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STATIONARY SOLUTIONS WITH VACUUM FOR A

ONE-DIMENSIONAL CHEMOTAXIS MODEL WITH

NON-LINEAR PRESSURE

F. BERTHELIN1, D. CHIRON2, AND M. RIBOT1

Abstract. In this article, we study a one-dimensional hyperbolic quasi-
linear model of chemotaxis with a non-linear pressure and we consider
its stationary solutions, in particular with vacuum regions. We study
both cases of the system set on the whole line R and on a bounded
interval with no-flux boundary conditions. In the case of the whole line
R, we find only one stationary solution, up to a translation, formed
by a positive density region (called bump) surrounded by two regions
of vacuum. However, in the case of a bounded interval, an infinite of
stationary solutions exists, where the number of bumps is limited by the
length of the interval. We are able to compare the value of an energy of
the system for these stationary solutions. Finally, we study the stability
of these stationary solutions through numerical simulations.

1. Introduction

The movement of cells, bacteria or other microorganisms following the
gradient of a chemical concentration, known as chemoattractant, has been
widely studied in mathematics in the last two decades [15, 24]. Partial
differential equations models have been proposed to describe the complex
behavior of such system, whose two main unknowns are the density of cells
or bacteria and the concentration of chemoattractant. One of the most
considered models is the Patlak-Keller-Segel system [17, 23], where the
evolution of the density of cells is described by a parabolic equation of drift-
diffusion type, and the concentration of a chemoattractant is generally given
by a parabolic or elliptic equation, depending on the different regimes to be
described. The behavior of this system is quite well known now, at least for
linear diffusions: in the one-dimensional case, the solution is always global
in time [19], while in two and more dimensions the solutions exist globally in
time or blow up according to the size of the initial data, see [4, 5]. However,
a drawback of this model is that the diffusion leads alternatively to a fast
dissipation or an explosive behavior, while in general we are interested in
the creation of patterns, like in the vasculogenesis process.
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In order to improve the modeling of the phenomena we deal with, two
kinds of modifications of the Keller-Segel equation can be considered. The
first one is to introduce a non linear pressure, as in [18, 3]. In that case the
Keller-Segel-like system with nonlinear diffusion reads as:

{

∂tρ=∂x(∂xp(ρ)−χρ∂xφ),
δ∂tφ=D∂xxφ+aρ−bφ,

(1.1)

where ρ is the density of cells, φ is the concentration of chemoattractant and
χ,D, a and b are given positive parameters. If δ=1, we consider a parabolic-
parabolic model and in the case where δ=0, we deal with a parabolic-elliptic
model. The coupling between the two equations can be described as follows:
the drift term χ(ρφx)x stands for the movement of the cells towards the
gradient of concentration of the chemoattractant, whereas the source term
aρ indicates that the chemoattractant is produced by the cells themselves.
The function p is a phenomenological, density dependent function, which is
given by the pressure law for isentropic gases

p(ρ)=κργ , γ >1, κ>0, (1.2)

which takes into account the fact that cells do not interpenetrate since
they have a non zero volume. Overcrowding may also be prevented by the
modeling of a volume-filling effect, see [14, 22]. Let us also mention some
very recent works on a similar subject [2] where the authors study the steady
states and their stability of a Keller-Segel type system with a more general
potential. An adapted numerical scheme to this problem is developed in [6]
using the gradient flow structure and interesting numerical simulations are
presented.

The second type of modifications consists in studying hyperbolic-
parabolic or hyperbolic-elliptic models, which are more likely to show fine
transient behaviors. We consider consequently a quasilinear hyperbolic
model of chemotaxis introduced by Gamba et al. [12] to describe the
early stages of the vasculogenesis process. In this model, three unknowns
are present: the density of cells ρ(x,t), their momentum ρu(x,t) and the
concentration φ(x,t) of the chemoattractant. The model reads as







∂tρ+∂x(ρu)=0,
∂t(ρu)+∂x(ρu

2+p(ρ))=χρ∂xφ−αρu,
δ∂tφ=D∂

2
xxφ+aρ−bφ,

(1.3)

where the constants are D,χ,α>0, a,b≥0. The term αρu represents the
damping force and the pressure p is still given by the pressure law for
isentropic gases (1.2). This model of chemotaxis has been introduced to
describe the results of in vitro experiments performed by Serini et al. [26]
using human endothelial cells which, randomly seeded on a matrigel, formed
complex patterns with structures depending on the initial number of cells.

However, as far as we know, only a few analytical results exist for system
(1.3). In [9, 10], the authors prove the global in time existence of solutions
if the initial datum is a small perturbation of a small enough constant
stationary solution. This proof is valid for the Cauchy problem set on the
whole line R, when the vacuum is not reached. The main difficulty relies in
the fact that some vacuum regions, i.e. where the density vanishes, appear in
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finite time and that the hyperbolic system (1.3) becomes degenerate in such a
case. Although vacuum regions can be avoided in gas dynamics models, it is
of great importance to have such a possibility in models for biology, where
some regions may be clear of any cells, as in the vasculogenesis process.
Some related results are given in [16] about the local existence of solutions
for the compressible Euler equations with damping and vacuum, but without
chemotaxis or in [13] where they study the 1D compressible Euler-Poisson
equations with moving physical vacuum boundary condition in order to to
describe the motion of a self-gravitating inviscid gaseous star. However,
many articles deal with the study of stationary solutions with vacuum of
the Euler-Poisson system in the context of polytropic gaseous stars [8, 25].

As for the numerical point of view, some interesting numerical simulations
in 2D and 3D can be found in [1] or [7]. In [21], an adapted numerical scheme
based on unwinding technique was developed in order to compute efficiently
the time behavior of the solutions of system (1.3) in 1D. This scheme
was proved to preserve the positivity of solutions and a discrete version
of stationary solutions of (1.3). Some numerical simulations for different
values of γ show that we find asymptotically a wide range of stationary
solutions and that most of them seem stable. This numerical scheme was
improved in [20] considering the large time-large damping limit of (1.3)
towards the Keller-Segel system (1.1) with δ=0, leading to an asymptotic-
preserving scheme. Some numerical simulations enable to compare the
asymptotic behavior of the hyperbolic system (1.3) and the asymptotic
behavior of the parabolic system (1.1) and surprisingly, these behaviors may
be different. However, the validation of the scheme is not so obvious and
a first computation of some stationary solutions with vacuum in the case
γ=2 was made in [21] in order to validate the numerical simulations.

In this article, we push forward these computations in order to have a
very precise idea of all the possible configurations of stationary solutions.
We also compute an energy for all these solutions and we compare them.
More precisely, we consider stationary solutions for (1.3) either on the whole
line R or on a bounded domain Ω⊂R with no-flux boundary conditions

∂xρ=0, ∂xφ=0, ρu=0 on ∂Ω.

In both cases, the momentum ρu vanishes and the two density functions ρ
and φ would satisfy the following system, defining β≥0 as b=Dβ2 :

{

∂xp(ρ)=χρ∂xφ,
D∂2xxφ+aρ−Dβ

2φ=0.
(1.4)

We also impose that the densities remain positive, namely

ρ,φ≥0 (1.5)

and that they have the following regularities

ρ∈C0(Ω), φ∈C2(Ω).

Some constant in space stationary solutions are obvious solutions to
equation (1.4). Now, let us consider stationary solutions with vacuum.
In the following, we will call ”bump” a region with a nonnegative density
surrounded by two regions of vacuum and ”half bump” will be a bump cut
in its middle and stuck to an extremity of the interval.
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Unless in the degenerate case γ=1 [11], where the solutions remain always
strictly positive, the value of the parameter γ is not clear in the biological
context and we have to keep all the values of γ strictly larger than 1 under
consideration, since vacuum may appear for all these cases. Note that the
previous mentioned numerical results are valid for different values of γ >1.
However, we mainly focus in this article on the pressure (1.2) for γ=2,
which is the only case with exact and tractable analytical expressions for the
solutions of system (1.4). In particular, the first equation of (1.4) simplifies
as ǫρ∂xρ=χρ∂xφ which leads to ρ=0 or ερ=χφ−K with K constant.
These two relations give two types of intervals: the ones where ρ is null
and the ones where ρ is strictly positive. We may then find some conditions
to construct a solution with a transition between these two types of intervals.
Among them, the following relation between the parameters of the system
is necessary: aχ−bε>0. Otherwise, when aχ−bε≤0, only the already
mentioned constant solutions exist. From these conditions, we may prove
the following results.

First, on the whole line R, once the mass of the solution is fixed, there
exists a unique stationary solution up to a translation, made of one bump.
Then, on a bounded interval [0,L], things are much more complicated:
first, once the length L of the interval is fixed, only a finite number of
configurations are possible. More precisely, we can construct (at least) one
k half bumps solution under the following condition linking the length of

the domain and the parameters of the system: L≥
kπ

ω
, where ω2=

aχ

Dε
−β2.

Notice that, in this formula, a bump corresponds to two half bumps. Now, if
the length of the domain is large enough and once the mass of the solution is
fixed, we can construct two half bumps, one on the right of the interval and
one on the left and we can also construct a unique bump. However, a striking
fact is that there exists a continuum of two bumps solutions, parametrized
by the length of vacuum in the interval. For the two bumps solution, we
can also find a continuum of two half bumps solutions or of one bump and
a half bump solutions. Some of these stationary solutions are displayed on
Figure 3.

Finally, we may compare analytically the energy of all these stationary
solutions and we show that the constant solution has the larger energy,
whereas the half bump solution, when it exists, has the smallest energy
and we expect, therefore, this solution to be the stable one. The numerical
simulations presented in the last section exhibit some sets of parameters for
which the half bump seems to be indeed the only stable solution. However,
for some other sets of parameters, a wide range of stationary solutions look
stable in our numerical experiments.

This article is organized as follows: in Section 2, we give two preliminaries
for the following study, that is to say we define a suitable energy for system
(1.3) and we also study the condition to have a transition between a region
with a positive density and a region with a null density. In Section 3, we are
then able to prove that, in the case of the whole line R, the only stationary
solution is the one composed of one bump. The case of a bounded interval
with no-flux boundary conditions is much more complicated and is detailed
in Section 4: in this section, we prove the existence of different types of
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stationary solutions, we compute the energy of each of these solutions and
we compare them. Finally in section 5, we present a numerical study of the
stability of the previous mentioned stationary solutions.

2. Preliminaries

We begin this article with some preliminaries which will be useful in the
following. In Subsection 2.1, we give an energy estimate and in Subsection
2.2, we study in details under which condition we may find a transition
between a region with positive density and a region with a vanishing density.

2.1. Energy estimate. Let us define the energy density

j(ρ,u,φ)(x,t)=
1

2
ρu2+Γ(ρ)−χρφ+

χDβ2

2a
φ2+

χD

2a
(∂xφ)

2, (2.1)

where

ρΓ′′(ρ)=p′(ρ). (2.2)

In particular for γ=2, when p(ρ)=
ε

2
ρ2, we have Γ(ρ)=

ε

2
ρ2=p(ρ).

Energy for a stationary solution. We begin by computing an expression of
energy for the stationary solutions, which will enable us later on to compare
the stationary states one to another. In the case of a stationary solution
satisfying system (1.4) and u=0, the energy is therefore defined as:

J =

∫

Ω
Γ(ρ)−χρφ+

χDβ2

2a
φ2+

χD

2a
(∂xφ)

2dx, (2.3)

where Ω is a subset of R. In the following, we will consider the case Ω=R or
the case Ω=[0,L]. Notice that for a H1(Ω) solution of (1.4), the following
equality holds

0=

∫

Ω
φ(D∂2xxφ+aρ−Dβ

2φ)dx=−

∫

R

D(∂xφ)
2dx+

∫

Ω
φ(aρ−Dβ2φ)dx

that is to say
∫

Ω

χDβ2

2a
φ2+

χD

2a
(∂xφ)

2dx=

∫

Ω

χ

2
φρdx.

Thanks to this last equality, we may simplify (2.3) and we find the following
expression for the energy of a stationary state:

J =

∫

Ω
Γ(ρ)−

χ

2
φρdx. (2.4)

Energy estimate. In the following proposition, we prove an energy
estimate.

Proposition 2.1. Let us consider some smooth enough functions (ρ,u,φ)
solutions of system (1.3) set on Ω⊂R. We have the following energy
dissipation estimate for all (x,t)∈Ω×R

+

∂tj(ρ,u,φ)+∂x

(

1

2
ρu3+uΨ(ρ)−χρuφ−

χD

a
∂tφ∂xφ

)

= −ρu2−
χ

a
(∂tφ)

2≤0, (2.5)



6 F. BERTHELIN, D. CHIRON, AND M. RIBOT

where j is defined at equation (2.1), Γ at equation (2.2) and

Ψ(ρ)=ρΓ′(ρ). (2.6)

Proof. From the first equation of system (1.3), we get

∂t(
1

2
ρu2)+∂x(

1

2
ρu3)=u

(

∂t(ρu)+∂x(ρu
2)
)

and, thus, the second equation of (1.3) implies

∂t(
1

2
ρu2)+∂x(

1

2
ρu3)=u(−∂xp(ρ)+χρ∂xφ−ρu) . (2.7)

Noticing that

ρu∂xφ=∂x(ρuφ)−φ∂x(ρu)=∂x(ρuφ)+φ∂tρ=∂x(ρuφ)+∂t(ρφ)−ρ∂tφ,

equation (2.7) can be rewritten as

∂t(
1

2
ρu2−χρφ)+∂x(

1

2
ρu3−χρuφ)=−u∂xp(ρ)−ρu

2−χρ∂tφ. (2.8)

Now, we can compute

∂tΓ(ρ)+∂x(uΨ(ρ))=(Ψ′(ρ)−Γ′(ρ))u∂xρ+(Ψ(ρ)−Γ′(ρ)ρ)∂xu,

which becomes, thanks to (2.2) and (2.6),

∂tΓ(ρ)+∂x(uΨ(ρ))=p′(ρ)u∂xρ. (2.9)

Combining equations (2.8) and (2.9), we have

∂t(
1

2
ρu2−χρφ+Γ(ρ))+∂x(

1

2
ρu3−χρuφ+uΨ(ρ))=−χρ∂tφ−ρu

2. (2.10)

Considering now the third equation of system (1.3), we obtain

∂t

(

χb

2a
φ2+

χD

2a
(∂xφ)

2

)

+∂x

(

−
χD

a
∂tφ∂xφ

)

=
χb

a
φ∂tφ+

χD

a
∂xφ∂

2
txφ−

χD

a
∂2xtφ∂xφ−

χD

a
∂tφ∂

2
xxφ

=
χ

a
∂tφ

(

bφ−D∂2xxφ
)

=
χ

a
∂tφ(aρ−∂tφ). (2.11)

Finally, the addition of equations (2.10) and (2.11) gives the energy
estimate(2.5), which concludes the proof. �

Unfortunately, the variational structure obtained in the previous
proposition is not enough to prove some stability results for the stationary
solutions we deal with. Indeed, since ρ vanishes on some intervals, the
condition ρ,φ≥0 may be saturated and the natural set where we wish to
define the energy functional is not an open subset of a linear function space.
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2.2. Study of the transitions between vacuum and positivity
region. We consider in this subsection a stationary solution (ρ,φ) satisfying
system (1.4) for γ=2, i.e. with a pressure equal to

p(ρ)=
ε

2
ρ2, (2.12)

that is to say
{

ερ∂xρ=χρ∂xφ,
D∂2xxφ+aρ−Dβ

2φ=0,
(S)

and we study under which condition a transition may occur between an
interval where ρ is positive and an interval where ρ vanishes. The aim is to
describe what happens in the case of a stationary ”bump”, that is to say a
region with ρ positive, surrounded by two vanishing regions.

Proposition 2.2. Let M>0. We consider a solution (ρ,φ) satisfying
system (S) on an interval Ω⊂R, with ρ∈C0(Ω), φ∈C2(Ω), ρ, φ≥0 and

such that

∫

Ω
ρ(x)dx=M . We assume that ω2def=

aχ

Dε
−β2>0.

(i) If ρ>0 on an interval I=]x̄,x̄+ l[⊂R, then










φ(x)=−Acos(ω(x− x̄))+B sin(ω(x− x̄))+
aK

Dεω2
,

ρ(x)=−
Aχ

ε
cos(ω(x− x̄))+

Bχ

ε
sin(ω(x− x̄))+

β2K

εω2
;

(2.13)

with A,B,K some constants depending on I.
(ii) If ρ=0 on an interval J =]x̄−d,x̄[ ⊂R, then

φ(x)=P+eβ(x−x̄)+P−e−β(x−x̄), (2.14)

with P+,P− constants depending on J .
(iii) If we consider a transition at a point x̄ between J =]x̄−d,x̄[, where

ρ vanishes, and I=]x̄,x̄+ l[, where ρ is strictly positive, the constants of
equations (2.13) and (2.14) satisfy the following inequalities:

A,B,P+≥0, P−≤P+. (2.15)

(iv) The maximum length of the interval I=]x̄,x̄+ l[ where ρ is positive
is given by the following formula:

l=
2

ω

(

π−arctan(
B

A
)

)

. (2.16)

(v) If we consider now the transition at a point x̄+ l between I=]x̄,x̄+ l[,
where ρ is strictly positive and J ′=]x̄+ l, ȳ[, where ρ vanishes, and if we
denote by (P ′)+,(P ′)− the constants such that

φ(x)=(P ′)+eβ(x−ȳ)+(P ′)−e−β(x−ȳ)

on J ′, then

(P ′)+=P−eβ(ȳ−x̄−l) and (P ′)−=P+e−β(ȳ−x̄−l). (2.17)

(vi) Finally, the mass of a solution defined by expression (2.13) on an
interval I=]x̄,x̄+ l[ with l given by equation (2.16) is equal to

M =
2Aχ

εω

(

π−arctan(
B

A
)+

B

A

)

. (2.18)
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Proof. (i) Firstly, let us consider the case where ρ>0 on an interval
I=]x̄,x̄+ l[⊂R. From the first equation of (S), ρ∈C1(I) and, therefore,
using expression (2.12) of the pressure we have on this interval that

{

p′(ρ)∂xρ=ερ∂xρ=χρ∂xφ,
D∂2xxφ+aρ−Dβ

2φ=0.

Thus

∂x(ερ−χφ)=0,

and

ρ=
1

ε
(χφ−K), (2.19)

with K constant (depending on I).
Inserting this expression into the second equation of (S) gives

D∂2xxφ+
a

ε
(χφ−K)−Dβ2φ=0,

that is to say

∂2xxφ+
( aχ

Dε
−β2

)

φ=
aK

Dε
. (2.20)

It follows that the sign of the coefficient
aχ

Dε
−β2 will be crucial, and we focus

in this proposition on the case, denoted by Case (P):
aχ

Dε
−β2=ω2>0. The

general solution of (2.20) is then given by (2.13).
(ii) Secondly, let us consider the case where ρ=0 on an interval J =

]x̄−d,x̄[⊂R. The first equation of (S) is satisfied and the second one
becomes

∂2xxφ−β
2φ=0,

whose solution is given by (2.14).
(iii) We pursue the computations in Case (P) and we study the transition

between J =]x̄−d,x̄[ (where ρ vanishes) and I=]x̄,x̄+ l[ (where ρ is strictly
positive) at a point x̄. From the expressions given at equations (2.13)
and (2.14) and using the continuity of ρ,φ,∂xφ at x̄, we find the following
equalities linking the different constants one to another:























−
Aχ

ε
+
β2K

εω2
=0,

−A+
aK

Dεω2
=P++P−,

Bω=β(P+−P−),

that is to say



























A=
β2

χω2
K,

A
ω2

β2
=P++P−,

Bω=β(P+−P−).

(2.21)

Now, let us find some sign conditions for the constants. On the right
side of x̄, ρ is strictly positive, thus ρ′(0+)≥0 which gives B≥0 and
thus P+−P−≥0. Moreover, constraints (1.5), namely ρ,φ≥0, imply in
particular φ(0)≥0 , that is P++P−≥0 and thus A≥0. Now P+−P−≥0
and P++P−≥0 imply P+≥0. Summing up, the conditions are then

A,B,P+≥0, P−≤P+.

(iv) Conversely, we are looking now on which interval ρ remains strictly
positive and what is the right extremity of this interval. Using relations
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(2.21), we may rewrite the expression (2.13) for ρ as

ρ(x)=
Aχ

ε
(1−cos(ω(x− x̄)))+

Bχ

ε
sin(ω(x− x̄)). (2.22)

We distinguish three cases:
Case (I): If A=0 and B>0, then ρ(x)>0 if x∈]x̄,x̄+π/ω[ and ρ(x̄+

π/ω)=0.
Case (II): If A>0 and B=0, then ρ(x)>0 if x∈]x̄,x̄+2π/ω[ and

ρ(x̄+2π/ω)=0.
Case (III): If A>0 and B>0, simple computations lead to the following

expression

ε

χ
ρ(x)=Asin(ω(x− x̄))

(

tan(ω(x− x̄)/2)+
B

A

)

, (2.23)

thus ρ(x)>0 if x∈]x̄,x̄+π/ω[, whereas (2.13) gives ρ(x̄+π/ω)>0.
Furthermore equation (2.23) also gives ρ(x)>0 on ]x̄+π/ω,x∗[ and ρ(x∗)=0
with

ω(x∗− x̄)/2=π−arctan(
B

A
).

Remark that, since φ= 1
χ(ερ+K) on I with K≥0, we also have φ>0

whenever ρ>0.
Summing up cases (I), (II) and (III), we obtain from this study the length

l of the interval I=]x̄,x̄+ l[ where ρ is positive, namely:

l=x∗− x̄=
2

ω

(

π−arctan(
B

A
)

)

for A≥0,B≥0.

Remark that from this expression, we recover cases (I) and (II), that is to
say

l=π/ω if A=0,B>0, l=2π/ω if A>0,B=0.

(v) Now, let us go further and study the transition at x̄+ l from a region
I=]x̄,x̄+ l[ where ρ is positive to a region J ′=]x̄+ l, ȳ[ where ρ vanishes.
From (2.14), the functions on the region J ′ are of the form ρ(x)=0 and

φ(x)=(P ′)+eβ(x−ȳ)+(P ′)−e−β(x−ȳ).

Following the previous technique, we use the continuity of φ and ∂xφ at
point x̄+ l and we obtain







K

χ
=(P ′)+eβ(l−ȳ+x̄)+(P ′)−e−β(l−ȳ+x̄),

Aω sin(ωl)+Bωcos(ωl)=β(P ′)+eβ(l−ȳ+x̄)−β(P ′)−e−β(l−ȳ+x̄).
(2.24)

Notice that the continuity of ρ gives no condition here.
Using expression (2.16), it is straightforward to show that

Aω sin(ωl)+Bωcos(ωl)=−Bω

Note (see (2.21) and (2.24)) that both couples (X=P+,Y =P−) and (X=

(P ′)−e−β(l−ȳ+x̄),Y =P−=(P ′)+eβ(l−ȳ+x̄)) satisfy the linear system






X+Y =
K

χ
,

β(X−Y )=Bω.
(2.25)

By unicity (β 6=0) of the solution to (2.25), we get formula (2.17).
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(vi) The final step is to find a formula for the mass of the bump as
a function of the constants A and B. From (2.22) and (2.16), a simple
computation gives, in the case when A>0,

M =

∫ x̄+l

x̄
ρ(x)dx

=
χ

ε

∫ x̄+ 2

ω (π−arctan(B
A
))

x̄
A(1−cos(ω(x− x̄)))+B sin(ω(x− x̄))dx

=
2Aχ

εω

(

π−arctan(
B

A
)+

B

A

)

.

It is extended by continuity when A=0 by:

M =
2Bχ

εω
. (2.26)

�

Remark 2.3. In the following, we call Case (P), the case of the previous

proposition where
aχ

Dε
−β2=ω2>0. We can follow the sketch of the previous

proof in the other cases. However, the result differs and it is impossible to
construct a bump in those cases. More precisely,

Case (N ):
aχ

Dε
−β2=−ω2<0. The general solution of (2.20) is then











φ(x)=Acosh(ω(x− x̄))+B sinh(ω(x− x̄))−
aK

Dεω2
,

ρ(x)=
Aχ

ε
cosh(ω(x− x̄))+

Bχ

ε
sinh(ω(x− x̄))−

β2K

εω2
.

(2.27)

For the transition between J and I at a point x̄, relations (2.21) and
inequalities (2.15) remain unchanged. However, the expression of ρ in
I=]x̄,x̄+ l[ becomes

ρ(x)=
Aχ

ε
(cosh(ω(x− x̄))−1)+

Bχ

ε
sinh(ω(x− x̄)) (2.28)

and thus never vanishes for x>x̄.

Case (Z):
aχ

Dε
−β2=0. The general solution of (2.20) is then











φ(x)=A+B(x− x̄)+
aK

2Dε
(x− x̄)2,

ρ(x)=
Aχ−K

ε
+
Bχ

ε
(x− x̄)+

Kβ2

2ε
(x− x̄)2.

(2.29)

Relations (2.21) become










Aχ−K

ε
=0,

A=P++P−,
B=β(P+−P−),

that is to say







Aχ=K,
A=P++P−,
B=β(P+−P−).

(2.30)

Then, we shall have ρ≥0 in [x̄,x̄+ l] only if B≥0, and then

ρ(x)=
Bχ

ε
(x− x̄)+

Kβ2

2ε
(x− x̄)2

remains always positive.
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Remark 2.4. In the case when γ 6=2, equation (2.19) is replaced by

χφ=
ε

γ
ργ+K

for some constant K. Reporting in the second equation of system (S) gives,
with the condition φ≥K/χ,

∂2xxφ+
a

D

(γ(χφ−K)

ε

)
1

γ
−β2φ=0,

that we may recast under the form of a Newton type equation

2∂2xxφ+
d

dφ

{ 2aε2

Dχ(γ+1)

(γ(χφ−K)

ε

)
γ+1

γ
−β2φ2

}

=0.

We know from numerical simulations [21, 20] that stationary solutions with
vacuum also exist in this case. However, exhibiting them analytically is much
more complicated than in the case γ=2 since no explicit computations are
available.

3. Stationary problem (S) on R

In this section, we consider the case where a solution of system (S) is
defined on the whole line R. We first construct a single bump as a stationary

solution of the system in the Case (P), when
aχ

Dε
−β2=ω2>0, then we will

show that we cannot find any solution with a higher number of bumps.

3.1. A single bump on R in Case (P). Let us begin with Case (P), for

which
aχ

Dε
−β2=ω2>0 and let us prove that we can construct a ”one-bump”

solution in that case.

Proposition 3.1. Let M>0. We assume that
aχ

Dε
−β2=ω2>0. Among

the solutions (ρ,φ) satisfying system (S) on R, with ρ∈C0(R), φ∈C2(R)∩

H1(R), ρ, φ≥0 and such that

∫

R

ρ(x)dx=M , there exists a unique ”one

bump” stationary solution, up to a translation, defined on R by the following
expressions:

ρ(x)=















0 for x<x̄,
M

I

χ

ε

(

(1−cos(ω(x− x̄)))+
ω

β
sin(ω(x− x̄))

)

for x̄≤x≤ x̄+ l,

0 for x>x̄+ l,

and

φ(x)=































M

I

ω2

β2
eβ(x− x̄), for x<x̄,

M

I

(

−cos(ω(x− x̄))+
ω

β
sin(ω(x− x̄))+

aχ

εβ2

)

, for x̄≤x≤ x̄+ l,

M

I

ω2

β2
e−β(x− x̄− l), for x>x̄+ l,

with

I=
2χ

εω

(

π−arctan(
ω

β
)+

ω

β

)

>0 and l=
2

ω

(

π−arctan(
ω

β
)

)

.
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The energy of such solution, as defined at equation (2.4), is equal to

J♭(M)=−
εω3M2

4β2(π−arctan(
ω

β
)+

ω

β
)
. (3.1)

Proof. Following the results of Proposition 2.2, we can use the following
expressions for ρ and φ, defined on R,

ρ(x)=











0, for x<x̄,

−
Aχ

ε
cos(ω(x− x̄))+

Bχ

ε
sin(ω(x− x̄))+

β2K

εω2
, for x̄≤x≤ x̄+ l,

0, for x>x̄+ l,

and

φ(x)=











P+eβ(x−x̄)+P−e−β(x−x̄), for x<x̄,

−Acos(ω(x− x̄))+B sin(ω(x− x̄))+
aK

Dεω2
, for x̄≤x≤ x̄+ l,

(P ′)+eβ(x−ȳ)+(P ′)−e−β(x−ȳ), for x>x̄+ l.

Since φ∈H1(R), we have φ(x) →
±∞

0, from which we deduce that P−=0 and

that (P ′)+=0 with (2.17). We are then able to express all the constants
given by (2.17) and (2.21) as a function of A as follows:

K=
χω2

β2
A, P+=

ω2

β2
A, B=

ω

β
A, (P ′)−=

ω2

β2
e−β(ȳ−x̄−l)A,

and, from equation (2.16), l=
2

ω

(

π−arctan(
ω

β
)

)

. The remaining constant

A can be rewritten in term of the mass M using equation (2.18), namely

A=
M

2χ

εω

(

π−arctan(
ω

β
)+

ω

β

) .

Using equation (2.4), we are now able to compute the energy of a ”one-
bump” solution as a function of the mass M and of the parameters of the
system:

J♭(M)=
1

2

∫

R

(ερ2−χφρ)dx=
1

2

∫ x̄+l

x̄
ρ(ερ−χφ)dx=−

K

2

∫ x̄+l

x̄
ρdx

=−
χω2

2β2
AM =−

εω3M2

4β2(π−arctan(ωβ )+
ω
β )
.

�

Remark 3.2. The bump is symmetric with respect to x̄+ l
2 = x̄+

1
ω

(

π−arctan(ωβ )
)

. This is clear outside the region [x̄,x̄+ l] and for x inside
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this region, the symmetry derives from the formula

−cos(ω(x− x̄))+
ω

β
sin(ω(x− x̄))=

1
√

1+ ω2

β2

{

cos(π−arctan(
ω

β
))

×cos(ω(x− x̄))+sin(π−arctan(
ω

β
))sin(ω(x− x̄))

}

=
1

√

1+ ω2

β2

cos
(

ω(x− x̄)−π+arctan(
ω

β
)
)

.

We exhibit on Figure 1 the graphs of the functions ρ and φ defined in
Proposition 3.1, for two different values of the parameters ω and β.

Figure 1. A one-bump solution defined by the function ρ
(in red) and the function φ (in green) for two different values
of the parameters (ω,β), namely (1,0.5) on the left and (1,10)
on the right.

3.2. Several bumps on R in Case (P). In the following proposition, we
prove that we cannot have a solution defined by a finite or a countable
number of bumps on the whole real line R. The contradiction will be
obtained using the expressions for the constants (2.17) and (2.21) and the
signs (2.15), in the case of a finite number of bumps, or using the finite value
of the total mass, in the case of a countable number of bumps.

Proposition 3.3. Let M>0. We assume that
aχ

Dε
−β2=ω2>0. We

consider a solution (ρ,φ) satisfying system (S) on R, with ρ∈C0(R),

φ∈C2(R), ρ, φ≥0 and such that

∫

R

ρ(x)dx=M . There exists no solution

defined on R by a finite number N ≥2 or by a countable number of bumps
as described in Proposition 2.2.

Proof. In the current proof, we will use the notations displayed on Figure 2.

(i) Assume that we have a finite number of bumps, numbered by 1,2, · · · ,N
with N ≥2. Since φ∈H1(R), we have φ(x) →

±∞
0, which leads in expression

(2.14) to P−
1 =0 and to P+

2 =0, P−
2 =P+

1 e
−β(ȳ−x̄−l), using equations (2.17).
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Figure 2. Notations for the proof of Proposition 3.3.

We obtain now, from equation (2.21), the following expression for the

constant for the second bump: B2ω=β(P+
2 −P−

2 )=−βP+
1 e

−β(ȳ−x̄−l). We
find therefore a contradiction between this expression and the signs (2.15)
of the constants, namely P+

1 >0 and B2>0.
(ii) Assume now that we have a countable infinite number of bumps,

indexed by n, n∈Z (or n∈N). We define by Mn the mass of the n-th
bump. Equation (2.17) yields that the product P+

n P
−
n is constant. This

constant cannot be zero unless one of the terms P+
n or P−

n vanishes. In that
case, either P−

n =0 or P−
n+1=0, since P+

n =0 implies P−
n+1=0 from equation

(2.17). As before, the same contradiction for Bn or Bn+1 with the signs
(2.15) occurs. Therefore,

the product P+
n P

−
n is constant, non zero. (3.2)

From now on, we consider the value of the mass. The total mass

M =
∑

n∈Z

Mn should be finite, leading to Mn →
n→+∞

0. Since the following

inequalities hold: Mn≥
2χπ

εω
An≥0 from equation (2.18), we can conclude

that An →
n→+∞

0. Since P+
n ≥0 (and P−

n ≥0, using equation (2.17)), equation

(2.21) also gives that P+
n →

n→+∞
0 and P−

n →
n→+∞

0 , which is in contradiction

with equation (3.2). �

Remark 3.4. In the Case (N ) and Case (Z), that is to say if
aχ

Dε
−β2=

−ω2≤0, we can prove that there is no stationary solution.

4. Stationary problem (S) on a bounded interval [0,L]⊂R : a

bifurcation diagram

In this section, we will show that, unlike the previous results, it is possible
to construct multi-bumps solutions of system (S):

{

ερ∂xρ=χρ∂xφ,
D∂2xxφ+aρ−Dβ

2φ=0,
(S)
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Figure 3. Various stationary solutions: constant (in green),
one lateral half bump (in red), one central bump (in blue),
two bumps with minimal energy (in black), two symmetric
bumps with maximal energy (in cyan). The parameters are
the following: κ=1, χ=10, D=0.1, a=20, b=10, L=1 and
M =10.

on a bounded interval [0,L] of R, satisfying the following Neumann boundary
conditions:

∂xρ(x)=0, ∂xφ(x)=0, on x=0,L. (4.1)

The number of bumps of these solutions depends on the length of the interval
and on the parameters of the system. We will study successively different
types of solutions, namely constant solutions in Subsection 4.1, single bump
in Subsection 4.2, a half-bump at the boundary in Subsection 4.3, two bumps
in Subsection 4.4, two half bumps at the boundaries in Subsection 4.5, one
bump and a half in Subsection 4.6. We display some of these solutions in
Figure 3.

For each type of solution, we will also compute the corresponding energy
and we will compare those energies one to another. In Figure 4, we
present the above mentioned stationary solutions on a bifurcation diagram
by plotting their energy as a function of the length L of the domain. It is
quite easy to see that we may construct a continuous family of solutions
with an arbitrary number of bumps by putting several bumps side by side
as soon as the length L of the interval is sufficiently large. We plot these
curves using these formulas which will be proved in the following:

• equation (4.2) for the energy of the constant solution,
• equation (4.16) for the energy of the half bump solution,
• equation (4.6) for the energy of the 1 bump solution,
• expression of Proposition 4.7 for the energy of the 2 half bumps
solution,

• equation (4.18) for the energy of the 2 bumps solution.

Figure 4 is therefore the summary of al the computed solutions in the next
subsections.
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Figure 4. Bifurcation diagram of the energies of different
types of stationary solutions (constant, half bump, 2 half
bumps, 1 bump, 2 bumps...) as a function of the length L of
the domain

In most of this section, we will consider only the case Case (P), when
aχ

Dε
−β2=ω2>0.

4.1. Constant states. Let M>0. The only positive, constant in space,
solution to (S) of mass M is given by

(ρ,φ)=
(M

L
,
aM

LDβ2

)

,

whatever the sign of
aχ

Dε
−β2. The energy of this solution is given by

JCte(M,L)=
εM2

2Lβ2

(

β2−
aχ

εD

)

. (4.2)

In particular, in the case when
aχ

Dε
−β2>0, this energy is negative and

increases with L up to 0 as L→+∞.

From now on, we concentrate on the case when
aχ

Dε
−β2>0.

4.2. A single bump inside the interval [0,L]. In this section, we study
the possibility of having a single bump solution to (S) inside the interval
[0,L]. For that purpose, we will use the results of Proposition 2.2 and the
notations are explained in Figure 5. We split the interval [0,L] into three
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Figure 5. Notations used in Subsection 4.2 for the case of
a single bump inside the interval [0,L]

parts: the left hand-side ]0,d0[ and the right hand-side ]d0+ l1,L[ , where the
function ρ vanishes and the center interval ]d0,d0+ l1[, where ρ is positive
and which corresponds to the bump. The constraint on the length of the
interval reads

d0+ l1+d1=L. (4.3)

We introduce two functions, which will be useful in the following:

H :R+∋d 7→2d+
2

ω

[

π−arctan
(ω

β
tanh(βd)

)]

(4.4)

and

g :R+∋d→π−arctan
(ω

β
tanh(βd)

)

+
ω

β
tanh(βd). (4.5)

In particular, we will show later on that constraint (4.3) may be written
under the simple form H(d0)=L.

In the following proposition, the construction of such a bump is given
and it is shown that its energy is smaller than the energy of the constant
solutions computed at the previous subsection.

Proposition 4.1. Let L>0 and M>0. There exists a stationary solution
of system (S) with one single bump inside the interval [0,L], satisfying (4.1)

if and only if L≥
2π

ω
, in which case it is unique and symmetric with respect

to L/2.
The energy of such solution is equal to

J1♭(M,L)=−
εω3M2

4β2g◦H−1(L)
, (4.6)

where H and g are defined at equations (4.4) and (4.5), and satisfies the
following properties:
(i) The function L 7→J1♭(M,L) defined on [2π/ω,+∞[ increases from

−
εω3M2

4πβ2
to J♭(M), defined at equation (3.1).
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(ii) For every L>
2π

ω
, J1♭(M,L)<JCte(M,L).

(iii) J1♭(M,
2π

ω
)=JCte(M,

2π

ω
) and 0<

∂J1♭

∂L
(M,

2π

ω
)<

∂JCte

∂L
(M,

2π

ω
).

Proof. On the interval ]0,d0[, which corresponds to the left hand-side of
the interval [0,L], the function ρ vanishes and the equation (2.14) gives the

following expression for the function φ: φ(x)=P+
1 e

β(x−d0)+P−
1 e

−β(x−d0).
The boundary condition ∂xφ(0)=0 implies that

P+
1 e

−βd0 =P−
1 e

βd0 (4.7)

and the second boundary condition ∂xρ(0)=0 is satisfied since ρ=0 on
]0,d0[.

We now consider the interval ]d0+ l1,L[, which corresponds to the right

hand-side of the interval [0,L]. We obtain the expression φ(x)=P+
2 e

β(x−L)+

P−
2 e

−β(x−L) from equation (2.14). In the same way, the boundary condition
∂xφ(L)=0 leads to

P+
2 =P−

2 (4.8)

and the second boundary condition ∂xρ(L)=0 is satisfied since ρ=0 on
]d0+ l1,L[.

Finally, on the center part ]d0,d0+ l1[ of the interval [0,L] we can write,
using equation (2.13)











φ(x)=−A1cos(ω(x− x̄))+B1 sin(ω(x− x̄))+
aK1

Dεω2
,

ρ(x)=−
A1χ

ε
cos(ω(x− x̄))+

B1χ

ε
sin(ω(x− x̄))+

β2K1

εω2
.

Let us study now how the transitions at points d0 and d0+ l1 link the
constants A1, B1,K1, P

+
1 , P

−
1 , P

+
2 , P

−
2 defined above. We use the relations

(2.21), corresponding to the transition of ρ,φ,∂xφ at d0, and we obtain the
three following equations:























A1=
β2

χω2
K1,

A1
ω2

β2
=P+

1 +P−
1 ,

B1ω=β(P+
1 −P−

1 ).

(4.9)

The transition at point d0+ l1 and the relation (2.17) give

P+
2 =P−

1 e
β(L−d0−l1)=P−

1 e
βd1 and P−

2 =P+
1 e

−β(L−d0−l1)=P+
1 e

−βd1 (4.10)

using equation (4.3). Therefore, relations (4.7), (4.8) and (4.10) give

P+
1 (1−e2β(d0−d1))=0. (4.11)

If P+
1 =0, then P−

1 =P+
2 =P−

2 =0 and we get the trivial solution A1=B1=
K1=0. Therefore, equation (4.11) implies that

d0=d1.

Now, we consider the length of the bump given by (2.16). It is equal to

l1=
2

ω

(

π−arctan(
B1

A1
)

)

=
2

ω

(

π−arctan(
ω

β
tanh(βd0))

)

.
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Figure 6. Graph of function H

Thus we get from (4.3), using that d1=d0,

H(d0)=2d0+
2

ω

(

π−arctan(
ω

β
tanh(βd0))

)

=L. (4.12)

Notice that the function H depends only on the parameters ω, β of the
system and not on the length L of the interval and is continuously increasing
from 2π/ω to +∞. Indeed,

H ′(d)=
2tanh2(βd)

1+ ω2

β2 tanh
2(βd)

(ω2

β2
+1

)

>0 (4.13)

for d>0. The graph of function H is given in Figure 6.
Finally, using formulas (2.18), (4.9) and (4.7), the mass of the bump is

equal to

M =
2χβ2

εω3
P+
1 (1+e−2βd0)

(

π−arctan(
ω

β
tanh(βd0))+

ω

β
tanh(βd0)

)

=
2χβ2

εω3
P+
1 (1+e−2βd0)g(d0). (4.14)

We can now conclude on the existence of a one-bump solution. For L<
2π

ω
,

we cannot find d0≥0 such that H(d0)=L, hence there is no solution to

(4.12) and no bump solution. For L≥
2π

ω
, there is exactly one solution to

(4.12). With this value of d0, relation (4.14) gives the value of P+
1 (since M

is fixed). Then (4.7) gives P−
1 , (4.10) gives P−

2 and P+
2 and (4.9) gives A1,

B1 and K1. Thus we have find exactly one bump solution. Its energy (using
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(2.4)) is given by

J1♭(M,L)=
1

2

∫ d0+l1

d0

ρ(ερ−χφ)dx=−
K1

2

∫ x̄+l1

x̄
ρdx=−

χω2

2β2
A1M

=−
εω3M2

4β2g(d0)
, where H(d0)=L.

At last, let us prove some properties on the energy J1♭(M,L). Since

g′(d)=
ω3

β2
(1−tanh2(βd))tanh2(βd)

1+ ω2

β2 tanh
2(βd)

=
ω3

β2
tanh2(βd)

cosh2(βd)(1+ ω2

β2 tanh
2(βd))

>0,

(4.15)

andH is increasing, it follows that J1♭(M,L)=−
εω3M2

4β2g◦H−1(L)
is increasing

with L. Furthermore, as L→+∞, we recover the situation of section 3.1,
and in particular:

J1♭(M,L)=−
εω3M2

4β2g◦H−1(L)
→J♭(M)=−

εω3M2

4β2(π−arctan(ωβ )+
ω
β )
.

We may also compute the following expansions when d→0,

g(d)=π−arctan
(ω

β
tanh(βd)

)

+
ω

β
tanh(βd)=π+

(ωd)3

3
+O(d5),

and

H(d)−
2π

ω
=2d−

2

ω
arctan

(ω

β
tanh(βd)

)

=
2

3
(ω2+β2)d3+O(d5).

Thus, as L→
2π

ω
,

g◦H−1(L)=π+
ω3

ω2+β2

(

L−
2π

ω

)

+O
(

(L−
2π

ω
)5/3

)

,

which implies

J1♭(M,L)=−
εω3M2

4β2π
+

εω6M2

4β2π2(ω2+β2)

(

L−
2π

ω

)

+O
(

(L−
2π

ω
)5/3

)

.

Observe that the expansion of JCte(M,L) given in (4.2) near L= 2π
ω is equal

to

JCte(M,L)=−
εω2M2

2Lβ2
=−

εω3M2

4πβ2
+
εω4M2

8π2β2

(

L−
2π

ω

)

+O
(

(L−
2π

ω
)2
)

,

which implies that
∂J1♭

∂L
(M,

2π

ω
)<

∂JCte

∂L
(M,

2π

ω
).

Finally, we may compare JCte(M,L) and J1♭(M,L) easily. Indeed,
J1♭(M,L)<JCte(M,L) is equivalent to

2g(d)<ωH(d),

with L=H(d). By definition of g and H, we have, for d≥0,

ωH(d)−2g(d)=2ω
(

d−
1

β
tanh(βd)

)

,

which is clearly positive for d>0 by concavity of the function tanh. �
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Figure 7. Notations for the case of half bump on the
boundary of the interval [0,L]

4.3. Half bump on the boundary of the interval [0,L]. Since the
single bump solution constructed in the previous section is symmetric with
respect to L/2, it is easy to see that if we keep only the part 0≤x≤L/2
or L/2≤x≤L, then we obtain a solution in an interval of length L/2 but
with half mass. Conversely, due to Neumann boundary condition (4.1), it is
clear that if we have a solution with ρ>0 in [0,ℓ[ and ρ=0 on [ℓ,L], then ρ
must be equal to the restriction of the bump constructed in Proposition 4.1
on half of the interval. We call this type of solution ”half bump”. We also
prove in the following proposition that its energy is smaller than the energy
of the constant solutions described in subsection 4.1 and than the energy
of the bump of subsection 4.2 of the same mass on an interval of the same
length.

Proposition 4.2. Let L>0 and M>0.There exists a stationary solution
to system (S)-(4.1) with half bump on the boundary of the interval [0,L] if

and only if L≥
π

ω
, in which case it is unique up to the symmetry with respect

to L/2. Its energy is equal to

J 1

2
♭(M,L)=

1

2
J1♭(2M,2L)=2J1♭(M,2L)=−

εω3M2

2β2g◦H−1(2L)
(4.16)

and satisfies the following properties:
(i) The function L 7→J 1

2
♭(M,L) defined on [π/ω,+∞[ increases from

−
εω3M2

2πβ2
to 2J♭(M)=−

εω3M2

2β2(π−arctan(ωβ )+
ω
β )

, where J♭(M) is defined at

equation (3.1).

(ii) For every L>
π

ω
, the inequality J 1

2
♭(M,L)<JCte(M,L) holds.

(iii) J 1

2
♭(M,

π

ω
)=JCte(M,

π

ω
) and 0<

∂J 1

2
♭

∂L
(M,

π

ω
)<

∂JCte

∂L
(M,

π

ω
).

(iv) For every L≥
2π

ω
, J 1

2
♭(M,L)<J♭(M,L).

Proof. The expression of the energy follows by considering a bump of mass
2M in the interval of length 2L and dividing the result by two. Hence,
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points (i), (ii) and (iii) come from (i), (ii) and (iii) in Proposition 4.1 and
form the fact that in view of (4.2), JCte(2M,2L)=2JCte(M,L). It remains
to show (iv), and this is a direct consequence of the following lemma.

Lemma 4.3. Let ℓ≥2π/ω be given and let us define θ0≡2π/(ℓω)∈]0,1].
Then, the function

θ 7→
g(H−1(θℓ))

θ
defined on ]θ0,+∞[

is decreasing.

We apply this lemma with ℓ=L≥2π/ω and we deduce from the
monotonicity that

g(H−1(L))>
g(H−1(2L))

2
,

which is exactly the desired inequality for (iv), using formulas (4.6) and
(4.16).

Proof of Lemma 4.3. We denote ψ(θ)=θ−1g(H−1(θℓ)) and d=d(θ)=
H−1(θℓ). Then, for θ>θ0,

ψ′(θ)=
g′(d(θ))d′(θ)

θ
−
g(d(θ))

θ2
,

hence
(

θ2ψ′(θ)
)′
=θ

(

g′(d(θ))d′(θ)
)′
.

Since d′(θ)= ℓ/H ′(d(θ)), and using the derivatives of H and g expressed at
equations (4.13) and (4.15), we deduce

g′(d(θ))d′(θ)=
ℓω3

2(β2+ω2)
(1−tanh2(βd(θ))),

which is a decreasing function of θ (d increases). Therefore, θ 7→θ2ψ′(θ) is
decreasing. For θ=θ0, d=0 thus, by definition of θ0,

θ20ψ
′(θ0)=θ0g

′(d(θ0))d
′(θ0)−g(d(θ0))=

ℓθ0ω
3

2(β2+ω2)
−π

=
πω2

β2+ω2
−π=−

πβ2

β2+ω2
<0.

As a consequence, θ2ψ′(θ) is negative for θ>θ0, and the result follows.

4.4. Two bumps inside the interval. We investigate in this section the
existence of a solution consisting of two bumps inside the interval [0,L] as
shown in Figure 8. We shall see that a two bumps solution is necessarily the
concatenation of two one bump solutions as defined at Proposition 4.1, set
on two smaller intervals. Moreover, there exists a one parameter family of
two bumps solutions, parametrized by d0 (see Figure 8). Then the parameter
d2 and the masses M1 and M2 of the two bumps are uniquely defined. To
define the masses, the following function is needed:

G(d)=cosh(βd)

(

π−arctan(
ω

β
tanh(βd))+

ω

β
tanh(βd)

)

=cosh(βd)g(d),
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Figure 8. Notations for the case of two bumps inside the
interval [0,L]

where g is defined at equation (4.5). Since g is increasing, from equation
(4.15), it is clear that G is the product of two positive increasing functions,
hence is a positive increasing function.

In the following proposition, we will also show that among all the
configurations with two bumps inside the interval, the one corresponding
to d0=0 is the one with the smallest energy, whereas the symmetric one,
satisfying d0=d2 is the one with the highest energy.

Proposition 4.4. Let L>0 and M>0. There exists a continuum of
stationary solutions to system (S)-(4.1) with two bumps inside the interval

[0,L] if and only if L≥
4π

ω
.

In this case (see Figure 8), the solution may be parametrized by the
parameter d0 with 0≤d0≤d♯≡H

−1(L/2), corresponding to the first bump.
The second bump is defined by the parameter d2 which satisfies the relation
L=H(d0)+H(d2) and the masses of the two bumps are defined by

(M1,M2)=M
( G(d0)

G(d0)+G(d2)
,

G(d2)

G(d0)+G(d2)

)

. (4.17)

The symmetric configuration with respect to L/2 is also a stationary
solution.

Its energy is then given by

J2♭(M,L,d0)=J1♭(M1,L1)+J1♭(M2,L2)

=−
εω3M2

1

4β2g(d0)
−

εω3M2
2

4β2g(d2)
, (4.18)

and satisfies the following properties:
(i) The function d→J2♭(M,L,d) defined on [0,d♯] is increasing.

(ii) For L>
4π

ω
, the following inequalities hold:

JCte(M,L)>J2♭(M,L,d♯)=2J1♭(M/2,L/2)=
1

2
J1♭(M,L/2)>J1♭(M,L).
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(iii) J2♭(M,
4π

ω
,0)=JCte(M,

4π

ω
) and 0<

∂J2♭

∂L
(M,

4π

ω
,0)<

∂JCte

∂L
(M,

4π

ω
).

(iv) As L→+∞, J2♭(M,L,0)→J♭(M), defined at equation (3.1), and
J2♭(M,L,d♯)→

1
2J♭(M)= 1

2J1♭(M,∞).

Remark 4.5. In the case L=
4π

ω
, the continuum of solutions degenerates

into a unique 2 bumps solution.

Proof. We use the notations of Figure 8. We begin to prove that a two-
bumps solution is necessarily the concatenation of two one bump solutions
as defined at Proposition 4.1, set on two smaller intervals. The length of the
total interval is

L=d0+ l1+d1+ l2+d2 (4.19)

and we look for a relation linking parameters d0, d1 and d2. Inspired by
equations (4.7) and (4.8), the boundary conditions give

P−
1 =P+

1 e
−2βd0 , P−

3 =P+
3 . (4.20)

and the transition conditions (2.17) imply

P+
2 =P−

1 e
βd1 ,P−

2 =P+
1 e

−βd1 ,P+
3 =P−

2 e
βd2 ,P−

3 =P+
2 e

−βd2 . (4.21)

Combining the relations (4.20) and (4.21) (and since we assume P1 6=0), we
get

d1=d2+d0. (4.22)

Let us now consider the point y≡2d0+ l1=L−(2d2+ l2)∈ [0,L] (in view of
(4.19) and (4.22)). The solution on [0,y] satisfies the Neumann boundary
condition (4.1) on the boundary x=0. The bump being symmetric, the
derivatives of ρ and φ vanish at y. In particular, (ρ,φ)|[0,y] is actually a
single bump solution in the interval [0,y]. Similarly, (ρ,φ)|[y,L] is also a
single bump solution in the interval [y,L].

Conversely, let us decompose L=L1+L2, and assume that we have two
single bumps: one in the interval [0,L1], and the other one in the interval
[L1,L]. Let us determine all the constraints so that when we concatenate the
two bumps, we obtain a solution in the interval [0,L]. First, note that since
Lj ≥2π/ω (j=1, 2), this already imposes L=L1+L2≥4π/ω. Second, the
total mass M must be equal to M1+M2. Once (L1,L2,M1,M2) are given
such that L=L1+L2 and M =M1+M2, the two bumps are completely
determined, which means that, for the moment, we have two free parameters.
The relation (4.12) holds for the two bumps, hence

H(d0)=L1 and H(d2)=L2. (4.23)

Furthermore, since (ρ,φ) solves the system (S) in ]0,L1[ and in ]L1,L[, (ρ,φ)
is a solution near L1 if and only if it is continuous. Indeed, their derivatives
is zero by the Neumann condition (4.1). Since ρ is zero near L1 on the right
and on the left, we are reduced to verify the relation φ(0)=φ(L). Indeed,
φ(0) (resp. φ(L)) is the value of φ at the left (resp. right) of L1 due to the
symmetry of the bumps, see Remark 3.2. Using equations (2.14) and (4.7),
we have

φ(0)=P+
1 e

−βd0 +P−
1 e

+βd0 =2P+
1 e

−βd0 ,
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and we express consequently the mass M1 as a function of φ(0) thanks to
equation (4.14):

M1=
2χβ2

εω3
P+
1 (1+e−2βd0)g(d0)=φ(0)

2χβ2

εω3
G(d0).

We have then the relations

M1=φ(0)
2χβ2

εω3
G(d0) and M2=φ(L)

2χβ2

εω3
G(d2),

arguing symmetrically in [L1,L]. Therefore, the condition φ(0)=φ(L) is
equivalent to

M1

G(d0)
=

M2

G(d2)
(4.24)

and we have now only one parameter free.
Let us determine to which interval the parameters d0 and d2 (and the

masses M1 and M2) belong. Since L>4π/ω, we may define d̂>0 as the

solution to H(d̂)=L−2π/ω, which corresponds to the value of d2 (resp.
d0) whenever d0=0 (resp. d2=0). Then, using equations (4.23), the

relation L=H(d0)+H(d2)≥2π/ω+H(d0) imposes d0≤ d̂, and also d2≤ d̂

by symmetry. Notice that M1=
MG(d0)

G(d0)+G(d2)
=

M

1+G(d2)/G(d0)
is then a

decreasing function of d0, which varies between
M

1+G(0)/G(d̂)
=

M

1+π/G(d̂)

and
M

1+G(d̂)/π
. Therefore, if we want to fix the masses M1 and M2, with

M1+M2=M , they have to satisfy

M1,M2∈
] M

1+ G(d̂)
π

,
M

1+ π
G(d̂)

[

,

or, equivalently,

M1

M2
∈
] π

G(d̂)
,
G(d̂)

π

[

.

We notice that the masses M1 and M2 are bounded away from 0 by a
constant depending on L.

Then, recalling that we started from two one bump solution of mass M1

(resp. M2) set on an interval of length L1 (resp. L2), the two parameters
(d0,d2) have to solve

M1

G(d0)
=

M2

G(d2)
and L=L1+L2=H(d0)+H(d2)

by (4.23) and (4.24). This system has a unique solution: if we let d0 increase,
then d2 decreases by the second relation, since H is an increasing function;
on the contrary, forM1 andM2 given, if we let d0 increase, then d2 increases
by the first relation, since G is a decreasing function. Hence we find a unique
solution d2 as a function of d0.

As a consequence, we have obtained a continuous one parameter family of
solutions with two bumps, that we may parametrize by L1∈ [2π/ω,L−2π/ω[

or, equivalently, by d0∈ [0, d̂[. The parameter d2∈ [0, d̂[ is given by the
relation L=H(d0)+H(d2). Moreover, the masses (M1,M2) must satisfy
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the relation M =M1+M2 and the equation (4.24), which give exactly one
solution computed at equation (4.17).

Now, let us consider the energy of the two bumps solutions we constructed.
One may wonder what are the variations of the energy when L1 or,
equivalently, d0 varies and if a single bump solution has less energy than
these solutions with two bumps. For the solution with two bumps, using
the definition of the energy of a single bump (4.6), the energy is given by
formula (4.18), that is to say

J2♭(M,L,d0)=J1♭(M1,L1)+J1♭(M2,L2)

=−
εω3M2

1

4β2g(d0)
−

εω3M2
2

4β2g(d2)
,

with d2 defined by L=H(d0)+H(d2) and M1,M2 by (4.17). The function

J2♭ is seen as a function of the single variable d0∈ [0, d̂[. Moreover, since
we may assume d0≤d2 by symmetry, it is natural to define d♯ to be
the solution of L=2H(d♯) and to work only for d0∈ [0,d♯]. Observe that

2H(d♯)=L=H(d̂)+H(0)≤2H(d̂), thus, H being increasing, d♯≤ d̂. Let us
prove now the following lemma, which corresponds to point (i) of Proposition
4.4, that is to say the energy for a two bumps solution increases with d0.

Lemma 4.6. Let L≥4π/ω and M>0 be given. Then, the function
J2♭(M,L, ·) is increasing on [0,d♯].

Proof. Since H ′(d0)+H
′(d2)∂d0d2=0, we compute

−H ′(d2)
4β2

εω3

dJ2♭

dd0

=H ′(d2)
∂

∂d0

( M2
1

g(d0)
+

M2
2

g(d2)

)

−H ′(d0)
∂

∂d2

( M2
1

g(d0)
+

M2
2

g(d2)

)

=H ′(d2)
{2M1∂d0M1

g(d0)
−
M2

1 g
′(d0)

g2(d0)
+
2M2∂d0M2

g(d2)

}

−H ′(d0)
{2M2∂d2M2

g(d2)
−
M2

2 g
′(d2)

g2(d2)
+
2M1∂d2M1

g(d0)

}

.

We now report, from (4.17),

∂M1

∂d0
=−

∂M2

∂d0
=M

G(d2)G
′(d0)

(G(d0)+G(d2))2

and
∂M1

∂d2
=−

∂M2

∂d2
=−M

G′(d2)G(d0)

(G(d0)+G(d2))2

to obtain

−
4β2H ′(d2)

εω3M2

dJ2♭

dd0
=

H ′(d2)

(G(d0)+G(d2))2

{ 2G(d2)G
′(d0)

G(d0)+G(d2)

[G(d0)

g(d0)
−
G(d2)

g(d2)

]

−g′(d0)
G2(d0)

g2(d0)

}

−
H ′(d0)

(G(d0)+G(d2))2

{ 2G(d0)G
′(d2)

G(d0)+G(d2)

[G(d2)

g(d2)
−
G(d0)

g(d0)

]

−g′(d2)
G2(d2)

g2(d2)

}

.
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We now use that G(d)=cosh(βd)g(d) to infer

−(G(d0)+G(d2))
2 4β

2H ′(d2)

εω3M2

dJ2♭

dd0

= 2
cosh(βd0)−cosh(βd2)

G(d0)+G(d2)

{

G(d2)G
′(d0)H

′(d2)+G(d0)G
′(d2)H

′(d0)
}

+H ′(d0)g
′(d2)cosh

2(βd2)−H
′(d2)g

′(d0)cosh
2(βd0). (4.25)

Using (4.15) and (4.13), we then deduce

H ′(d0)g
′(d2)cosh

2(βd2)=

2
ω3

β2

(ω2

β2
+1

)

tanh2(βd0)tanh
2(βd2)

(1+ ω2

β2 tanh
2(βd0))(1+

ω2

β2 tanh
2(βd2))

=H ′(d2)g
′(d0)cosh

2(βd0),

so that the last line in (4.25) is zero. If d0<d2, that is d0<d♯, then the
right-hand side of (4.25) is <0 since G, G′ and H ′ are positive, which is the
desired result.
Now, let us prove the various properties of the energy described in
Proposition 4.4. For (ii), the first and last inequalities are a consequence
of Lemma 4.3. (iv) follows directly from either the fact that we have
symmetrized one bump with parameters (M/2,L/2), either the fact that
(M1,M2)→ (0,M) and d2→+∞. We now compute the derivative for

(iii). Observe first that when d0=0, d2= d̂=H
−1(L−2π/ω), thus d̂→0

as L→4π/ω. We have already seen in section 4.2 that

g(d)=π+
(ωd)3

3
+O(d5),

thus

G(d)=g(d)cosh(βd)=π+
πβ2

2
d2+

(ωd)3

3
+O(d4).

Therefore,

4β2

εω3M2
J2♭(M,L,0)=−

π+
G2(d̂)

g(d̂)

(π+G(d̂))2
=−

1

2π
+
ω3d̂3

12π2
+O(d̂4).

Since

L−
4π

ω
=H(d̂)−

2π

ω
=

2

3
(ω2+β2)d̂3+O(d̂5),

it follows that

4β2

εω3M2
J2♭(M,L,0)=−

1

2π
+

ω3

8π2(ω2+β2)

(

L−
4π

ω

)

+O
(

(L−
4π

ω
)4
)

.

As a consequence,

0<
∂J2♭

∂L
(M,4π/ω)=

εω6M2

32π2β2(ω2+β2)
<
εω4M2

32π2β2
=
∂JCte

∂L
(M,4π/ω),

from the explicit expression of JCte in (4.2). This completes the proof.

For (iv), notice that it is natural to recover the energy of a single bump
when d0=0 and L is large since the mass of the bump on the left tends
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Figure 9. Technique to construct a solution with two half
bumps on the boundaries of the interval [0,L]

to zero. Despite our efforts, we have not been able to determine the
variations of the least energy configuration L 7→J2♭(M,L,0), even though
numerically, it seems convincing that it is increasing on a small interval and
then decreasing.

4.5. Two half bumps on the two boundaries. Now we construct some
solutions made of two half bumps on the two boundaries. For that purpose,
we follow what we made in Section 4.3: to find a two half bumps solution
of mass M on a domain of length L, we construct a two bumps solution of
mass 2M on a domain of length 2L as explained in Section 4.4 and we keep
half of the domain in order to obtain two half bumps on the boundaries.
The technique is illustrated in Figure 9. The results are straightforward
following Proposition 4.4 and are summarized in the following proposition.

Proposition 4.7. Let L>0 and M>0. There exists a continuum of
stationary solutions to system (S)-(4.1) with two half bumps on the

boundaries of the interval [0,L] if and only if L≥
2π

ω
.

In this case (see Figure 8 for the notations), the solutions may be
parametrized by the parameter 0≤d0≤d♯≡H

−1(L) for the first half bump.
The second half bump is defined by the parameter d2 which satisfies the
relation 2L=H(d0)+H(d2) and the masses of the two half bumps are given
by equation (4.17). The symmetric configuration with respect to L/2 is also
a solution.

Its energy is given by

J2× 1

2
♭(M,L,d0)=

1

2
J2♭(2M,2L,d0)=2J2♭(M,2L,d0)

and satisfies the following properties:
(i) The function J2× 1

2
♭(M,L, ·), defined on [0,d♯], is increasing.

(ii) JCte(M,L)>J2× 1

2
♭(M,L,d♯)=J1♭(M,L).
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Figure 10. Notations for the case of one bump inside and
half bump on the boundary of the interval [0,L]

(iii) J2× 1

2
♭(M,

2π

ω
,0)=JCte(M,

2π

ω
) and

0<
∂J2× 1

2
♭

∂L
(M,

2π

ω
)<

∂JCte

∂L
(M,

2π

ω
).

(iv) As L→+∞, J2× 1

2
♭(M,L,d♯)→J♭(M)=J1♭(M,∞) and

J2× 1

2
♭(M,L,0)→2J♭(M).

4.6. One bump inside the interval and half bump on the boundary.
Finally, we consider the solutions where we have one bump inside the interval
and half bump on the boundary. Clearly, we may use a reflection across the
boundary for the half bump to reduce to the case of two bumps, see Figure
10. We have consequently the following proposition:

Proposition 4.8. Let L>0 and M>0. There exists a continuum of
solutions to system (S)-(4.1) with one bump inside the interval [0,L] and

one half bump on the boundary of [0,L] if and only if L≥
3π

ω
.

In this case, the solutions may be parametrized by 0≤d0≤d♯≡H
−1(L−

π/ω) for the bump on the center of the interval or by 0≤d2≤ d̂≡H
−1(2L−

4π/ω) for the half bump on the boundary, the other parameter being given

by relation L=H(d0)+
1

2
H(d2). The mass M1 of the bump and the mass

M2 of the half bump are defined by

(M1,M2)=M
( 2G(d0)

2G(d0)+G(d2)
,

G(d2)

2G(d0)+G(d2)

)

. (4.26)

The symmetric configuration with respect to L/2 is also a solution.
Its energy J(1+ 1

2
)♭(M,L,d0) is given by

J(1+ 1

2
)♭(M,L,d0)=J1♭(M1,L1)+J 1

2
♭(M2,L2)

=−
εω3M2

1

4β2g(d0)
−

εω3M2
2

2β2g(d2)
, (4.27)
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and satisfies the following properties:
(i) The function J(1+ 1

2
)♭(M,L, ·) is increasing on [0,d⋆] and decreasing on

[d⋆,d♯], where d⋆≡H
−1(2L/3) is the value corresponding to d0=d2.

(ii) JCte(M,L)>J(1+ 1

2
)♭(M,L,d⋆)=3J 1

2
♭(

M

3 ,
L

3 )=
3
2J1♭(

2M
3 , 2L3 )= 2

3J1♭(M, 2L3 )>

J1♭(M,L).

(iii)J(1+ 1

2
)♭(M,

3π

ω
,0)=JCte(M,

3π

ω
) and 0<

∂J(1+ 1

2
)♭

∂L
(M,

3π

ω
)<

∂JCte

∂L
(M,

3π

ω
).

(iv) As L→+∞, J(1+ 1

2
)♭(M,L,0)→2J♭(M)=J 1

2
♭(M,∞),

J(1+ 1

2
)♭(M,L,d⋆)→

2
3J♭(M)= 2

3J1♭(M,∞) and J(1+ 1

2
)♭(M,L,d♯)→J♭(M).

Proof. The argument is very close to the case of two bumps inside the
interval explained in details in section 4.4, hence we only sketch the proof.
The constraint on the length is

L=H(d0)+
1

2
H(d2),

and this gives the upper bounds d♯ and d̂ for d0 and d2 respectively. If M1

(resp. M2) denotes the mass of the bump (resp. half bump), then we must
have

M =M1+M2 and
M1

G(d0)
=

2M2

G(d2)
,

the second one being the matching condition for φ, thus relation (4.17) is
replaced now by relation (4.26).

Moreover, the energy of the one bump and one half bump solution is given
by equation (4.27). To study the variations of J(1+ 1

2
)♭(M,L, ·), we perform

some computations which are very similar to those of Lemma 4.6 and we
obtain

β2H ′(d2)

εω3M2

dJ(1+ 1

2
)♭

dd0
=−2

cosh(βd0)−cosh(βd2)

(2G(d0)+G(d2))3

{

G(d2)G
′(d0)H

′(d2)

+2G(d0)G
′(d2)H

′(d0)
}

.

Since the bracket is a sum of positive terms,
dJ(1+ 1

2
)♭

dd0
has the same sign as

d2−d0, and (i) follows since d⋆ is the value of d0 corresponding to the case
d2=d0.

4.7. Fuzzy solutions. In this section, we consider some very particular
solutions, such that ρ>0 on the interval [0,L]. Then, from (2.13) with x̄=0
and the Neumann conditions (4.1), we infer

0=
∂ρ

∂x |x=0
=
Bχω

ε
and 0=

∂ρ

∂x |x=L
=
Aχω

ε
sin(ωL)+

Bχω

ε
cos(ωL),

thus

B=0 and Asin(ωL)=0.
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Figure 11. Graphs of some solutions ρ when (L,ω)=(π,1)
(on the left) and when (L,ω)=(2π,1) (on the right).

As a consequence, except in the exceptional case ωL∈πN, we must have
A=0. If ωL∈πN, then there exists a continuous family of solutions











φ(x)=−Acos(ωx)+
aK

Dεω2
,

ρ(x)=−
Aχ

ε
cos(ωx)+

β2K

εω2
.

We have represented some typical solutions ρ when (L,ω)=(π,1) and when
(L,ω)=(2π,1) in Figure 11. Note that the mass of such a solution is given
by

M =

∫ L

0
ρ(x) dx=

β2KL

εω2

since ωL∈πN. Taking into account the conditions ρ≥0 and φ≥0, we then
obtain the fuzzy solutions in [0,L]











φ(x)=−Acos(ωx)+
εM

χL
,

ρ(x)=−
Aχ

ε
cos(ωx)+

M

L
,

with A<
εM

χL
. All these solutions have the same energy

JFuzzy(M,L)=−
εω2M2

2Lβ2
,

which is the same as the energy JCte of the constant solution for this value
of L. It is clear that if we slightly increase L, then all these solutions
disappear, except the two extreme ones which vanish either at x=0 either
at x=π (the red and the cyan solutions), which are symmetric with respect
to L/2 and will give the half bump solutions. The same phenomenon occurs
when ωL=2π, leading to the solutions with one bump inside and two half
bumps on the boundary.
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Remark 4.9. In the Case (N ) and Case (Z), that is to say if
aχ

Dε
−β2=

−ω2≤0, we can prove that either ρ=0 everywhere, either ρ>0 everywhere.
Therefore, the only nonzero solution is given by the constant state exhibited
in Section 4.1.

5. Numerical simulations on a bounded interval [0,L]

Let us notice that finding analytically the stability of the previous
exhibited stationary solutions is a hard task and out of scope for the moment.
An important difficulty is that the stationary solutions lie on the boundary
of the admissible set of functions, since the nonnegativity constraint on the
density is saturated.

Since we prove in section 4 that the half bump solution has the smallest

energy among the stationary solutions we consider, in the case when L≥
π

ω
,

we expect this solution to be a stable one. However, the stability of the
other stationary solutions is not that clear and seems to depend deeply on
the parameters of the system. In what follows, we present a numerical study
of the stability of these solutions for three different sets of parameters :

• Case 1: ε=2, γ=2, χ=10, D=0.1, a=20, b=10, α=1 on a domain
of length L=3.

• Case 2: ε=2, γ=2, χ=50, D=1, a=1, b=1, α=1 on a domain of
length L=2.

• Case 3: ε=2, γ=2, χ=50, D=1, a=4, b=1, α=1 on a domain of
length L=2.

For one set of parameters (Case 2), the half bump seems to be indeed the
only stable solution. However, for another set of parameters (Case 1), a
wide range of stationary solutions look stable in our numerical experiments.

Generalizing the conditions found in Propositions 4.1 to 4.8, we may
say that we can construct (at least) one k half bumps solution under the
following condition linking the length of the domain and the parameters of

the system: L≥
kπ

ω
. In this formula, we assume that one bump accounts for

two half-bumps. Hence, for the three previous sets of parameters and given
length, we may construct the following types of stationary solutions (except
from the constant solution) :

• Case 1: 1≤k≤28, that is to say we may construct up to 14 bumps
solution (or equivalently 13 bumps inside the interval and 2 half
bumps on the boundaries).

• Case 2: 1≤k≤3, that is to say we may construct up to 1 bump
inside the interval and 1 half bump on the boundary.

• Case 3: 1≤k≤6, that is to say we may construct up to 3 bumps
inside the interval (or equivalently 2 bumps inside the interval and
2 half bumps on the boundaries).

In the following, we use an adapted numerical scheme based on a upwinding
technique described in [21] and improved in [20]. This scheme is constructed
in order to deal with vacuum, to preserve the positivity of the solution and
to be well-balanced, that is to say to preserve stationary solutions with
constant velocities.



STATIONARY SOLUTIONS WITH VACUUM 33

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30
Density rho as a function of space

 

 
initial time
final time

Figure 12. Case 1 - Initial condition and asymptotic
solution for system (1.3). The initial condition is a
perturbation of the half-bump stationary solution and this
stationary solution seems stable.

5.1. Case 1: stability of 1 half bump, 1 bump, 2 half bumps and
2 bumps. We begin with the first set of parameters (Case 1) and we
study the stability of the half-bump solution on the boundary described at
Proposition 4.2. In Figure 12, we show the results of a numerical simulation
of system (1.3) with an initial condition equal to a perturbation of a half
bump on a boundary. Note that the perturbation is chosen so that the
initial condition is a nonnegative function. It is clear that the half bump
stationary solution is stable under such a perturbation.

Now, we consider the stability of various two half-bumps solutions. We
compute here the asymptotic solutions of system (1.3) starting with three
different two half bumps solution, namely the symmetric one with the
maximal energy (on top on the left), the one with the minimal energy (on
top on the right ) and a third one with an intermediate energy (on bottom).
In Figure 13, we can see that all these stationary solutions are numerically
stable, although we could expect only the one with minimal energy to be
stable. See Proposition 4.7 for more details.

We continue with the study of the stability of the one bump stationary
solution, which existence and unicity have been shown at Proposition 4.1. A
first test, not presented here, shows that this solution remains stable under
a slight perturbation. In Figure 14, we show two different tests: we take
an initial condition equal to a translation of the one bump solution. If the
translation is small enough (figure on the left), the asymptotic solution is
still the one bump stationary solution, whereas if the translation is large
enough (figure on the right), the asymptotic solution is one bump with a
half bump on the boundary.

Finally, we study in Figure 15 the stability of the two-bumps solution.
As demonstrated in Proposition 4.4, there is a continuum of such solutions.
We first take as initial datum a perturbation of three different two-bumps
solutions and the results presented in Figure 15 show that all these solutions
are stable. More precisely, we have considered the two-bumps solution with
a minimal energy (on top, on the left), symmetric with a maximal energy
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Figure 13. Case 1 - Initial conditions and asymptotic
solutions for system (1.3). On each subfigure, the initial
condition is a perturbation of one two half-bumps stationary
solution. All these stationary solutions seem stable.
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Figure 14. Case 1 - Initial conditions and asymptotic
solutions for system (1.3). On each subfigure, the initial
condition is a translation of the 1 bump-solution: a small
translation (on the left) and a large translation (on the right).

(on top, on the right) and with an intermediate energy (on bottom, on the
left). Finally, if the initial datum of the simulation is a translation of the
two bumps solution with an intermediate energy, we find asymptotically a
solution with two bumps and one half-bump on the boundary.

5.2. Case 2: stability of 1 bump. For this second set of parameters,
only a few types of stationary solutions exist: the half-bump solution, the
bump solution, the two half bumps solution and a solution made of one
central bump and one lateral half-bump. In Figure 16, we display the
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Figure 15. Case 1 - Initial conditions and asymptotic
solutions for system (1.3). On top-left, top-right and bottom-
left subfigures, the initial condition is a perturbation of one
two bumps stationary solution. All these stationary solutions
are stable. On the last subfigure (bottom-right), the initial
condition is a translation of a two-bumps solution and we
reach asymptotically a solution composed of 2 bumps and
one lateral half-bump.

asymptotic solutions for two different initial conditions, that is to say the one
bump stationary solution translated (on the left) or a two-bumps solution
computed with another set of parameters and translated (on the right). For
this set of parameters, the asymptotic solution we obtain is always a half
bump on the boundary of the interval (on the left or on the right). From
these simulations, it seems that the half-bump solution is the only stable
stationary solution for the set of parameters of Case 2, unlike the results of
Case 1.

5.3. Case 3: stability of 1 bump and 2 bumps. Finally, we present in
Figure 17 the results of a stability study for stationary solutions in the case of
an intermediate set of parameters where 2 bumps solutions exist. Beginning
with a slight perturbation of the one bump solution (figure on the left), the
asymptotic solution of system (1.3) is a half bump on the boundary of the
interval. Therefore, the 1 bump solution seems to be unstable. However, the
half-bump solution is not the only stable solution of the system as before,
since the second test (figure on the right) shows that, starting from a two
bumps solution, we find two half-bumps as an asymptotic solution of the
system. The results for the other two-bumps stationary solutions are the
same.
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Figure 16. Case 2 - On the left, the one bump stationary
solution is unstable; on the right, the initial condition is a
two bumps solution computed with the set of parameters of
Case 1. In both cases, the asymptotic solution is a lateral
half-bump, on the left or on the right of the interval.
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Figure 17. Case 3 - On the left, the one bump solution is
numerically unstable (and a half-bump seems stable); on the
right, a two bumps solution is numerically unstable (and two
half-bumps seem stable).
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