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Vision-Based Force Sensing of a Magnetic Microrobot in a Viscous Flow

Karim Belharet1, David Folio2 and Antoine Ferreira2

Abstract— This paper has presented a new vision-based
force-sensing framework that allows to characterize the forces
applied on a magnetic microrobot in an endovascular-like
environment. Especially, unlike common approaches used with
optical microscopy where orthographic projection model are
used, we consider in this paper the weak-perspective model.
The proposed vision-based force characterization allows to
retrieve the three dimensional (3D) translational velocities and
accelerations of a microrobot viewed from a digital microscope.
Hence, thanks to the dynamic model the external forces are esti-
mated on-line. The framework was applied and validated for a
magnetic microrobot navigating in a viscous flow. Experimental
results in two different environments illustrate the efficiency of
the proposed method.

I. INTRODUCTION

Untethered microrobots can significantly improve many

aspects of medicine and bioengineering by navigating

through the cardiovascular networks to perform targeted di-

agnosis and therapy [1], [2]. In particular, the use of magnetic

fields is till now the most considered approach, and different

designs have been proposed in the literature [2], [3]. A first

solution is to mimic microorganisms behavior using helical

tail [4], [5] or elastic flagella [6] for bio-inspired magnetic

swimming design. It has been shown that such designs are

suitable in small vessels such as arterioles or capillaries,

whereas in larger vessel (as arteries) bead pulling scheme

is more efficient [7]. Indeed, bead pulling were successfully

applied in the carotid artery of a living swine [8]. Thus, in

this work we consider a spherical neodymium magnet as

microrobot body (termed microrobot throughout the text).

Nevertheless, whatever the propulsion scheme used, all con-

tributions point out the problem of navigation controllability

of microrobots in a viscous flow. Especially, all magnetic

microrobot designs have to face important constraints related

to the system dynamics. To improve the magnetic navigation

strategy against the biological laws governing patient body, a

characterization of the magnetic microrobot behavior within

a microfluidic environment is mandatory.

Our motivation in this work is to characterize and vali-

date the system’s dynamic model of a magnetic microrobot

navigating in a microfluidic viscous environment. To do

so, the forces acting on the microrobot must be measured.

Force measurements could be achieved using capacitive

force sensors [9], atomic force microscope (AFM) [10],

piezoresistive cantilevers [11], or magnetic bead [12]. But
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such approaches are intrusive, and it is troublesome to use

them with the microrobot in endovascular-like environments.

A non-intrusive solution is to consider vision-based force-

sensing [13], [14]. Proposed methods usually rely on the

measurement of the displacement or deformation retrieved

from an imaging sensor. In our context, to ensure efficient

navigation control of magnetic microrobot its location is

determined from medical imaging such as magnetic reso-

nance imaging (MRI) [15], or digital microscopy [16], [17].

Hence, no additional sensing modalities are required, and the

vision sensor is a priori able to provide the force feedback

[14]. Nevertheless, most vision-based force measurement

techniques rely on elastically deformable objects properties.

As in our case the considered object is a hard material in a

viscous flow, such solutions seems limited.

The main contribution of the paper is to define a mapping

between the system dynamics and sensory data acquired

from an imaging system to characterize the endovascular

like interaction forces applied on the magnetic microrobot.

Classically, when dealing with an optical microscope the or-

thographic perspective model is considered, that is a scaling

of the observed scene. However, pure orthographic projection

is usually unrealistic, and methods that use orthographic pro-

jection are only valid in a limited domain where the distance

and position effects can be neglected [18]. Therefore, we

propose here to consider the weak-perspective model that is

closer to the full perspective model, and allows to improve

the knowledge of the external forces.

In the remainder of this paper, we first present in Sect. II

a new vision-based force characterization based on the

vision-based model. Then in Sect. III we apply the proposed

approach to a magnetic microrobot navigating in a viscous

flow. Sect. IV presents different experiments that illustrate

the efficiency and robustness of the proposed framework,

before to conclude in Sect. V.

II. VISION-BASED FORCE MEASUREMENT

The proposed vision-based force-sensing relies on the ob-

servation of the microrobot motion from an imaging sensor.

To do so, we use the mapping between the system dynamics

and the image data provided by the sensor-based model.

A. The Sensor-Based Model

We consider a fixed vision system observing a moving

device (here the microrobot), and assuming that only the

device motion imply a sensor signal variation, the sensor-

based model is expressed as follows [19]:

ṡ = Jξ(s) v0 (1)



where ṡ is the observed microrobot motion vector in the

image acquired from the vision sensor, and v0 is the device

velocity screw in the 3D Euclidean space expressed in the

reference frame F0 = (O,−→x 0,
−→y 0,

−→z 0) (see Fig. 1). The

term Jξ(s) is the Jacobian matrix, often referred as image

Jacobian [20]. The subscript ξ denotes that Jξ(s) is generally

a function of the extrinsic ξEx and intrinsic ξIn parameters

of the sensor, and the tracked sensor features s. Indeed, the

image Jacobian matrix could be decomposed as follows:

Jξ(s) = L(ξIn, s) · cW0(ξEx) (2)

where L(ξIn, s) is often referred as the interaction matrix

[19], and the matrix c
W0(ξEx) allows to transform the

motion v0 of the device between here the sensor frame Fc

and the reference frame F0, as illustrated in Fig. 1.
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Fig. 1. Sensor-based modeling.

Let us assume that the image Jacobian matrix Jξ(s) is

a full rank matrix, and then define J
+

ξ = (J⊺

ξJξ)
−1

J
⊺

ξ its

Moore-Penrose pseudo-inverse. Thus, the previous vision-

based model equation (1) could be re-written as follow:

v0 = J
+

ξ ṡ (3)

This relation allows to characterize the microrobot motion in

the 3D Euclidean space using vision data.

B. Linking Vision-based Sensing to System Dynamics

Now let us differentiate the vision-based model (1) to

expose the sensor features dynamics:

s̈ = Jξ(s) v̇0 + v0 ·Hξ(s) ·v0 (4)

where Hξ(s) is the image Hessian, defined as:

Hξ(s) =
∂Jξ(s)

∂s
Jξ(s) = G(s) Jξ(s) (5)

Substituting equation (3) into (4) yields:

v̇0 = J
+

ξ

(

s̈−G(s) ṡ J+

ξ ṡ

)

(6)

This relation allows to characterize the microrobot accelera-

tion v̇0 in the 3D Euclidean space, using the image feature

s provided by the vision sensor.

Finally, thanks to the Newton’s second law one can relate

the microrobot acceleration v̇0 to the forces acting on it:

mv̇0 =
∑

f (7)

where m is the microrobot mass, and
∑

f is the net force

expressed in the reference frame F0.

III. APPLICATION TO A MAGNETIC

MICROROBOT NAVIGATING IN A VISCOUS FLOW

A. Dynamics Modeling

The considered microrobot body immersed in a microflu-

idic environment is modeled by a magnetic microsphere as

illustrated on Fig. 2. The microrobot environment is modeled

by a 3D Euclidean space, and we denote by F0 its fixed

reference frame. Actuated by external magnetic gradients ∇b

in a microfluidic environment, the microrobot will mainly

experience the steering magnetic (fm), apparent weight (fg),

contact (fc), electrostatic (fe), van der Waals (fv) and hydro-

dynamic drag (fd) microforces that affect the microrobot’s

motion. The effects of these forces are explained in detail

in [7]. Hence, the translational motion of the ferromagnetic

microsphere is formulated as follows :

mv̇0 =
∑

f = fm + fd + fg + fv + fe + fc
︸ ︷︷ ︸

fVasc

(8)

where v0 is the translational velocity of the microrobot and

m its mass.
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Fig. 2. Forces applied on a microrobot navigating in microfluidic
environment: (left) in an infinite extend and (right) in cylindrical channel.

In the remainder of this paper, we assume that the orienta-

tion of the magnetic microrobot does not change due to the

magnetic torque which tends to align the magnetization of the

robot along the magnetic field. Hence, no angular motion is

considered and the microrobot’s velocity screw is reduced to

its sole translational velocity: v0 = (vx, vy, vz)
⊺. Moreover,

we also assume that the microrobot is never in contact with

the walls of the environment, namely fc = 0. Actually, in

case of wall contact, the vision-based force-sensing could be

achieved using elastically deformable objects properties as

in [13], [14].

B. Digital Microscope Projection Model

In this work, the magnetic microrobot motion is observed

from a fixed digital microscope, and its position in the image

plane is retrieved from image processing. As illustrated in

Fig. 3, classically a 3D point of coordinates x = (X,Y, Z)
⊺

in the microscope frame Fc is projected into a 2D point with

coordinates sp = (xp, yp)
⊺ in the image plane with a pinhole

perspective projection, and yields:

xp = f
X

Z
, yp = f

Y

Z
(9)

where f is the focal length. If we denote (u, v) the position of

the corresponding pixel in the digitized image, this position
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Fig. 3. Projection model: (a) 3D representation of image formation, and (b)
full perspective (sp), weak-perspective (swp) and orthographic perspective
(sorth) projection model comparisons.

is related to the 2D point s by:
{

u = u0 + αuxp

v = v0 + αvyp
(10)

where αu and αv are the ratio between the focal length and

the size of a pixel, and (u0 v0) is the principal point coordi-

nate in pixel. Then, these four parameters define the digital

microscope intrinsic parameters: ξIn = {αu, αv, u0, v0}, and

are calibrated off-line [21], [22].

1) Orthographic perspective model: Generally, when a

digital microscope is used, due to the size of the objects of

interest wrt. the focal length f and the vision system distance,

the orthographic projection model is considered, that is:

xorth = kxX, yorth = kyY (11)

where kx and ky scale the observed scene. As one can see,

in orthographic projection, the depth Z of the point x does

not affect its image formation. However, in neglecting the

depth information, the orthographic projection models image

formation incorrectly and solves for (approximately) known

parameters as if they were unknowns. It is given the freedom

to reconstruct wrong values for these artificial unknowns,

which in turn can corrupt the recovery of the true unknowns.

Therefore, methods that use orthographic projection are only

valid in a limited domain where the distance and position

effects can be neglected.

Nevertheless, the full perspective projection model (9)

requires a model or an estimation of the depth Z of the

considered 3D point x. Several approaches may be used to

determine it. The most obvious solution is to measure it

using dedicated sensors such as telemeters or stereoscopic

systems. However, if the system setup is not equipped with

such sensors, it is possible to use structure from motion

(SFM) techniques [23], signal processing methods [24], or

even pose relative estimation [25]. Moreover, knowing an

initial guess Z(t0), in [26] the authors propose to use the

sensor-based model to estimate the Z-depth.

2) Weak perspective model: A suitable approximation

is to use the so-called weak-perspective (or scaled ortho-

graphic) projection model, defined by:

xwp = f
X

Z0

, ywp = f
Y

Z0

(12)

where Z0 is an average depth plane, as depicted in Fig. 3.

The weak-perspective model is valid when the field of view

is small and the average variation of the depth of the object

(∆Z) along the line of sight is small wrt. Z0, i.e. |∆Z| ≪
Z0. Especially, the weak-perspective is seen as a zero-order

approximation of the full perspective projection (9). More

precisely, for a point x of depth Z = Z0 +∆Z, the error is:

serr = sp − swp = −
f

Z0

∆Z

Z

[
X
Y

]

(13)

This error shows that a small focal length (f), small field

of view (X/Z0 and Y/Z0) and small depth variation ∆Z
contribute to the validity of this model.

3) The interaction matrix: We have to use the interaction

matrix L(ξIn, s) that map visual feature motion ṡ to the

microrobot velocity v0 (1). This matrix can be derived for

many visual features, such as lines, circle, image moments,

etc. [19]. In the case of a feature point s = (x, y)⊺, the

interaction matrix could be easily derived from the full

projection model (9), and for a pure translational motion is

given by:

L(ξIn, s) =






f

Z
0 −

x

Z

0
f

Z
−

y

Z




 (14)

Using the weak-perspective, the above interaction matrix is

then evaluated for the average planeZ0. In this context the in-

trinsic parameters are defined by: ξIn = {αu, αv, u0, v0, Z0}.

4) The transformation matrix: The transformation matrix
c
W0(ξEx) allows to transform the velocity screw from the

camera frame Fc to the reference frame F0. In the case of a

pure translational motion, this matrix is simply defined by:

c
W0(ξEx) =

c
R0 (15)

where c
R0 ∈ SO(3) (special orthogonal group of transfor-

mations of R
3) is the rotation matrix between Fc and F0.

As for intrinsic parameters ξIn, the transformation matrix

parameters ξEx are calibrated off-line [21], [22].

IV. EXPERIMENTAL VALIDATION

A. Electromagnetic Actuation Testbed

The motion control of the untethered microrobot in a

microfluidic environment relies upon magnetic gradients ∇b.

To this aim, an electromagnetic actuation (EMA) testbed has

been developed specifically by Aeon-Scientific™ to generate

the 3D controlled magnetic fields. The setup is illustrated

in Fig. 4. The EMA setup consists of three nested sets of

Maxwell coils and one nested set of Helmholtz coils. These

coils set are combined coaxially such that the magnetic field

and magnetic gradient fields can be controlled in the center

of the workspace [17]. Hence, the magnetic gradient fields

generated by the EMA system are controlled through the

electrical currents circulating in the coil set.

Finally, the magnetic setup is equipped with a CCD

high-resolution miniature microscope camera (TIMM 400,

Nanosensor™) that is rigidly linked to the EMA setup. A

robust tracking algorithm measure, with a sub-micrometer
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Fig. 4. Experimental testbed composed of four sets of EMA coils and a
digital microscope.

resolution, the location of the magnetic microrobot by real-

time images processing. Finally, after a calibration procedure,

the extrinsic parameters are fully characterized such as the

frame F0 and Fc are collinear.

B. Experimentation Protocol

In the experiments, a neodymium magnet (NdFeB N35)

microsphere with a radius r = 250 µm was used as micro-

robot body. To characterize the force net
∑

f and validate

the proposed vision-based force-sensing, experiments within

different environments have been conducted (see Fig. 5). In

particular, each experiment is realized within static viscous

fluid made of a mixture of water and 80% of glycerol which

is close to blood flow viscosity (ηf = 60 mPa/s). Each

perspective model is calibrated twice: before the first experi-

ments in i) free and ii) microfluidic channel environments. To

facilitate the external force calibration a constant magnetic

gradient is applied in the x-axis direction, and in the z-axis

direction to compensate the gravitational force, leading to a

straight line motion as depicted in Fig. 5.
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Fig. 5. Experiments in (a) free extend and (b) in a microchannel of radius
R = 500 µm.

C. Results in Free Extend

First, experiments in a viscous fluid with “no walls” are

performed to calibrate the velocity and the interaction forces

without wall effects, as described in Fig. 5(a). Hence, DLVO

forces (that is van der Waals and electrostatic forces) could

be effectively neglected, and mainly the magnetic, the hydro-

dynamic and the gravitational forces could be considered in

the interaction force expression (8). Within this free extend
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Fig. 6. Comparison of (a) the velocity v0 and (b) the acceleration v̇0 of
the orthographic perspective and the weak-perspective.

the average depth of the weak-perspective model is calibrated

at Z0 = 67.67 mm. Then, experiments are conducted with

different magnetic gradients applied along the x-axis.

Fig. 6 illustrates the velocities and accelerations using the

orthographic projection and the weak-perspective models

with different magnetic gradients. As expected the veloci-

ties and accelerations decrease with the magnetic gradient

amplitude. Furthermore, as the orthographic projection is

less reliable, it tends to underestimate the velocity, im-

plying a poor acceleration estimation. In particular, as the

orthographic projection consider only the aspect ratio, only

the 2D components (vx, vy) of the microrobot’s motion v0

could be directly estimated. Although the sole midplaneZ0

is considered, the weak-projection is able to provide an

approximation of the full 3D motions. Actually, here the

interaction matrix (14) is evaluated with the average planeZ0.

Thus, knowing the microrobot motion in the free extend,

the dynamics model introduced in Sect. III-A is computed

(see [7] for detailed forces model). For instance, Fig. 7(a)

shows the forces using the orthographic perspective and

Fig. 7(b) using the weak-perspective model with a constant

magnetic gradient ∇bx = 208.7 mT/m along the x-axis.

Using a top view digital microscope, the orthographic model

is capable to consider only the x − y plane and through a

scaling retrieved only the 2D components of the magnetic

and hydrodynamic drag forces. Especially, by not explicitly

considering some depth information, the orthographic projec-

tion models image formation incorrectly and mis-estimates

the unknown parameters. In contrast, the weak-projection

allows us to estimate the full 3D motions and dynamics.

Therefore, thanks to our proposed framework we are able to

consider the gravitational forces fg , and improve the force
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balance model (8).

Hence, Fig. 8 presents the difference between the loga-

rithmic error between the force net
∑

f computed using

the model referred in [7] and the microrobot accelera-

tion computed from vision-based measurements, that is:

log ‖
∑

f‖ − log ‖mv̇0‖, with different magnetic gradient

amplitudes. As one can see, our framework seems to validate

the proposed system’s dynamic model. Furthermore, the use

of weak perspective model allows to improve the knowledge

of microrobot velocities and accelerations.

D. Results within a microfluidic channel

Secondly, experiments in a viscous fluid within a channel

of radius R = 500 µm are realized, as shown in Fig. 5(b).

The average depth is here calibrated at Z0 = 85.26 mm, and

the distance to the wall is in average of δ = 0.256 mm. In

such microfluidic environment, van der Waals forces remain

negligible (as it was in the order of 10−14 mN) whereas
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Fig. 9. Force model and magnetic microrobot’s dynamics using (a) the
orthographic perspective and (b) the weak-perspective models with ∇bx =

208.7 mT/m.

the electrostatic forces become significant, as illustrated on

Fig. 9. Especially, Fig. 9(a) and 9(b) represent the forces

computed from the orthographic perspective and the weak

perspective, respectively. The results consider a constant

magnetic gradient ∇bx = 208.7 mT/m along the x-axis.

Once again, the orthographic projection is able to deal only

with the 2D components of the force balance (8) in the

x − y plane, and does not allow to consider explicitly the

gravitational forces along the z-axis.

Fig. 10 shows the logarithmic error between the force

balance model (8) and the microrobot acceleration computed

using our proposed approach based on the weak-perspective

model. In particular the dashed line represents the loga-

rithmic error when no electrostatic forces are considered,

in opposition to the solid line. As one can see, adding

the electrostatic forces knowledge may help to improve the

dynamic model of the microrobot.

E. Discussion

The experimental results show that the proposed frame-

work permits to characterize the external forces applied on

a microrobot navigating in an endovascular-like environment

from imaging data. Based only on scaling considerations, the

orthographic model is not directly and explicitly able to deal

with the 3D components of the motions nor dynamics. To

get access to the 3D motions some knowledge on the Z-

depth is mandatory. A first step is to use the average depth

Z0, and thus the weak perspective projection. This model

allows to estimate the full 3D motion of the microrobot, and

significantly improve the approximation of the microrobot
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motion. However, results also exhibit that the use of the

third component increases the variance on the recovered 3D

motion, and then, on the experimental forces. This behavior

is due to the fact that the weak-perspective is based on the

use of the average plane Z0 instead of the true Z-depth of the

microrobot. This issue could be overcame by using a second

lateral digital microscope for instance, and thus consider the

full perspective model.

V. CONCLUSIONS

This paper presented a new framework to characterize

forces applied to a magnetic robot through the use of the

vision-based and weak perspective models. To this aim a

mapping between the vision-based data and the system’s

dynamic model is expressed. More precisely, unlike classical

approach that uses an orthographic projection model when

a microscope is considered, we have proposed here to deal

with the weak-perspective model. In particular, the weak-

perspective is known to be closer to the full perspective.

Hence, the proposed vision-based force sensing formalism

allows to recover the full three dimensional motion and

dynamics of the magnetic microrobot in order to characterize

experimentally the external forces acting on the microrobot’s

body. Thus, the external forces could easily be characterized

on-line from the images acquired by the digital microscope.

The proposed method has been applied and experimentally

validated for a magnetic microrobot navigating in a viscous

flow. Finally, the experimental results illustrate the efficiency

of the proposed framework, and validate the dynamics mod-

eling of the swimming microrobot evolving in a free extend

and in a microchannel. In both cases, the influence of the

DLVO forces are demonstrated improving significantly the

estimation of the force net.
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