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Gradient Schemes for Stokes problem

Jérôme Droniou∗, Robert Eymard† and Pierre Feron ‡

October 1, 2014

Abstract

We develop a framework, which encompasses a large family of conforming and nonconforming
numerical schemes, for the approximation of the steady state and transient incompressible Stokes
equations with homogeneous Dirichlet’s boundary conditions. This framework provides general con-
vergence proofs, by error estimates in the case of the steady problem and by compactness arguments
in the case of the transient one. Three classical methods (MAC, Taylor–Hood and Crouzeix-Raviart
schemes) are shown to belong to this framework, which also inspires the construction of a novel
scheme, whose advantage is to be Hdiv conforming and to retain a small number of degrees of free-
dom.

1 Introduction

The notion of gradient schemes, designed for linear and nonlinear elliptic and parabolic problems in
[8, 9, 11, 16, 15], has the benefit of providing common convergence and error estimates results, which
hold for a wide variety of numerical methods (finite element methods, nonconforming and mixed finite
element methods, hybrid and mixed mimetic finite difference methods. . . ). Checking a minimal set
of properties for a given numerical method suffices to prove that it belongs to the gradient schemes
framework, and therefore that it is convergent on the aforementioned problems. The aim of this paper is
to extend this framework to the steady and transient Stokes problems:





ηu−∆u+∇p = f − div(G) in Ω
divu = 0 in Ω

u = 0 on ∂Ω
(1)

and 



∂tu−∆u+∇p = f − div(G) in Ω× (0, T )
divu = 0 in Ω× (0, T )

u = 0 on ∂Ω× (0, T )
u(·, 0) = uini a.e on Ω,

(2)

where u represents the velocity field, p is the pressure and the domain Ω is a bounded open set in R
d,

d ≥ 1.
We may cite (without exhaustivity) separate works done for analyzing different methods, that are among
the most commonly used in many industrial applications. In [1], a first error estimate is given for the
Taylor-Hood approximation of the Stokes problem, further improved in [25]. In [5], the authors analyze
the application of the P 1-nonconforming method for the velocity, with piecewise P 0 approximation for
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the pressure, known as the Crouzeix-Raviart scheme, and they provide an error estimate. In [21], the
author provides, in a pioneering work, the first convergence proof for the famous Marker-And-Cell (MAC)
scheme [18, 22, 26], intensively used in the engineering and fluid numerics frameworks.
In this paper, we exhibit the common principles of all these methods, which are sufficient for proving
their convergence. We define the notion of gradient discretization for the Stokes problem, and we show
how the classical schemes may be included in this framework: this is done in Section 4.1 for the MAC
scheme (see [3] for an extended version of the MAC scheme which also could be included in the present
framework), the Taylor–Hood scheme, the Crouzeix-Raviart scheme and a new method which is Hdiv

conforming, and hence satisfies an interesting property regarding pressure-independent errors [19].
The paper is organised as follows. In Section 2, we detail the discrete space and operators used in
gradient discretisations for the Stokes problem, and we provide the common properties that are sufficient
for showing convergence results of the resulting gradient scheme. Then, in Section 3, we give our main
results. These results concern the convergence of the general gradient scheme for the steady and transient
Stokes problems. The steady results are obtained through error estimates: the first one is given in the
most general hypotheses, and the next ones are improved, accounting for more restrictive hypotheses on
the data. The transient results are obtained via compactness tools. In all these results, the pressure plays
a key role. Section 4 is devoted to the proof that standard schemes are included in the general framework.
We first consider the MAC scheme, for which the appropriate tools are those of the discrete functional
analysis, such as the one developed in [12] for the study of finite volume schemes for elliptic problems.
We then consider the Taylor-Hood scheme, which easily enters into the general framework thanks to its
conformity, and we next study the nonconforming Crouzeix-Raviart scheme. This scheme is known to
be useful in many industrial applications, due to the approximation of the velocity at the barycenter
of the faces, which allows for easy couplings with finite volume schemes for more complex situations.
We finally turn to an original scheme, which has a few interesting characteristics. It is an extension
of the MAC scheme to simplicial meshes but, contrary to other extensions, it remains formulated in
velocity/pressure (no use of the vorticity is introduced). Hence this scheme happens to have the same
characteristics as the Crouzeix-Raviart scheme for its domain of application, in addition to the fact that
the number of unknowns is reduced. Moreover, in 2D, a simple change of unknowns (use of the scalar
discrete streamline potential) allows for the elimination of the pressure and the resolution of a much
smaller number of unknowns. Nevertheless, it has the drawback of showing large stencils, and the 2D
change of variable does not easily apply in 3D. A short numerical insight is proposed to enlighten the
comparison between these two last schemes.
The proofs of the results stated in Section 3 are then detailed in Section 5. One shall notice that
these proofs are not straightforward, in particular in the case of the transient problem. Appropriate
compactness tools have to be provided, demanding to define suitable discrete norms.

Notations In the following, if F is a vector space we denote by F the space F d. Thus, L2(Ω) = L2(Ω)d

and H1
0(Ω) = H1

0 (Ω)
d. The space E(Ω) is the space of fields v ∈ H1

0(Ω) such that div(v) = 0. L2
0(Ω)

is the space of functions in L2(Ω) with a zero mean value over Ω. Finally, Hdiv(Ω) is the space of fields
v ∈ L2(Ω) such that div(v) ∈ L2(Ω).

2 Gradient discretisations

Gradient discretisations provide the foundations, in terms of discrete spaces, operators and properties,
upon which the gradient scheme framework is designed.

2.1 Space

Definition 2.1 (Gradient discretisation for the steady Stokes problem) A gradient discretisation
D for the incompressible steady Stokes problem, with homogeneous Dirichlet’s boundary conditions, is de-
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fined by D = (XD,0,ΠD ,∇D , YD , χD , divD), where:

1. XD,0 is a finite-dimensional vector space on R.

2. YD is a finite-dimensional vector space on R.

3. The linear mapping ΠD : XD,0 → L2(Ω) is the reconstruction of the approximate velocity field.

4. The linear mapping χD : YD → L2(Ω) is the reconstruction of the approximate pressure, and must
be chosen such that ‖χD · ‖L2(Ω) is a norm on YD . We then set YD,0 = {q ∈ YD ,

∫
Ω
χDq dx = 0}.

5. The linear mapping ∇D : XD,0 → L2(Ω)d is the discrete gradient operator. It must be chosen such
that ‖ · ‖D := ‖∇D · ‖L2(Ω)d is a norm on XD,0.

6. The linear mapping divD : XD,0 → L2(Ω) is the discrete divergence operator.

Remark 2.2 (Boundary conditions) Gradient discretisations adapted to other boundary conditions
than the homogeneous Dirichlet conditions can be easily designed, see [8].

The coercivity of a sequence of gradient discretisations ensure that a discrete Poincaré inequality, a control
of the discrete divergence and a discrete Ladyzenskaja-Babuka-Brezzi (LBB) conditions can be establish,
all uniform along the sequence of discretisations.

Definition 2.3 (Coercivity) Let D be a discretisation in the sense of Definition 2.1. Let CD and βD
be defined by

CD = max
v∈XD,0,‖v‖D=1

‖ΠDv‖L2(Ω) + max
v∈XD,0,‖v‖D=1

‖divDv‖L2(Ω), (3)

βD =min

{
max

v∈XD,0,‖v‖D=1

∫

Ω

χDq divDv dx : q ∈ YD,0 such that ‖χDq‖L2(Ω) = 1

}
. (4)

A sequence (Dm)m∈N of gradient discretisation is said to be coercive if there exist CP ≥ 0 and β > 0
such that CDm

≤ CP and βDm
≥ β, for all m ∈ N.

The consistency of a sequence of gradient discretisations states that the discrete space and operators “fill
in” the continuous space as the discretisation is refined.

Definition 2.4 (Consistency) Let D be a gradient discretisation in the sense of Definition 2.1, and let

SD : H1
0(Ω) → [0,+∞), and S̃D : L2

0(Ω) → [0,+∞) be defined by

∀ϕ ∈ H1
0(Ω) , SD(ϕ) = min

v∈XD,0

(
‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d + ‖divDv − divϕ‖L2(Ω)

)

and
∀ψ ∈ L2

0(Ω) , S̃D(ψ) = min
z∈YD,0

‖χDz − ψ‖L2(Ω).

A sequence (Dm)m∈N of gradient discretisation is said to be consistent if, for all ϕ ∈ H1
0(Ω), SDm

(ϕ)

tends to 0 as m→ ∞ and, for all ψ ∈ L2
0(Ω), S̃Dm

(ψ) tends to 0 as m→ ∞.

Definition 2.5 (Limit-conformity) Let D be a gradient discretisation in the sense of Definition 2.1
and let WD : Z(Ω) 7→ [0,+∞), with Z(Ω) = {(ϕ, ψ) ∈ L2(Ω)d × L2(Ω), divϕ−∇ψ ∈ L2(Ω)}, be defined
by

∀(ϕ, ψ) ∈ Z(Ω) , WD(ϕ, ψ) = max
v∈XD,0
‖v‖D=1

(∫

Ω

[∇Dv : ϕ+ΠDv · (divϕ−∇ψ)− ψdivDv] dx

)
.

A sequence (Dm)m∈N of gradient discretisation is said to be limit-conforming if, for all (ϕ, ψ) ∈ Z(Ω),
WDm

(ϕ, ψ) tends to 0 as m→ ∞.
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Remark 2.6 As in [14, 8], the consistency of a coercive sequence of gradient discretisation only needs
to be checked on dense subspaces of H1

0(Ω) and L2
0(Ω). This is also true for limit-conformity, but we

discuss this particular case in the appendix (Section 6.1).

2.2 Space-time

The notion of gradient discretisation for transient problems requires the addition of time steps and an
interpolation (not necessarily linear) of the initial condition.

Definition 2.7 (Space-time gradient discretisation) A space-time gradient discretisation D for the
transient Stokes problem, with homogenous Dirichlet boundary conditions, is defined by a family D =
(XD,0,ΠD ,∇D , YD , χD , divD , (t

(n))n=0,...,N , JD) where:

• Ds = (XD,0,ΠD ,∇D , YD , χD , divD) a gradient discretisation of Ω in the sense of Definition 2.1,

• JD : L2(Ω) 7→ XD,0 an interpolation operator;

• t(0) = 0 < t(1) < ... < t(N) = T .

We define δtn+
1
2 = t(n+1) − t(n) for all n = 0, ..., N − 1 and δtD = max

n=0,...,N−1
(δtn+

1
2 ).

A sequence of space-time gradient discretisation (Dm)m∈N is coercive (resp. limit-conforming) if its spatial
component (Ds

m)m∈N is coercive (resp. limit-conforming).

Definition 2.8 (Space-time consistency) A sequence (Dm)m∈N of space-time gradient discretisations
in the sense of Definition 2.7 is said consistent if

1. (Ds
m)m∈N is consistent in the sense of Definition 2.4,

2. for all ϕ ∈ L2(Ω), ΠDm
JDm

ϕ→ ϕ in L2(Ω),

3. δtDm
→ 0 as m→ ∞.

3 Gradient schemes and main results

3.1 Steady Stokes problem

Our assumptions for the steady Stokes problem (1) are the following:

Ω is an open bounded Lipschitz domain of Rd (d ≥ 1),

f ∈ L2(Ω), G ∈ L2(Ω)d and η ∈ [0,+∞).
(5)

Definition 3.1 (Weak solution to the steady Stokes problem) Under Hypotheses (5), (u, p) is a
weak solution to (1) if





u ∈ H1
0(Ω), p ∈ L2

0(Ω),

η

∫

Ω

u · v dx+

∫

Ω

∇u : ∇v dx−

∫

Ω

pdivv dx =

∫

Ω

(f · v +G : ∇v) dx, ∀v ∈ H1
0(Ω),∫

Ω

qdivu dx = 0 , ∀q ∈ L2
0(Ω),

(6)

where “·” is the dot product on R
d, and if ξ = (ξi,j)i,j=1,...,d ∈ R

d×d and χ = (χi,j)i,j=1,...,d ∈ R
d×d,

ξ : χ =
∑d

i,j=1 ξi,jχi,j is the doubly contracted product on R
d×d.
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Remark 3.2 Under Hypotheses (5), the existence and uniqueness of a weak solution (u, p) to Problem
(1) in the sense of Definition 3.1 follows from [24, Ch.I, Theorem 2.1].

The gradient scheme for the steady Stokes problem is based on a discretisation of the weak formulation
(6), in which the continuous spaces and operators are replaced with discrete ones (in (6), we wrote the
property “divu = 0” using test functions to make clearer this parallel between the weak formulation and
the gradient scheme). If D is a gradient discretisation in the sense of Definition 2.1, the scheme is given
by: 




u ∈ XD,0 , p ∈ YD,0,

η

∫

Ω

ΠDu ·ΠDv dx+

∫

Ω

∇Du : ∇Dv x

−

∫

Ω

χDp divDv dx =

∫

Ω

(f ·ΠDv +G : ∇Dv) dx, ∀v ∈ XD,0,
∫

Ω

χDqdivDu dx = 0, ∀q ∈ YD,0.

(7)

Our main result on the gradient schemes for steady Stokes problem is the following theorem.

Theorem 3.3 (Error estimates the steady Stokes problem) Under Hypotheses (5), let (u, p) be
the unique solution of the incompressible steady Stokes problem (1) in the sense of Definition 3.1. Let D
be a gradient discretisation in the sense of Definition 2.1 such that βD > 0 (see Definition 2.3). Then
there exists a unique (uD , pD) ∈ XD,0×YD,0 solution of the gradient scheme (7), and there exists Ce > 0,
non-decreasing w.r.t. η, CD and 1

βD

, such that

‖u−ΠDuD‖L2(Ω) + ‖∇u−∇DuD‖L2(Ω)d + ‖p− χDp‖L2(Ω)

≤ Ce

(
WD(∇u−G, p) + SD(u) + S̃D(p)

)
. (8)

Remark 3.4 As a consequence, if (Dm)m∈N is a coercive, consistent and limit-conforming sequence
of gradient discretisations (see Definitions 2.3, 2.4 and 2.5) and if (um, pm) are the solutions to the
corresponding gradient schemes, then, as m→ ∞, ΠDm

um → u in L2(Ω), ∇Dm
um → ∇u in L2(Ω)d and

χDm
pm → p in L2(Ω).

The constant Ce in the preceding estimate explodes if βD becomes small. For some gradient schemes, we
can obtain an estimate on the velocity which is independent on the constant in the inf-sup condition. For
a gradient discretisation D , we define the space of discrete divergence-free functions (in the dual sense),
discrete version of the space E(Ω), by

ED =

{
v ∈ XD,0 : ∀q ∈ YD,0 ,

∫

Ω

χDq divDv dx = 0

}
. (9)

Theorem 3.5 (Error estimates on the velocity without inf-sup constant) Under the assumptions
of Theorem 3.3, we suppose that

∀v ∈ XD,0 , if

∫

Ω

χDqdivDv dx = 0 for all q ∈ YD,0, then divDv = 0 a.e. in Ω

(that is to say, ED = {v ∈ XD,0 : divDv = 0 a.e.}).
(10)

Then

‖∇u−∇DuD‖L2(Ω)d ≤ (ηCD + 2)SD,ED
(u) +WD(∇u−G, p) (11)

‖u−ΠDuD‖L2(Ω) ≤ [CD(ηCD + 1) + 1]SD,ED
(u) + CDWD(∇u−G, p), (12)

where SD,ED
(u) = minv∈ED

(
‖ΠDv − u‖L2(Ω) + ‖∇Dv −∇u‖L2(Ω)d

)
.
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Remark 3.6 Most classical schemes for Stokes problem satisfy (10) and have interpolants E(Ω) → ED

which ensure that SD,ED
(u) → 0 as the mesh size tend to 0. This is for example the case of all schemes

presented in Section 4.1.

Estimates (11) and (12) on the discrete velocity still depend on the continuous pressure p. This means
that even in the case of purely irrotational forces, with the solution to the Stokes equation (u, p) = (0, p),
the pressure terms can lead to errors on the velocity [19]. This dependency on the pressure can be
sometimes be removed.

Theorem 3.7 (Pressure-independent error-estimates on the velocity) Under the assumptions of
Theorem 3.3, we suppose that

∀v ∈ ED , ∀ψ ∈ H1(Ω) ,

∫

Ω

ΠDv · ∇ψ dx = 0. (13)

Then, if ∇u−G ∈ Hdiv(Ω) (which amounts to asking that p ∈ H1(Ω)), we have the following pressure-
independent estimates on the velocity:

‖∇u−∇DuD‖L2(Ω)d ≤ (ηCD + 2)SD,ED
(u) +WD(∇u−G) (14)

‖u−ΠDuD‖L2(Ω) ≤ [CD(ηCD + 1) + 1]SD,ED
(u) + CDWD(∇u−G), (15)

where WD is given in Definition 6.1.

Remark 3.8 In case of purely irrotational forces (f,G) = (∇V, 0), then the solution to the Stokes problem
is (u, p) = (0, V ) and Estimates (14) and (15) show that the velocity is exactly approximated. In other
words, for such irrotational forces, the discrete velocity provided by the scheme is zero.

Remark 3.9 Assumption (13) is obviously satisfied by conforming methods, such as the Taylor–Hood
scheme (cf. Section 4.2). It is not satisfied in general by non-conforming methods such as the Crouzeix-
Raviart scheme, when ΠD is the “classical” reconstruction of function (see Section 4.3). As suggested
in [19], a way to solve these schemes’ poor mass conservation (arising from the action at the discrete
level of purely irrotational forces on the velocity) is to replace ΠD with a non-standard reconstruction
which satisfies (13). The reconstruction proposed in [19] consists in defining ΠD as an interpolation in
the lowest order Raviart-Thomas space of functions in the Crouzeix-Raviart space: if v is a function in
the non-conforming P

d
1 space and (vσ)σ∈E (E being the set of all faces) are its values at the centers of

gravity of the faces (xσ)σ∈E , then ΠDv = ΠRT
D v is the function in the lowest order Raviart-Thomas space

which satisfies, for any simplicial cell T and any edge σ of T ,

(ΠDv)(xσ) · nT,σ = v(xσ) · nT,σ,

where nT,σ is the outer unit normal to T on σ. Then (13) is satisfied. Indeed, ΠRT
D v is Hdiv conforming

and satisfies div(ΠRT
D v) = divDv, where divDv is the broken piecewise constant divergence of v. Hence,

if v ∈ ED we have div(ΠRT
D v) = 0 in Ω and (13) holds.

3.2 Transient Stokes problem

We consider the transient Stokes problem (2) under the assumptions

Ω is an open bounded Lipschitz domain of Rd (d ≥ 1), T > 0,

uini ∈ L2(Ω), f ∈ L2(Ω× (0, T )) and G ∈ L2(Ω× (0, T ))d.
(16)

The solution to (2) is initially understood in the following weak sense, in which the pressure is eliminated
by the choice of divergence-free test functions. Existence and uniqueness of this solution is proved in [24,
Ch.III, Theorem 1.1].
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Definition 3.10 Under Hypothesis (16), u is a weak solution to (2) if




u ∈ L2(0, T, E(Ω)),∫ T

0

∫

Ω

−u · ∂tϕ dx dt+

∫

Ω

uini · ϕ(·, 0) dx+

∫ T

0

∫

Ω

∇u : ∇ϕ dx dt =

∫ T

0

∫

Ω

f · ϕ dx dt

+

∫ T

0

∫

Ω

G : ∇ϕ dx dt, ∀ϕ = θw with θ ∈ C∞
c ([0, T )) and w ∈ E(Ω).

(17)

It can however be seen, see Section 6.2 in the appendix, that if uini ∈ E(Ω) and u is the solution to (17),
then there exists a pressure p such that (u, p) is a solution to (2) in the following sense.

Proposition 3.11 Assume Hypotheses (16) and uini ∈ E(Ω) and let u be the solution to (17). Then
there exists p such that (u, p) satisfies:





u ∈ L2(0, T, E(Ω)) ∩ C([0, T ];L2(Ω)) , ∂tu ∈ L2(0, T,H−1(Ω)) ,
p ∈ L2(0, T, L2

0(Ω)) ,∫ T

0

∫

Ω

〈∂tu, ϕ〉 dx dt+

∫ T

0

∫

Ω

∇u : ∇ϕ dx dt−

∫ T

0

∫

Ω

p(x, t)divϕ dx dt

=

∫ T

0

∫

Ω

f · ϕ dx dt+

∫ T

0

∫

Ω

G : ∇ϕ dx dt , ∀ϕ ∈ L2(0, T ;H1
0(Ω))

u(·, 0) = uini a.e on Ω

(18)

where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0(Ω).

Let D be a space-time gradient discretisation in the sense of Definition (2.7). With the notation

δ
n+ 1

2

D
uD =

u
(n+1)
D

− u
(n)
D

δtn+
1
2

,

the implicit gradient scheme for (2) is based on the following approximation of (18):




uD = (u
(n)
D

)n=0,...,N , pD = (p
(n)
D

)n=1,...,N such that u
(0)
D

= JDuini and, ∀n = 0, ..., N − 1:

u
(n+1)
D

∈ XD,0 , p
(n+1)
D

∈ YD,0 ,∫

Ω

ΠDδ
n+ 1

2

D
uD ·ΠDv dx+

∫

Ω

∇Du
(n+1)
D

: ∇Dv dx−

∫

Ω

χDp
(n+1)
D

divDv dx

=
1

δtn+
1
2

∫ t(n+1)

t(n)

∫

Ω

f ·ΠDv dx dt+
1

δtn+
1
2

∫ t(n+1)

t(n)

∫

Ω

G · ∇Dv dx dt, ∀v ∈ XD,0.

∫

Ω

divDu
(n+1)
D

χDq dx = 0, ∀q ∈ YD,0.

(19)

It is common to use ΠD and ∇D to denote space-time functions the following way: if v = (vn)n=0,...,N ∈
XD,0, the functions ΠDv : Ω× (0, T ) → R

d and ∇Dv : Ω× (0, T ) → R
d×d are defined by

∀n = 0, . . . , N − 1 , ∀t ∈ (t(n), t(n+1)] , ∀x ∈ Ω ,

ΠDv(x, t) = ΠDv
(n+1)(x) , ∇Dv(x, t) = ∇Dv

(n+1)(x) and δDv(t) = δ
n+ 1

2

D
v.

(20)

Our first convergence result deals only with the velocity.

Theorem 3.12 (Convergence of the velocity for the transient Stokes problem)
Under Hypotheses (16), let u the unique weak solution of the incompressible transient Stokes problem (2)
in the sense of Definition 3.10 and let (Dm)m∈N be a sequence of space-time gradient discretisations in
the sense of Definition 2.7, which is space-time consistent, limit-conforming and coercive in the sense of
Definitions 2.8, 2.5 and 2.3. Then for any m there is a unique solution (uDm

, pDm
) to (19) with D = Dm

and, as m→ ∞,
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• ΠDm
uDm

converges to u in L∞(0, T ;L2(Ω)),

• ∇Dm
uDm

converges to ∇u in L2(Ω× (0, T ))d.

Remark 3.13 Note that since the functions ΠDm
uDm

are piecewise constant in time, their convergence
in L∞(0, T ;L2(Ω)) is actually a uniform-in-time convergence (not “uniform a.e. in time”).

Under slightly more restrictive (but usual) conditions on the initial data, we can also prove a convergence
result on the pressure.

Theorem 3.14 (Convergence of the pressure for the transient Stokes problem) Under the as-
sumptions and notations of Theorem 3.12, we suppose that G = 0, uini ∈ E(Ω), (||JDm

uini||Dm
)m∈N is

bounded and, for all m ∈ N, JDm
uini ∈ EDm

(where EDm
is defined by (9) with D = Ds

m, the spatial
gradient discretisation corresponding to Dm). Then

• ΠDm
uDm

converges to u in L∞(0, T ;L2(Ω)),

• ∇Dm
uDm

converges to ∇u in L2(Ω× (0, T ))d,

• χDm
pDm

weakly converges to p in L2(Ω× (0, T )),

where (u, p) is the weak solution to (2) in the sense (18).

4 Examples of gradient discretisations

4.1 The MAC scheme on rectangular meshes

j

j + 1
2

j − 1
2

i− 1
2

i i + 1
2

Figure 1: Notations for the meshes

The Marker-And-Cell (MAC) scheme [18, 22, 26] can be easily defined on domains where the boundary
is composed of subparts parallel to the axes. Let us assume, for simplicity, that Ω = (a, b) × (c, d), for
given real values a < b, c < d. We introduce, for given N,M ∈ N

⋆, the finite real sequences x 1
2
= a <

x1+ 1
2
. . . < b = xN+ 1

2
and y 1

2
= c < y1+ 1

2
. . . < d = yM+ 1

2
. We define x0 = a, xi =

1
2 (xi− 1

2
+ xi+ 1

2
) for

i = 1, . . . , N , xN+1 = b, y0 = c, yj = 1
2 (yj− 1

2
+ yj+ 1

2
) for j = 1, . . . ,M , yM+1 = d. We then define a

gradient discretization D = (XD,0, YD ,ΠD , χD ,∇D , divD) by:

1. XD,0 is the set of families of reals u = ((ui+ 1
2 ,j

)i=0,...,N,j=0,...,M+1, (ui,j+ 1
2
)i=0,...,N+1,j=0,...,M ) such

that u 1
2 ,j

= uN+ 1
2 ,j

= ui, 12 = ui,M+ 1
2
= 0 for all i, j,

2. YD is the set of all families of reals p = (pi,j)i=1,...,N,j=1,...,M ,
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3. ΠDu = (Π
(1)
D
u,Π

(2)
D
u) ∈ L2(Ω)2 with Π

(1)
D
u piecewise constant equal to ui+ 1

2 ,j
in (xi, xi+1) ×

(yj− 1
2
, yj+ 1

2
) for i = 0, . . . , N and j = 1, . . . ,M , and Π

(2)
D
u piecewise constant equal to ui,j+ 1

2

in (xi− 1
2
, xi+ 1

2
) × (yj , yj+1) for i = 1, . . . , N and j = 0, . . . ,M (this definition accounts for the

boundary conditions on the velocity),

4. χDp is piecewise constant equal to pi,j in (xi− 1
2
, xi+ 1

2
) × (yj− 1

2
, yj+ 1

2
) for i = 1, . . . , N and j =

1, . . . ,M ,

5. ∇Du = (∇
(a,b)
D

u)a,b=1,2 ∈ L2(Ω)4 with ∇
(a,b)
D

u the piecewise constant approximation of the b-th
derivative of the a-th component defined by:

(a) ∇
(1,1)
D

u =
u
i+1

2
,j
−u

i− 1
2
,j

x
i+1

2
−x

i− 1
2

on (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
) for i = 1, . . . , N and j = 1, . . . ,M ,

(b) ∇
(1,2)
D

u =
u
i+1

2
,j+1

−u
i+1

2
,j

yj+1−yj
on (xi, xi+1)× (yj , yj+1) for i = 0, . . . , N and j = 0, . . . ,M ,

(c) ∇
(2,1)
D

u =
u
i+1,j+1

2
−u

i,j+1
2

xi+1−xi
on (xi, xi+1)× (yj , yj+1) for i = 0, . . . , N and j = 0, . . . ,M ,

(d) ∇
(2,2)
D

u =
u
i,j+1

2
−u

i,j− 1
2

y
j+1

2
−y

j− 1
2

on (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
) for i = 1, . . . , N and j = 1, . . . ,M ,

6. divDu = Tr(∇Du) = ∇
(1,1)
D

u + ∇
(2,2)
D

u (constant in (xi− 1
2
, xi+ 1

2
) × (yj− 1

2
, yj+ 1

2
) for i = 1, . . . , N

and j = 1, . . . ,M).

We then denote hD = maxi,j(xi+ 1
2
− xi− 1

2
, yj+ 1

2
− yj− 1

2
) and we have the following result.

Proposition 4.1 (Coercivity, consistency and limit-conformity of the MAC discretization)
Let Dm = (XDm,0, YDm

,ΠDm
, χDm

,∇Dm
, divDm

) be defined as in the beginning of this section, with hDm

tending to 0 as m → ∞. Then Dm is a gradient discretisation in the sense of Definition 2.1 and the
family (Dm)m∈N is coercive, consistent and limit-conforming in the sense of Definitions 2.3, 2.4 and 2.5.

Proof
We drop the indices m for legibility.
Coercivity: Since the definition of ∇D corresponds to the discrete gradient of a finite volume scheme
on a mesh satisfying the usual orthogonality property, the bound on CD is a consequence of the discrete
Poincaré inequality [12, Lemma 9.1 p 765] (the control of divD by ∇D is trivial from its definition). The
lower bound on βD is a consequence of Nečas’ result [20], see also [2]. Indeed, we can find w ∈ H1

0(Ω)
such that divw = χDq and ‖w‖H1

0(Ω) ≤ C‖χDq‖L2(Ω). Considering then v ∈ XD,0 defined by averaging
this function w on all edges and applying [12, Lemma 9.4 p 776] provides the result.

Consistency: The consistency for the pressure stems from the fact that, given a family of meshes whose
size tend to 0, any L2 function can be approximated by sequences of piecewise constant functions on the
meshes. The consistency for the velocity is equally immediate, since Taylor expansions show that, for a
regular ϕ, the interpolation u ∈ XD,0 defined by ui+ 1

2 ,j
= ϕ(xi+ 1

2
, yj) and ui,j+ 1

2
= ϕ(xi, yj+ 1

2
) has a

reconstruction ΠDu and a discrete gradient ∇Du close respectively to ϕ and ∇ϕ if the mesh size is small.

Limit-conformity: We will use Definition 6.1 (and Remark 6.2). We start by taking ϕ ∈ C∞(Ω)2 and
we show that WD(ϕ) → 0 as hD → 0. The study is simplified by considering each component of the
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gradient separately. For u ∈ XD,0 we have

∫

Ω

∇
(1,1)
D

uϕ(1,1) dx dy =
∑

i=1,...,N
j=1,...,M

∫

(x
i− 1

2
,x

i+1
2
)×(y

j− 1
2
,y

j+1
2
)

(ui+ 1
2 ,j

− ui− 1
2 ,j

)ϕ(1,1)(x, y)

xi+ 1
2
− xi− 1

2

dx dy

=
∑

i=1,...,N
j=1,...,M

(ui+ 1
2 ,j

− ui− 1
2 ,j

)ϕi,j(yj+ 1
2
− yj− 1

2
)

where ϕi,j is the average of ϕ(1,1) on (xi− 1
2
, xi+ 1

2
) × (yj− 1

2
, yj+ 1

2
). Using a discrete integration by parts

and the Dirichlet boundary conditions, we may write

∑

i=1,...,N
j=1,...,M

(ui+ 1
2 ,j

− ui− 1
2 ,j

)ϕi,j(yj+ 1
2
− yj− 1

2
) = −

∑

i=1,...,N
j=1,...,M

ui+ 1
2 ,j

ϕi+1,j − ϕi,j

xi+ 1
2
− xi− 1

2

(yj+ 1
2
− yj− 1

2
)(xi+ 1

2
− xi− 1

2
)

≤ −

∫

Ω

Π
(1)
D
u ∂xϕ

(1,1) dx dy + ChD‖u‖D

where C only depends on ϕ and CD . We used the fact that ϕi,j = ϕ(1,1)(xi, yj)+O((xi+ 1
2
−xi− 1

2
)(yj+ 1

2
−

yj− 1
2
)), which implies

ϕi+1,j−ϕi,j

x
i+1

2
−x

i− 1
2

= ∂xϕ
(1,1)(xi, yj)+O(yj+ 1

2
− yj− 1

2
) = ∂xϕ

(1,1) +O(hD) on (xi, xi+1)×

(yj− 1
2
, yj+ 1

2
). Combining the last inequation with (??), we finally get

∫

Ω

(∇
(1,1)
D

uϕ(1,1) +Π
(1)
D
u ∂(1)ϕ(1,1)) dx dy ≤ ChD ||u||D .

Using the same idea for each component of ∇D , we can conclude that WD(ϕ) → 0 as m→ ∞.

We now have to prove that W̃D(ψ) → 0 for all ψ ∈ C∞(Ω). Since divD = ∇
(1,1)
D

+ ∇
(2,2)
D

, defining

ϕ ∈ C∞(Ω)2 by ϕ(1,1) = ϕ(2,2) = ψ and ϕ(1,2) = ϕ(2,1) = 0 we see that W̃D(ψ) = WD(ϕ), and
the previously established limit-conformity of the discrete gradient therefore shows that the discrete
divergence is also limit-conforming. �

4.2 Conforming Taylor–Hood scheme

In this section, we assume that Ω is an open bounded domain with a polygonal boundary. We consider
simplicial meshes T , i.e. meshes made of triangles in 2D or tetrahedra in 3D – see Figure 2 for some
general notations.
We let hT = maxK∈T hK be the maximum diameter of the simplices in T . We define θT = inf{ ξK

hK
,K ∈

T }, where ξK is the diameter of the largest ball included in K, and we say that (Tm)m∈N is an admissible
sequence of triangulations if (θTm

)m∈N remains bounded. This implies in particular hK |σ| ≤ C|K|, for
any K ∈ Tm and any edge (face in 3D) σ of K, with C not depending on m. Finally, we define E the set
of the edges/faces of T , Eint = E \ ∂Ω and EK the set of edges of K.
The Taylor–Hood scheme [23] on a simplicial mesh T can be seen as the gradient scheme corresponding
to the gradient discretisation D = (XD,0, YD ,ΠD , χD ,∇D , divD) defined by:

1. XD,0 and YD are the vector spaces of the degrees of freedom for the velocity and the pressure in
the Taylor–Hood element (that d-dimension vectors at the internal vertices and edge mid-points for
XD,0, and scalar values at the cell centres for YD,0),

2. ΠD and χD are respectively obtained through the P
2 and P

1 finite element basis functions,

3. ∇D and divD are the conforming operators ∇D = ∇ ◦ΠD and divD = div ◦ΠD .
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−→
n

σ

K

σ

xσ

hK

K is an element of T ,
|K| is the d-dimension measure of K,
σ is an edge/face of K,
|σ| is the (d− 1)-dimension measure of σ,
xσ is the center of gravity of σ,
nK,σ is the unit normal to σ, pointing outward K,
hK is the diameter of K.

Figure 2: Notations in a triangle.

Proposition 4.2 (Coercivity, consistency and limit-conformity) Let (Tm)m∈N be an admissible
sequence of triangulations of Ω. We assume that every mesh element has at least d edges in Ω and
that hTm

→ 0 as m → ∞. Let Dm = (XDm,0, YDm
,ΠDm

, χDm
,∇Dm

, divDm
) corresponding to the con-

forming Taylor–Hood scheme for Tm. Then Dm is a gradient discretisation in the sense of Definition 2.1
and the family (Dm)m∈N is coercive, consistent and limit-conforming in the sense of Definitions 2.3, 2.4
and 2.5.

Proof
Coercivity: Since ΠDm

(XDm,0) is the set of continuous, piecewise P
2 functions, it is a subset of H1

0 (Ω)
and the Poincaré inequality ||ΠDm

u||L2(Ω) ≤ diam(Ω)||∇(ΠDm
u)||L2(Ω)d is therefore satisfied. Applying

then [10, Lemma 4.24] to estimate βDm
, we obtain the coercivity of (Dm)m∈N.

Consistency: The consistency is proved in [4, Theorem 3.1.6] in the general case of finite element P
k,

thus we just apply this result with k = 2 for the discrete velocity and k = 1 for the discrete pressure.

Limit-conformity: Because of the definition of ∇Dm
and divDm

, WDm
is identically null. �

4.3 The Crouzeix-Raviart scheme

We still consider a simplicial mesh T . The Crouzeix-Raviart scheme [5] can be seen as a gradient scheme
with the gradient discretisation defined by:

1. XD,0 is the vector space of all families of vectors of Rd at the center of all internal faces of the mesh,

2. YD is the vector space of all families of values in the simplices,

3. The linear mapping ΠCR
D

: XD,0 → L2(Ω) is the nonconforming piecewise affine reconstruction of
each component of the velocity,

4. The linear mapping χD : YD → L2(Ω) is the piecewise constant reconstruction in the simplices,

5. The linear mapping ∇CR
D

: XD,0 → L2(Ω)d is the so-called “broken gradient” of the velocity, defined
as the piecewise constant field of the velocity’s gradients in each simplex,

6. The linear mapping divCR
D

: XD,0 → L2(Ω) is the discrete divergence operator, with piecewise
constant values in the cells equal to the balance of the normal velocities over the cell’s faces.
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Proposition 4.3 (Coercivity, consistency and limit-conformity) Let (Tm)m∈N be an admissible
sequence of triangulations of Ω. We define Dm = (XDm,0, YDm

,ΠCR
Dm

, χDm
,∇CR

Dm
, divCR

Dm
) as above for

T = Tm, and we assume that hTm
→ 0 as m → ∞. Then Dm is a gradient discretisation in the sense

of Definition 2.1 and the family (Dm)m∈N is coercive, consistent and limit-conforming in the sense of
Definitions 2.3, 2.4 and 2.5.

Proof
Coercivity: Direct consequence of [10, Lemmas 4.30 and 4.31].
Consistency: The consistency for the operators related to the velocity is shown in [17, Theorem 2.1].
The consistency for the interpolation of the pressure is straightforward since, as hTm

→ 0, any function
can be approximated in L2(Ω) by piecewise constant functions on Tm.

Limit-conformity: We use Proposition 6.4 in the appendix to establish the limit-conformity through
WDm

and W̃Dm
instead ofWDm

. Note that, since smooth functions are dense in Hdiv(Ω)
d and in H1(Ω),

we only need to study the convergence of WDm
and W̃Dm

on smooth functions (see e.g.[8]).

Let us handle WDm
first. To simplify the notations, we drop the index m. We also only consider one

component of the discrete velocity v ∈ XD,0 and we therefore treat ΠDv as a scalar function and ∇Dv
as a function with values in R

d. Let ϕ ∈ C∞(Ω) and let v ∈ XD,0. We have

∫

Ω

(∇CR
D
v · ϕ+ΠCR

D
vdivϕ) dx =

∑

K∈Tm

∫

K

(∇CR
D
v · ϕ+ΠCR

D
vdivϕ) dx

=
∑

σ∈Eint

∫

σ

ϕ · [ΠCR
D
v n]σ dγ(x)

where [ΠCR
D
v n]σ = ΠCR

K v nK,σ+ΠCR
L v nL,σ, with K,L the cells on each side of σ and ΠCR

K v = (ΠCR
D
v)|K .

Noticing that, for x ∈ σ, ΠCR
K v(x) = ΠCR

K v(xσ) + ∇CR
K v · (x − xσ) (with ∇CR

K v = (∇CR
D
v)|K) and that

ΠCR
K v(xσ) = ΠCR

L v(xσ), we may write, with obvious notations,

∫

Ω

(∇CR
D
v · ϕ+ΠCR

D
vdivϕ) dx =

∑

σ∈Eint

∫

σ

ϕ · [n⊗∇CR
D
v]σ(x− xσ) dγ(x). (21)

The smoothness of ϕ gives, for any x ∈ σ, |ϕ(x)− ϕ(xσ)| ≤ ||∇ϕ||∞hK . Moreover, since [n⊗∇CR
D
v]σ is

constant over σ and xσ is the center of gravity of σ,
∫

σ

ϕ(xσ) · [n⊗∇CR
D
v]σ(x− xσ) dγ(x) = ϕ(xσ) · [n⊗∇CR

D
v]σ

∫

σ

(x− xσ) dγ(x) = 0.

Introducing ϕ(xσ) into (21) and using hK |σ| ≤ C|K| for all K ∈ Tm and all σ ∈ EK (consequence of the
admissibility of (Tm)m∈N), we infer that

∣∣∣∣
∫

Ω

(∇CR
D
v · ϕ+ΠCR

D
vdivϕ) dx

∣∣∣∣ ≤ ||∇ϕ||∞
∑

σ∈Eint

|σ|(h2K |∇Kv|+ h2L|∇Lv|)

≤ C||∇ϕ||∞hTm

∑

K∈Tm

|∇Kv|
∑

σ∈EK

|K|

= (d+ 1)C||∇ϕ||∞hTm
||∇Dv||L1(Ω)d .

This shows that WDm
(ϕ) → 0 as m→ ∞. We now turn to W̃Dm

. If ψ ∈ C∞(Ω) and v ∈ XD,0, we have

∫

Ω

(ΠCR
D
v · ∇ψ + ψdivCR

D
v) dx =

∑

K∈Tm

(∫

K

(divCR
D
v − div(ΠCR

D
v))ψ dx+

∑

σ∈EK

∫

σ

ψ[ΠCR
D
v · n]σ dγ(x)

)
.
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By definition of the piecewise affine reconstruction ΠCR
D
v and of divCR

D
, we have

div(ΠCR
D
v) =

1

|K|

∑

σ∈EK

|σ|v(xσ) · nK,σ = divCR
D
v in K.

Hence,
∫
Ω
(ΠCR

D
v ·∇ψ+ψdivCR

D
v) dx =

∑
σ∈Eint

∫
σ
ψ[ΠCR

D
v ·n]σ dγ(x) and, following similar computations

as for WDm
, we conclude that W̃Dm

(ψ) → 0 as m→ ∞. �

4.4 An Hdiv conforming scheme

We now turn to a scheme which, in some way, is a synthesis of the MAC scheme and of the Crouzeix-
Raviart scheme. On a simplicial mesh, we only keep as velocity unknowns the normal velocities at the
barycenters of the faces, instead of all the components. Then the velocity is reconstructed using the
Raviart-Thomas Hdiv conforming. The interest of this scheme is multiple.

1. Since it is Hdiv conforming, the velocity field is continuously divergence free, which prevents the
method from introducing error terms in the velocity when the source terms are gradients.

2. The number of unknowns is largely reduced compared to the Crouzeix-Raviart scheme.

3. One can change unknowns in the 2D case, using the discrete streamline potential unknown, to
eliminate the pressure. This is also possible in the Navier-Stokes framework and it leads to systems
of equations that are easier to solve.

The mesh T is still 2D or 3D simplicial. For each edge (face in 3D) σ, we select one unit normal nσ to
σ and we make the following assumption.

Assumption 4.4 [Construction of Rσ] We assume that for any σ ∈ Eint between two cells K and L,
there exists a set Eσ of 6 edges (in 2D) or 12 faces (in 3D) such that

1. σ ∈ Eσ,

2. the sets EK \ Eσ and EL \ Eσ contain at most one element,

3. for any real family (uσ′)σ′∈Eσ
, there exists one and only one affine function ψσ : Ω → R

d such that
ψσ(xσ′) · nσ′ = uσ′ .

Note that a linear function ψσ can always be written ψσ(x) = vσ + Aσ(x − xσ) with vσ ∈ R
d and

Aσ ∈ R
d×d, and Assumption 4.4 means that the linear system

ψσ(xσ′) · nσ = (vσ +Aσ(xσ′ − xσ)) · nσ′ = uσ′ for all σ′ ∈ Eσ

is uniquely solvable for (vσ, Aσ). We then define the operators Rσu and Dσu by

Rσu = vσ = ψσ(xσ) and Dσu = Aσ.

Let aσ > 0 be the minimal real value such that, for all real family (uσ′ , σ′ ∈ Eσ),

|Rσu| ≤ aσ
∑

σ′∈Eσ

|uσ′ | , |Dσu| ≤
aσ

diam(σ)

∑

σ′∈Eσ

|uσ′ | and ∀σ′ ∈ Eσ , dist(xσ, σ
′) ≤ aσdiam(σ).

We define RT = max{aσ, σ ∈ Eint}.

Then an Hdiv conforming scheme can be defined as a gradient scheme through the following gradient
discretisation:
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1. XD,0 is the vector space on R of all families of real values approximating the normal component
(with respect to the chosen orientations (nσ)σ∈Eint) of the velocity at the center of gravity xσ of
all internal faces σ ∈ Eint of the mesh (the normal components of the velocity are 0 for all external
faces).

2. YD is the vector space on R of all families of constant values in the simplices.

3. The linear mapping ΠD : XD,0 → L2(Ω) is the Raviart-Thomas reconstruction of the velocity,
obtained from the normal components (and taking into account the orientation of nσ). We then
have that ΠDu ∈ Hdiv(Ω) with zero normal trace at the boundary. Note that this reconstruction
is not conforming in H1

0(Ω).

4. The linear mapping χD : YD → L2(Ω) is the piecewise constant reconstruction in the simplices.

5. The linear mapping ∇D : XD,0 → L2(Ω)d is the so-called “broken gradient” (Crouzeix-Raviart) of
the velocity, defined in the following way: if u ∈ XD,0, we reconstruct in each simplex K an affine
velocity equal to Rσu at all points xσ for σ ∈ EK ∩ Eint, and equal to 0 at all xσ for σ ∈ EK ∩ Eext,
and ∇Du is equal in K to the gradient of this (Crouzeix-Raviart) reconstruction.

6. The linear mapping divD : XD,0 → L2(Ω) is the discrete divergence operator defined by divDu =
div(ΠDu), that is to say divDu is the piecewise constant function given on each cell by the balance of
the outer normal components of u on the edges/faces of the cell: (divDu)|K = 1

|K|

∑
σ∈EK

|σ|δK,σuσ
where δK,σ = 1 if nσ points outside K, δK,σ = −1 otherwise, and uσ = 0 if σ ∈ EK ∩ Eext.

We prove in the following proposition that this gradient discretisation satisfies all the required properties.

Proposition 4.5 (Coercivity, consistency and limit-conformity) Let (Tm)m∈N be an admissible
sequence of triangulations of Ω, such that Assumption 4.4 holds for all Tm. We define the family
Dm = (XDm,0, YDm

,ΠDm
, χDm

,∇Dm
, divDm

) as in the introduction of this section, with Tm instead of
T . We assume that hTm

→ 0 as m → ∞ and that (RTm
)m∈N remains bounded. Then Dm is a gra-

dient discretisation in the sense of Definition 2.1 and the family (Dm)m∈N is coercive, consistent and
limit-conforming in the sense of Definitions 2.3, 2.4 and 2.5.

Proof
Coercivity
As is usual, in the following proof the notation C (without index) is used to designate various positive
constants which do not depend on the mesh or the selected functions.

Step 1 : estimate on CDm
.

Let v ∈ XDm,0 and let vσ be the value of ΠDm
v at xσ for all σ ∈ E . We let Rv = (Rσv)σ∈Eint

and we
denote by ΠCR

Dm
Rv the Crouzeix-Raviart reconstruction from the edge values of Rv.

We drop the index m to simplify the notations. Let K ∈ T . If we set Z = (Rσv)σ∈EK
then, with the

notations of Lemma 4.6 below, ΠCRZ = ΠCR
D
Rv, ∇(ΠCRZ) = ∇Dv and, since Rσv · nK,σ = δK,σvσ,

ΠRT(Z · n) = ΠDv. Hence, taking the square of the estimate in Lemma 4.6, integrating over K and
summing on K, we find

||ΠCR
D
Rv −ΠDv||L2(Ω) ≤ ChT ||∇Dv||L2(Ω)d , (22)

which implies
||ΠDv||L2(Ω) ≤ ||ΠCR

D
Rv||L2(Ω) + C||∇Dv||L2(Ω)d . (23)

We also notice that, on K ∈ T ,

divCR
D

(Rv) =
1

|K|

∑

σ∈EK

|σ|Rσv · nK,σ =
1

|K|

∑

σ∈EK

|σ|δK,σvσ = divDv. (24)
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We now recall that, from Proposition 4.3,

‖ΠCR
D
Rv‖L2(Ω) + ||divCR

D
Rv||L2(Ω) ≤ C‖∇CR

D
Rv‖L2(Ω)d = C‖∇Dv‖L2(Ω)d .

Combined with (23) and (24), this concludes the proof that (CDm
)m∈N is bounded.

Step 2 : estimate on βDm
, i.e. discrete inf-sup (or LBB) condition.

Once more, we drop the index m. Let q ∈ YD,0 be given. Thanks to Nečas’ result [20, 2], we can find
w ∈ H1

0(Ω) such that divw = χDq and ‖w‖H1
0(Ω) ≤ C‖χDq‖L2(Ω). We then consider v ∈ XD,0 such that

vσ = 1
|σ|

∫
σ
w ·nσ, which gives divDv = χDq and thus

∫
Ω
χDqdivDv dx = ||χDq||

2
L2(Ω). A lower bound on

βD ensues if we can establish that

||∇Dv||L2(Ω)d ≤ C||χDq||L2(Ω). (25)

We set vK = 1
|K|

∑
σ∈EK

δK,σvσ(xσ − xK)|σ|, where xK is the centre of gravity of the simplex K. We

denote by ψσ the basis function of the Crouzeix-Raviart space associated with σ ∈ E . On K we have∑
σ∈EK

∇ψσ = 0 and |∇ψσ| ≤ C/hK , and thus

∫

Ω

|∇Dv|
2 dx =

∑

K∈T

∫

K

|∇Dv|
2 dx =

∑

K∈T

∫

K

∣∣∣∣∣
∑

σ∈EK

Rσv ⊗∇ψσ

∣∣∣∣∣

2

dx

=
∑

K∈T

∫

K

∣∣∣∣∣
∑

σ∈EK

(Rσv − vK)⊗∇ψσ

∣∣∣∣∣

2

dx ≤ C2(d+ 1)
∑

K∈T

|K|

h2K

∑

σ∈EK

|Rσv − vK |2. (26)

We then write

|Rσv − vK | =

∣∣∣∣∣Rσv −
1

|K|

∑

σ′∈EK

δK,σ′vσ′(xσ′ − xK)|σ′|

∣∣∣∣∣

=

∣∣∣∣∣∣
Rσv −

1

|K|

∑

σ′∈EK∩Eσ

δK,σ′vσ′(xσ′ − xK)|σ′| −
1

|K|

∑

σ′′∈EK\Eσ

δK,σ′′vσ′′(xσ′′ − xK)|σ′′|

∣∣∣∣∣∣
.

Let us first assume that there exists σ′′ ∈ EK \ Eσ (thanks to Assumption 4.4, there is at most one such
σ′′). We deduce from (divDv)|K = qK that δK,σ′′vσ′′ |σ′′| = qK |K| −

∑
σ′∈EK∩Eσ

δK,σ′vσ′ |σ′|, which leads
to

|Rσv − vK | ≤ |qK |hK +

∣∣∣∣∣Rσv −
1

|K|

∑

σ′∈EK∩Eσ

δK,σ′vσ′(xσ′ − xσ′′)|σ′|

∣∣∣∣∣ . (27)

This estimate is also valid if EK\Eσ = ∅ (just fix any σ′′ ∈ EK in the reasoning above, and notice that
the term involving σ′ = σ′′ in the last sum vanishes). For all σ′ ∈ EK ∩ Eσ we have

vσ′ = (Rσv +Dσv(xσ′ − xσ)) · nσ′

and, using [6, Lemma 6.1],

Rσv =
1

|K|

∑

σ′∈EK

Rσv · nK,σ′(xσ′ − xσ′′)|σ′| =
1

|K|

∑

σ′∈EK∩Eσ

Rσv · nσ′δK,σ′(xσ′ − xσ′′)|σ′|.

Equation (27) thus gives

|Rσv − vK | ≤ |qK |hK +

∣∣∣∣∣
1

|K|

∑

σ′∈EK∩Eσ

Dσv(xσ′ − xσ) · nσ′(xσ′ − xσ′′)|σ′|

∣∣∣∣∣ .
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Along an admissible sequence of triangulations we have, for all σ′ ∈ EK , |σ′|hK ≤ C|K|, which leads to
|Rσv − vK | ≤ |qK |hK + Cd|Dσv|hK . Plugging this estimate into (26), we infer

∫

Ω

|∇Dv|
2 dx ≤ C

∑

K∈T

|K|

h2K

∑

σ∈EK

(2q2Kh
2
K + 2C2d2|Dσv|

2h2K)

≤ C||χDq||
2
L2(Ω) + C

∑

K∈T

|K|
∑

σ∈EK

|Dσv|
2. (28)

For σ ∈ EK , we define the family V (σ) = (V (σ)σ′)σ′∈Eσ
by V (σ)σ′ = 1

|σ|

∫
σ
w · nσ′ . Then DσV (σ) = 0

(and RσV (σ) = 1
|σ|

∫
σ
w), and therefore, by definition of aσ,

|Dσv|
2 = |Dσ(v − V (σ))|2 ≤ C

(
aσ

diam(σ)

∑

σ′∈Eσ

∣∣∣∣vσ′ −
1

|σ|

∫

σ

w · nσ′

∣∣∣∣

)2

≤ C(d+ d2)
a2σ

diam(σ)2

∑

σ′∈Eσ

∣∣∣∣
1

|σ′|

∫

σ′

w · nσ′ −
1

|σ|

∫

σ

w · nσ′

∣∣∣∣
2

(29)

(recall that Card(Eσ) = d+d2). Using [12, Equation (9.38) p 777] or [6, Lemma 6.3] and the admissibility
of the sequence of triangulations (which implies |σ| ≤ C|σ′| for all σ, σ′ ∈ EK), we have

∣∣∣∣
1

|σ′|

∫

σ′

w · nσ′ −
1

|σ|

∫

σ

w · nσ′

∣∣∣∣
2

≤ 2

∣∣∣∣
1

|σ′|

∫

σ′

w −
1

|K|

∫

K

w dx

∣∣∣∣
2

+ 2

∣∣∣∣
1

|σ|

∫

σ

w −
1

|K|

∫

K

w dx

∣∣∣∣
2

≤
ChK
|σ|

∫

K

|∇w|2 dx.

Combined with (29) and (28), this leads to
∫

Ω

|∇Dv|
2 dx ≤ C||χDq||

2
L2(Ω) + CR2

T

∑

K∈T

∫

K

|∇w|2 dx
∑

σ∈EK

hK |K|

diam(σ)2|σ|
.

The admissibility of the sequence of triangulations ensures that hK |K|
diam(σ)2|σ| ≤ C, which allows us to

conclude, by choice of w, that
∫

Ω

|∇Dv|
2 dx ≤ C||χDq||

2
L2(Ω) + CR2

T ||∇w||L2(Ω) ≤ C(1 +R2
T )||χDq||

2
L2(Ω).

Estimate (25) is therefore established and the proof of the coercivity of (Dm)m∈N is complete.

Consistency: the consistency for the pressure is straightforward, as for the Crouzeix-Raviart method
(see the proof of Proposition 4.3). To establish the consistency for the velocity, we use Lemma 4.7
below. Following Remark 2.6, we just have to prove that SDm

(ϕ) → 0, as m → ∞, for all ϕ ∈ C∞
c (Ω).

We will prove that, for such a function and defining vm = IDm
ϕ ∈ XDm,0 as in Lemma 4.7, we have

ΠDm
vm → ϕ in L2(Ω), ∇Dm

vm → ∇ϕ in L2(Ω)d and divDm
vm → divϕ in L2(Ω) as m → ∞ (which

implies SDm
(ϕ) → 0).

By construction, on K we have divDm
vm = 1

|K|

∑
σ∈EK

∫
σ
ϕ · nK,σ ds = 1

|K|

∫
K
divϕ. In other words,

divDm
vm is the L2 projection of divϕ on the set of piecewise constant functions on Tm. Hence the

convergence divDm
vm → divϕ in L2(Ω) as m→ ∞.

To study the convergence of the reconstructed function and gradients, we recall the following formula, a
vector-value version of [13, Equation (2.16)] (see also [8, Lemma 9.6]): for any linear mapping ξ : Rd 7→ R

d,
the constant gradient ∇ξ ∈ R

d×d satisfies

∇ξ =
1

|K|

∑

σ∈EK

|σ|ξ(xσ)⊗ nK,σ (30)
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(in applying [13, Equation (2.16)] we use the fact that
∑

σ∈EK
|σ|nK,σ = 0). Let us take x ∈ K and let

us consider the linear mapping ϕ(x) = ϕ(x) +∇ϕ(x)(x− x). Then by smoothness of ϕ we have, for any
σ ∈ EK , |ϕ(xσ)− ϕ(xσ)| ≤ Ch2K ||ϕ||W2,∞(Ω). Combined with (35), this gives

|ΠCR
Dm

Rvm(xσ)− ϕ(xσ)| ≤ Ch2K ||ϕ||W2,∞(Ω) for all σ ∈ EK . (31)

We then consider the linear function ξ = (ΠCR
Dm

Rvm)|K − ϕ. We have just established that |ξ(xσ)| ≤
Ch2K ||ϕ||W2,∞(Ω) for all σ ∈ EK , and (30) therefore gives

|(∇Dm
vm)|K −∇ϕ(x)| = |∇ξ| ≤

Ch2K
|K|

||ϕ||W2,∞(Ω)

∑

σ∈EK

|σ| ≤ ChTm
||ϕ||W2,∞(Ω) (32)

(we used the admissibility of (Tm)m∈N to write hK |σ| ≤ C|K| for all σ ∈ EK). Since the preceding
estimate is valid for any x ∈ K, this means that ||∇Dm

vm − ∇ϕ||L∞(Ω)d ≤ ChT ||ϕ||W2,∞(Ω), which

proves that ∇Dm
vm → ∇ϕ in L2(Ω)d as m→ ∞.

The convergence of the Raviart-Thomas reconstruction ΠDm
vm is well-known, but it can also be easily

inferred from the previous results. For any x ∈ K and any σ ∈ EK , we have

|ϕ(xσ)− ϕ(x)| ≤ ChK ||ϕ||W1,∞(Ω)

and
|ΠCR

Dm
Rvm(xσ)−ΠCR

Dm
Rvm(x)| ≤ ChK |∇(ΠCR

Dm
Rvm)|K | ≤ ChK ||ϕ||W2,∞(Ω)

(we used (32) and ∇(ΠCR
Dm

Rvm) = ∇Dm
vm). Injecting these estimates into (31) we infer that

||ΠCR
Dm

Rvm − ϕ||L∞(Ω) ≤ ChTm
||ϕ||W2,∞(Ω)

and the convergence in L2(Ω) of ΠDm
vm to ϕ therefore follows from (22) and from the fact that

(∇Dm
vm)m∈N remains bounded in L2(Ω)d (it converges in this space to ∇ϕ).

Limit-conformity: we use the equivalent characterisation given in Proposition 6.4. We start by noticing
that W̃Dm

= 0 since divDm
v = div(ΠDm

v) for any v ∈ XDm,0. To estimate WDm
we write, for ϕ ∈

Hdiv(Ω)
d and v ∈ XDm,0 \ {0},

∫

Ω

(∇Dm
v : ϕ+ΠDm

v ·divϕ) dx =

∫

Ω

(∇CR
Dm

Rv : ϕ+ΠCR
Dm

Rv ·divϕ) dx+

∫

Ω

(ΠDm
v−ΠCR

Dm
Rv)·divϕ dx.

Invoking (22), we infer

0 ≤WDm
(ϕ) ≤ max

v∈XDm,0

∫

Ω

(∇CR
Dm

Rv : ϕ+ΠCR
Dm

Rv · divϕ) dx

||∇Dm
v||L2(Ω)d

+
||ΠDm

v −ΠCR
Dm

Rv||L2(Ω)

||∇Dm
v||L2(Ω)d

||divϕ||L2(Ω)

≤ max
v∈XDm,0

∫

Ω

(∇CR
Dm

Rv : ϕ+ΠCR
Dm

Rv · divϕ) dx

||∇CR
Dm

Rv||L2(Ω)d
+ ChTm

||divϕ||L2(Ω).

The first term in this last right-hand side is precisely the function WDm
corresponding to the Crouzeix-

Raviart method. By Proposition 4.3, we now that this term tends to 0 as m→ ∞, and we conclude that
WDm

(ϕ) → 0 as required. �

Lemma 4.6 Let K be a simplex in R
d and let Z = (Zσ)σ∈EK

be a family of vectors in R
d. We denote by

ΠCRZ is the Crouzeix-Raviart P1 reconstruction in K from the values Z, and by ΠRT(Z ·n) the Raviart-
Thomas P1 reconstruction in K from the fluxes (Zσ · nK,σ)σ∈EK

. Then there exists C only depending on

17



the shape regularity of K (i.e. on an upper bound of the ratio between the diameter of K and the diameter
of the largest ball included in K) such that, for all x ∈ K,

|ΠCRZ(x)−ΠRT(Z · n)(x)| ≤ ChK |∇(ΠCRZ)|

where ∇(ΠCRZ) is the constant gradient of ΠCRZ in K.

Proof By definition, (ΠCRZ)(xσ) = Zσ for all σ ∈ EK and, for x ∈ K,

ΠRT(Z · n)(x) =
∑

σ∈EK

Zσ · nK,σ

x− Sσ

d(Sσ, σ)
=
∑

σ∈EK

(ΠCRZ(xσ)) · nK,σ

x− Sσ

d(Sσ, σ)
,

where Sσ is the vertex of K opposite to σ. Since ΠCRZ is linear, we also have ΠCRZ(xσ) = ΠCRZ(x) +
∇(ΠCRZ)(xσ − x). Hence,

ΠRT(Z · n)(x) =
∑

σ∈EK

(ΠCRZ(x)) · nK,σ

x− Sσ

d(Sσ, σ)
+
∑

σ∈EK

∇(ΠCRZ)(xσ − x) · nK,σ

x− Sσ

d(Sσ, σ)
. (33)

We then notice that, for all ξ ∈ R
d and all x ∈ K,

∑

σ∈EK

ξ · nK,σ

x− Sσ

d(Sσ, σ)
= ξ. (34)

Indeed, the left-hand side of this relation is the Raviart-Thomas reconstruction from the fluxes (ξ ·
nK,σ)σ∈EK

. But the constant function ξ belongs to the Raviart-Thomas space, and has the same fluxes.
Hence the equality in (34).

We use ξ = ΠCRZ(x) in (34) and we plug the result in (33). Since |x−Sσ|
d(Sσ,σ)

≤ C with C only depending

on the shape regularity of K, we infer

|ΠRT(Z · n)(x)−ΠCRZ(x)| =

∣∣∣∣∣
∑

σ∈EK

∇(ΠCRZ)(xσ − x) · nK,σ

x− Sσ

d(Sσ, σ)

∣∣∣∣∣

≤ C(d+ 1)|∇(ΠCRZ)|hK ,

and the proof is complete. �

Lemma 4.7 For all ϕ ∈ H1
0(Ω), we define IDϕ ∈ XD,0 by IDϕ = ( 1

|σ|

∫
σ
ϕ(x) · nσ ds(x))σ∈Eint

. Then,

for all ϕ ∈ C∞
c (Ω), there exists C > 0 only depending on RT such that

∀ϕ ∈ C∞
c (Ω) , ∀σ ∈ Eint , |RσIDϕ− ϕ(xσ)| ≤ C‖ϕ‖W2,∞(Ω)diam(σ)2. (35)

Proof
All constants C in this proof only depend (in a non-decreasing way) on RT . We first notice that, for all
σ′ ∈ Eσ, since xσ′ is the center of gravity of σ we have

|(IDϕ)σ′ − ϕ(xσ′) · nσ′ | ≤ C||ϕ||W2,∞(Ω)diam(σ)2. (36)

Take σ ∈ Eint and define the linear mapping ϕσ(x) = ϕ(xσ) + Dϕ(xσ)(x − xσ), and the family u =
(uσ′)σ′∈Eσ

by uσ′ = (IDϕ)σ′ − ϕσ(xσ′) · nσ′ . The regularity of ϕ and the definition of RT ensure that,
for all σ′ ∈ Eσ, |ϕσ(xσ′) − ϕ(xσ′)| ≤ C||ϕ||W2,∞(Ω)diam(σ)2. Combined with (36), this leads to |uσ′ | ≤
C||ϕ||W2,∞(Ω)diam(σ)2 and therefore to |Rσu| ≤ C||ϕ||W2,∞(Ω)daσdiam(σ)2 ≤ C||ϕ||W2,∞(Ω)diam(σ)2.
The proof is complete by noticing that, by definition of ϕσ, Rσu = RσIDϕ− ϕ(xσ). �
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Short numerical glance

Although providing numerical results on complex situations is the main aim of this work, we give here
a brief comparison between the schemes presented in Sections 4.3 and 4.4. Table 1 presents a series of
characteristics of these two schemes, and we provide a simple computation of the lid-driven cavity. The
mesh used is depicted in Figure 3. The results are similar, with both methods (see Figure 4). Note that
more significant differences – in favour of the Hdiv conforming scheme – are expected for the Navier-Stokes
equations (a work in progress), and that the computing times of both schemes have to be compared in
more realistic situations in 3D.

Crouzeix-Raviart Hdiv conforming
number of d.o.f. #faces× d+#simplices #faces + #simplices
implementation simple complex

stencil
limited, efficient methods

for linear systems
extended, linear systems

more difficult

2D resolution standard
facilitated by streamline

potential unknown
continuous divergence free no yes

Table 1: Comparison between the Crouzeix-Raviart scheme and the new Hdiv conforming scheme

Figure 3: Mesh for the lid driven cavity test case.
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Figure 4: Lid driven cavity, streamline potential. Left: Crouzeix-Raviart, right: Hdiv conforming .

5 Proof of the convergence results

5.1 Steady problem

Proof of Theorem 3.3
Once established, Estimate (8) shows that if the right-hand of the linear system (7) on (uD , pD) is
zero (i.e. f = 0, G = 0, which implies u = 0 and p = 0), then the solution (uD , pD) is also zero.
Hence, this square system is invertible, which ensures the existence and uniqueness of its solution for
any right-hand side. We now have to show Estimate (8). Under the hypotheses of the theorem, since
div(∇u)−∇p = −f +div(G)+ ηu in the distribution sense, we get div(∇u−G)−∇p = ηu− f ∈ L2(Ω).
Using this relation in WD(∇u−G, p) we write

WD(∇u−G, p) = max
v∈XD,0
‖v‖D=1

∫

Ω

[∇Dv : (∇u−G) + ΠDv · (ηu− f)− pdivDv] dx.

Invoking the gradient scheme (7) to replace

∫

Ω

−(ΠDv · f +∇Dv : G) dx, we can write, for any v ∈ XD,0,

∫

Ω

(
η(u−ΠDuD) ·ΠDv + (∇u−∇DuD) : ∇Dv + (χDpD − p) divDv

)
dx ≤WD(∇u−G, p)‖v‖D . (37)

Let us introduce ID : H1
0(Ω) 7→ XD,0 and ĨD : L2

0(Ω) 7→ YD,0 defined by

IDϕ = argmin
v∈XD,0

(
‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d + ‖divDv − divϕ‖L2(Ω)

)
,

ĨDψ = argmin
z∈YD,0

‖χDz − ψ‖L2(Ω).
(38)

We also define εD(u, p) =WD(∇u−G, p) + SD(u) + S̃D(p). We may then write

∫

Ω

(
η(ΠDIDu−ΠDuD) ·ΠDv + (∇DIDu−∇DuD) : ∇Dv

)
dx

+

∫

Ω

(χDpD − χD ĨDp) divDv dx ≤ (1 + (1 + η)CD)εD(u, p)‖v‖D . (39)
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Thanks to Definition 2.3, let us now take v ∈ XD,0 such that ‖v‖D = 1 and
∫

Ω

χD(pD − ĨDp) divDv dx ≥ βD‖χD(pD − ĨDp)‖L2(Ω).

We then get, from (39),

‖χD(pD − ĨDp)‖L2(Ω) ≤
1 + (1 + η)CD

βD
εD(u, p) +

1 + ηCD

βD
‖IDu− uD‖D . (40)

Choosing v = IDu− uD in (39) and using
∫
Ω
divDuD χDq = 0 for all q ∈ YD,0, we can write

‖IDu− uD‖2
D
+

∫

Ω

χD(pD − ĨDp) divDIDu dx ≤ (1 + (1 + η)CD)εD(u, p)‖IDu− uD‖D ,

which implies, since divu = 0,

‖IDu− uD‖2
D

≤ (1 + (1 + η)CD)εD(u, p)‖IDu− uD‖D + SD(u)‖χD(pD − ĨDp)‖L2(Ω).

Thanks to (40) and to the Young inequality ab ≤ 1
2a

2 + 1
2b

2, the above estimate yields the existence of
C1, non-decreasing w.r.t. 1/βD , CD and η, such that ‖IDu−uD‖D ≤ C1εD(u, p). The conclusion follows

from the definitions of IDu, ĨDp and CD , the triangle inequality and (40). �

Proof of Theorem 3.5 The proof follows the same idea as the proof of Theorem 3.3, but considering
only functions v ∈ ED . For such functions, owing to (10), Equation (37) can be written

∫

Ω

(
η(u−ΠDuD) ·ΠDv + (∇u−∇DuD) : ∇Dv

)
dx ≤WD(∇u−G, p)‖v‖D . (41)

We introduce ID,ED
: E(Ω) 7→ ED defined by

ID,ED
ϕ = argmin

v∈ED

(
‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d

)

and from (41) we deduce, by definition of SD,ED
,

∫

Ω

(
η(ΠDID,ED

u−ΠDuD) ·ΠDv + (∇DID,ED
u−∇DuD) : ∇Dv

)
dx

≤
[
(ηCD + 1)SD,ED

(u) +WD(∇u−G, p)
]
‖v‖D .

Choosing v = ID,ED
u− uD ∈ ED leads to

‖∇DID,ED
u−∇DuD‖L2(Ω)d ≤ (ηCD + 1)SD,ED

(u) +WD(∇u−G, p) (42)

and the proof of (11) is complete since ‖∇DID,ED
u−∇u‖L2(Ω)d ≤ SD,ED

(u). Estimate (12) follows from
the definition of CD, (42) and ‖ΠDID,ED

u− u‖L2(Ω)d ≤ SD,ED
(u). �

Proof of Theorem 3.7
The proof starts from the definition of WD (Definition 6.1). Since ∇u−G ∈ Hdiv(Ω) and div(∇u−G) =
∇p+ ηu− f , we can write, for any v ∈ ED ,

∫

Ω

(
∇Dv : (∇u−G) + ΠDv · (∇p+ ηu− f)

)
dx ≤WD(∇u−G)‖v‖D .

Owing to Assumption (13) and since v ∈ ED, we can remove the term ∇p. Using the gradient scheme
(7) to replace the terms involving f and G, we deduce

∫

Ω

(∇Dv : (∇u−∇Du) + ηΠDv · (u−ΠDu)) dx ≤WD(∇u−G)‖v‖D .

Hence, (41) is satisfied with WD(∇u − G) instead of WD(∇u − G, p), and the conclusion follows as in
the proof of Theorem 3.5. �

21



5.2 Transient problem

The existence and uniqueness of the solution to the gradient scheme for the transient Stokes problem is
a straightforward consequence of the study of the gradient scheme for the steady problem.

Lemma 5.1 (Existence and Uniqueness of the discrete solution) Under Hypothesis (16), let D
be a space-time discretisation in the sense of Definition 2.7. Then there exists a unique solution (uD , pD)
to the gradient scheme (19).

Proof We remark that the equation on (u(n+1), p(n+1)) in (19) is the gradient discretisation (7) of

the steady Stokes problem, with η = δtn+
1
2 and a right-hand side depending on u(n). Existence and

uniqueness of the solution therefore follows from Theorem 3.3. �

Let us now establish some a priori estimates on the solution to the scheme.

Lemma 5.2 (Estimates) Under Hypotheses (16), let D be a space-time discretisation in the sense of
Definition 2.7 and let (uD , pD) be the solution to Scheme (19). Then, for all m = 0, . . . , N ,

∫ t(m)

0

∫

Ω

|∇DuD |2 dx dt+
1

2

∫

Ω

(∣∣∣ΠDu
(m)
D

∣∣∣
2

−
∣∣∣ΠDu

(0)
D

∣∣∣
2
)

dx ≤

∫ t(m)

0

∫

Ω

f ·ΠDuD dx dt+

∫ t(m)

0

∫

Ω

G : ∇DuD dx dt. (43)

Moreover, if C2 > 0 is such that C2 ≥ ‖ΠDu
(0)‖L2(Ω), then there exist C3 ≥ 0 only depending on Ω, d,

C2, f , G and CD such that

‖ΠDuD‖L∞(0,T,L2(Ω)) + ‖∇DuD‖L2(Ω×(0,T ))d ≤ C3. (44)

Proof Putting v = δtn+
1
2u

(n+1)
D

and q = p
(n+1)
D

in (19) we get

∫

Ω

(
ΠDu

(n+1)
D

−ΠDu
(n)
D

)
·ΠDu

(n+1)
D

dx+

∫ t(n+1)

t(n)

∫

Ω

|∇Du
(n+1)
D

|2 dx dt =

∫ t(n+1)

t(n)

∫

Ω

f ·ΠDu
(n+1)
D

dx dt+

∫ t(n+1)

t(n)

∫

Ω

G : ∇Du
(n+1)
D

dx dt.

Using the inequality (a− b) · a ≥ 1
2 (|a|

2 − |b|2) (valid for any a, b ∈ R
d) on the first term, it comes:

1

2

∫

Ω

[∣∣∣ΠDu
(n+1)
D

∣∣∣
2

−
∣∣∣ΠDu

(n)
D

∣∣∣
2
]
dx+

∫ t(n+1)

t(n)

∫

Ω

|∇Du
(n+1)
D

|2 dx dt ≤

∫ t(n+1)

t(n)

∫

Ω

f ·ΠDu
(n+1)
D

dx dt+

∫ t(n+1)

t(n)

∫

Ω

G : ∇Du
(n+1)
D

dx dt.

We take m ∈ {0, . . . , N} and sum the obtained equation over n = 0, . . . ,m− 1. This gives

1

2
‖ΠDu

(m)
D

‖2
L2(Ω) −

1

2
‖ΠDu

(0)‖2
L2(Ω) +

∫ t(m)

0

‖∇DuD‖2
L2(Ω)d dt ≤

∫ t(m)

0

∫

Ω

f ·ΠDuD dx dt+

∫ t(m)

0

∫

Ω

G : ∇DuD dx dt

and the proof of (43) is complete. Estimate (44) is a straightforward consequence of the definition of CD

and Young’s inequality applied to (43) with m = N . �
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Definition 5.3 The semi-norm | · |∗,D is defined on XD,0 by

|w|∗,D = sup

{∫

Ω

ΠDw ·ΠDv dx : v ∈ ED, ‖v‖D = 1

}
,

where we recall that ED is defined by (9).

Lemma 5.4 (Estimates on |δDuD |∗,D) Under Hypotheses (16), let D be a space-time discretisation in
the sense of Definition 2.7, and let (uD , pD) be the solution to Scheme (19). We take C2 ≥ ‖ΠDu

(0)‖L2(Ω).
Then there exist C4 ≥ 0 only depending on Ω, d, C2, f , G and CD such that

∫ T

0

|δDuD |2∗,D dt ≤ C4. (45)

Proof Taking a generic v ∈ ED in Scheme (19) and using the definition of | · |∗,D gives an estimate on

|δ
n+ 1

2

D
uD |∗,D in terms of ||ΠDu

(n+1)
D

||L2(Ω) and ||∇Du
(n+1)
D

||L2(Ω)d . Squaring this estimate, multiplying

by δtn+
1
2 and summing over n gives the desired estimate, thanks to (44). �

We can now prove the first convergence result of gradient schemes for the transient Stokes problem.

Proof of Theorem 3.12
Step 1: existence of a weak limit of a subsequence of approximations.
Estimate (44) gives the existence of u ∈ L∞(0, T ;L2(Ω)) and ζ ∈ L2(Ω × (0, T ))d such that, up to a
subsequence (still indexed by m), ΠDm

uDm
→ u weakly-∗ in L∞(0, T ;L2(Ω)) and ∇Dm

uDm
→ ζ in

L2(Ω× (0, T ))d. Taking ϕ ∈ C∞(Ω)d and θ ∈ C∞
c (0, T ), we then see that, for all n = 0, . . . , N − 1, and

all t ∈ (t(n), t(n+1)),

∫

Ω

∇Dm
u(n+1)
m : ϕθ +ΠDm

u(n+1)
m · divϕθ dx ≤WDm

(ϕ, 0) θ ||∇Dm
uDm

||L2(Ω)d .

Integrating this over t ∈ (t(n), t(n+1)), summing on n = 0, . . . , N − 1 and using Estimate (44), we find C5

not depending on m such that

∫ T

0

∫

Ω

∇Dm
uDm

: ϕθ +ΠDm
uDm

· divϕθ dx dt ≤ C5WDm
(ϕ, 0).

We can then pass to the supremum limit as m→ ∞ and apply the resulting inequality to ±ϕ to see that

∫ T

0

∫

Ω

ζ : (ϕθ) + u · div(ϕθ) dx dt = 0.

This relation first shows, with ϕ ∈ C∞
c (Ω)d, that ζ = ∇u, and therefore that u ∈ L2(0, T ;H1(Ω)).

Taking then ϕ which does not vanish on ∂Ω, we also infer that the trace of u on ∂Ω is zero and therefore
that u ∈ L2(0, T ;H1

0(Ω)).
Let us now prove that u is divergence-free. From Estimate (44) and the coercivity of the sequence of
gradient discretisations, we see that (divDm

uDm
)m∈N (with the same space-time notations as in (20)) is

bounded in L2(Ω× (0, T )) and therefore converges weakly in this space, up to a subsequence, to some λ.
Taking ψ ∈ H1(Ω) with zero mean value and θ ∈ C∞(0, T ), we have, for any n = 0, . . . , N − 1 and any
t ∈ (t(n), t(n+1)),

∫

Ω

ΠDm
u
(n+1)
Dm

· ∇ψ θ + divDm
u
(n+1)
Dm

ψ θ dx ≤WDm
(0, ψ) θ||∇Dm

uDm
||L2(Ω)d .
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As above, we integrate this over t and sum over n to find

∫ T

0

∫

Ω

ΠDm
u · ∇ψ θ + divDm

uDm
ψ θ dx dt ≤ C6WDm

(0, ψ)

with C6 not depending on m. Using the last equation in the gradient scheme (19), we can introduce

χDm
ĨDm

ψ in the second term of the left-hand side (where ĨDm
is defined as in (38)) and we get

∫ T

0

∫

Ω

ΠDm
u · ∇ψ θ dx dt ≤ ||divDm

uDm
||L2(Ω×(0,T ))||χDm

ĨDm
ψ − ψ||L2

0(Ω)||θ||L2(0,T ) + C6WDm
(0, ψ).

Passing to the supremum limitm→ ∞, thanks to the limit-conformity and the consistency of the gradient

discretisations, and applying the resulting inequality to ±ψ, we deduce that
∫ T

0

∫
Ω
u ·∇ψθ dx dt = 0. This

relation is true for any ψ ∈ H1(Ω) with zero mean value, and hence also for any function in H1(Ω). The
proof that divu = 0 is therefore complete.

Step 2: u is the solution to (17).
To simplify notations, we drop the indices m. Let θ ∈ C∞

c ([0, T )) and let w ∈ E(Ω). As (w, 0) is the
solution of the incompressible steady stokes problem (Problem (1)) with f = ηw and G = ∇w, we can
find wD ∈ XD,0 such that

∫
Ω
χDqdivDwD = 0 for all q ∈ YD,0, ΠDwD → w in L2(Ω) and ∇DwD → ∇w

in L2(Ω)d (Theorem 3.3 and Remark 3.4). We take v = δt(n+
1
2 )θ(t(n))wD as test function in Scheme (19)

and we sum the resulting equation on n = 0, ..., N − 1 to get T1 + T2 + T3 = T4 with

T1 =
N−1∑

n=0

δtn+
1
2 θ(t(n))

∫

Ω

ΠDδ
(n+ 1

2 )uD ·ΠDwD dx,

T2 =

N−1∑

n=0

δtn+
1
2 θ(t(n))

∫

Ω

∇Du
(n+1)
D

: ∇DwD dx,

T3 = −
N−1∑

n=0

δtn+
1
2 θ(t(n))

∫

Ω

χDp
(n+1)
D

divDwD dx,

T4 =

N−1∑

n=0

θ(t(n))

∫ t(n+1)

t(n)

∫

Ω

f ·ΠDwD dx dt+

N−1∑

n=0

θ(t(n))

∫ t(n+1)

t(n)

∫

Ω

G : ∇DwD dx dt.

First, we remark that T3 = 0 since
∫
Ω
χDqdivDwD = 0 for all q ∈ YD,0. Using discrete integration by

parts and writing θ(t(n+1))− θ(t(n)) =
∫ t(n+1)

t(n) θ′, we find

T1 = −

∫ T

0

∫

Ω

θ′ΠDuD ·ΠDwD dx dt− θ(0)

∫

Ω

ΠDu
(0)
D

·ΠDwD dx.

Recall that u
(0)
D

= JDuini, so that the space-time consistency (Definition 2.8) gives ΠDu
(0)
D

→ uini in
L2(Ω) as m→ ∞. Thus, by strong convergence in L2(Ω) of ΠDwD to w,

T1 → −

∫ T

0

∫

Ω

θ′u · w dx dt− θ(0)

∫

Ω

uini · w dx.

It also comes easily, using the regularity of θ and Estimate (44), that

T2 →

∫ T

0

θ

∫

Ω

∇u : ∇w dx dt and T4 →

∫ T

0

θ

∫

Ω

f · w dx dt+

∫ T

0

θ

∫

Ω

G : ∇w dx dt.
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Passing to the limit in T1 + T2 + T3 = T4 concludes the proof that u satisfies (17).
Step 3: convergence in L∞(0, T ;L2(Ω)).
The proof of the uniform-in-time convergence follows the same idea as in [7]. Using Lemma 5.5 below
and the generalised Ascoli-Arzela theorem [7, Theorem 6.2], we see that for any ϕ ∈ E(Ω) the se-
quence (〈ΠDm

uDm
(·), ϕ〉L2)m∈N is relatively compact in L∞(0, T ). Since this sequence already converges

weakly in L2(0, T ) towards 〈u(·), ϕ〉L2 (because ΠDm
uDm

→ u weakly in L2(Ω× (0, T ))), we deduce that
〈ΠDm

uDm
(·), ϕ〉L2 → 〈u(·), ϕ〉L2 uniformly with respect to t as m→ ∞.

Let ψ ∈ L2(Ω) and ϕ ∈ E(Ω). By Estimate (44), for any t ∈ [0, T ],

|〈ΠDm
uDm

(t), ψ〉L2 − 〈u(t), ψ〉L2 | ≤ |〈ΠDm
uDm

(t), ϕ〉L2 − 〈u(t), ϕ〉L2 |+ C||ϕ− ψ||L2(Ω)

where C does not depend on m, t, ϕ or ψ. Assuming that ψ can be approximated in L2(Ω) by functions
in E(Ω) (see [24, Ch. I, Theorem 1.4] for a characterisation of such functions ψ), then the preceding
estimate and the uniform-in-time convergence of (〈ΠDm

uDm
(·), ϕ〉L2)m∈N show that 〈ΠDm

uDm
(·), ψ〉L2 →

〈u(·), ψ〉L2 uniformly-in-time as m→ ∞. It is known (see Proposition 6.5 in the appendix) that, for any
T0 ∈ [0, T ], u(T0) can be approximated in L2(Ω) by functions in E(Ω); hence, we can apply the preceding
result to ψ = u(T0). This allows us to see that, for any (sm)m∈N converging to T0,

‖u(T0)‖
2
L2(Ω) = lim

m→∞
〈u(sm), u(T0)〉L2 = lim

m→∞
〈ΠDm

uDm
(sm), u(T0)〉L2 (46)

(we used the continuity of u : [0, T ] 7→ L2(Ω), see (55)). Thus, it comes

‖u(T0)‖L2(Ω) ≤ lim inf
m→∞

‖ΠDm
uDm

(sm)‖L2(Ω). (47)

Let k(m) such that sm ∈ (t(k(m)−1), t(k(m))], where (tl)l are the time steps of the discretisation. Definition

(20) gives ΠDm
uDm

(sm) = ΠDm
u
(k(m))
Dm

. The discrete energy estimate (43) therefore leads to

1

2

∫

Ω

|ΠDm
uDm

(sm)|2 dx ≤
1

2

∫

Ω

|ΠDm
u
(0)
Dm

|2 dx−

∫ t(k(m))

0

∫

Ω

|∇Dm
uDm

|2 dx dt

+

∫ t(k(m))

0

∫

Ω

f ·ΠDm
uDm

dx dt+

∫ t(k(m))

0

∫

Ω

G : ∇Dm
uDm

dx dt. (48)

We notice, by weak convergence in L2(Ω× (0, T ))d of ∇Dm
uDm

to ∇u and strong convergence in L2(Ω×
(0, T ))d of 1[0,t(k(m))]∇u toward 1[0,T ]∇u (notice that t(k(m)) → T0), where 1A is the characteristic function
of A,

∫ T0

0

∫

Ω

|∇u|2 dx dt =

∫ T

0

∫

Ω

1[0,T0]∇u : ∇u dx dt

= lim
m→∞

∫ T

0

∫

Ω

1[0,t(k(m))]∇u : ∇Dm
uDm

dx dt

≤ lim inf
m→∞

(∣∣∣∣1[0,t(k(m))]∇u
∣∣∣∣
L2(Ω×(0,T ))d

∣∣∣∣1[0,t(k(m))]∇Dm
uDm

∣∣∣∣
L2(Ω×(0,T ))d

)

=
∣∣∣∣1[0,T0]∇u

∣∣∣∣
L2(Ω×(0,T ))d

lim inf
m→∞

∣∣∣∣1[0,t(k(m))]∇Dm
uDm

∣∣∣∣
L2(Ω×(0,T ))d

.

Hence, ∫ T0

0

∫

Ω

|∇u|2 dx dt ≤ lim inf
m→∞

∫ t(k(m))

0

|∇Dm
uDm

|2 dx dt
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and we can pass to the limit superior in (48), using the weak convergences of ΠDm
uDm

and ∇Dm
uDm

:

lim sup
m→∞

1

2
‖ΠDm

uDm
(sm)‖2

L2(Ω) ≤
1

2

∫

Ω

|uini|
2 dx−

∫ T0

0

∫

Ω

|∇u|2 dx dt

+

∫ T0

0

∫

Ω

f · u dx dt+

∫ T0

0

∫

Ω

G : ∇u dx dt. (49)

Plugging ϕ = u1[0,T0] in Problem (55) and integrating by parts, we obtain the continuous energy estimate

1

2
‖u(T0)‖

2
L2(Ω) =

1

2

∫

Ω

|uini|
2 dx−

∫ T0

0

∫

Ω

|∇u|2 dx dt+

∫ T0

0

∫

Ω

f · u dx dt+

∫ T0

0

∫

Ω

G : ∇u dx dt. (50)

Combined with (49), this leads to lim supm→∞ ‖ΠDm
uDm

(sm)‖2
L2(Ω)

≤ ‖u(T0)|
2
L2(Ω)

. Using (47), we

deduce limm→∞ ‖ΠDm
uDm

(sm)‖2
L2(Ω)

= ‖u(T0)‖
2
L2(Ω)

. Recalling (46), this allows us to conclude that

||ΠDm
uDm

(sm)− u(T0)||
2
L2(Ω)

→ 0 (just develop the square). Since u : [0, T ] 7→ L2(Ω) is continuous, we

can apply [7, Lemma 5.1] and finally get that ΠDm
uDm

→ u in L2(Ω) uniformly-in-time.

Step 4: strong convergence of ∇Dm
uDm

.
We write the discrete energy estimate (43) with t(m) = T and use the convergence in L2(Ω)d of
ΠDm

uDm
(T ) to u(T ) to see that

lim sup
m→∞

||∇Dm
uDm

||2
L2(Ω×(0,T ))d ≤

1

2

∫

Ω

(|u(T )|2 − |uini|
2) dx−

∫ T

0

∫

Ω

|∇u|2 dx dt

+

∫ T

0

∫

Ω

f · u dx dt+

∫ T0

0

∫

Ω

G : ∇u dx dt.

The energy estimate (50) with T0 = T then shows that

lim sup
m→∞

||∇Dm
uDm

||2
L2(Ω×(0,T ))d ≤ ||∇u||2

L2(Ω×(0,T ))d ,

which allows us to conclude that the weak convergence of ∇Dm
uDm

to ∇u in L2(Ω × (0, T ))d is in fact
strong. �

The following lemma was the initial key to obtain the uniform-in-time convergence result in the previous
proof (Step 3).

Lemma 5.5 Under the assumptions and notations of Theorem 3.12, for all ϕ ∈ E(Ω) the sequence of
functions t 7→ 〈ΠDm

uDm
(t), ϕ〉L2 satisfies the following quasi-equi-continuity property: there exist C7, not

depending on m, and a sequence of real numbers (ωϕ,Dm
)m∈N converging to 0 such that, for all t, s ∈ [0, T ],

|〈ΠDm
uDm

(t)−ΠDm
uDm

(s), ϕ〉L2 | ≤ C7|t− s|
1
2 + ωϕ,Dm

.

Proof As in the proof of Theorem 3.12, we drop the index m. Let ϕ ∈ E(Ω) and, as in Step 2 of the
proof of Theorem 3.12, consider the solution ϕD to the steady gradient scheme (7) with f = ηϕ and
G = ∇ϕ; then ΠDϕ → ϕ in L2(Ω) and ∇DϕD → ∇ϕ in L2(Ω)d. Since ϕD ∈ ED , the definition 5.3 of
| · |∗,D gives

|〈ΠDuD(t)−ΠDuD(s),ΠDϕD〉L2 | =

∣∣∣∣∣∣∣

∑

n s.t.

s≤t(n)≤t

δt(n+
1
2 )

∫

Ω

ΠDδ
n+ 1

2

D
uD ·ΠDϕD dx

∣∣∣∣∣∣∣

≤
∑

n s.t.

s≤t(n)≤t

δt(n+
1
2 )|δ

n+ 1
2

D
uD |∗,D‖ϕD‖D .
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Since ∇DϕD → ∇ϕ in L2(Ω)d, ‖ϕD‖D is bounded and so, using Cauchy-Schwarz inequality, we may
write

|〈ΠDuD(t)−ΠDuD(s),ΠDϕD〉L2 | ≤ C

(∫ T

0

|δDuD |2∗D dt

) 1
2

(|t− s|+ δt)
1
2

with C not depending on D . Finally, thanks to Lemma 5.4, we infer

|〈ΠDuD(t)−ΠDuD(s),ΠDϕD〉L2 | ≤ C (|t− s|+ δt)
1
2 .

We then write, using Estimate (44),

|〈ΠDuD(t)−ΠDuD(s), ϕ〉L2 | ≤ |〈ΠDuD(t)−ΠDuD(s), ϕ−ΠDϕD〉L2 |

+ |〈ΠDuD(t)−ΠDuD(s),ΠDϕD〉L2 |

≤ C‖ϕ−ΠDϕD‖L2(Ω) + C (|t− s|+ δt)
1
2

≤ C7|t− s|
1
2 + Cδt

1
2 + C‖ϕ−ΠDϕD‖L2(Ω).

The limit-conformity of the sequence of gradient discretisations ensures that ωϕ,D := Cδt
1
2 + C‖ϕ −

ΠDϕD‖L2(Ω) tends to 0, and the proof is complete. �

Let us now turn to the proof of the convergence of the pressure (Theorem 3.14).

Lemma 5.6 (Estimates on discrete time-derivative of velocity) Under the assumptions of The-
orem 3.14, let (uD , pD) be the solution to Scheme (19). Let R ≥ CD + ‖JDuini‖D . Then there exists
C8 ≥ 0 only depending on Ω, d, R, f and G such that

‖ΠDδ
n+ 1

2

D
uD‖L2(Ω×(0,T )) ≤ C8. (51)

Proof Put v = δ
n+ 1

2

D
uD and q = p

(n+1)
D

in Scheme (19). Since u
(0)
D

= JDuini ∈ ED we have v ∈ ED even
if n = 0 and therefore

‖ΠDδ
n+ 1

2

D
uD‖2

L2(Ω) +

∫

Ω

∇Du
(n+1)
D

: ∇Dδ
n+ 1

2

D
uD dx =

1

δtn+
1
2

∫ t(n+1)

t(n)

∫

Ω

f ·ΠDδ
n+ 1

2

D
uD dx dt (52)

(recall that G = 0 here). On the other hand, using a : (a− b) = 1
2 (|a|

2 − |b|2) + 1
2 |a− b|2 ≥ 1

2 (|a|
2 − |b|2)

for any tensors a, b,

∫

Ω

∇Du
(n+1)
D

: ∇Dδ
n+ 1

2

D
uD dx ≥

1

2δtn+
1
2

∫

Ω

[
|∇Du

(n+1)
D

|2 − |∇Du
(n)
D

|2
]
dx.

Plugging this into (52) and multiplying by δtn+
1
2 , it comes

∫ t(n+1)

t(n)

‖ΠDδ
n+ 1

2

D
uD‖2

L2(Ω) dt+
1

2

∫

Ω

[
|∇Du

(n+1)
D

|2 − |∇Du
(n)
D

|2
]
dx ≤

∫ t(n+1)

t(n)

∫

Ω

f ·ΠDδ
n+ 1

2

D
uD dx dt.

We sum on n = 0, . . . ,m− 1 for a given m = 1, . . . , N to get

∫ t(m)

0

‖ΠDδ
n+ 1

2

D
uD‖2

L2(Ω) dt ≤
1

2

∫

Ω

|∇Du
(0)
D

|2 dx+

∫ t(m)

0

∫

Ω

f ·ΠDδ
n+ 1

2

D
uD dx dt.

The Cauchy-Schwarz’ and Young’s inequalities conclude the proof. �
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Lemma 5.7 (Estimates on discrete pressure) Under the assumptions of Theorem 3.14, let (uD , pD)
be the solution to Scheme (19). Let R ≥ CD +‖JDuini‖D +β−1

D
. Then there exists C9 ≥ 0 only depending

on Ω, d, R, f and G such that
‖χDpD‖L2(Ω×(0,T )) ≤ C9 (53)

Proof Let v ∈ XD,0 such that ‖v‖D = 1 and βD‖χDp
(n+1)
D

‖L2(Ω) ≤
∫
Ω
χDp

(n+1)
D

divDv dx (see the
definition of βD in Definition 2.3). Plugging v in Scheme (19), we obtain

βD‖χDp
(n+1)
D

‖L2(Ω)

≤

∣∣∣∣∣

∫

Ω

ΠDδ
n+ 1

2

D
uD ·ΠDv dx+

∫

Ω

∇Du
(n+1)
D

: ∇Dv dx−
1

δtn+
1
2

∫ t(n+1)

t(n)

∫

Ω

f ·ΠDv dx dt

∣∣∣∣∣ .

Using Cauchy-Schwarz and the discrete Poincaré inequalities, we deduce

βD‖χDp
(n+1)
D

‖L2(Ω) ≤ CD‖ΠDδ
n+ 1

2

D
uD‖L2(Ω) + ‖u

(n+1)
D

‖D +
1

δtn+
1
2

∫ t(n+1)

t(n)

CD‖f‖L2(Ω) dt.

We take the square of this estimate, multiply the result by δtn+
1
2 and sum over n. Estimate (44) and

(51) then show that (53) holds. �

Proof of Theorem 3.14
We first apply Theorem 3.12 to get the strong convergence of ΠDm

uDm
to u in L2(Ω × (0, T )) and

of ∇Dm
uDm

to ∇u in L2(Ω × (0, T ))d, where u ∈ L2(0, T ;E(Ω)). Thanks to Estimate (53), we can
find a function p ∈ L2(0, T, L2

0(Ω)) such that, up to a subsequence, χDm
pDm

weakly converges to p in

L2(Ω × (0, T )). We then take θ ∈ C∞
c ([0, T )), w ∈ H1

0(Ω) and use v = δt(n+
1
2 )θ(t(n))IDm

w as a test
function in Scheme (19), were ID is defined by (38). Since ΠDm

IDm
w → w in L2(Ω), ∇Dm

IDm
w → ∇w in

L2(Ω)d and divDm
IDm

w → div(w) in L2(Ω) as m→ ∞, we can pass to the limit in all terms T1, . . . , T4.
Note that T3 is no longer equal to 0, but it converges thanks to the weak convergence of χDm

pDm
to p.

We then see that (u, p) satisfy





u ∈ L2(0, T, E(Ω)) , p ∈ L2(0, T ;L2
0(Ω)),∫ T

0

∫

Ω

−u · ∂tϕ dx dt+

∫

Ω

uini · ϕ(·, 0) dx+

∫ T

0

∫

Ω

∇u : ∇ϕ dx dt

−

∫ T

0

∫

Ω

pdivϕ dx dt =

∫ T

0

∫

Ω

f · ϕ dx dt, ∀ϕ = θw with θ ∈ C∞
c ([0, T )) , w ∈ H1

0(Ω).

(54)

The density of tensorial functions in L2(0, T ;H1
0(Ω)) ensures that this relation is actually satisfied for

any ϕ ∈ L2(0, T ;H1
0(Ω)). It therefore shows that ∂tu ∈ L2(0, T ;H−1(Ω)). In combination with the fact

that u ∈ L2(0, T ;H1
0(Ω)), this classical implies u ∈ C([0, T ];L2(Ω)). This regularity of u then allows to

perform an integration by parts in order to see that (54) is equivalent to (18). �

6 Appendix

6.1 An alternative definition of limit-conformity

The definition 2.5 of the limit-conformity, based on WD , is the natural one for the Stokes problem. It
is however different in spirit from the definition used in other analyses of gradient schemes, which would
rather correspond to splitting the velocity and the pressure as follows.
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Definition 6.1 (Limit-conformity for gradient schemes) Let D be a gradient discretisation in the

sense of Definition 2.1, and let WD : Hdiv(Ω) → [0,+∞) and W̃D : H1(Ω) → [0,+∞) be respectively
defined by

∀ϕ ∈ Hdiv(Ω)
d, WD(ϕ) = max

v∈XD,0,‖v‖D=1

(∫

Ω

(∇Dv : ϕ+ΠDv · divϕ) dx

)
,

∀ψ ∈ H1(Ω), W̃D(ψ) = max
v∈XD,0,‖v‖D=1

(∫

Ω

(ΠDv · ∇ψ + ψ divDv) dx

)
.

A sequence (Dm)m∈N of gradient discretisation is said to be limit-conforming if, for all ϕ ∈ Hdiv(Ω),

WDm
(ϕ) tends to 0 as m→ ∞ and if, for all ψ ∈ H1(Ω), W̃Dm

(ψ) tends to 0 as m→ ∞.

Remark 6.2 For coercive sequences of gradient discretisations, this limit-conformity can be established
by only checking that WDm

and W̃Dm
tend to 0 on dense subsets of Hdiv(Ω)

d and H1(Ω) respectively.

The convergence of the scheme (7) could be proved by compactness arguments using Definition 6.1,
without any other hypothesis other than (5). However, to establish error estimate using Definition 6.1
we would need p ∈ H1(Ω) and ∇u ∈ Hdiv(Ω). This assumption is more restricting than (∇u, p) ∈ Z(Ω).
We can nevertheless prove that Definition 2.5 and Definition 6.1 are equivalent, under the non-restrictive
additional hypothesis that Ω is locally star-shaped. We first establish a density result, and then use it to
prove the equivalence of the definitions of limit-conformity.

Lemma 6.3 Let Ω be a locally star-shaped open bounded domain in R
d. Then the set C∞(Ω)d ×C∞(Ω)

is dense in Z(Ω) (see (2.5)) for the topology of Z(Ω) defined by ‖(ϕ, ψ)‖Z(Ω) = ‖ϕ‖L2(Ω)d + ‖ψ‖L2(Ω) +
‖divϕ−∇ψ‖L2(Ω)

Proof The proof follows the ideas of [24, Ch.1, Theorem 1.1, (iii)]. If U is an open set of Rd, we define
L : L2(U) × L2(U) 7→ D′(U)d by L(f, g) = divf − ∇g. We have Z(U) = {(f, g) ∈ L2(U)d × L2(U) :
L(f, g) ∈ L2(U)} and ||(f, g)||Z(U) = ||f ||L2(U)d + ||g||L2(U) + ||L(f, g)||L2(U).

Step 1: Stability of Z(U) by localisation.
Let θ ∈ C∞(U) and (f, g) ∈ Z(U). Then L(θf, θg) = div(θf)−∇(θg) = θL(f, g) + f∇θ + g∇θ ∈ L2(U)
and therefore (θf, θg) ∈ Z(U) (f is considered here as a matrix, and f∇θ is therefore a matrix-vector
product, whereas g∇θ is a scalar–vector product). We also see from this formula that θ 7→ (θf, θg) is
continuous Z(U) → Z(U).

Step 2: Stability of Z(·) by dilatation.
Let λ > 1 and define, for h ∈ L2(U), hλ ∈ L2(λU) by hλ(x) = h(x

λ
) Let (f, g) ∈ Z(U). We have

L(fλ, gλ) = divfλ −∇gλ = 1
λ
L(f, g)( ·

λ
) ∈ L2(λU).

It is also well-known that, for any h ∈ L2(U), (hλ)|U → h in L2(U) as λ → 1. Hence, the previous
formula for L(fλ, gλ) shows that (fλ|U , gλ|U ) → (f, g) in Z(U) as λ→ 1.

Step 3: If U is star-shaped, approximation of elements in Z(U) by elements in Z(Rd).
Let λ > 1. Since U is star-shaped, we have that U ⊂⊂ λU and therefore we can find γ ∈ C∞

c (λU) such
that γ = 1 on a neighborhood of U . Then, by combining Steps 1 and 2, we see that (γfλ, γgλ) ∈ Z(λU)
Since γ has a compact support in λU , extending these functions to 0 outside λU gives (γfλ, γgλ) ∈ Z(Rd).
Moreover, if λ is close to 1, combining the previous step and the fact that γ ≡ 1 on U (which shows, by
Step 1, that L(γfλ, γgλ) = L(fλ, gλ) on U) we see that (γfλ, γgλ)|U is close to (f, g) in Z(U).

Step 4: Approximation by smooth functions in Z(Rd).
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Let (f, g) ∈ Z(Rd). let ρ ∈ C∞
c (Rd) be such that ρ ≥ 0 and

∫
Rd ρ = 1. For n ∈ N, let ρn denote the

function x 7→ ndρ(nx). Then (f ∗ ρn, g ∗ ρn) ∈ C∞(Rd)d × C∞(Rd) and ‖f ∗ ρn − f‖L2(Rd)d + ‖g ∗ ρn −
g‖L2(Rd) → 0 as n→ ∞. Moreover,

L(f ∗ ρn, g ∗ ρn) = div(f ∗ ρn)−∇(g ∗ ρn) = div(f) ∗ ρn −∇g ∗ ρn = L(f, g) ∗ ρn.

Hence, L(f ∗ ρn, g ∗ ρn) → L(f, g) in L2(Rd) and therefore (f ∗ ρn, g ∗ ρn) → (f, g) in Z(Rd) as n→ ∞.

Step 5: Conclusion.
Now, let (ϕ, ψ) ∈ Z(Ω) and (Oj)j∈J be an open cover of Ω such that, for all j ∈ J , Ω∩Oj is star-shaped.
Let us consider a partition of unity (θj)j∈J subordinated to this cover: θj ∈ C∞

c (Oj) and 1 =
∑

j∈J θj
on Ω. We have ϕ =

∑
j∈J θjϕ and ψ =

∑
j∈J θjψ. Let us define, for n ∈ N and λ > 1,

ϕn,λ =
∑

j∈J

(θjϕ)λ ∗ ρn and ψn,λ =
∑

j∈J

(θjψ)λ ∗ ρn.

The four previous steps show that (ϕn, ψn) → (ϕ, ψ) in Z(Ω), and the proof is complete since (ϕn, ψn) ∈
C∞(Ω)d × C∞(Ω). �

Proposition 6.4 Let (Dm)m∈N be a sequence of gradient discretisation in the sense of Definition 2.1
such that (Dm)m∈N is coercive. We assume that Ω is a locally star-shaped open bounded domain of Rd.
Then the two following propositions are equivalent

1. (Dm)m∈N is limit-conforming in the sense of Definition 6.1,

2. ∀(ϕ, ψ) ∈ Z(Ω), WDm
(ϕ, ψ) → 0 as m→ ∞.

Proof Let (ϕ, ψ) ∈ Z(Ω), the definition of WDm
gives:

WDm
(ϕ, ψ) = max

v∈XDm,0
‖v‖Dm

=1

(∫

Ω

[∇Dm
v : ϕ+ΠDm

v · (divϕ−∇ψ)− ψdivDm
v] dx

)

Using the previous lemma, we can find (ϕ,ψ) ∈ C∞(Ω)d × C∞(Ω) and ε > 0 such that ‖(ϕ − ϕ, ψ −
ψ)‖Z(Ω) ≤ ε. Thanks to the coercivity of the sequence of gradient discretisations, we may write

WDm
(ϕ, ψ) ≤WDm

(ϕ,ψ) + ε(1 + 2CP ).

Moreover, ϕ and ψ are now enough regular to split divϕ − ∇ψ in the definition of WDm
(ϕ, ψ), which

gives
WDm

(ϕ, ψ) ≤WDm
(ϕ) + W̃Dm

(ψ) +O(ε).

Since the sequence (Dm)m∈N is limit-conforming in the sense of Definition 6.1, we have WDm
(ϕ) → 0 and

W̃Dm
(ψ) → 0 as m→ ∞. Passing to the limit, this shows that WDm

(ϕ, ψ) → 0 as m→ ∞.
The converse (Item 2 of the proposition implies Item 1) is trivial since for all ϕ ∈ Hdiv(Ω) we have (ϕ, 0) ∈
Z(Ω) with WDm

(ϕ, 0) = WDm
(ϕ), and for all ψ ∈ H1(Ω) we have (0, ψ) ∈ Z(Ω) with WDm

(0, ψ) =

W̃Dm
(ψ). �

6.2 About the solution to the transient Stokes problem

The theoretical study of the transient Stokes problem, and in particular of the notion of pressure in this
model, is significantly more complex than for the steady problem. The initial sense of weak solution
for (2), that is the one given by Definition 3.10, only involves the velocity unknown as the pressure has
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been eliminated by the choice of divergence-free test functions. The interest of this formulation is that it
provides an existence and uniqueness result based on classical variational arguments [24, Ch.III, Theorem
1.1].
An equivalent and useful formulation of (17) is the following:





u ∈ L2(0, T ;E(Ω)) ∩ C([0, T ];L2(Ω)) , ∂tu ∈ L2(0, T ;E(Ω)′) ,∫ T

0

〈∂tu, ϕ〉 dt+

∫ T

0

∫

Ω

∇u : ∇ϕ dx dt

=

∫ T

0

∫

Ω

f · ϕ dx dt+

∫ T

0

∫

Ω

G : ∇ϕ dx dt , ∀ϕ ∈ L2(0, T ;E(Ω)) ,

u(·, 0) = uini in L2(Ω) ,

(55)

where 〈·, ·〉 denotes the duality pairing between E(Ω)′ and E(Ω). See for example the discussion at the
end of the proof of Theorem 3.14 on the equivalence between (54) and (18).

The pressure can be recovered, in a very weak sense. Proposition 1.1 in [24, Ch.III] establishes the
existence of a distribution p on Ω × (0, T ) such that, if u is the solution to (55) then (u, p) satisfies the
PDEs in (2) in the sense of distributions. Additional regularity results on p can be obtained if we assume
that uini ∈ E(Ω).

Proposition 6.5 (Regularity result) Let us assume Hypothesis (16), and that uini ∈ E(Ω). We de-
note by H the closure of {ϕ ∈ C∞

c (Ω)d : div(ϕ) = 0} in L2(Ω). Then the weak solution (u, p) to (2) in
the sense of Definition 3.10 (and p as in the discussion above) satisfies: u ∈ L2(0, T, E(Ω))∩C([0, T ];H),
∂tu ∈ L2(0, T, E(Ω)′) and p ∈ L2(0, T, L2

0(Ω)).

Proof This is essentially contained in the proof of [24, Ch.III, Theorem 1.1 and Proposition 1.2]. Propo-
sition 1.2 in this reference is proved under more regularity assumption on Ω and the right-hand side
(the term G must not be present and f must be divergence-free, in particular), but this is just useful to
recover higher regularity on the solution (H2 on u and H1 on p). Under our assumptions, the proof of
[24, Ch.III, Proposition 1.2] gives Proposition 6.5. �

These additional regularity results on (u, p) make the proof of Proposition 3.11 obvious. Indeed, testing
∂tu−∆u+∇p = f −div(G) (satisfied in the sense of distributions, see above) against ϕ ∈ C∞

c (0, T )×Ω)
and using the regularity of (u, p), we see that the equation in (18) holds for any smooth ϕ with compact
support. The general case is deduced by density of these functions in L2(0, T ;H1

0(Ω)).
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