mean that once a solution was found, by an MP or greedy algorithm, we removed from the
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Figure 9: Expected total normalized path length - greedy vs global optimization algorithms RER.
System sizes V = 1000, 2000, 4000 and degree ⟨k⟩ = 4. Inset: the ratio Lgreedy/LMP − 1 is plotted as a
function of x. Notice the worse performance of the greedy.

graph G all nodes and edges taking part in the paths and then calculated statistical properties
of the remaining graph G′. In particular, we calculated the maximum cluster size and the
degree distribution.

The existence of a solution to a given set of communications is strictly related to the
connectivity of the graph. Each time a solution for a subset of communications is found,
edges and nodes involved in the solution paths are effectively removed; and properties of
the reduced graph provide information on its ability to accommodate more source-destination
pairs and the efficiency of the obtained solution in making use of the topology. Figure 11
shows the max cluster sizes ratio of G′ as a function of the scaling variable x. This quantity
is defined as the ratio between the number of nodes in the maximum connected cluster over
the number of nodes in the same graph G′, the graph obtained after edge and node removal
of the obtained solution paths. For both the greedy and the global MP algorithm we see an
abrupt step change at some x value, between a graph that has a giant connected component
and a situation where no solution exists, such that we set the ratio to zero by convention.
Moreover, this drop is more abrupt and occurs for smaller x values in the case of the greedy
algorithm. This means that the greedy procedure does not distribute paths evenly on the graph
and creates small disconnected clusters; the greedy algorithm is therefore more sensitive to
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Figure 10: Failure rate for greedy and MP algorithms. We plotted for V = 2000 and for Reg and ER
of degree ⟨k⟩ = 3 and RER of ⟨k⟩ = 4, the failure rate as a function of M log V

V . We can notice that the
greedy algorithm fails to find solution earlier than MP for all types of graph considered. ER reaches
frustration sooner due to less path choices, whereas RER has higher frustration threshold because of
the higher connectivity. The MP data shown are results of averages calculated over a smaller number
of instances than for the greedy algorithm, hence the lines connecting them are less smooth.

small changes in connectivity compared to the global MP algorithm, for which the drop is
more gradual at first and occurs at higher x values. This reconfirms the previous results that
the greedy behavior is fragile and sensitive to the position of the communication pairs and the
order in which they are selected.

We evaluate the a posteriori degree distribution P(k) by calculating the connectivities
ki ∀i ∈ G′ for the different k values, and from these derive the average degree ⟨k⟩ as a function
of the scaling variable x. Results shown in Figure 12 for different system size and k = 3
show consistent trends; starting from a 3−regular graph we end up, close to the frustration
transition point and after the node and edge removal, with about 20% of the nodes with k = 3,
whereas ∼ 40% have degree k = 2 and ∼ 30% have k = 1. The decay of ⟨k⟩/k is also plotted
for the same process. Also here we see a good data collapse (the different curves can only be
distinguished close to frustration).

From graph theory [28] we know that when ⟨k⟩ ∼ 1 the graph is likely disconnected,
at least to two giant components; the numerical results show that frustration is reached when
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⟨k⟩/k has value ∼ 50−60%, which corresponds to an average degree ⟨k⟩ ∼ 1.5−1.8, still higher
than the connectivity threshold 1. This can be explained by the fact that tighter constraints
on edge availability are imposed in the case of the NDP problem, resulting in frustration even
before the graph disconnects (i.e., disconnection is sufficient but not necessary for frustration).
Indeed in our model it is insufficient to have just a good number of available links, but they
should also constitute clusters of connected links to accommodate new communication paths.
Hence the average connectivity value observed at the frustration point of ⟨k⟩ > 1.
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Figure 11: Maximum cluster size greedy vs MP algorithms. The maximum cluster size, i.e. the ratio
of giant component size normalized with respect to V , is plotted as a function of the scaling variable x.
We see that in both cases frustration is reached for giant component values above 60%; the lower values
obtained for smaller graphs result from very few biased successful instances where source-destination
pairs (S ,R) are selected from different clusters.

4.2. Path length and stretch distribution.

Another interesting quantity to consider is the path length distribution close to the critical
threshold, and its comparison with the shortest path distribution. Using the rescaled variable

L
log V/ logγ(k−1) , where L is the length per communication, we present in figure 13 the distribution
obtained for different system sizes. We see a good data collapse for graphs of different system
sizes and connectivities to a Gaussian-like distribution with left fat tails, as confirmed by
the log-plot on the right panel. This can be explained by the fact that the shorter of the M
shortest paths are less likely to be rerouted. A graph with a high number of communications
exhibits a path length distribution with higher length averages (with respect to the shortest
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Figure 12: Degree distribution and ⟨k⟩. We plotted P(k) for k = 0, . . . , 3 as a function of x =
M log V/V logγ(k − 1) for a 3−regular graph and system size V = 2000, 4000, 5000, 10000. From
top to bottom: the curve at the top is P(3) while the one at the bottom represents P(0). The black line
represents ⟨k⟩/3 for the different system sizes.

path distribution) as well as higher variances because solution path lengths are more broadly
spread. We notice that the left tails are similar for all connectivity values whereas the right tails
are broader for lower connectivities close to the frustration point. This can be explained by the
fact that short paths are less likely to be rerouted and occur in roughly the same proportion in
graphs of different connectivities; hence the similarity in the fat left tails. Regarding the right
tails - many paths are rerouted through longer routes by the MP-algorithm, but graphs with
higher degree allow for more communications with shorter routes due to the higher routing
flexibility they offer.

Figure 14 shows the stretch, defined as the difference between the shortest path and the
path length obtained through MP optimization, for M close to frustration ( M log V

V logγ(k−1) ∼ 0.5)
for different system sizes. We can see that for graphs of degree k = 3 only 34 − 38 % of the
communications follow the shortest path, all other communications are routed through longer
paths. A higher fraction of shortest-path communications is found for higher connectivity
graphs, presumably due to the higher routing flexibility they offer. Looking at the tails we can
see that there is a non-negligible fraction of paths that stretch considerably compared to the
average shortest path length.

5. Conclusion

We studied the shortest node-disjoint path problem on regular, ER and RER random
graphs using message-passing cavity equations. We found that the suggested MP algorithm
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Figure 13: Path length distribution. Left - Path lengths Lν in the dense interval M log V/ logγ(k − 1) ∼
0.5 are normalized and plotted for k = 3, 5, 7 graphs against the corresponding shortest paths (violet
curves). We see a more broadly spread distributions with higher averages for all graphs with respect
to the shortest paths, signaling the path rerouting due to the MP optimization. Right - path lengths
are plotted in log scale to highlight the left fat tails where the shortest paths are similar irrespective
of connectivity, whereas other paths are rerouted by the MP algorithm and are considerably longer,
almost by a factor of two (right tails).
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Figure 14: Stretch distribution. Left - The difference Lν − Lνshortest is normalized and plotted for each
communication in the dense regime for degrees k = 3, 5, 7. For k = 3 we have 40% of communications
correspond to the shortest paths while others take routes which are long compared to the average path
length log V/ logγ(k− 1). In the case of higher connectivities k = 5, 7 there is a higher fraction of paths
with the same length as the shortest path due to the routing flexibility offered. Right - The same data
is plotted on a log scale to highlight the tails behavior.

outperforms the greedy breadth-first search approach both in finding better solutions (shorter
total path length) and in finding solutions for higher values of M. This shows that a global
strategy is needed to optimally route paths which do not overlap at nodes but also have
minimal path lengths. We found a scaling rule for the total length that goes as a cubic function
of the occupancy ratio M log V

V logγ(k−1) , with γ varying with the graph topology. This behavior
resembles the shortest path length for small M but increases faster than linearly for a higher
number of paths.

We also studied statistical properties of physical observables a posteriori in the case of
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regular graphs. We found good data collapses for regular graphs of different system sizes and
connectivities for quantities such as maximum cluster size, degree distribution and, length and
stretch distributions.

We believe this approach is theoretically interesting due to its relevance to hard
combinatorial complexity problems but also offers a new direction for solving important
practical routing problem in communication, in particular in optical and wireless ad-hoc
networks and VLSI design. This study offers the first step for realizing the potential in this
new direction.
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