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A Job Market Signaling Scheme for Incentive and
Trust Management in Vehicular Ad Hoc Networks

Nadia Haddadou, Abderrezak Rachedi, and Yacine Ghamri-Doudane

Abstract—In collaborative wireless networks with a low
infrastructure, the presence of misbehaving nodes can have
a negative impact on network performance. In particular, we
are interested in dealing with this nasty presence in road safety
applications, based on vehicular ad hoc networks (VANETs).
In this work, we consider as harmful the presence of malicious
nodes, which spread false and forged data; and selfish nodes,
which cooperate only for their own benefit. To deal with
this, we propose a Distributed Trust Model (DTM

2), adapted
from the job market signaling model. DTM

2 is based on
allocating credits to nodes and securely managing these credits.
To motivate selfish nodes to cooperate more, our solution
establishes the cost of reception to access data, forcing them to
earn credits. Moreover, to detect and exclude malicious nodes,
DTM

2 requires the cost of sending, using signaling values
inspired form economics and based on the node’s behavior,
so that the more a node is malicious, the higher its sending
cost, thus limiting their participation in the network. Similarly,
rewards are given to nodes whose sent messages are considered
as truthful, and that paid a sending cost considered as correct.
The latter is a guarantee for the receivers about the truthfulness
of the message since, in case of message refusal, the source
node is not rewarded despite its payment. We validated DTM

2

via a theoretical study using Markov chains; and with a set
of simulations, in both urban and highway scenarios. Both
theoretical and simulation results show that DTM

2 excludes
from the network 100% of malicious nodes, without causing
any false positive detection. Moreover, our solution guarantees
a good ratio of reception even in the presence of selfish nodes.

Index Terms—Vehicular ad hoc networks, incentive model,
malicious nodes, selfish nodes, job market signaling model.

I. INTRODUCTION

In recent years, the emergence of vehicular ad hoc net-
works (VANETs) has lead them to become a particularly
studied field. They consist on smart vehicles, communi-
cating with each other, and, in the case of setting up an
infrastructure, with nearby road side units. Similar to mobile
ad hoc networks (MANETs), VANETs use wireless com-
munications. Nevertheless, their characteristics make them
more complex than MANETs. Indeed, the high node velocity
range, the extended geographic set up area, and the large size
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of the network, lead to frequent topology changes, and result
in sporadic connections between nodes.

VANET applications can be divided mainly into two cate-
gories: infotainment applications and Safety applications [1].
The latter, aims to lower, and ultimately avoid the annual
million deaths worldwide caused by road accidents. In this
work, we deal with road safety applications, such as road
traffic data collection and sharing, accident alert, traffic jam
notification. These applications provide information directly
related to users’ safety, in order to reduce road accidents.
Their content is both time and security sensitive. Each
content alteration can cause accidents, as in the case where
a malicious vehicle disseminates false information.

Integrity, authentication, timeliness, and cooperation are
the basic requirements for safety applications. Indeed, each
sensed safety event must be sent by an authenticated vehicle,
and received in time by all concerned vehicles thanks to
the cooperation of vehicles. Moreover, the shared data in
safety applications must not be altered without detection in
a minimum of time to meet timeliness requirements. These
applications can also be critical in case of misappropriation.
Indeed, if forged data are shared, this may cause unsafe
situations on the road. Therefore, a node should never accept
any safety information without guarantee of its truthfulness.
Moreover, since safety applications are time sensitive, a node
has to make a quick decision about the validity of a received
message. This task becomes even more challenging when the
communication medium does not rely on any infrastructure,
or if that is scattered, making it impossible to validate any
information beforehand. In this work, we are interested in
these kinds of applications when they are set up in VANETs
without the use of any communication infrastructure, thus
requiring advanced dissemination algorithms, such as those
proposed in [2] and [3].

In a collaborative network such as a VANET, any node
dissociation is difficult because of the significant number
of nodes comprising the network. On top of that, because
of high mobility and the extended set up areas, asymmetric
information regarding the behavior of each node is widely
disseminated. Therefore, establishing direct connections be-
tween nodes becomes challenging, thus encouraging the
emergence of malicious and selfish nodes. The purpose of
this paper is to bring an effective solution that filters out
misbehaving nodes. These nodes can be either malicious

or selfish. Malicious nodes introduce false information or
retransmit forged information in a VANET. Selfish nodes
serve their own interests and use their resources only for their
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own needs. Thus, their cooperation rate is low. However,
unlike malicious nodes, these selfish nodes are rational,
which means that they can cooperate if it is in their interest.

In order to deal with node scattering, we allocate each
node a credit account, which can increase and/or decrease
according to its behavior. This credit is useful to obtain
advantages within the network, as holding credits allows a
node to take part in the network by sending or receiving
messages. On the other hand, a node that runs out of credits
is evicted from the network. To manage the node credit,
we base our solution on an economic model called the job-
market model [4], belonging to the signaling models [5].
These models intervene in a case where the different parties
may hold asymmetric information [6]. Thus, a model can be
used to obtain a general view of node behavior in a VANET.
In addition, the high mobility of vehicles and their large
deployment area, cause sporadic connections in the network,
and infrequent meeting intervals among nodes [7]. Since
reputation models need stable connections to obtain actual
reputation values, they may take a long time to eradicate
one malicious node, only a reputation model for VANET
is not enough. The main concept behind signaling models
is to exchange signals between nodes. This signal informs
about a node’s behavior, and then, the truthfulness of the
messages it sends. A signal has a cost corresponding to
the actual behavior of the node, so that the more a node
is malicious, the higher its cost of sending. Thus, this cost
is a guarantee of the node’s truthfulness. If a sent message
is considered as false and thus refused by the neighbors,
the emitting node loses its signal cost, which incurs an
eviction from the network once its credits are depleted. This
paper is an extension of our previous work [8], in which:
We propose a novel distributed trust model (DTM2) for
VANETs, inspired from the job market signaling model. In
addition, we introduce a prevention mechanism, to detect and
evict malicious nodes from the network; and an incentive
mechanism that increases the cooperation of selfish nodes.

To summarize, the new contributions of this paper are:

• A Markov chain of DTM2 is proposed to properly
select parameter value, and prove that DTM2 works
well.

• An extensive simulation study is done to show the
right behavior of DTM2, and assess its performance
in realistic urban and highway scenarios.

The remaining part of this paper is organized as follows:
In Section II we present the related work dealing with
trust models in the literature. This is, followed by some
definitions and assumptions in Section III and a presentation
of economic signaling models to deal with asymmetric infor-
mation in Section IV. In Section V we present our solution,
DTM2. Then, we model it using Markov chains and present
its theoretical results in Section VI. A security analysis
is proposed in Section VII and Section VIII presents our
performance study including both analytical and simulations
results. Finally, Section IX concludes this paper and presents
future perspectives.

II. RELATED WORK

There are many solutions proposed in the literature deal-
ing with trust models for mobile ad hoc networks as pre-
sented in [9]. These solutions cope either with malicious
nodes or selfish ones, but rarely with both of them at the
same time. They can be classified into three categories:
incentive approaches based on tamper-proof devices, in-
centive approaches based on infrastructure deployment, and
reputation-based approaches.

A. Incentive approaches based on tamper-proof devices

To improve cooperation in a network, existing solutions
propose rewards in return of a node’s participation, which
is the general concept of incentive cost/reward models, as
presented in [10], [11]. These solutions use nuggets as
method of payment to incite nodes to be more cooperative,
and suppose that each node is equipped with a tamper-proof
device to manage its nuggets.

In [10] two schemes are proposed to estimate a node’s
reward for retransmission, the packet purse scheme and the
packet trade scheme. The packet purse scheme estimates
rewards according to the number of intermediate nodes.
However, because of the propagation speed of information
in VANETs [12] and the high mobility of vehicles, un-
derestimation and overestimation of the reward may occur
frequently, which leads the solution to be ineffective. In the
packet trade scheme, the destination node has to reward
all intermediate nodes for their forwarding actions, which
represents a higher cost if there are many of them. Fur-
thermore, both these schemes deal only with selfish nodes.
Then, in [11], the same authors proposed different levels of
cooperation for network nodes, according to the number of
credits they hold and their desire to cooperate. These levels
can make the participation of nodes turn into a quantitative
one and not necessarily a constant one, because there is no
requirement for a node to keep in constant cooperation, thus
leading to a decline in network connectivity.

In [13], an incentive model set up simultaneously with a
reputation one (V IME) is proposed. Similarly to DTM2,
V IME’s incentive model uses both cost and reward values,
in addition to signaling values. However, V IME’s signaling
cost is computed according to the reputation value of the
node, so as the more truthful a node is, the less expensive its
signaling value will be. But a reputation value in VANETs is
versatile, which distorts the model. Likewise, a source node
receives a reward for a truthful sent message, its reward is
burdened by its neighbors according to their number, and
then rewarder messages are sent to the source. Because of
the mobility in VANETs, these messages can be lost and the
source not completely rewarded, although the credit amount
has been subtracted.

B. Incentive approaches based on infrastructure deployment

Incentive is proposed through the game theory as it is the
case in [14], where authors enhance the security in mobile ad
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hoc networks. They motivate nodes to cooperate by increas-
ing their reputation with an authority, which provides them
some privileges in the network. Other proposed solutions
in [15], [16], and [17] provide incentive through rewards
to intermediate nodes. All these solutions are based on the
deployment of infrastructures. In [15], the authors propose
FRAME, a fair reimbursement and motivating sweepstake
scheme. It copes with the overspending problem that oc-
curs when the number of intermediate nodes grows over
time without any limit. FRAME motivates selfish nodes by
proposing them a weighted rewarding strategy according to
their contribution, computed with their storage time and
a number of sprays of others’ messages. In addition, to
be more attractive, it selects one intermediate node by
sweepstakes to be rewarded with a fixed value. However,
this solution is limited by the existence of infrastructures,
since a source node has to contact an authority to obtain
the permission to share its message, and to give beforehand
the reward for intermediate nodes to forward its message.
Moreover, FRAME does not deal with the presence of
malicious nodes. Another incentive solution proposed in
[16], encourages selfish nodes to cooperate by proposing
rewards to them, with an enhanced security system using
Reed-Solomon codes [18] in order to avoid credit fraud-
ulence, by avoiding the cases where a source node can
refuse to reward, or where intermediate nodes can ask to
be over-rewarded among other cases. Similarly, to enhance
security, [17] propose to verify the receipt of all the actions
in the network based on a Credit Clearance Service, and
then reward the participants. The use of such a method
can increase the network delays, and negatively impact its
performance.

C. Reputation-based Approaches

Another kind of solution, based on the use of a reputation
model for vehicles, is proposed in [19]. The basic idea
is to add a criterion to the category of the driver, setting
apart, for instance, a law enforcement agent from a regular
citizen. To validate a received message, a node asks its
neighbors about its validity, and takes it into consideration
only if the received responses reach a majority consensus.
The limitation of this solution is the generated overhead,
and the time that it can take to validate the received data.
Another solution uses fairness as a criterion of cooperation
by computing reputation values, so that nodes cooperate with
each other in a reciprocal way [20]. However, this solution
involves huge costs, as it is based on frequent monitoring of
the nodes’ behavior as demonstrated in [21].

Our solution, DTM2, is able to cope with the presence
of both malicious and selfish nodes in a VANET without
any infrastructure. Moreover, it handles the high mobility
and asymmetric information of a VANET more easily since
the computation of signaling costs and reward values is not
based on estimations of their values. DTM2 creates self-
selection among nodes, thus evicting malicious nodes and
increasing the cooperation of selfish ones.

III. SYSTEM MODEL AND ASSUMPTION

A. Definitions and assumptions

We consider that our network is composed of malicious,
selfish, and good behavior vehicles. The first kind has the
worst behavior, which actively attacks the network. Indeed,
a malicious vehicle can modify the content of a message
before relaying it, either by replacing the information in it
with completely new information, or with the opposite in-
formation. A malicious vehicle can also send fake messages
about false events for its own interest, or treating with its
chosen signal value. To avoid being detected, this kind of
vehicles can alternate between good and malicious actions.

The second kind is the selfish behavior, which passively
decreases the network performance. A vehicle is selfish
when it refuses to relay received messages, not to reduce
the traffic load, but just to preserve its own resources, such
as the channel access time, for its own benefit. Selfish nodes
are rational, and do not alter the content of messages.

We assume in the rest of the paper that all the vehicles
using DTM2 to share information communicate via broad-
cast. To allow such assumption, each participating vehicle
is equipped with a trusted platform module (TPM) [22],
described in the subsection below.

We assume that a TPM is inviolable, (i.e. a malicious
node cannot tamper the recorded credits on its TPM). This
assumption, makes impossible to send or receive messages
if the node runs out of credit. Furthermore, when a node
runs out of credit, we consider that the node is detected
and excluded from the network. However, a malicious node
can tamper with its signal value. Indeed a vehicle is free to
choose its signal value. This value is directly observable by
all (because of broadcast transmissions), which allows other
vehicles to make decisions about the validity of the shared
data with respect to the used signal value.

B. Trusted Platform Module (TPM) functionalities

The TPM is a hardware device proposed by the TPM
groupe [22], and used in [23], [24], and [25]. It includes Ran-
dom Number Generator, SHA-1 Hash Generator, Asymmet-
ric and Symmetric Encryption and Decryption Functions us-
ing RSA or Elliptic Curve Cryptography (ECC), which per-
form cryptography capabilities, while being tamper-proof.

The TPM manages the credit count of nodes. It stores
credit in a shielded location, then it computes and deducts
the signaling cost, in the case of sent messages; or deducts
the price of a received message in case it is validated by the
receiver. It also increases credit count when a sent message
is accepted by the majority of its recipients. Finally, the
TPM stores a fingerprint of the application it is responsible
for (e.g. an advanced driver assistance system), which leads
it to detecting any changes to the application made by an
attacker [24]. Moreover, the TPM meets the real-time re-
quirements by VANETs safety applications according to [26]
and [27].

Each embedded TPM in a vehicle has a unique Endorse-
ment Key (EK), generated by the TPM manufacturer, and
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securely stored inside it. The public part of this key is visible
in the Endorsement Certificate. The EK is only used for
the internal workings of TPMs. Moreover, each TPM has
an Attestation Identity Key (AIK) and its certification, an
alias for the Endorsement key used for identity attestation,
generated by the manufacturer, which is generally a 2048 bit
RSA key pair with a private and a public key. For anonymity
reasons, a TPM can generate multiple AIK pairs, provided
that a Trusted Third Party certifies it [23]. We suppose that
these pairs of key are loaded by the manufacturer, and do not
require any revocation mechanism, even in the case where
the vehicle equipped with this TPM is detected as malicious,
and forbidden to participate to the system.

To avoid weakening the security of the AIK by signing
a lot of data, and so making its cryptanalysis easier, authors
in [28] propose to generate a renewable key "signing key"
(SK) by the TPM. After signing generated data by an
application, a TPM returns to the vehicle a signed version
of the messages by its signing key (SK), and attaches a
certification of the used signing key for the receivers. This
certification consists on a signed version of the SK by the
AIK, in addition to the delivered certification by a privacy
certification authority (PCA) for the AIK, as presented
in [23]. Using this signing process, a receiver is able to
authenticate a vehicle with the AIK of its TPM, without
holding any key except the public key of PCA.

In addition to the authentication, DTM2 uses a TPM to
ensure confidentiality of the exchanged data. Vehicles should
access the shared data only through their TPM, to charge
a cost of reception to the receivers. In order to meet this
condition, a standard secret key (SyK) is preloaded by the
manufacturer in all the TPM to achieve a Symmetric-key
encryption for all exchanged messages by applications.

IV. ASYMMETRIC INFORMATION IN MARKETS AND

SIGNALING GAMES

Signaling games [5], a type of dynamic Bayesian game
with incomplete information, forms the basis of multiple
solutions in economics to cope with the lack of information
between sellers and buyers about the quality of proposed
wares. They refer to a strategic model where two agents
interact in a way where one part is informed and the other
is not. To inform the other part about hidden information, an
agent uses a signal. A signal is an observable characteristic
about an individual; it represents a criterion to differentiate
between multiple members (the sellers in the example). The
high quality productive members in a market choose to use
it to inform others about their qualifications. It must have a
cost and represents an investment for these users, in order
to discourage the others from imitating it.

In the case of a market, a solution to the problem of
asymmetric information about the wares, can be the use of
different kinds of insurances proposed by the sellers and
corresponding indirectly to the sellers’ knowledge about the
quality of their products. One of the most used signals
nowadays is advertising. When a firm is confident about

the quality of its products, it pays a significant price to
advertise these products. Advertising represents a signal sent
to consumers; it represents an investment for the sender
but allows him to increase its profits due to the actions
consumers take in return. We are interested in reproducing
this incentive in trust model in VANETs, because it takes
into consideration the lack of information between nodes.

In this section, we adapt one of the well-known examples
of the signaling games, the Spence model, also known as job
market signaling, to a VANET in order to obtain a functional
trust and collaborative network.

A. Job market model

Spence’s model or the job market signaling model [29]
is generally illustrated by resolving the job market problem,
regarding a personnel hiring situation with asymmetric infor-
mation. An employer has to enroll some candidates and pay
them for their productivity but, unlike the candidates, he is
not sure of their skills when he hires them. In this case, one
part of the market is totally informed (i.e. the candidates)
while the other one is not (i.e. the employer). Nevertheless,
both of them have to interact with each other.

To attract the employer’s attention, a candidate will try
to inform him about his productive capabilities by sending
him some information as a signal. The chosen signal in this
model is education. It is assumed that the level of education
does not amount to the skillfulness of a candidate, but it is
positively correlated with having greater skills. Therefore,
the more a candidate has educational credentials, the more
he is considered as competent and productive.

To make it inimitable, the signal has to have a cost that is
negatively correlated to productivity. In this case, a degree
costs less for an individual with high skills than for one
with low skills. An employer proposes to a candidate a
wage equivalent to his supposed productivity according to
his signal value, so that a candidate chooses the optimum
signal (level of education), which maximizes the net return
after subtracting the signal cost from the wage.

In order to classify the candidates with respect to their
supposed productivity, the employer may create a Separating

Equilibrium, in which each candidate signals his education
level to maximize his benefit. High quality workers obtain
a maximum level of education, because it is assumed to
be less costly for them, in order to signal it and distance
themselves from others. Unlike them, low quality workers
study the trade-off between signaling a great value to get a
high salary, and signaling a small value which costs them the
minimum and obtain the corresponding salary. They often
choose the second option.

B. Market vs. VANET

Spence’s model distinguishes between workers in the
case of asymmetric information by using their productivity.
In this paper, we are interested in adapting this concept
to distinguish between vehicular ad hoc network users.
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Motivated by the similarities between the two, our aim is
to perform self-selection in a VANET.

In the case of VANETs, the mobility of the vehicles and
the size of the area are so high, that they cause significant
dispersion of the nodes and create long and infrequent
intervals at which nodes meet. As in a market, there is a
spread of asymmetric information, so it becomes difficult
to establish valid and truthful links between nodes by, for
example, using only a reputation model. For our purpose,
we use of a signal which is an observable value by all when
sending a message, and whose cost is subtracted from the
credit count of the node.

The second similarity concerns motivating candidates by
paying them fairly according to their skills, in order to attract
the best of employees. In a VANET, this can be translated
by using incentive rewards to increase cooperation among
nodes. In that way, the more a node participates by sending
its own messages or by forwarding others’ messages, the
more wages it receives. Similarly, the better a node behaves
and sends true information, the more its wages increase.

The last point concerns evicting malicious nodes from
the network. It is a new goal compared to Spence’s model,
resulting from our adapting Spence’s model to a VANET. For
safety applications, we have to ensure that the exchanged
messages are not tampered with, and that a source node
is not malicious, especially when the application does not
depend on any infrastructure. An eviction is the result of the
exhaustion of a node’s resources (e.g. their credit count).
From the start, each node possesses a number of credits,
which increases or decreases depending on its behavior.

V. DTM2: DISTRIBUTED TRUST MODEL INSPIRED

FROM JOB-MARKET

Spence’s model is adaptable to a VANET, since nodes in
this kind of networks also suffer from asymmetric informa-
tion regarding the behavior of each of them. Because of long
and infrequent meeting intervals, it is difficult to establish
valid and truthful links between nodes only by using a
reputation model. Moreover, Spence’s model provides a
solution to the common problem found in both VANETs
and markets, which consists on how to force their members
to reveal their real nature to others. This is obtained by
encouraging each member to choose the optimal action for it.
Therefore, both nodes and the network are able to benefit,
without overloading the network, and without requiring a
heavy infrastructure in case of VANETs.

Our solution replaces the academic signal of Spence’s
model by a value signal, observable by all nodes, and used
when sending a message as a guarantee of its truthfulness.
The signal cost depends on the remaining credit of each
node. Upon their first connection to the network, each node
receives the same amount of credit. This credit is used to
pay the signaling cost when sending a message, and to
decrypt received messages. It increases when a sent message
is approved by the majority of recipient nodes.

In the rest of this section, we show how such a model
can be instantiated in VANETs for incentive and trust
management.

A. Basic working scenario

Fig. 1 illustrates the process of exchanging a message
using DTM2. In this example, node A broadcasts a mes-
sage, and vehicle B is one of the receivers. First, node A
chooses a signaling value YA. This value is attached to its
message MsgA, and both of them are sent to its TPM.
TPMA uses the credit count of node A, θA, to compute
the corresponding cost, CA, of its signal value YA, and then
subtracts it from the credit count. To ensure the integrity of
the mechanism, the TPM signs and encrypts the message,
MA, which contains both the signal value YA and the data
to share, MsgA, using its signing and symmetric keys, and
then returns it to node A.

When node A broadcasts message MA, node B receives
it and asks the TPM, TPMB , to verify the signature and
to decrypt the signal value for it in order to evaluate its
coherence with the reputation value it holds on node A,
Rt

B(A). If the reputation is coherent, then node B accepts
the message and asks TPMB to decrypt the rest of the mes-
sage, which contains the data. Then, its TPM subtracts the
cost of receiving a message, Cmsg , fixed by the application;
and delivers the decrypted data, while returning a signed
acceptance message about the received information to node
B, which will be sent to the source node. In case B refuses
the message, a signed refusal message from TPMB is sent
to source node A.

In both cases of acceptance and refusal, the reputation
values of both nodes A and B are updated, for the sent
message of A, and for the acceptance or refusal message
of B, as described in [30]. Finally, if node A receives a
majority of positive returns from its recipients, then TPMA

increases its credit count by a reward, WA(YA), proportional
to its used signal value YA.

B. Computation of signaling cost

In highly mobile environments, such as the one under
consideration, signal Y used by a source node acts as a
guarantee about the validity of its messages and its honest
behavior. An optimum signal value maximizes the net benefit
of a node. This occurs when a signal corresponds to the
real behavior of the node, which is unavailable to the
network and unknown by its TPM. As the credit count
value does not change with mobility, this information can
be used as a hint on its behavior, since the better a node
cooperates, and the more recipients accept its messages, the
more its credit increases thanks to rewards and vice-versa.
This information is stored by the node’s TPM. The signaling
cost, C, is negatively correlated to the credit count, θ, but
positively correlated to the signaling value according to the
two conditions of the job-market model, as shown in (1).
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Fig. 1. Process for a message exchange using DTM2, where vehicle A broadcasts a message and vehicle B is one of the receivers.

{

C(Y1, θ) > C(Y2, θ) For Y1 > Y2,

C(Y, θ1) < C(Y, θ2) For θ1 > θ2,
(1)

The signaling cost computation is presented in equation
(2). It uses two positive real coefficients β and α. β in order
to normalize the signal value regarding the credit count of a
node, and α to have a larger impact on the the credit value
in the signaling cost computation, such as the higher α, the
greater the difference between the signaling costs for the
same signal value, paid by different nodes holding different
credits. This can be used to detect malicious nodes more or
less quickly. The values of β and α are fixed from the start,
and are dependent on the type of application.

C(Y, θ) =
β × Y

θα
(2)

where β, α, θ >0
To demonstrate the negative and positive correlations

required by the model, so that the first condition is met when
∂C(Y,θ)

∂Y
> 0; and the second when ∂C(Y,θ)

∂θ
< 0 and ∂2C(Y,θ)

∂Y ∂θ

< 0, the derivatives of the cost function with respect to the
signal value, the node’s credit, and the second derivative, are
given in (3).











∂C(Y,θ)
∂Y

= β
θα > 0

∂C(Y,θ)
∂θ

= −α×β×Y
θα+1 < 0

∂2C(Y,θ)
∂Y ∂θ

= −α×β
θα+1 < 0

(3)

To avoid cheating or security problems when a node pays
a signaling cost, the TPM calculates the cost and deducts
it from the node’s credit. It then encrypts the message

containing both the data to share and the signal value by
using its secret key, and returns it to the node.

C. Computation of the reward value

To motivate nodes to cooperate, DTM2 proposes incen-
tive rewards to truthful nodes for their sent messages. A
reward value depends on the signal used by the source node,
which is the node that detects or forwards a detected event.
The secondary goal of this reward is to obtain self-selection
of the nodes, which we name a separating equilibrium, by
inciting them to maximize their benefit by not cheating on
their used signal value. The advantage of a self-selection is
that it copes with frequent changes to the topology, as often
found in VANETs.

In this model, a reward W (Y ) is always greater than the
cost paid by a node, provided that the node uses a signal
corresponding to its credit. The two conditions given in
(4), concern the reward on this model. The first condition
concerns the rationality of a node. Each node chooses to use
a signal Y to maximize its net benefit. This is found when
the derivative of the wage is equal to the derivative of the
cost with respect to the signal value. The second condition,
sets the reference wage value, which needs to be known
beforehand by the nodes. Since the credit count of a node
hints at the real behavior of a node, the reference wage value
depends on it to make it proportional to the real behavior of
the node. The reference wage is set by dividing the credit
of a node by a coefficient σ, so that the higher the value of
σ, the stricter application with regard to the final wage.

{

dW (Y )
dY

= ∂C(Y,θ)
∂Y

W (Y ) = θ
σ

(4)
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where σ>0
By replacing ∂C(Y,θ)

∂Y
with its value, and by isolating θ,

we obtain the system in (5).
{

dW (Y )
dY

= β
θα

θ =W (Y )× σ
(5)

We replace the value of θ by W (Y ) × σ for calculating
dW (Y )

dY
in equation (6), and isolating W (Y ) in equation (7).

dW (Y )

dY
=

β

(W (Y )× σ)α
(6)

W (Y )α ×
dW (Y )

dY
=

β

σα
(7)

The resolution of equation (7) is obtained by an integra-
tion by parts with respect to Y , over an interval 0 ≤ Y ≤ ∞

as is described in equation (8) and solved in equation (9).

∫

W (Y )α ×
dW (Y )

dY
dY =

∫

β

σα
dY (8)

[W (Y )α+1]

α+ 1
=

β

σα
× [Y ] (9)

This gives us the final equation of the wage shown in (10):

W (Y ) =

(

β × (α+ 1)× Y

σα

)
1

α+1

(10)

The reward value is added to the credit count of a
source node by its TPM, providing that its sent message is
validated by the majority of recipients. To verify this, each
recipient notifies its own TPM about its decision regarding
a received message, and an encrypted message about its
decision of acceptance or not is sent to the source node. If the
number of accepted message notifications is higher than the
number of refused message notifications then the majority
is reached. The acceptance or refusal message notifications
are encrypted to ensure their integrity, and to avoid the case
where a node accepts the received information but sends a
refusal message to sabotage the source.

D. Optimal signal value

This model is designed in such a way that a node makes
the maximum benefit when it uses the optimum signal value
Y ⋆(θ) with regard to its credit, θ. DTM2 incites vehicles
to chose their optimal signal value because a signal value is
directly observable by all, and mainly because it is directly
related to the remaining credits of a vehicle due to its
inducing cost. So revealing the optimal signal value, reveals
the remaining credits, and then the real behavior of a vehicle.

The optimum signal for each node is obtained from
equation (10), by replacing W (Y ) with θ

σ
. The result is

given in equation (11).

Y ⋆ =
θα+1

σ × β × (α+ 1)
(11)

Failure to respect Y ⋆ causes a shortfall or a loss in
credit, as illustrated in Fig. 2. This figure depicts two curves
representing the signaling cost of two nodes, and another
curve showing the received wage when the sent message is
accepted. The first source node possesses 150 credits (i.e it
has behaved well), and the second source node possesses
only 40 (i.e it has behaved badly), given that the initial
credit of the application θinitial is 100 credits. These curves
show results for different signaling values ranging from 0
to 100, and are obtained by setting β = 3.5 · 104, α=2.3,
and σ=5. We notice that the wage of the first node is more
advantageous. But a shortfall is present for both when they
do not use the optimal signal values, which are Y ⋆

1 and Y ⋆
2 ,

respectively.
The net benefit NB of the two nodes is observable in

Fig. 2. It is at its maximum when the signaling value equals
Y ⋆. Its equation is given in (12) and the results using the
same parameter values as before are illustrated in Fig. 3.

NB =W (Y )− C(Y, θ)

NB = [β×(α+1)×Y

σα ]
1

α+1 −
β×Y
θα

(12)

Fig. 3 presents the curves of the net benefit for the two
source nodes. We notice that the curve of the second node,
which is less truthful than the first, decreases faster when it
does not respect its optimum signal Y ⋆. This clearly shows
that because of bad behavior, nodes quickly exhaust their
credit and are therefore evicted from the network.

E. Received message acceptance process

The second way to encourage nodes to cooperate is to
create the need for holding credits and earning them. For
this reason, decrypting the received message is paid in
this model. In the case where a node is selfish, its credit
decreases slowly because of its non existent or insufficient
cooperation. To secure this part of the model, the cost of
a received message, Cmsg , is fixed by the application, and
equals the cost of sending a message for a node holding
θinitial credits divided by a positive real coefficient µ, so
Cmsg = C(Y ⋆, θinitial)/µ, so that the higher the value of
µ, the less a node pays for a received message. This cost
is subtracted from a receiver node’s count by its TPM. This
is only done in a case of acceptance by the recipient. The
validation decision is made with respect to the following two
criteria:

• The reputation of the source node, held by the receiver.
• The used signal value advertised by the source node.

The used reputation, Rt
r(s), belongs to [0, 1], and is

calculated at time t by the Receiver node r with respect
to the source node, s. This reputation is local, based on
directly observed behavior, and is not shared in the network.
If it is too bad, i.e. Rt

r(s) is less than a certain threshold
ρ, it becomes an elimination criterion for the received
message. This criterion is very important at the start of the
application, when all the nodes have the same number of
credits, thus they use the same signaling value. Its calculation
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is done in equation (13), where ψr(s) is the value of the
last observation made by node r concerning node s, and
ω represents a fading factor to give a higher or a lower
relevance value to past observation values. Both of them
belong to range [0, 1].

Rt
r(s) = ω ×Rt−1

r (s) + (1− ω)× ψr(s) (13)

After verifying the reputation criterion, a recipient node
can base its acceptance on the signal used by the source. The
minimum accepted signal is fixed to Y ⋆(γ · θinitial), which
represents the optimal signal value for a node detaining only
γ · θinitial of credits.

F. Credit Safeguard Technique

To avoid good behavior nodes running out of credit
and being wrongly detected as malicious due to VANET’s
characteristics, we introduce an additional rule in DTM2

operation. Indeed, since VANET nodes are very mobile, fre-
quent changes to the network topology may have a negative
impact on the premise on which DTM2 is based, namely
paying for received data and being rewarded for sent data.
In some cases, when a node does not detect enough events,
or is not electeda to retransmit enough messages despite its
good behavior, there could be an imbalance between the
number of messages sent, which will be low, compared to the
number of accepted ones. Therefore, a node could spend all
its credit paying to access received messages without earning
enough credit through its own sent messages, and could
therefore be excluded from the network. Note that, unlike
a theoretical model, where the probabilities of receiving or
sending messages are equal for all nodes, this problem may
occur in some real life situations.

To tackle this, we assumed that if a node’s credit level is
too low (θ ≤ θinitial × η), where η is a positive real value
in the range ]0, 1[b, it does not accept received messages
(i.e does not pay to decrypt a message and so access its
content), until it earns enough credits to exceed the threshold

ain order to avoid the well known “broadcast storm" [31] problem, data
dissemination protocol such as ADCD [2], on which DTM2 is built upon,
make use of election processes to chose the forwarders.

b]0,1[ notation is equivalent to the open interval (0,1) in the paper.

recommended by the application of θ ≤ θinitial × η. This
can occur after more cooperation in case of a selfish node,
and after changing the road direction or simply after some
time for good behavior node. The value of η depends on the
nodes’ distribution in the network, in order to fade inequality
related to the credit earning opportunities of a node, such as
sending detected events or forwarding others’ messages.

VI. DTM2 PARAMETER OPTIMIZATION AND

ADAPTATION STUDY

To adjust DTM2’s initial parameters and study its per-
formance, we propose a Markov chain-based model. In our
model, we take into consideration the network character-
istics, such as message collision probability, the vehicle’s
transmission range, the event frequency, and the connectivity
between the nodes, to model a sufficiently realistic network
with DTM2 set up on it. From this model, we are able
to obtain malicious node detection probabilities with its
corresponding timing. Moreover, our model provides the
detection probabilities of well-behaved and selfish nodes,
while the former corresponds to the probability of false
positive exclusions in the network.

Indeed, we propose using a Markov chain to model the
credit change for a node in the network, according to its
behavior. A state in our model represents a node’s credit
count value, θ. This value belongs to a range [0, θmax],
so that (θmax + 1) is the number of states in our Markov
chain. The transition probabilities of our model represent all
the actions that can modify a node’s credit (i.e. increase,
decrease or stagnation), such as sending a message and
paying a cost, or being rewarded for it.

We model road event detection as a Poisson process
P (x = k), with λ as arrival intensity. The initial state in
our model is represented by the initial credit that a node
receives the first time it joins the application. The final state
is reached when the credit runs out and is equal to zero, and
therefore the node is excluded from the application. The
Markov chain for DTM2 is illustrated in Fig. 4, and the
marking system used throughout the theoretical study are
listed in Table I.

One of the aims of this model is to reach stationary
probabilities, and to find the upper bound false positive
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Fig. 4. Markov chain for DTM2

TABLE I
NOTATIONS

Pt probability of having a received message to forward
Pc probability of collision
θi credit value at state i
Pm malicious behavior probability
Pg good behavior probability
Ps selfish behavior probability
λ arrival intensity in Poisson process for detected events
P [θi][θj ] transition probability from θi to θj
Pf probability for a source node’s message to be refused by its neighbors
Pv probability for a source node(s message to be validated by its neighbors
PdfB probability density function of a binomial distribution
π stationary probability for a vehicle to be connected with the others
P (x = k) probability of having k events to detect according to Poisson process
Pn probability of credit decrease because of no received reward
Pr probability of receiving a message
Pw probability of updating credit with a Reward
Pl probability of credit stagnation

detection probability of DTM2. To this end, we study
the detection probability for each node, by assigning it a
behavior percentage for each kind of behavior (malicious,
selfish, and good), so that their sum is equal to one. In the
following part, we discuss all the possible state changes of
our model.

A. Credit Decrease Related to Message Collisions, or Mes-

sage Refusals

According to our model, a node’s credit can decrease in
three cases: message collision, neighbor’s refusal to accept
the sent data, and when paying the cost of decrypting a
received message.

When a node detects an event, or retransmits a received
message, it pays a cost corresponding to sending a mes-
sage. However, in some cases, messages are lost because
of collisions related to VANET network characteristics, as
described in [32]. Therefore, in this case, the source node
will receive no rewards. Moreover, in the case when the
neighbors of a source node consider its sent message as false,
they refuse to accept it with probability Pf , and the node
will not receive a reward for it. This probability is referred
to as credit decrease because of no received reward (Pn)
probability. The probability of holding θj credits after having
θi in the beginning is computed as described in equation
(14), so that θj is the node’s credit after subtracting a cost

C(Y ⋆(θi), θi) according to the cost equation presented in
(2), and the optimum signal value Y ⋆ for a credit θi shown
in equation (11).

Pn[θi][θj ] =

(

1− P (x = 0)

N
+ Pt

)

Υ(Pc+(1−Pc)×Pf ),

(14)
where θj= θi-C(Y ⋆(θi), θi), and θj ≥ 0

Pc parameter used in equation (14) represents the proba-
bility of a message collision according to the nodes’ density
in VANETs, as described in [32].

There are two cases where a node sends a message. The
first one is when the node itself detects an event, represented
by the probability 1

N
, such as N is the number of nodes

in the network. This probability depends on the Poisson
process, with at least one event occurring with probability
1 − P (x = 0). The second case is when a node receives
a message and forwards it with the probability Pt, so that
retransmission from one node occurs only once per message
(cf. section (VI-B)).

Next, our model computes the Pn probability according
to the node’s behavior probability (good, Pg , selfish, Ps,
or malicious, Pm). If the node is good, the probability of
sending a message with the right signal is equal to 1. For a
selfish node, its probability of sending depends on its credit
count, so that it will not cooperate if it has enough credit. The
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third behavior is malicious, where nodes always choose their
own sending signal and thus the cost that is most suitable
for them. For example, a malicious node sets a threshold as
the initial credit value, θinitial, so that if its credit count, θi,
is higher than this threshold, it chooses to use the optimum
signal value corresponding to its credits, Y ⋆(θi). Otherwise,
it uses the optimum signal value for a threshold credit value,
Y ⋆(θinitial), provided that it can pay the corresponding cost.
A malicious node chooses to “cheat" like this in order to
avoid having a small signal value for its sent message, which
can be why its neighbors might refuse to accept its message.
Υ, represents the sum of a node’s behavior probabilities of
sending messages according to the threshold θinitial, it is
computed as shown in equation (15).

Υ =

{

Pg + Ps If θi ≤ θinitial,

Pg + Pm Otherwise,
(15)

where Pg = 1− (Ps + Pm)
Secondly, the probability that the neighbors refuse the

sent data, Pf , is computed according to a threshold for the
used signaling value, Y . During our calculations, we set the
threshold to Y ⋆(θinitial×0.2), as we consider that this value
represents a suitable minimum acceptable signal to consider
received data. This probability is presented in equation (16).
Its second line replaces the reputation parameter used in
the DTM2 model to validate received information or not.
So, here we use the behavior value instead of the real-
time reputation value, as we do not have the latter in the
theoretical model.

Pf =

{

1 If Y < Y ⋆(θinitial × 0.2),

Pm Otherwise,
(16)

In the case where the source node has predominantly
malicious behavior, Pm, and its credit is below the fixed
threshold, θinitial in our model assumption, the probability
of sending a message that will be refused changes because of
the used signal, Y , which is "false". In this case, instead of
using Y ⋆(θi), the node uses Y ⋆(θinitial) as signal value.
The corresponding probability to change from θi credits
state to θj credits state because of a collision, or a refusal
of reward is presented in equation (17) in the case where
(θi < θinitial).

Pn[θi][θj ] = (
1− P (x = 0)

N
+ Pt)Pm(Pc + (1− Pc)× Pf )

(17)
where

θj = θi − C(Y ⋆(θinitial), θi), with θj ≥ 0
Pf = Pm

B. Credit Decreases by Paying a Cost for Message Recep-

tion

To access a received message considered as valid, whether
it uses good signaling value for the message, or it holds a

good reputation value on the source node, a node has to pay
a reception cost. This cost, Cmsg , is fixed by the VANET
application to C(Y ⋆(θinitial), θinitial)/µ, so that the larger
µ is, the lower the message reception cost for a node. This
allows a node to accept more messages, but it can also lower
the cooperation of selfish nodes since they will need fewer
credits. The probability of moving from θi detaining credit
state to θj is computed in equation (18) with the probability
of reception, Pr. It depends on the probability that some
nodes detect an event and that a node receives their messages
by being their neighbor at that moment.

Pr[θi][θj ] = (1− P (x = 0))Φ(1− Pc), (18)

where

θj = θi − Cmsg, and θj ≥ 0

Φ =
∑N−1

m=1 PdfB(m,π,N − 1) m
N−1

PdfB(m,π,N − 1) = (N−1)! πm(1−π)N−1−m

(m! (N−1−m)!

Here, Φ represents the probability that m nodes among
all the nodes in the network except source one, i.e. (N − 1)
nodes in total, receive at least one message, corresponding to
one detected event, from one source node, with π represent-
ing the stationary probability for a node to being connected
with the others, so as its average connectivity degree is
(N − 1)π. Pr is based on the probability density function
of a binomial distribution, PdfB(m,π,N − 1), presented
in [33], which computes the probability for m nodes, among
(N − 1), to receive the sent message, with a probability
π. Then, m

N−1 represents the probability that the concerned
node belongs to those that have received the message. To
obtain all the possibilities for receiver nodes’ number, a sum
is computed from m=1 to N − 1. Finally, this probability
takes into consideration the collision factor to account for
lost messages caused by collisions.

We suppose in DTM2 that the probability of having
a message to forward, Pt, has the same value that the
probability of reception of a message, with the assumption
that each node retransmits a received message once. This
probability is described in equation (19).

Pt = (1− P (x = 0)) Φ (1− Pc) (19)

C. Credit Updating because of a Reward

The DTM2 model is based on inciting nodes to cooperate
and behave well. The reward, W (Y ), has to be attractive, but
some conditions have to be met before a node is rewarded,
like a node’s neighbors validating the sent data. A sent
message is considered as truthful in the eyes of another
node if its reputation on the source node is not too bad, i.e.
Pm > ρ, and if the used signaling value is not too small.
In DTM2, the signal threshold for accepting a message is
fixed to Y ⋆(γ · θinitial) during our implementation. If the
conditions are met, the reward is computed according to the
signal value, Y , used by the source. The probability of a
node updating its credit with a Reward, Pw, is computed
below, in equation (20).
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Pw[θi][θj ] =

(

1− P (x = 0)

N
+ Pt

)

Υ Pv, (20)

where

θj = θi − C(Y ⋆(θi), θi) +W (Y ⋆(θi)), 0 ≤ θj ≤ θmax

Υ =

{

Pg + Ps If θi ≤ θinitial

Pg + Pm Otherwise

Pv =

{

0 If (Y <= Y ⋆(γ · θinitial)) Or (Pm > ρ)

1− Pm − Pc Otherwise

so that Pv ≥ 0
In the case of sending a message, the probability of receiv-

ing a reward depends on that of detecting or retransmitting
an event, added to that of paying a cost. Consequently,
as in earlier cases, the probability differs according to the
node’s behavior. If the node has sufficient credit, greater
than the initial credit, then both good and malicious nodes
participate, and use the correct signal value corresponding
to their credit, Y ⋆(θinitial). Otherwise, when a vehicle is
running out of credits (i.e. the remaining credits are below
a defined threshold), the vehicle becomes more interested in
cooperating, even if its main behavior is selfish. They will do
so in a different way, so that good and selfish behaviors pay
the corresponding signal cost, Y ⋆(θi), and receive a reward,
W (Y ⋆(θi)), according to the probability in equation (20). A
malicious node with a low credit level, chooses to "cheat"
and uses a suitable signaling value for it, Y ⋆(θinitial). Its
probability differs in the θj value, because of the paid cost,
C(Y ⋆(θinitial), θi). The used signal is that of a node holding
θinitial value, but the cost is according to its actual credit,
θi. The received reward in this case is W (Y ⋆(θinitial)). Its
rewarding probability is described in equation (20), with the
same definition for Pv as in earlier.

D. Credit Stagnation

The final case is when a node does not send or receive a
message, so its credit value does not change. The probability
of credit stagnation, Pl is described in equation (21).

Pl[θi][θi] = 1−

θmax
∑

θj=0

P [θi][θj ] (21)

Finally, we describe the final state of our model, when the
node’s credit runs out, so it cannot participate in the network
any longer, with the equations in (22).

P [0][0] = 1
P [0][θj ] = 0 For θj > 0

(22)

E. Adjusting DTM2’s parameters

To improve DTM2 results and adjust its performance
according to the requirements of VANETs safety application,
we study the impact of the different parameters involved.
First, we study the initial credit value, θinitial, combined

to α, the credit’s power factor, since they affect the signal
computation. Then the variations of the coefficient of the
reference wage value, σ, which directly impacts the reward
value computation. Finally, we study the coefficient of the
reception cost value, µ. The variation of these parameters
has an impact on how much and how fast a node can
spend or earn credits on the network. This directly influences
malicious node detection and false positive percentage.

1) Impact of θinitial Combined to α: Our solution, is
based on secure credit management. It begins with the initial
credit value assigned to the nodes. A large initial value
allows greater participation and interaction between nodes,
thus deepening their knowledge of the network members.
However, the frequent topology changes and the high mo-
bility of VANETs, enable malicious nodes to extend their
lifetime before their exclusion thanks to their high level of
credit, as well as increasing the damaging effects they have
on the network.

We study the performance of DTM2 according to the
variations of both θinitial and α because of their simulta-
neous use in equation (2). An expensive signaling cost, due
to a small value of θαinitial, shortens the exclusion delay
for malicious nodes by quickly exhausting their credits.
However, it also dangerously increases the false positive
percentage by limiting the margin of error for good nodes.
Fig. 5 illustrates the percentage of malicious node detection,
with θinitial set to each one of these values: 50, 100, 200,
300, 400, and 500, and with α set to 0.5, 1, 1.5, 2, 2.3, 2.5,
and 3. The detection percentage of malicious nodes with
λ = 1 at 1000s is presented in Fig. 5(a).

We noticed a small peak when the pair (θinitial, α) is
minimal and equals to (50, 0.5). For other combinations,
the detection rate decreases faster with variations of α’s
than with those of θinitial. This is due to the exponential
link between the signaling cost and α. By varying only one
parameter in the pair, according to the same factor, say 6,
we obtain different percentages, so that the detection with
(300, 0.5) equals 93%, and that with (50, 3) equals 75%.

Fig. 5(b) illustrates false positive percentage, which rep-
resents the percentage of erroneous detections. As before,
we modify both θinitial and α, and obtain a high peak for
the pair (50, 0.5), so that the false positive percentage is
around 1.9% at 1000s, while it equals to 0.0074% for the
pair (100, 2.3). We notice then that, the lower the value of
θαinitial, the greater the percentage of false positives. In the
rest of this study, we choose intermediate values for the pair
(θinitial, α), to obtain large percentages of malicious node
detection and minimal false positive. Therefor, the couple
(100, 2.3) seems to be the best trade-off and is used in the
rest of this study.

2) Impact of σ: After studying the different signaling cost
values and their impact, we are interested in the different
values of the reward. According to the system presented in
(4), σ increases or decreases the reward value reference, so
that it is equal to θ

σ
. Fig. 6 shows the performance of DTM2

according to the variation of σ in the set 1, 3, 5, 10, 15, and
20, with λ = 1.
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Fig. 5. Malicious node detection and false positive percentage according to multiple value of signaling cost according to both θinitial and α, with
λ = 1.
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Fig. 6. Malicious nodes detection and false positive percentage according to multiple value of reward according to σ, with λ = 1.

Fig. 6(a) illustrates the malicious node detection percent-
age. We noticed that the first detection occur at 100s and
1500s, for σ = 1 and 20, respectively. So, there is a positive
correlation between the value of σ and the value of the
detection delay. Therefore, as σ increases (i.e. the reference
reward value increases) the detection time increases as well.
We conclude that handing out large rewards to nodes, as in
the cases where σ = 15 or 20, creates credit overflows, thus
debilitating the main premise of DTM2, which consists in
depleting credits for malicious or non cooperative nodes.

As we observed before, the optimal parameters for a high
detection percentage, also cause higher false positive results.
Fig. 6(b) depicts the false positive percentages. The false
positive percentages are very low, except for σ = 1, which
is the case where the rewards are low and that yields the
quickest malicious node detection and eviction. Therefore,
handing out small rewards can deplete the credits of good
behavior nodes, and exclude 12% of them. For the rest of
this study, we choose 5 as the value of σ. According to
our results, this value represents the best trade-off between
malicious node eviction and false positive decrease.

3) Impact of µ: The last parameter to study is µ. This
parameter is responsible for the variations of the reception
cost. Optimizing this value is important, as it has an impact
on both the detection of malicious node, and the cooperation

of selfish nodes. Since this value controls the reception
cost of a message, malicious and selfish nodes should
pay to decrypt messages to remain informed of the road
traffic, which can deplete the credits for the malicious and
exclude them later if they receive no rewards. Moreover, it
encourages selfish nodes to cooperate, by increasing their
need to earn credits.

Fig. 7(a) depicts percentages of the malicious node detec-
tion for λ = 1 and 0.2. With µ = 1, the cost of sending and
receiving a message are equal for a node holding θinitial
credits. Therefore, for this value of µ, the reception cost
is high since a node receives much more messages than it
sends.

We notice a faster detection rate for small values of µ, so
that at 1000s, the percentage is equals to 93% for µ = 1,
77% for µ = 5, and 71% for µ = 20 when λ = 1. Hence, the
highest is µ, the lowest is the percentage. When λ = 0.2,
the percentages are 74%, 42%, and 35%, for µ = 1, 5,
and 20, respectively, at 3000s. However, the false positive
percentage for µ = 1 in Fig. 7(b) is worse than for other
values, so that it is equal to 17% with λ = 1 at 3600s, and
to 2% with λ = 0.2, compared to 0.048% and 0.000059%,
respectively, when µ = 5. As before, we choose a trade-off
between malicious node detection and false positives. This
is achieved when µ = 5, which will be used in the rest of
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Fig. 7. Malicious node detection and false positive percentage according to multiple value of reception cost according to µ.

our study.

VII. SECURITY ANALYSIS

Changing behaviors is one of the most important points to
deal with for a Trust model. DTM2 avoids this by forcing
vehicles to pay for each message to send, so that choosing
a higher signal value adds an implicit guarantee to the sent
data. However, the cost of a chosen signal value is more
expensive when the remaining credits are low.

A vehicle using DTM2 bases its confidence on received
information on two criteria. The first one concerns the
reputation held on the source vehicle. Reputation values
are not shared between members, to avoid overloading the
network. So a vehicle detains a reputation value about
another one only in the case where they were neighbors.
The second criterion concerns the signal value chosen by
the source vehicle: it must be higher or equal to the minimal
accepted signal value fixed by the application.

In the case where vehicles refuse to validate some received
data (because they sense the opposite of this information),
the source vehicle will not be rewarded, and therefore it
will not recover its paid sending cost. The cost of sending is
higher for a vehicle detaining few credits, in order to restrict
their participation in the network, and to motivate vehicles to
always keeping an average level of credit by behaving well.
A changing behavior vehicle will see its credits decrease
very quickly when its behavior is malicious, and they will
never or very slowly increase if it changes behavior. This,
in addition to the decrease of its reputation value held by its
direct neighbors.

Fig. 8 illustrates the detection percentage when nodes
alternate between good and malicious behaviors. These
results are obtained through mathematical analysis using
our Markov chain model. We clearly notice that all nodes
behaving maliciously at least 50% of the time are detected
over time. In Fig. 9, we change the value of the parameters
α to 1 instead of 2.3, and σ to 1 instead of 5. This allows
to obtain a faster malicious nodes detection that affects even
the vehicles that are malicious less than 50% of the time.

The choice of the parameters depends on the definition of
a malicious vehicle. The parameters of our solution allow
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tuning the aggressiveness of the detection, according to the
requirements of the application.

VIII. SIMULATION STUDY

A. Analytical and Simulation Setup

We evaluate the performance of our model by focusing
on its ability to detect and evict malicious nodes, and to
incite selfish nodes to cooperate more. In our scenario,
a malicious node is a node that creates and sends false
information, and that corrupts data before sending it during
a retransmission. Moreover, a malicious node can "cheat"
and use a suitable signaling value for it. We assume, in
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TABLE II
PARAMETER VALUES FOR THE SIMULATION

Number of nodes: 500 Mac layer protocol: IEEE 802.11p
Transmission range: 250m Simulation time: 3600s, and 10800s

Urban area size: 6× 6 Km2 Highway length: 35 Km
Urban speed: 20-50 km/h Highway speed: 90-160 km/h

Arrival intensity λ=1 and 0.2 Diffusion data algorithm: ADCD [2]
Cmsg=C(Y ⋆, θinitial)/µ Data rate: 6 Mbps

β=5 α=2.3
σ=5 θinitial=100
ρ=0.5 γ=20%
η=10% µ=5

both theoretical and simulations analysis, that in order to
mislead other nodes, a malicious node uses a signal value
of Y ⋆(θinitial) when its credits is lower than θinitial. On the
other hand, selfish nodes only participate out of self-interest
(i.e. when they do not have enough credit to decrypt received
messages), we suppose that this threshold is fixed to θinitial
value. To this end, we first measure the detection rate with
both theoretical and simulation analysis. Next, we study the
average ratio of corrupted data, in a network composed of
16% and 25% of malicious nodes. Finally, the average data
reception ratio is measured in a network composed of 25%
and 50% of selfish nodes. Furthermore, for each analysis we
set the arrival intensity parameter of detected events λ to 1
event per second, for a deployed VANET application in an
average sized area, sharing events such as dangerous road
features, accidents and traffic improvements; and 1 event
every 5 seconds, for applications with stricter requirements
on generated overhead.

We compare our simulation results to theoretical results,
obtained with MATLAB. For simplicity, our theoretical
study does not include a reputation model. Therefore, for
realism purposes, we assumed that a node’s behavior is
composed of two types of behavior. Consequently, in our
study, a predominantly good behavior node has up to 80%
good behavior and up to 20% malicious behavior. Thus, its
reputation is 100%. Similarly, a predominantly malicious
node is up to 80% malicious. Finally, a predominantly selfish
node is up to 80% selfish and 20% malicious. To compute
the detection rates for different times, we provide each node
with an initial credit value of 100, we assume a range of
[0, 500] for its variations, and we vary the arrival intensity
parameter, λ, which defines the frequency of events to share
for the nodes. We set the probability of collision, Pc, to 0.02,
and the stationary probability of connection between nodes,
π, to 0.01.

The simulations are conducted using NS2-34 [34] using
the 802.11p extension for the MAC layer, with two different
mobility scenarios. The first is a highway mobility scenario,
generated with VanetMobisim [35], in a stretch of highway
of 35km, with a velocity ranging between 90km/h and
160km/h. The second scenario is an urban mobility scenario
generated with SUMO [36], in an area of 36 km2, with
a velocity ranging between 20km/h and 50km/h. Since
VanetMobisim is very accurate for highway scenarios, and
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Fig. 11. Percentage of false positive

Sumo is more often used to generate urban topologies [37].
We simulated 500 nodes in a urban and highway areas during
3600s when the arrival intensity of events λ is 1, and during
10800s when λ is 0.2. We set the transmission range to
250m and data rate to 6 Mbps. The simulation parameters
are shown in Table II.

To study DTM2’s performance, we select three metrics
for our evaluation:

• The detection malicious node delay and percentage
of both malicious and no-malicious nodes (this later
represents false positive percentage).

• The ratio of received and accepted false messages
by the nodes at their detriment, in the presence of
malicious nodes.

• The ratio of received data, in the presence of selfish
nodes.

All the metrics have been studied for different compositions
for the network according to the proportion of malicious and
selfish nodes, with two values for the data arrival intensity
frequency, in both urban and highway scenarios.

B. Detection Delays and Percentage

Fig. 10(a) and Fig. 10(b) present the malicious node
detection rate for different times, which corresponds to
malicious nodes running out of credit during 3600s and
10800s simulation times, respectively. In Fig. 10(a) one
event is shared each second (λ =1), while in Fig. 10(b), one
event is detected and shared every 5 seconds (λ = 0.2). In
both figures, we compare the simulation results in highway
and urban scenarios to the theoretical ones. We notice that
the results are coherent. The detection rate reaches 50%
between 500s and 700s. At 2000s the detection rate exceeds
98%, and 100% malicious node detection is achieved around
3000s. Compared to Fig. 10(a), the results of Fig. 10(b)
reach 100% later in the simulation, this is due to the
infrequent shared messages between nodes compared to
the former case. Indeed, with less messages to send and
less received messages, reputation values take more time to
become meaningful. Likewise, the credit count of malicious
nodes decreases slowly when they share less messages.
This induces a detection rate of 50% reached by the urban
scenarios after 3300s, and by highway scenarios at 4100s.
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Fig. 12. Average received ratio of corrupted data in urban scenario, with λ = 1

For a detection rate of 75%, this occurs at 4400s and
5900s for urban and highway scenarios respectively. 96%
is reached at around 7000s and 9000s. We notice that the
factor of difference in times between the detection rates with
λ =1 and λ =0.2 is in urban scenarios around 4.71, 4.88 and
4, 37 for 50%, 75% and 96%, respectively, and in highway
scenarios around 8.2, 7.86 and 6, 42. This means that the
detection time of all malicious nodes in a network is not
automatically multiplied by the event frequency, but can be
lower or greater because of the node distribution.

Besides the arrival intensity factor, which impacts the
result, we observe from the two figures that the mobility
patterns, and the network composition also have an impact,
with different degrees. In fact, in Fig. 10(a), the shared
messages are so frequent, that the nodes’ reputations are
quickly established, which leads to an effective decision
for received messages in the network, for both acceptance
or refusal. So, the remaining credits quickly diminish for
malicious nodes, and they are rapidly excluded. Despite the
superposition between the two highway scenarios curves,
which means that the network composition does not have
much impact in this case, there are no significant variations
compared to the urban scenarios results, mostly from 1200s.
The little variations can be caused by either the message loss
because of the significant collision factor in urban scenarios,
since the detection times are inversely proportional to the

number of exchanged messages; or the difference in node
connectivity in urban and highway scenarios, as in an urban
scenario, a node’s neighbors change more frequently than
in an highway scenario, thus inducing positive and negative
points. A drawback of frequent changes is that it takes a
long time to establish valid reputation values, compared to
a highway scenario, as resulted in Fig. 10(a). However, the
advantage is that a node posses a larger global view of the
reputation of the node in the network, we notice this in
Fig. 10(b) and conversely to the first case, the results are
better in urban scenarios than in the highway, independently
of the network composition. The frequent neighborhood
changes in urban scenario allows to retransmit received
information more frequently, thus spending or earning more
often credits, and holding larger view of the network. In
contrast, highway scenarios have a lot of constant trajec-
tories inducing limitations in data retransmission, accurate
reputation about direct neighbors, and very often none about
the others.

C. False Positive

False positive results are illustrated in Fig. 11, we collect
and compare the detection percentage of the good and
selfish nodes during more than 19 hours. For this study,
we set the arrival intensity parameter λ to 1, then to
0.2, in both theoretical and simulation analysis. Since the



16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500

R
e
c
e
p
ti
o
n
 r

a
ti
o
 o

f 
c
o
rr

u
p
te

d
 d

a
ta

Time (s)

DTM
2

MebTrust, 5 police cars
No solution

(a) Percentage of malicious nodes = 16%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500

R
e
c
e
p
ti
o
n
 r

a
ti
o
 o

f 
c
o
rr

u
p
te

d
 d

a
ta

Time (s)

DTM
2

MebTrust, 5 police cars
No solution

(b) Percentage of malicious nodes = 25%

Fig. 13. Average received ratio of corrupted data in highway scenario, with λ = 1
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Fig. 14. Average received ratio of corrupted data in urban scenario, with λ = 0.2

simulation results in all the scenarios are identical and equal
to zero, we represent them in only one curve. The remaining
curves ensure the stability of the very low risk of having a
false positive detection, by reaching stationary probabilities,
which means that whatever the simulation duration, never
the probability of detecting will exceed a certain probability.
The stationary probability for detecting a good behavior
node is equal to 0.0336701% and reached after 8300s when
λ = 1, and is equal to 0.0833375% reached after 42500s
when λ = 0.2. The stationary probability for detecting a
selfish node is equal to 0.0648695% after 43100s when
λ = 1. In the case where λ = 0.2, the probability increases
because of the low number of message to share, thus, less
opportunity for a selfish node to raise its credits. However
the probability remains very low, equal to 0.236583% at
70000s. The low false positive percentage is obtained mainly
because of the assumption of credit safeguard, where a node
does not accept received messages when its credit level is
too low (θ ≤ θinitial × η). During our simulation we chose
η = 10%.

This three figures show the stability of the obtained
results, that a detection of 100% is always reached after
a certain time, and particularly that the false positive rate is
lower than 0.5% and does not increase later.

D. False Message Diffusion

A direct consequence of the presence of malicious nodes
in a network, is the sharing of false and tampered data, or its
unknowing retransmission by good behavior nodes. To study
this harmful impact, we gather the ratio of false messages
that nodes receive and accept (i.e. considering them as valid)
in several times, and in different network conditions.

We compare DTM2’s results with those of a network
without any solution, and with a network using a majority-
based and experience-based trust model presented in [19],
which we refer to as MEB_Trust.

The basic idea in MEB_Trust is that a node asks its
neighbors about the truthfulness of a received data. After
receiving more than the minimum number of responses fixed
by the application, the vehicle computes the majority opinion
of the received responses. The vehicle gives more weight to
the responses sent by vehicles that have higher categories,
such as police vehicles in MEB_Trust case, and those who
have larger experience-based trust values. According to the
majority opinion, they accept or not the received data.

Authors in [19] study the performance of their proposed
solution by observing the traffic congestion caused by the
dissemination of untruthful velocity information. Indeed,
malicious nodes in [19] send false velocity information to
cause traffic congestion. Authors measure the average road
speed. The lower the speed is, the higher the impact of
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untruthful data.

We choose to compare DTM2 with this solution for the
metric of average received corrupted data ratio. Our solution,
DTM2 does not detect only false velocity information, but
all corrupted traffic information. As DTM2, MEB_Trust
helps a node to validate or remove a received message.
However, this solution depends on the presence of trusted
entities (e.g. police cars), which always respond correctly
to nodes, but does not exclude malicious nodes. For our
simulation of this solution we included 5 police cars (1%),
which is an average value with respect to those used in the
original paper [19].

Fig. 12 and Fig. 13 present the average received ratio of
false data in both urban and highway scenarios respectively,
with λ = 1. We performed a series of tests by modifying
the percentage of malicious nodes in the network from 5%
to 50%. However, for clarity purposes, we chose to only
present two scenarii (16% and 25%) as they clearly illustrate
the evolution of the detection process.

In both Figs. 12(a) and 12(b), we note that when using
DTM2, the ratio of false received data quickly decreases
until reaching 0 after 1000s of simulated time for a network
composed of 16% and 25% in an urban scenario. We notice
that this time is lower than the one to detect and evict
100% malicious nodes in the same conditions. This means
that nodes come up to successfully decide to accept or to
refuse a received message thanks to the use of reputations
and signal values, well before malicious nodes deplete their
credits, which means that some nodes are able to recognize
some malicious nodes before their exclusion. Concerning
the two other solutions, the results of Meb_Trust are better
than those without solution, which never reach to zero, as
it is the case for DTM2. In addition, Meb_Trust efficiency
is not scalable, since when more than 16% malicious nodes
are present, the results deteriorate. Moreover, DTM2 is able
to better control oscillations in Fig. 12(a) and Fig. 12(b),
compared to the two other solutions.

The results in both Fig. 13(a) and Fig. 13(b) are similar
to those in an urban scenario. Therefore, we conclude that
while the arrival intensity is high, the mobility scenario
has less impact on the detection percentage since the large
number of exchanged messages with λ = 1 fades of the
network differences between urban and highway scenarios,
because of collisions and frequent neighborhood changes.
DTM2 in a highway scenario, with λ = 1, efficiently and
rapidly copes with the presence of malicious nodes.

When events to share are scarce, as in Fig. 14, reception
ratio of false data changes more for the three deployed
solutions, and its maximum values are higher than with
λ = 1. This is due to a lower knowledge of nodes about
their surrounding. The reputation values are less accurate,
which induces good behavior nodes to accept and share
false date longer. In Fig. 14(a), the average received ratio of
corrupted data in DTM2 reaches zero after 4400s simulation
time, and after 5500s in Fig. 14(b). We notice that the
network with Meb_Trust and with no solution also have

difficulties to limit ratio of false received data. In the case of
Meb_Trust, the solution is essentially based on trust vehicle
presence as police car, and on reputation values, these
values have difficulties to converge with the presence of
numerous malicious node. Even if the ratio with Meb_Trust
reaches zero often, this occurs when an event is detected
and forwarded by good behavior nodes, or when shared
false data is removed by trusted vehicles. However, large
oscillations remain because of the infrequent meetings with
trust vehicles, which makes the solution inefficient to cope
with malicious nodes in highly mobile and large networks
as VANET.

E. Network Cooperation in the Presence of Selfish Nodes

The last metric to study, in order to validate DTM2, is
the nodes’ cooperation. Therefore, we calculate the ratio of
received truthful data by the concerned nodes about each
event. This ratio is directly impacted by the presence of
selfish nodes, which refuse to cooperate. We suppose that
selfish nodes are rational, so they cooperate only when
they need credits to their own interest, as receiving other
messages, we fix the threshold of selfish node cooperation
to the credit initial value, θinitial. We compute this ratio in
several network conditions, in a network using DTM2 and
without any solution.

Fig. 15(a) and Fig. 15(b) present the reception ratio of
data for concerned nodes in urban and highway scenarios
when λ = 1, for 25% and 50% selfish nodes in the
network respectively. Ratios in urban and highway with
DTM2 perfectly overlap, and are equal to 1 from the
simulation start, since selfish nodes need credits to pay for
their numerous received messages. We noticed that in the
case with no deployed solution, the impact of selfish nodes is
huge, even in a network with only 25% selfish nodes. Since
they have no incentive to cooperate, and no constraint if they
refuse, selfish nodes do not cooperate. Their impact on the
urban scenario without deployed solution is high enough,
but invariant with their percentage. Unlike in a highway
scenario, where the ratio is less affected with 25% selfish
node presence than with 50%, this can be caused by the
nodes’ constant trajectories in such a scenario. Indeed, if
a node has 50% selfish neighbors over a long period, and
follows a constant trajectory, it and its neighbors can often
share the same neighbors, which reduces the detected and
retransmitted events. So, a node receives fewer messages
with 50% of cooperative and constant neighbors than if it has
50% of cooperative and mobile ones. In an urban scenario,
the 50% of cooperative neighbors have a higher chance of
receiving and retransmitting a lot of messages, thanks to
their different surroundings.

IX. CONCLUSION

In this paper, we proposed DTM2, a Distributed Trust
Model for VANETs, adapted from the job market signaling
model, a well-known economic model used in the case where
asymmetric information is held between parties. DTM2
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Fig. 15. Average received ratio, with selfish node presence, and λ = 1

focuses on managing a tamper-proof credit count received
by nodes at the start of the application. In order to detect
and evict malicious nodes, it creates self-selection among the
network’s nodes and exhausts the credit for those nodes with
bad behavior. Moreover, to improve the cooperation level
of selfish nodes, it proposes inciting rewards. In order to
tune the different parameters involved in DTM2 behavior,
we model it using a Markov chain. Then, we showed via
simulation the achievement of the two DTM2 objectives
(i.e. evicting malicious nodes and encouraging selfish ones
to cooperate) in networks composed of 25%, or 50% of
malicious or selfish nodes. In both of these cases, DTM2

is able to gradually detect all malicious nodes and com-
pletely eliminate their negative effects on the network, while
avoiding the erroneous detection of good or selfish behavior
nodes. Furthermore, our approach is able to increase the
cooperation of selfish nodes by maintaining a high reception
ratio, unlike networks where no solution is offered.
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