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Introduction

In the present paper we prove existence results for solutions to nonlinear elliptic Neumann problems whose prototype is (1.1) -∆ p u -div(c(x)|u| p-2 u) = f in Ω,

|∇u| p-2 ∇u + c(x)|u| p-2 u • n = 0 on ∂Ω,
where Ω is a bounded domain of R N , N ≥ 2, with Lipschitz boundary, 1 < p ≤ N , n is the outer unit normal to ∂Ω, the datum f belongs to L 1 (Ω) and satisfies the compatibility condition Ω f = 0. Finally the coefficient c(x) belongs to an appropriate Lebesgue space. When c(x) = 0 and f is an element of the dual space of the Sobolev space W 1,p (Ω), the existence and uniqueness (up to additive constants) of weak solutions to problem (1.1) is consequence of the classical theory of pseudo monotone operators (cfr. [START_REF] Leray | Quelques résulatats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder[END_REF], [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]). But if f is just an L 1 -function, and not more an element of the dual space of W 1,p (Ω), one has to give a meaning to the notion of solution. When Dirichlet boundary conditions are prescribed, various definitions of solution to nonlinear elliptic equations with right-hand side in L 1 or measure have been introduced. In [START_REF] Bénilan | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF], [START_REF] Dall | Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations[END_REF], [START_REF] Lions | Sur les solutions renormalisées d'équations elliptiques non linéaires[END_REF], [START_REF] Murat | Equations elliptiques non linéaires avec second membre L 1 ou mesure[END_REF] different notions of solution are defined even if they turn out to be equivalent, at least when the datum is an L 1 -function. The study of existence or uniqueness for Dirichlet boundary value problems has been the object of several papers. We just recall that the linear case has been studied in [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF], while the nonlinear case began to be faced in [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF] and [START_REF] Boccardo | Nonlinear elliptic equations with right-hand side measures[END_REF] and was continued in various contributions, including [START_REF] Alvino | Nonlinear elliptic problems with L 1 data: an approach via symmetrization methods[END_REF], [START_REF] Cheikh | Nonlinear and non-coercive elliptic problems with integrable data[END_REF], [START_REF] Bénilan | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF], [START_REF] Betta | Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum[END_REF], [START_REF] Betta | Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right-hand side a measure[END_REF], [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF], [START_REF] Dall | Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations[END_REF], [START_REF] Guibé | Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data[END_REF], [START_REF] Guibé | Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data[END_REF]; mixed boundary value problems have been also studied (see [START_REF] Cheikh | Nonlinear and non-coercive elliptic problems with integrable data[END_REF]). In the present paper we refer to the so-called renormalized solutions (see [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF], [START_REF] Lions | Sur les solutions renormalisées d'équations elliptiques non linéaires[END_REF], [START_REF] Murat | Equations elliptiques non linéaires avec second membre L 1 ou mesure[END_REF]) whose precise definition is recalled in Section 2.

The existence for Neumann boundary value problems with L 1 -data when c = 0 has been treated in various contests. In [START_REF] Andreu | Quasi-linear elliptic and parabolic equations in L 1 with nonlinear boundary conditions[END_REF], [START_REF] Chabrowski | On the Neumann problem with L 1 data[END_REF], [START_REF] Droniou | Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method[END_REF], [START_REF] Droniou | Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions[END_REF] and [START_REF] Prignet | Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure[END_REF] the existence of a distributional solution which belongs to a suitable Sobolev space and which has null mean value is proved. Nevertheless when p is close to 1, i.e. p ≤ 2 -1/N , the distributional solution to problem (1.1) does not belong to a Sobolev space and in general is not a summable function; this implies that its mean value has not meaning. This difficulty is overcome in [START_REF] Decarreau | Trace imbeddings for T -sets and application to Neumann-Dirichlet problems with measures included in the boundary data[END_REF] by considering solutions u which are not in L 1 (Ω), but for which Φ(u) is in L 1 (Ω), where Φ(t) = t 0 ds (1+|s|) α with appropriate α > 1. In [START_REF] Alvino | Well-posed elliptic Neumann problems involving irregular data and domains[END_REF] the case where both the datum f and the domain Ω are not regular is studied and solutions whose median is equal to zero are obtained with a natural process of approximations. We recall that the median of u is defined by (1.2) med(u) = sup{t ∈ R : meas{u > t} ≥ meas(Ω)/2} .

Neumann problems have been studied by a different point of view in [START_REF] Ferone | A second order derivation formula for functions defined by integrals[END_REF][START_REF] Ferone | Neumann problems and Steiner symmetrization[END_REF].

In this paper we face two difficulties: one due to the presence of the lower order term -div(c(x)|u| p-2 u)) and the other due to the low integrability properties of the datum f . Our main result is Theorem 4.1 which asserts the existence of a renormalized solution to (1.1) having med(u) = 0. Its proof, contained in Section 4, is based on an usual procedure of approximation which consists by considering problems of type (1.1) having smooth data which strongly converge to f in L 1 . For such a sequence of problems we prove in Section 3 an existence results for weak solutions which is obtained by using a fixed point arguments. A priori estimates allow to prove that these weak solutions converge in some sense to a function u and a delicate procedure of passage to the limit allows to prove that u is a renormalized solution to (2.1).

In Section 5 we give a stability result and we prove that, under larger assumptions on the summability of f , a renormalized solution to (2.1) is in turn a weak solution to the same problem. At last Section 6 is concerned with Neumann problems with a zero order term; adapting the proof of Theorem 4.1 allows to derive an existence result for this type of operators.

Assumptions and definitions

Let us consider the following nonlinear elliptic Neumann problem

(2.1) -div (a (x, u, ∇u) + Φ(x, u)) = f in Ω, (a (x, u, ∇u) + Φ(x, u)) • n = 0 on ∂Ω,
where Ω is a connected open subset of R N , N ≥ 2, having finite Lebesgue measure and Lipschitz boundary, n is the outer unit normal to ∂Ω. We assume that p is a real number such that 1 < p ≤ N and

a : Ω × R × R N → R N , Φ : Ω × R → R N
are Carathéodory functions. Moreover a satisfies:

(2.2) a (x, s, ξ) • ξ ≥ α |ξ| p , ∀s ∈ R, ∀ξ ∈ R N , a.e. in Ω
where α > 0 is a given real number;

(2.3) (a (x, s, ξ) -a (x, s, η)) • (ξ -η) ≥ 0 ∀s ∈ R, ∀ξ, η ∈ R N with ξ = η and a.e. in Ω;
for any k > 0 there exist a k > 0 and b k belonging to L p ′ (Ω) such that

(2.4) |a (x, s, ξ)| ≤ a k |ξ| p-1 + b k (x), ∀|s| < k, ∀ξ ∈ R N , a.e. in Ω.
We assume that Φ satisfies the following growth condition

(2.5) |Φ(x, s)| ≤ c(x)(1 + |s| p-1 ) ∀s ∈ R, a.e. in Ω, with c ∈ L N p-1 (Ω) if p < N and c ∈ L q (Ω) with q > N/(N -1) if p = N .
Finally we assume that the datum f is a measurable function in a Lebesgue space L r (Ω), 1 ≤ r ≤ +∞, which belongs to the dual space of the classical Sobolev space W 1,p (Ω) or is just an L 1 -function. Moreover it satisfies the compatibility condition (2.6)

Ω f dx = 0.
As explained in the Introduction we deal with solutions whose median is equal to zero. Let us recall that if u is a measurable function, we denote the median of u by

(2.7) med(u) = sup t ∈ R : meas{x ∈ Ω : u(x) > t} > meas(Ω) 2 .
Let us explicitely observe that if med(u) = 0 then

meas{x ∈ Ω : u(x) > 0} ≤ meas(Ω) 2 , meas{x ∈ Ω : u(x) < 0} ≤ meas(Ω) 2 .
In this case a Poincaré-Wirtinger inequality holds (see e.g. [START_REF] Ziemer | Weakly differentiable functions[END_REF]):

Proposition 2.1. If u ∈ W 1,p (Ω), then (2.8) u -med(u) L p (Ω) ≤ C ∇u (L p (Ω)) N
where C is a constant depending on p, N , Ω.

As pointed out in the Introduction, when the datum f is not an element of the dual space of the classical Sobolev space W 1,p (Ω) or is just an L 1function, the classical notion of weak solution does not fit. We will refer to the notion of renormalized solution to (2.1) (see [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF][START_REF] Murat | Equations elliptiques non linéaires avec second membre L 1 ou mesure[END_REF] for elliptic equations with Dirichlet boundary conditions) which we give below.

In the whole paper, T k , k ≥ 0, denotes the truncation at height k that is

T k (s) = min(k, max(s, -k)), ∀s ∈ R. Definition 2.2. A real function u defined in Ω is a renormalized solution to (2.1) if
u is measurable and finite almost everywhere in Ω, (2.9) 

T k (u) ∈ W
∈ L ∞ (Ω) ∩ W 1,p (Ω) we have (2.12) Ω h(u) a(x, u, ∇u)∇ϕdx + Ω h ′ (u) a(x, u, ∇u)∇uϕdx + Ω h(u)Φ(x, u)∇ϕdx + Ω h ′ (u)Φ(x, u)∇uϕdx = Ω f ϕh(u)dx.
Remark 2.3. A renormalized solution is not an L 1 loc (Ω)-function and therefore it has not a distributional gradient. Condition (2.10) allows to define a generalized gradient of u according to Lemma 2.1 of [START_REF] Bénilan | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF], which asserts the existence of a unique measurable function v defined in Ω such that ∇T k (u) = χ {|u|<k} v a.e. in Ω, ∀k > 0. This function v is the generalized gradient of u and it is denoted by ∇u.

Equality (2.12) is formally obtained by using in (2.1) the test function ϕh(u) and by taking into account Neumann boundary conditions. Actually in a standard way one can check that every term in (2.12) is well-defined under the structural assumptions on the elliptic operator. Remark 2.4. It is worth noting that growth assumption (2.5) on Φ together with (2.9)-(2.11) allow to prove that any renormalized solution u verifies (2.13) lim

n→+∞ 1 n Ω |Φ(x, u)| × |∇T n (u)|dx = 0.
Without loss of generality we can assume that med(u) = 0. Growth assumption (2.5) implies that

Ω |Φ(x, u)| × |∇T n (u)|dx ≤ 1 n Ω c(x)(1 + |T n (u)|) p-1 |∇T n (u)|dx.
In the case N > p, using Hölder inequality we obtain

Ω c(x)(1 + |T n (u)|) p-1 |∇T n (u)|dx ≤ C c L N/(p-1) (Ω) (1 + T n (u) p-1 L p * (Ω) ) ∇T n (u) (L p (Ω)) N .
(2.14)

Since med(T n (u)) = 0, by Poincaré-Wirtinger inequality, i.e. Proposition 2.1, and Sobolev embedding theorem it follows that

Ω c(x)(1 + |T n (u)|) p-1 |∇T n (u)|dx ≤ C c L N/(p-1) (Ω) (1 + ∇T n (u) p-1 (L p (Ω)) N ) ∇T n (u) (L p (Ω)) N where C > 0 is a generic constant independent of n. Therefore Young inequality leads to 1 n Ω c(x)(1 + |T n (u)|) p-1 |∇T n (u)|dx ≤ C n c L N/(p-1) (Ω) (1 + ∇T n (u) p (L p (Ω)) N ) (2.15)
In the case N = p a similar inequality involving c L q (Ω) with q > N/(N -1) occurs.

Due to the coercivity of the operator a and to (2.11) we have

lim n→+∞ 1 n Ω |∇T n (u)| p dx = 0.
By (2.14) and (2.15) we conclude that (2.13) holds.

A basic existence result for weak solutions

In this section we assume more restrictive conditions on the right-hand side f , on Φ and on the operator a in order to prove the existence of a weak solution u to problem (2.1), that is

u ∈ W 1,p (Ω), Ω a(x, u, ∇u)∇vdx + Ω Φ(x, u)∇vdx = Ω f vdx for any v ∈ W 1,p (Ω).
We assume [START_REF] Leray | Quelques résulatats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder[END_REF], [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]) allow to deduce that there exists a unique u such that

f ∈ L r (Ω) ∩ (W 1,p (Ω)) ′ (3.1) |Φ(x, s)| ≤ c(x) ∀s ∈ R, a.e. in Ω (3.2) with c ∈ L ∞ (Ω). Moreover the operator a satisfies (3.3) (a (x, s, ξ) -a (x, s, η)) • (ξ -η) > 0 ∀s ∈ R, ∀ξ, η ∈ R N with ξ = η
| a(x, v(x), ξ)| ≤ a 0 (|ξ| p-1 + |v(x)| p-1 ) + a 1 (x) ∀ξ ∈ R N , a.e. in Ω. Since Φ(x, v(x)) ∈ (L ∞ (Ω)) N , classical arguments (see e.g.
(3.5) u ∈ W 1,p (Ω), med(u) = 0 and (3.6) Ω a(x, v, ∇u)∇ϕ dx = Ω f ϕ dx - Ω Φ(x, v)∇ϕ dx , ∀ϕ ∈ W 1,p (Ω) .
It follows that we can consider the functional Γ :

L p (Ω) -→ L p (Ω) defined by Γ(v) = u , ∀v ∈ L p (Ω)
, where u is the unique element of W 1,p (Ω) verifying (3.5) and (3.6). We now prove that Γ is a continuous and compact operator.

Let us begin by proving that Γ is continuous. Let

v n ∈ L p (Ω) such that v n → v in L p (Ω). Up to a subsequence (still denoted by v n ) v n → v a.e. in Ω. Let u n = Γ(v n ) belonging to W 1,p
(Ω) such that med(u n ) = 0 and such that (3.6) holds with v n in place of v. Choosing ϕ = u n as test function in (3.6) and using (2.2) we obtain that

α Ω |∇u n | p dx ≤ Ω |f u n |dx + Ω |Φ(x, v n )∇u n |dx.
Since med(u n ) = 0, from Poincaré-Wirtinger inequality (2.8), (3.1) and (3.2) Young inequality and Sobolev embedding theorem lead to

(3.7) Ω |∇u n | p dx ≤ M where M > 0 is a constant independent of n. Using again (2.8), it follows that u n is bounded in W 1,p (Ω).
As a consequence and in view of (3.4), there exists a subsequence (still denoted by u n ), a measurable function u and a field σ belonging to (L p ′ (Ω)) N such that

u n ⇀ u weakly in W 1,p (Ω), (3.8) u n → u strongly in L p (Ω), (3.9) u n → u a.e. in Ω, (3.10) a(x, v n , ∇u n ) ⇀ σ weakly in (L p ′ (Ω)) N . (3.11)
Since med(u n ) = 0 for any n and since u ∈ W 1,p (Ω) the point-wise convergence of u n to u implies that med(u) = 0.

To get the continuity of Γ it remains to prove that u = Γ(v) that is u satisfies (3.6). Using (3.6) with v n in place of v and the test function u n -u we have

(3.12) Ω a(x, v n , ∇u n )(∇u n -∇u)dx = Ω f (u n -u)dx - Ω Φ(x, v n )(∇u n -∇u)dx.
The point-wise convergence of v n and assumption (3.2) imply that Φ(x, v n ) converges to Φ(x, v) almost everywhere in Ω and in L ∞ weak-* as n goes to infinity. Therefore from (3.8) and (3.9), passing to the limit in the right-hand side of (3.12), we obtain

(3.13) lim n→+∞ Ω a(x, v n , ∇u n )(∇u n -∇u)dx = 0.
Let us recall the classical arguments, so-called Minty arguments, (see [START_REF] Leray | Quelques résulatats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder[END_REF], [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]) which allow to identify σ with a(x, v, ∇u). Let φ belonging to (L ∞ (Ω)) N . Due to assumption (3.4) and the convergence of v n the Lebesgue theorem shows that for any

t ∈ R a(x, v n , ∇u + tφ) → a(x, v, ∇u + tφ) strongly in (L p ′ (Ω)) N .
By (3.11) and (3.13), it follows that for any t ∈ R

lim n→+∞ Ω [a(x, v n , ∇u n )-a(x, v n , ∇u + tφ)](∇u n -∇u -tφ)dx = Ω [σ -a(x, v, ∇u + tφ)]tφdx.
Using the monotone character (3.3) of a we obtain that for any t = 0 sign(t)

Ω [σ -a(x, v, ∇u + tφ)]φdx ≥ 0.
Since a(x, v, ∇u + tφ) converges strongly to a(x, v, ∇u) in (L p ′ (Ω)) N as t goes to zero, letting t → 0 in the above inequality leads to

Ω [σ -a(x, v, ∇u)]φdx = 0
for any φ belonging to (L ∞ (Ω)) N . We easily conclude that

(3.14) σ = a(x, v, ∇u).
By using (3.11) and (3.14) we can pass to the limit as n → +∞ in (3.6) with v n in place of v and we get

Ω a(x, v, ∇u)∇ϕdx = Ω f ϕdx - Ω Φ(x, v)∇ϕdx , ∀ϕ ∈ W 1,p (Ω) .
Since there exists a unique weak solution to (3.6) with median equal to zero we obtain that the whole sequence u n converges to u in L p (Ω) and u = Γ(v). It follows that Γ is continuous.

Compactness of Γ immediatly follows. Indeed, thank to the assumptions, for any v ∈ L p (Ω), we have

Ω |∇u| p dx ≤ C ,
where C is a constant depending on α, a 0 , a 1 , c L ∞ (Ω) , Ω, N , p and f . Then, using Poincaré-Wirtinger inequality and Rellich theorem, u = Γ(v) belongs to a compact set of L p (Ω). By choosing a ball of

L p (Ω), B L p (0, r) such that Γ (B L p (0, r)) ⊂ B L p (0, r) ,
Leray-Schauder fixed point theorem ensures the existence of at least one fixed point.

Existence result for renormalized solutions

In this section we prove our main result which gives the existence of a renormalized solution to problem (2.1). Theorem 4.1. Assume (2.2)-(2.6). If the datum f belongs to L 1 (Ω), then there exists at least one renormalized solution u to problem (2.1) having med(u) = 0.

Proof. The proof is divided into 7 steps. In a standard way we begin by introducing a sequence of approximate problems whose data are smooth enough and converge in some sense to the datum f . Then we prove that the weak solutions u ε to the approximate problems and their gradients ∇u ε satisfy a priori estimates; such estimates allow to prove that u ε and ∇u ε converge to a function u and its gradient ∇u respectively. The final step consists in proving that u is a renormalized solution to (2.1) by showing that it is possible to pass to the limit in the approximate problems.

Step 1. Approximate problems. For ε > 0, let us define

a ε (x, s, ξ) = a(x, T 1 ε (s), ξ) + ε|ξ| p-2 ξ, Φ ε (x, s) = T 1 ε (Φ(x, s)) and f ε ∈ L p ′ (Ω) such that Ω f ε dx = 0, f ε → f strongly in L 1 (Ω), f ε L 1 (Ω) ≤ f L 1 (Ω) , ∀ε > 0.
Let us denote by u ε one weak solution belonging to W 1,p (Ω) such that med(u ε ) = 0 and (4.1)

Ω a ε (x, u ε , ∇u ε )∇ϕdx + Ω Φ ε (x, u ε )∇ϕdx = Ω f ε ϕdx ,
for every ϕ ∈ W 1,p (Ω). The existence of such a function u ε follows from Theorem 3.1.

Step 2. A priori estimates Using ϕ = T k (u ε ) for k > 0, as test function in (4.1) we have

Ω a ε (x, u ε , ∇u ε )∇T k (u ε )dx + Ω Φ ε (x, T k (u ε ))∇T k (u ε )dx = Ω f ε T k (u ε )dx.
which implies, by (2.2) and (2.5),

α Ω |∇T k (u ε )| p dx ≤ Ω c(x)(1 + |T k (u ε )| p-1 )|∇T k (u ε )|dx + k f L 1 (Ω) .
By Young inequality we get (4.2)

Ω |∇T k (u ε )| p dx ≤ M (k + k p )
for a suitable positive constant M which depends on the data, but does not depend on k and ε. We deduce that, for every k > 0,

T k (u ε ) is bounded in W 1,p (Ω).
Moreover taking into account (2.4) and (4.2), we obtain that for any k > 0

a(x, T k (u ε ), ∇T k (u ε )) is bounded in (L p ′ (Ω)) N
uniformly with respect to ε. Therefore there exists a measurable function u : Ω → R and for any k > 0 there exists a function σ k belonging to (L p ′ (Ω)) N such that, up to a subsequence still indexed by ε,

u ε → u a.e. in Ω, (4.3) T k (u ε ) ⇀ T k (u) weakly in W 1,p (Ω), (4.4) a(x, T k (u ε ), ∇T K (u ε )) ⇀ σ k weakly in (L p ′ (Ω)) N ∀k > 0. (4.5)
Step 3. The function u is finite a.e. in Ω and med(u) = 0.

Since med(u ε ) = 0, Poincaré-Wirtinger inequality allows us to use a logtype estimate (see [START_REF] Cheikh | Nonlinear and non-coercive elliptic problems with integrable data[END_REF][START_REF] Boccardo | Some noncoercive parabolic equations with lower order terms in divergence form[END_REF][START_REF] Droniou | Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method[END_REF][START_REF] Droniou | Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions[END_REF] for similar non coercive problems). We consider the function

Ψ p (r) = r 0 1 (1 + |s|) p ds , ∀r ∈ R.
We observe that med(Ψ p (u ε )) = med(u ε ) = 0. Using Ψ p (u ε ) as test function in (4.1), we get

Ω a ε (x, u ε , ∇u ε ) ∇u ε (1 + |u ε |) p dx + Ω Φ ε (x, u ε ) ∇u ε (1 + |u ε |) p dx = Ω f ε Ψ p (u ε )dx.
By ellipticity condition (2.2), growth condition (2.5) and since

Ψ p (u ε ) L ∞ (Ω) ≤ 1 p -1 , we get α Ω |∇u ε | p (1 + |u ε |) p dx ≤ Ω c(x)(1 + |u ε | p-1 ) |∇u ε | (1 + |u ε |) p dx + 1 p -1 f L 1 (Ω) ≤ C Ω c(x) |∇u ε | (1 + |u ε |) dx + 1 p -1 f L 1 (Ω) ,
where C is a generic and positive constant independent of ε. By Young inequality we deduce (4.6)

Ω |∇u ε | p (1 + |u ε |) p dx ≤ Cp ′ c p ′ L p ′ (Ω) + p ′ p -1 f L 1 (Ω) .
Let us define

Ψ 1 (u ε ) = uε 0 1 (1 + |s|) ds = sign(u ε ) ln(1 + |u ε |).
By (4.6) we have

∇Ψ 1 (u ε ) (L p (Ω)) N ≤ C
and since med(Ψ 1 (u ε )) = 0, Poincaré-Wirtinger inequality leads to

Ψ 1 (u ε ) L p (Ω) ≤ C.
According to the definition of Ψ 1 we obtain that

(4.7) sup ε>0 meas({x ∈ Ω ; |u ε (x)| > A}) ≤ C ln(1 + A)
and this implies that u is finite almost everywhere in Ω.

Since med(u ε ) = 0 for any ε > 0 we also have, for any k > 0, med(T k (u ε )) = 0, for any ε > 0. Due to the point-wise convergence of u ε and to the fact that T k (u) ∈ W 1,p (Ω) we obtain that med(T k (u)) = 0 for any k > 0. It follows that med(u) = 0.

Step 4. We prove

(4.8) lim n→+∞ lim sup ε→0 1 n Ω a ε (x, u ε , ∇u ε )∇T n (u ε )dx = 0.
Using the test function

1 n T n (u ε ) in (4.1) we have 1 n Ω a ε (x, u ε , ∇u ε )∇T n (u ε )dx + 1 n Ω Φ ε (x, T n (u ε ))∇T n (u ε )dx = 1 n Ω f ε T n (u ε )dx , which yields that 1 n Ω a ε (x, u ε , ∇u ε )∇T n (u ε )dx ≤ 1 n Ω |f ε | × |T n (u ε )|dx + 1 n Ω c(x)(1 + |T n (u ε )| p-1 )|∇T n (u ε )|dx.
(4.9)

Due to (4.3) the sequence T n (u ε ) converges to T n (u) as ε goes to zero in

L ∞ (Ω) weak-*. Since f ε strongly converges to f in L 1 (Ω) it follows that lim ε→0 1 n Ω |f ε | × |T n (u ε )|dx = 1 n Ω |f | × |T n (u)|dx.
Recalling that u is finite almost everywhere in Ω, the sequence T n (u)/n converges to 0 as n goes to infinity in L ∞ (Ω) weak-*. Therefore we deduce that (4.10) lim

n→+∞ lim ε→0 1 n Ω |f ε | × |T n (u ε )|dx = 0.
If R is a positive real number which will be chosen later, let us define for any ε > 0 the set

E ε,R = {x ∈ Ω : |u ε (x)| > R}.
We have for any n > R

1 n Ω c(x)(1 + |T n (u ε )| p-1 )|∇T n (u ε )|dx ≤ 1 n Ω\E ε,R c(x)(1 + |T R (u ε )| p-1 )|∇T R (u ε )|dx + 1 n E ε,R c(x)(1 + |T n (u ε )| p-1 )|∇T n (u ε )|dx. (4.11) 
Hölder inequality yields that

1 n Ω\E ε,R c(x)(1 + |T R (u ε )| p-1 )|∇T R (u ε )|dx ≤ 1 + R p-1 n Ω c(x)|∇T R (u ε )|dx ≤ 1 + R p-1 n c L p ′ (Ω) ∇T R (u ε ) (L p (Ω)) N and since T R (u ε ) is bounded in W 1,p (Ω)
uniformly with respect to ε we obtain (4.12) lim

n→+∞ lim sup ε→0 1 n {|uε|≤R} c(x)(1 + |T R (u ε )| p-1 )|∇T R (u ε )|dx = 0.
To control the second term of the right-hand side of (4.11) we distinguish the case p < N and p = N . If p < N we have

p -1 N + (N -p)(p -1) N p + 1 p = 1
so that Hölder inequality gives

1 n E ε,R c(x)(1 + |T n (u ε )| p-1 )|∇T n (u ε )|dx ≤ 1 n c L N/(p-1) (E ε,R ) × meas(Ω) N p/((N -p)(p-1)) + T n (u ε ) L pN/(N-p) (Ω) ∇T n (u ε ) (L p (Ω)) N .
Recalling that med(T n (u ε )) = 0 Poincaré-Wirtinger inequality and Sobolev embedding theorem lead to

1 n E ε,R c(x)(1 + |T n (u ε )| p-1 )|∇T n (u ε )|dx ≤ C n c L N/(p-1) (E ε,R ) 1 + ∇T n (u ε ) p (L p (Ω)) N (4.13)
where C > 0 is a constant independent of n and ε. If p = N , since c belongs to L q (Ω) with q > N N -1 similar arguments lead to

1 n E ε,R c(x)(1 + |T n (u ε )| p-1 )|∇T n (u ε )|dx ≤ C n c L q (E ε,R ) 1 + ∇T n (u ε ) p (L p (Ω)) N (4.14)
where C > 0 is a constant independent of n and ε.

In view of (4.7) and the equi-integrability of c in L q (Ω) (with q = N/(p-1) if p < N and q > N/(N -1) if p = N ) let R > 0 such that for any ε > 0

(4.15) C c L q (E ε,R ) < α 2 ,
where α denotes the ellipticity constant in (2.2). Using the ellipticity condition (2.2) together with (4.9)-(4.15) leads to

1 n Ω a ε (x, u ε , ∇u ε )∇T n (u ε )dx ≤ C n c L q (Ω) + ω(ε, n)
with q = N/(p -1) if p < N and q > N/(N -1) if p = N and where ω(ε, n) is such that lim n→∞ lim sup ε→0 ω(ε, n) = 0. It follows that (4.8) holds.

Step 5. We prove that for any k > 0

lim ε→0 Ω (a(x, T k (u ε ), ∇T k (u ε )) -a(x, T k (u ε ), ∇T k (u))) • (∇T k (u ε ) -∇T k (u))dx = 0. ( 4 

.16)

Let h n defined by (4.17)

h n (s) =        0 if |s| > 2n, 2n -|s| n if n < |s| ≤ 2n, 1 if |s| ≤ n .

Using the admissible test function h

n (u ε )(T k (u ε ) -T k (u)) to (4.1) we have Ω h n (u ε ) a(x, u ε , ∇u ε )(∇T k (u ε ) -∇T k (u))dx = A k,n,ε + B k,n,ε + C k,n,ε + D k,n,ε + E k,n,ε (4.18) 
with

A k,n,ε = Ω h n (u ε )f ε (T k (u ε ) -T k (u))dx, B k,n,ε = - Ω h n (u ε )Φ ε (x, u ε )(∇T k (u ε ) -∇T k (u))dx, C k,n,ε = - Ω h ′ n (u ε )Φ ε (x, u ε )∇u ε (T k (u ε ) -T k (u))dx, D k,n,ε = - Ω h ′ n (u ε ) a ε (x, u ε , ∇u ε )∇u ε (T k (u ε ) -T k (u))dx, E k,n,ε = -ε Ω h n (u ε )|∇u ε | p-2 ∇u ε (∇T k (u ε ) -∇T k (u))dx.
We now pass to the limit in (4.18) first as ε goes to zero and then as n goes to infinity. Due to the point-wise convergence of u ε the sequence T k (u ε ) -T k (u) converges to zero almost everywhere in Ω and in L ∞ (Ω) weak* as ε goes to zero. Since f ε converges to f strongly in L 1 (Ω) we obtain that

lim ε→0 A k,n,ε = lim ε→0 Ω h n (u ε )f ε (T k (u ε ) -T k (u))dx = 0.
For ε < 1/n we have h n (s)Φ ε (x, s) = h n (s)Φ(x, s) for any s ∈ R and a.e. in Ω. Using the point-wise convergence of u ε h n (u ε )Φ ε (x, u ε ) converges to h n (u)Φ(x, u) a.e. in Ω as ε goes to zero while by (2.5) we have

h n (u ε )|Φ ε (x, u ε )| ≤ (1 + (2n) p-1 )c(x). It follows that h n (u ε )Φ ε (x, u ε ) con- verges to h n (u)Φ(x, u) strongly in (L q (Ω)) N with q = N/(p -1) if N > p and q > N/(N -1) if N = p. Due to (4.4) we deduce that lim ε→0 B k,n,ε = -lim ε→0 Ω h n (u ε )Φ ε (x, u ε )(∇T k (u ε ) -∇T k (u))dx = 0.
With arguments already used we also have for any

n ≥ 1/ε lim ε→0 C k,n,ε = -lim ε→0 Ω h ′ n (u ε )Φ ε (x, u ε )∇u ε (T k (u ε ) -T k (u))dx = 0. Since |D k,n,ε | ≤ 2k n {|uε|≤2n} a ε (x, u ε , ∇u ε )∇u ε dx
and due to (4.8) we obtain that

lim n→0 lim sup ε→0 D k,n,ε = 0. The identification h n (u ε )|∇u ε | p-2 ∇u ε = h n (u ε )|∇T 2n (u ε )| p-2 ∇T 2n (u ε ) a.e.
in Ω and estimate (4.2) imply that

h n (u ε )|∇u ε | p-2 ∇u ε (∇T k (u ε ) -∇T k (u))
is bounded in L 1 (Ω) uniformly with respect to ε. It follows that

εh n (u ε )|∇u ε | p-2 ∇u ε (∇T k (u ε ) -∇T k (u))
converges to 0 strongly in L 1 (Ω) so that

lim ε→0 E k,n,ε = 0.
As a consequence we obtain that for any k > 0

lim n→∞ lim sup ε→0 Ω h n (u ε ) a(x, u ε , ∇u ε )(∇T k (u ε ) -∇T k (u))dx = 0.
Recalling that for any n > k, we have

h n (u ε ) a(x, u ε , ∇u ε )∇T k (u ε ) = a(x, u ε , ∇u ε )∇T k (u ε ) a.e. in Ω. It follows that (4.19) lim sup ε→0 Ω a(x, u ε , ∇u ε )∇T k (u ε )dx ≤ lim n→∞ lim sup ε→0 Ω h n (u ε ) a(x, u ε , ∇u ε )∇T k (u)dx.
According to the definition of h n we have

h n (u ε ) a(x, u ε , ∇u ε ) = h n (u ε ) a(x, T 2n (u ε ), ∇T 2n (u ε )) a.e. in Ω
so that (4.3) and (4.5) give

(4.20) lim ε→0 Ω h n (u ε ) a(x, u ε , ∇u ε )∇T k (u)dx = Ω h n (u)σ 2n ∇T k (u)dx. If n > k we have a(x, T n (u ε ), ∇T n (u ε ))χ {|uε|<k} = a(x, T k (u ε ), ∇T k (u ε ))χ {|uε|<k}
almost everywhere in Ω. From (4.3) and (4.5) it follows that

σ n χ {|u|<k} = σ k χ {|u|<k} a.e. in Ω \ {|u| = k}
and then we obtain for any n > k 

σ n ∇T k (u) = σ k ∇T k (u)
a(x, T k (u ε ), ∇T k (u ε ))∇T k (u ε )dx ≤ Ω σ k ∇T k (u)dx.
We are now in a position to prove (4.16). Indeed the monotone character of a implies that for any ε > 0

(4.22) 0 ≤ Ω (a(x, T k (u ε ), ∇T k (u ε )) -a(x, T k (u ε ), ∇T k (u))) • (∇T k (u ε ) -∇T k (u))dx.
Moreover, using the point-wise convergence of T k (u ε ) and assumption (2.4), the function a(x, 21) and (4.22) allow to conclude that (4.16) holds for any k > 0.

T k (u ε ), ∇T k (u)) converges to a(x, T k (u), ∇T k (u)) strongly in (L p ′ (Ω)) N . Writing Ω (a(x, T k (u ε ),∇T k (u ε )) -a(x, T k (u ε ), ∇T k (u)))(∇T k (u ε ) -∇T k (u))dx = Ω a(x, T k (u ε ), ∇T k (u ε ))(∇T k (u ε ) -∇T k (u))dx - Ω a(x, T k (u ε ), ∇T k (u))(∇T k (u ε ) -∇T k (u))dx, using (4.
Step 6. We prove in this step that for any k > 0

a(x, T k (u), ∇T k (u)) = σ k (4.23) a(x, T k (u ε ), ∇T k (u ε ))∇T k (u ε ) ⇀ a(x, T k (u), ∇T k (u))∇T k (u) (4.24)
weakly in L 1 (Ω) as ε goes to zero.

From (4.22) we have for any k > 0

lim ε→0 Ω a(x, T k (u ε ), ∇T k (u ε ))∇T k (u ε )dx = Ω σ k ∇T k (u)dx.
The monotone character of a and the usual Minty argument imply (4.23). From (4.16) we get

(a(x, T k (u ε ), ∇T k (u ε )) -a(x, T k (u ε ), ∇T k (u)))(∇T k (u ε ) -∇T k (u)) → 0
strongly in L 1 (Ω) as ε goes to zero. Using (4.4) and recalling that the sequence a(x,

T k (u ε ), ∇T k (u))) converges to a(x, T k (u), ∇T k (u))) strongly in (L p ′ (Ω))
N the monotone character of a leads to (4.24).

Step 7. We are now in a position to pass to the limit in the approximated problem.

Let h be a function in W 1,∞ (R) with compact support, contained in the interval [-k, k], k > 0 and let ϕ ∈ W 1,p (Ω) ∩ L ∞ (Ω). Using ϕh(u ε ) as a test function in the approximated problem we have

(4.25) Ω h(u ε ) a ε (x, u ε , ∇u ε )∇ϕdx + Ω h ′ (u ε ) a ε (x, u ε , ∇u ε )∇u ε ϕdx + Ω h(u ε )Φ ε (x, u ε )∇ϕdx + Ω h ′ (u ε )Φ ε (x, u ε )∇u ε ϕdx = Ω f ε ϕh(u ε )dx.
We want to pass to the limit in this equality. Since supp h is contained in the interval [-k, k], by the strong converge of f ε to f and (4.3) we immediatly obtain

lim ε→0 Ω f ε ϕh(u ε )dx = Ω f ϕh(u)dx.
Moreover by growth condition (2.5) and (4.3), using Lebesgue convergence theorem we deduce that

lim ε→0 Ω h(u ε )Φ ε (x, u ε )∇ϕdx = Ω h(u)Φ(x, u)∇ϕdx.
Analogously from (4.4) we obtain

lim ε→0 Ω h ′ (u ε )Φ ε (x, u ε )∇u ε ϕdx = lim ε→0 Ω h ′ (u ε )Φ(x, T k (u ε ))∇T k (u ε )ϕdx = Ω h ′ (u)Φ(x, u)∇T k (u)ϕdx.
In view of the definition of a ε and since ε|∇T k (u ε )| p-2 ∇T k (u ε ) converges to zero strongly in (L p ′ (Ω)) N as ε goes to zero, (4.5) and (4.23) imply that

lim ε→0 Ω h(u ε ) a ε (x, u ε , ∇T k (u ε ))∇ϕdx = lim ε→0 Ω h(u ε ) a(x, T k (u ε ), ∇T k (u ε ))∇ϕdx = Ω h(u) a(x, u, ∇T k (u))∇ϕdx. From (4.24) we get lim ε→0 Ω h ′ (u ε ) a ε (x, u ε , ∇u ε )∇u ε ϕdx = lim ε→0 Ω h ′ (u ε ) a(x, T k (u ε ), ∇T k (u ε ))∇T k (u ε ))ϕdx = Ω h ′ (u) a(x, u, ∇T k (u))∇T k (u)ϕdx.
Therefore by passing to the limit in (4.25) we obtain condition (2.12) in the definition of renormalized solution. The decay of the truncated energy (2.11) is a consequence of (4.8) and (4.24). Since u is finite almost everywhere in Ω and since T k (u) ∈ W 1,p (Ω) for any k > 0 we can conclude that u is a renormalized solution to (2.1) and that med(u) = 0.

Stability result and further remarks

This section is devoted to state a stability result and to prove that if the right-hand side f is regular enough, under additional assumptions on a, then any renormalized solution is also a weak solution.

For ε > 0 let f ε belonging to L 1 (Ω) and Φ ε : Ω × R → R N a Carathéodory function. Assume that there exists c ∈ L q (Ω) with q = N/(p -1) if p < N and q > N/(N -1) if p = N such that for any ε > 0 (5.1)

|Φ ε (x, s)| ≤ c(x)(|s| p-1 + 1)
for almost everywhere in Ω and every s ∈ R. For any ε > 0 let u ε be a renormalized solution (having null median) to the problem

(5.2) -div (a (x, u ε , ∇u ε ) + Φ ε (x, u ε )) = f ε in Ω, (a (x, u ε , ∇u ε ) + Φ ε (x, u ε )) • n = 0 on ∂Ω,
where a verifies (2.2)-(2.4). Moreover assume that (

Ω f ε dx = 0, f ε → f strongly in L 1 (Ω) 5.3) 
and for almost every x in Ω (5.4)

Φ ε (x, s ε ) → Φ(x, s) for every sequence s ε ∈ R such that s ε → s
where Φ is a Carathéodory function verifying (as a consequence of (5.1)) the growth condition (2.5)).

Theorem 5.1. Under the assumptions (5.1), (5.2), (5.3), (5.4), up to a subsequence (still indexed by ε) u ε converges to u as ε goes to zero where u is a renormalized solution to (2.1) with null median. More precisely we have

u ε → u a.e in Ω, (5.5) a(x, T k (u ε ), ∇T k (u ε ))∇T k (u ε ) ⇀ a(x, T k (u), ∇T k (u))∇T k (u) (5.6) weakly L 1 (Ω).
Sketch of proof. We mainly follow the arguments developed in the proof of Theorem 4.1. As usual, the crucial point is to obtain a priori estimates, i.e.

T k (u ε ) bounded in W 1,p (Ω), (5.7) a(x, T k (u ε ), ∇T k (u ε )) bounded in (L p ′ (Ω)) N for any k > 0 (5.8) and lim n→+∞ lim sup ε→0 1 n Ω a(x, u ε , ∇u ε )∇T n (u ε )dx = 0. (5.9)
Even if T k (u ε ) is not an admissible test function in the renormalized formulation (see Definition 2.2) it is well known that it can be achieved through the following process. Using h = h n , where h n is defined in (4.17), and ϕ = T k (u ε ) in the renormalized formulation (2.12) we have, for any n > 0 and any k > 0 (5.10)

Ω h n (u ε ) a(x, u ε , ∇u ε )∇T k (u ε )dx + Ω h ′ n (u ε ) a(x, u ε , ∇u ε )∇u ε T k (u ε )dx + Ω h n (u ε )Φ ε (x, u ε )∇T k (u ε )dx + Ω h ′ n (u ε )Φ ε (x, u ε )∇u ε T k (u ε )dx = Ω f ε T k (u ε )h n (u ε )dx.
We now pass to the limit as n goes to infinity. In view of the definition of h n for any n > k we have

Ω h n (u ε ) a(x, u ε , ∇u ε )∇T k (u ε )dx = Ω a(x, u ε , ∇u ε )∇T k (u ε )dx and Ω h n (u ε )Φ ε (x, u ε )∇T k (u ε )dx = Ω Φ(x, u ε )∇T k (u ε )dx.
Since u ε is finite almost everywhere in Ω, the function h n (u ε ) converges to 1 in L ∞ (Ω) weak*, so that

lim n→+∞ Ω f ε T k (u ε )h n (u ε )dx = Ω f ε T k (u ε )dx.
Due to (2.11), we get

lim n→+∞ Ω h ′ n (u ε ) a(x, u ε , ∇u ε )∇u ε T k (u ε )dx = 0.
It remains to control the behavior of the forth term to the right hand side of (5.10). Since we have

Ω h ′ n (u ε )Φ ε (x, u ε )∇u ε T k (u ε )dx ≤ k n Ω |Φ ε (x, u ε )| × |∇T 2n (u ε )|dx recalling (2.13) we obtain that lim n→+∞ Ω h ′ n (u ε )Φ ε (x, u ε )∇u ε T k (u ε )dx = 0.
It follows that passing to the limit as n goes to infinity in (5.10) leads to (5.11)

Ω a(x, u ε , ∇u ε )∇T k (u ε )dx + Ω Φ(x, u ε )∇T k (u ε )dx = Ω f ε T k (u ε )dx
and then assumptions on a, Φ ε and f ε give (5.7) and (5.8).

For the same reasons following Step 2 in the proof of Theorem 4.1, there exists a function u such that, up to a subsequence still indexed by ε, u ε → u a.e. in Ω,

T k (u ε ) ⇀ T k (u) weakly in W 1,p (Ω), a(x, T k (u ε ), ∇T k (u ε )) ⇀ σ k weakly in (L p ′ (Ω)) N ∀k > 0,
where σ k belongs to L p ′ (Ω) for any k > 0.

Using a similar process to one used to obtain (5.11) we get (5.12)

Ω a(x, u ε , ∇u ε ) ∇u ε (1 + |u ε |) p dx + Ω Φ ε (x, u ε ) ∇u ε (1 + |u ε |) p dx = Ω f ε Ψ p (u ε )dx,
where Ψ p (r) = r 0 1 (1+|s|) p ds. Therefore the arguments developed in Steps 3 and 4 imply that u is finite almost everywhere in Ω and lead to (5.9). Because the sequel of the proof uses mainly admissible test function in the renormalized formulation and the monotone character of the operator we can repeat the same arguments to show that u is a renormalized solution to (2.1) with null median. In particular following Steps 5 and 6 (see (4.24) in the proof of Theorem 4.1) allow to obtain that (5.6) hold. Now we prove that if a(x, r, ξ) is a classical Leray-Lions operator verifying (3.4) and if f ∈ L q with q ≤ (p * ) ′ then any renormalized solution to (2.1) is also a weak solution to (2.1) belonging to W 1,p (Ω). Proposition 5.2. Assume that (2.2), (2.3), (2.5), (2.6) and (3.4) hold. Let u be a renormalized solution to (2.1) with med(u) = 0. If f ∈ L q (Ω) with q ≤ (p * ) ′ if N > p and q < +∞ if N = p then u belongs to W 1,p (Ω) and

Ω a(x, u, ∇u)∇vdx + Ω Φ(x, u)∇vdx = Ω f vdx for any v ∈ W 1,p (Ω).
Proof. Let u be a renormalized solution to (2.1). We can proceed as in the proof of Theorem 5.1 and we obtain (5.11). Then we have (5.13)

Ω a(x, u, ∇u)∇T k (u)dx + Ω Φ(x, u)∇T k (u)dx = Ω f T k (u)dx.
Using (2.2), (2.5) and the regularity of f we obtain

α Ω |∇T k (u)| p dx ≤ Ω c(x)(1 + |u| p-1 )|∇T k (u)|dx + f L q (Ω) T k (u) L q ′ (Ω) .
Let R > 0 be a real number which will be chosen later and denote

E R = {x ∈ Ω ; |u(x)| > R}.
Using again med(T k (u)) = 0, Poincaré-Wirtinger inequality and Sobolev embedding Theorem we have

α Ω |∇T k (u)| p dx ≤ Ω c(x)|∇T k (u)|dx + E R c(x)|u| p-1 |∇T k (u)|dx + Ω\E R c(x)|u| p-1 |∇T k (u)|dx + f L q (Ω) T k (u) L q ′ (Ω) . If follows that Ω |∇T k (u)| p dx ≤ C ∇T k (u) (L p (Ω)) N + c L q (E R ) ∇T k (u) p (L p (Ω)) N + R p-1 ∇T R (u) (L p (Ω)) N
where C > 0 depends on α, f , N , p, meas(Ω), c but is independent of k. Since u is finite a.e. in Ω, lim R→+∞ meas(E R ) = 0. By the equi-integrability of c in L q (Ω) we can choose R > 0 such that C c L q (E R ) is sufficiently small enough so that

Ω |∇T k (u)| p dx ≤ C ∇T k (u) (L p (Ω)) N + R p-1 ∇T R (u) (L p (Ω)) N where C > 0 does not depend on k. It follows that Ω |∇T k (u)| p dx ≤ C
where C > 0 depends on α, f , N , p, Ω, c, R but is independent of k. Since med(T k (u)) = 0 Poincaré-Wirtinger inequality implies that T k (u) is bounded in W 1,p (Ω) uniformly with respect to k. Therefore we conclude that u belongs to W 1,p (Ω).

Using the renormalized formulation (2.12) with h = h n and passing to the limit as n goes to infinity leads to

Ω a(x, u, ∇u)∇vdx + Ω Φ(x, u)∇vdx = Ω f vdx (5.14)
for any v ∈ L ∞ (Ω) ∩ W 1,p (Ω). Due to growth assumptions (3.4) on a and (2.5) on Φ we deduce that a(x, u, ∇u) and Φ(x, u) belong to (L p ′ (Ω)) N . It follows that (5.14) holds for any v ∈ W 1,p (Ω).

Operator with a zero order term

In this section we consider Neumann problems which are similar to (1.1) with a zero order term. Precisely let us consider the following Neumann problem

(6.1) λ(x, u) -div (a (x, u, ∇u) + Φ(x, u)) = f in Ω, (a (x, u, ∇u) + Φ(x, u)) • n = 0 on ∂Ω where λ : Ω × R is a Carathéodory function verifying λ(x, s)s ≥ 0, (6.2) ∀k > 0, ∃c k > 0 such that |λ(x, s)| ≤ c k ∀|s| ≤ k, a.e. in Ω, (6.3) ∀s ∈ R |λ(x, s)| ≥ g(s) a.e. in Ω (6.4)
where g is function such that lim s→±∞ g(s) = +∞.

If f belongs to L 1 (Ω) and without additional growth assumptions on g we cannot expect to have in general a solution (in whatever sense) lying in L 1 (Ω) and then we have similar difficulties to deal with (6.1). In particular the presence of λ(x, u) does not help to deal with the term -div(Φ(x, u)) and we cannot follow the approach of [START_REF] Andreu | Quasi-linear elliptic and parabolic equations in L 1 with nonlinear boundary conditions[END_REF][START_REF] Droniou | Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method[END_REF][START_REF] Droniou | Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions[END_REF][START_REF] Prignet | Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure[END_REF] which use the mean value. However the "median" tool and some modifications of the proof of Theorem 4.1 allow to show that there exists at least a renormalized solution to (6.1): Theorem 6.1. Assume (2.2)-(2.6) and (6.2)-(6.4). If the datum f belongs to L 1 (Ω) then there exists at least one renormalized solution u to problem (6.1).

Sketch of proof.

As in Theorem 3.1, a fixed point theorem and classical results of Leray-Lions give the existence of u ε belonging to W 1,p (Ω) verifying

(6.5) ε Ω |u ε | p-2 u ε vdx + Ω λ(x, T 1/ε (u ε ))vdx + Ω a(x, T 1/ε (u ε ), ∇u ε )∇vdx + Ω Φ(x, T 1/ε (u ε ))∇vdx = Ω T 1/ε (f )vdx
for any v lying in W 1,p (Ω). Due to the zero order term ε|u ε | p-2 u ε + λ(x, T 1/ε (u ε )) in the equation, we do not need any compatibility condition on f . The counter part is that we cannot expect to have (or to fix) med(u ε ) = 0 and then it yields another difficulties. In particular Steps 3 and 4 (see the proof of Theorem 4.1) which use strongly the fact that the solution has a null median should be adapted in the case of the approximated problem (6.5).

Step 2 is unchanged and we have the following and additional estimate where M is a positive real number independent of ε. It follows (after extracting appropriate subsequence, see Step 2) that there exists a measurable function u which is finite almost everywhere in Ω such that u ε → u a.e. in Ω, T k (u ε ) ⇀ T k (u) weakly in W 1,p (Ω), ∀k > 0.

Step 4 which is crucial in dealing with renormalized solutions consists here in proving that (6.9) lim n→+∞ lim sup ε→0 1 n Ω a(x, u ε , ∇u ε )∇T n (u ε )dx = 0 using the test function T n (u ε ) in (6.5). Due to the sign condition (6.2) the contribution of the zero order terms

ε Ω |u ε | p-2 u ε T n (u ε )dx + Ω λ(x, T 1/ε (u ε ))T n (u ε )dx
is positive. It follows that the inequality (4.9) holds:

1 n Ω a(x, u ε , ∇u ε )∇T n (u ε )dx ≤ 1 n Ω |T 1/ε (f )| × |T n (u ε )|dx + 1 n Ω c(x)(1 + |T n (u ε )| p-1 )|∇T n (u ε )|dx.
Because we do not have in the present case the property med(u ε ) = med(T n (u ε )) = 0 we have to modify the estimate of the term 

(6. 6 )

 6 T 1/ε (g(u ε )) bounded in L 1 (Ω).Due to the behavior at infinity of the function g we deduce that lim A→+∞ sup ε>0 meas{x ∈ Ω; |u ε (x)| > A} = 0, (6.7) ∀ε > 0 |med(u ε )| ≤ M (6.8)

1 +

 1 |T n (u ε )| p-1 )|∇T n (u ε )|dx.In view of (6.8) we have for any n > 0 and for any ε > 0 |med(T n (u ε ))| ≤ M . It follows that by writingT n (u ε ) = T n (u ε ) -med(T n (u ε )) + med(T n (u ε )) we obtain 1 n Ω c(x)(1 + |T n (u ε )| p-1 )|∇T n (u ε )|dx ≤ C n Ω c(x)(1 + |T n (u ε ) -med(T n (u ε ))| p-1 )|∇T n (u ε )|dx (6.11)where C > 0 is a constant independent of ε and n. Poincaré-Wirtinger inequality (2.8), similar arguments to the ones developed in Step 4 and (6.8) then allow conclude that (6.9) holds. As far as Step 5 is concerned, it is sufficient to remark that the Lebesgue Theorem yields thatlim n→+∞ lim ε→0 ε Ω h n (u ε )|u ε | p-2 u ε (T k (u ε ) -T k (u))dx = 0 lim n→+∞ lim ε→0 Ω h n (u ε )λ(x, T 1/ε (u ε ))(T k (u ε ) -T k (u))dx = 0.Since Step 6 remains unchanged, in Step 7 we pass to the limit as ε goes to zero inε Ω h(u ε )|u ε | p-2 u ε ϕdx + Ω h(u ε )λ(x, T 1/ε (u ε ))ϕdx + Ω h(u ε ) a(x, u ε , ∇u ε )∇ϕdx + Ω h ′ (u ε ) a(x, u ε , ∇u ε )∇u ε ϕdx + Ω h(u ε )Φ(x, u ε )∇ϕdx + Ω h ′ (u ε )Φ(x, u ε )∇u ε ϕdx = Ω T 1/ε (f )ϕh(u ε )dxwhere h is a Lispchitz continuous function with compact support and where ϕ lies in W 1,p (Ω) ∩ L ∞ (Ω). Since the Lebesgue Theorem gives thatlim ε→0 ε Ω h(u ε )|u ε | p-2 u ε ϕdx = 0 lim ε→0 Ω h(u ε )λ(x, T 1/ε (u ε ))ϕdx = Ω h(u)λ(x, u)ϕdxthe attentive reader may convince by himself that we obtain the existence of a renormalized solution to equation (6.1).

  a.e. in Ω.

	Therefore (4.19) and (4.20) allow to conclude that
	(4.21)	lim sup
		ε→0	Ω
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