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Abstract—Interference Alignment is a new solution to over-
come the problem of interference in multiuser wireless com-
munication systems. Recently, the Compute-and-Forward (CF)
transform has been proposed to approximate the capacity of K-
user Gaussian Symmetric Interference Channel and practically
perform Interference Alignment in wireless networks. However,
this technique shows a random behavior in the achievable sum-
rate, especially at high SNR. In this work, the origin of this
random behavior is analyzed and a novel precoding technique
based on the Golden Ratio is proposed to scale down the fadings
experiences by the achievable sum-rate at high SNR.

Index Terms—Compute-and-forward, lattice reduction, succes-
sive minima, Diophantine approximation.

I. INTRODUCTION

Nowadays multiuser interference is one of the most chal-

lenging problems encountered in present wireless communica-

tion systems, particularly with growing number of subscribers

as well as the decreasing size of cells for cellular systems,

increasing demand in terms of transmission rates and channel

limits. We should think through methods which eliminate or

uses interference to recover desire information in a proper

way in our communication systems. Interference Alignment

(IA) is an interference management technique that achieves a

linear scaling of the network throughput with the number of

source-destination pairs, a scaling that would be impossible

with interference avoidance. Two alignment approaches are

known in literature: linear interference alignment for time-

varying channels [3] and non-linear interference alignment for

static single-antenna channels [6].

A. Related Work

From information theoretical perspective, this issue is mod-

eled by the interference channel introduced many years ago

in [7] and [8]. Still it remains one of the most important

challenges in the domain of multiuser information theory. In

two-user interference channel, a significant progress had been

made for the case of strong [9] and very strong interference

[10] channels. Indeed, it is natural to overcome the problem of

achievable sum-rate described in [2], for 2-user systems before

generalizing it for K−user case, which K > 2.

Among existing interference management techniques, we

focus in this work on IA. This novel framework will be used

to design actual codes. First lattice-based codes are designed

for channels with integer-valued coefficients and later extended

to real-valued (resp. complex-valued) channel coefficients. In

particular we are interested in lattice-based IA using the CF

framework. Originally introduced by Nazer and Gastpar as re-

laying strategy in [2]. The CF allows relay nodes to decode and

forward linear equations of originally transmitted messages

using the noisy linear combinations provided by the channel.

Upon receiving enough linear combinations, the destination

can retrieve the original data flows with higher transmission

rates compared to traditional relaying techniques. At high

SNR, the computation rate can be maximized by choosing

equation coefficients close to the channel coefficients. Many

works have been done to analysis the Degrees of Freedom

(DoF) for CF. Among which, Nilsen et al. have used the

approach of CF to show achievability results for DOF [4].

For what concerns interference management, the CF has been

used by Ordentlich et al. in [1] to show achievability results.

The alignment problem can be formulated as that of solving an

overdetermined system of equations with respect to a subset

of unknowns and can be cast into the familiar language of

vector spaces [5].

B. Summary of Paper Results

Our basic strategy is to consider the computation rate,

defined in [2], for Gaussian Symmetric Interference Channels

(GS-IFC) and the new scheme of CF described in [1], for

modeling 2-user GS-IFC, and improving its achievable sum-

rate. In this paper we assume that there is no need of channel

side information at transmitters. If we consider the same

method used in [1] to simulate the achievable sum-rate for

2-user GS-IFC, we get the performance showed in Fig. 1. We

are interested in the fractal behavior of the sum-rate at high

values of SNR, when using the CF transform. In this case, as

it can be seen in Fig. 1, the achievable sum rate suffers from

deep fadings and it can change dramatically, even for a small

interfering gain variation.

In the second part of this work we will introduce the

channel model and the lattice structures. In the third part, by

considering the main frame work of [1] and [2], we will model

the achievable sum-rate for 2-user GS-IFC. After defining

correspondent quadratic form, we will introduce the “Golden



Ratio” and its equivalent structures to approximate channel

coefficients. These new approximated channel coefficients will

help us to avoid deep fadings and improves the achievable

sum-rate by using just one time-slot to send each codewords

to destination, but it will have its own disadvantages. Finaly in

the last part of this work we will define our new method of CF

transform to send codewords through channel to destinations

in n different time-slots, by using Precoders combined with

Golden Ratio at transmitters level. This method improves

significantly the final achievable sum-rate, and we can limit

deep fadings of previous works.
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The Upper Bound
Achievable Sum−Rate

Fig. 1. Upper and lower bounds on the capacity of a 2-user Gaussian
symmetric interference channel with respect to the cross-gain g and the CF
scheme defined in [1].

II. CHANNEL MODEL AND LATTICE STRUCTURE

A. Channel Model

In this paper, the channel model is the K−user CS-IFC.
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ŵ2

g

g

Fig. 2. 2-User Gaussian Symmetric Interference Channel.

By using a simple lattice interference alignment [1], the

symmetric K−user case is approximately equivalent to the

symmetric 2−user case which is shown in Fig. 2. This means

that:

H =

[

1 g

g 1

]

(1)

The received signal is expressed by:

y =

[

y1

y2

]

= Hx+ z (2)

Where x denotes the input-vector, y the output-vector and

z the noise-vector, all of size K . The components of z are

independent Gaussian real zero-mean random variables with

power equal to σ2. The SNR is defined as SNR = P
σ2 . Each

transmitter satisfies the power constraint, which for n channel

uses for user i is given by:

1

n

n
∑

j=0

|xi
2| ≤ Pi (3)

We assume in this paper that all users have the same power

constraint i.e., Pi = P . The channel is symmetric in the third

part of this paper, but in the last part of this paper when

we introduce our precoding scheme, we are transforming the

Symmetric Channel (SC) to Asymmetric Channel (AC). A

channel is said symmetric when H(i, j) = g for all i 6= j,

and after normalization H(i, i) = 1 for all i’s.

B. Lattice structure

In this paper we will use the Nested lattice framework pro-

posed by [11]. This choice allows to achieve the computation

rate that will be used below. A lattice Λ is a discrete additive

subgroup of Rn, i.e., ∀t1, t2 ∈ Λ, where t1 + t2 ∈ Λ and

−t1,−t2 ∈ Λ. Any lattice Λ in Rn can be characterized by a

n×n symmetric definite positive matrix G called Gram matrix

or by using a n × n matrix M called generator matrix such

that:

Λ = {A = M · Z : Z ∈ Zn} (4)

By applying the Cholesky decomposition to matrix G we can

create an upper triangular matrix B of size n× n which is a

generator matrix of Λ. The columns of matrix B are basis of

Λ. We get:

B = Cholesky(G), G = BTB (5)

A lattice Λ is full rank if its Gram matrix is full-rank.

III. DIOPHANTINE APPROXIMATION FOR THE 2-USER

GS-IFC AND THE GOLDEN RATIO

We use the so-called CF Transform introduced in [1]. In [2,

Theorem 2], the computation rate which is the maximal rate

at which users can transmit codewords to destinations, when

we are interested in decoding reliably the equation
∑

i aixi is

given by:

R(h, a) =
1

2
log+2

{

(

‖ a ‖2 −
SNR(hTa)2

1 + SNR‖ h ‖2

)−1
}

(6)

Where log+2 (x) , max(log2(x), 0), a is a vector of integers

of length n which will characterize the equation we want to

decode and h is the vector of channel coefficients. In this

contribution, we are interested to improve the behavior of

CF in the strong and very strong interference regimes. More

precisely, we want to limit the deep fading behavior observed

in Fig. 1 for the achievable sum-rates. In the 2−user GS-IFC



for each user, h = [1, g] and the Interference-to-Noise Ratio

(INR) is INR , g2SNR. Here, g ∈ R is the channel interferer

coefficient, the direct channel coefficient is normalized to be

1 and a = [x, y]. The computation rate expressed in (6) can

be written in this way:

R(h, a) =
1

2
log+2

{

(

1
SNR

+ (1 + g2)
)

q (x, y)

}

(7)

Where q(x, y) is a definite positive quadratic form equal to:

q (x, y) = (xg − y)2 +
1

SNR
(x2 + y2), x, y ∈ Z (8)

From Equation (8), the Gram matrix can be found as:

G =

(

g2 + 1
SNR

−g

−g 1 + 1
SNR

)

As a definite positive integral quadratic form, q(x, y) defines

a rank 2 lattice, ΛCF.

Following the method described in [1], we aim to find

the two successive minima λ1 and λ2 of (8). As the integral

quadratic form is of dimension 2, an algorithm for optimally

finding the two successive minima is the Gauss reduction

algorithm [14](which has been generalized to the LLL reduc-

tion algorithm [15] in higher dimension). Let’s define matrix

B = Cholesky(G) be a basis of ΛCF and Bred be the

reduced basis after Gauss reduction. U is the unimodular

basis change matrix. Call Gred = BT
redBred the reduced Gram

matrix, then the two successive minima are the diagonal entries

of Gred. In this part of our work, we analyze the achievable

sum-rate for different values of g.

The quadratic form of Equation (8) can be decomposed into

two terms.

• First term (xg − y)2, where x and y are integers, is

obviously related to the quality of the Diophantine ap-

proximation of the real number g.

• Second term, 1
SNR

(x2+y2) is a penalty that disadvantages

large values of x and y.

We perform here an asymptotic analysis of (8) for which the

Diophantine approximation term is the most important term.

Values of g giving a high sum-rate, are those values for which

the value of the second minimum λ2 is low. But, as the product

of λ1λ2 is a constant [1], those values of g are those for which

the value of the first minimum λ1 is high. In a high SNR

analysis, this means that the real number g must be hardly

approximable by a rational number. In [13, Chap. 2], this

problem is considered and the Golden ratio is shown to be the

most hardly approximable number (which is intuitive since its

continuous fraction development gives only 1’s).

A. Equivalent Numbers and Diophantine approximation

The Golden ratio is the most hardly approximable real

number. Following [13], we define, for a real number θ, and

an integer q,

‖qθ‖ = min
p∈Z

|qθ − p| (9)
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Fig. 3. Upper and lower bounds on the capacity of 2-user Gaussian symmetric
interference channel with respect to the use of perfect approximated cross-gain

g
′

equivalent number to golden ratio.

Then, for any θ, we get

q ‖qθ‖ < 5−
1

2 (10)

Definition 1: Let φ = 1+
√
5

2
be the Golden ratio. The

conjugate of φ will define as φ̄ = 1−
√
5

2
. A number g is

equivalent to φ if:

g =
aφ+ b

cφ+ d
, (a, b, c, d) ∈ Z and det

[

a b

c d

]

= ±1 (11)

We are ready to state one of the main results [13, Chap. I,

Theorem V].

Theorem 1: Let θ be irrational. Then there are infinitely

many q such that q ‖qθ‖ < 5−
1

2 . If θ is equivalent to φ, then

the constant 5−
1

2 cannot be replaced by any smaller number.

This result means that, if SNR is large enough, and if g
is a number equivalent to the Golden Ratio, then the second

minimum of q(x, y) is small, and so, the sum-rate of the

interference channel is high.

Now we will give an example to show that this method will

give an achievable sum-rate close to the outer Bound, with a

small gap between them.

Suppose now the interfering coefficient g is equal to the

Golden Ratio, i.e. g = 1+
√
5

2
, When SNR is high enough,

then the 2−dimensional vector of integers which minimizes

the quadratic form q(x, y) defined in (8) will have a length

equal to the first minimum. According to Theorem 1, this first

minimum should satisfy x2(xg − y)2 ≈ 1
5

. So we get

λ1 ≈
1

5x2
+ SNR

−1(x2 + y2) (12)

or

λ1 ≈
1

5x2
+ SNR

−1x2(1 + g2) (13)

Now, the minimum is achieved when

∂λ1

∂x
= −

2

5x3
+ 2xSNR−1(1 + g2) = 0 (14)

giving



xopt =
4

√

SNR

(5(1 + g2))
(15)

and

λ1 ≈ 2

√

1 + g2

5SNR
(16)

As λ1λ2 ≈ (1 + g2)SNR−1
[1], we will get

λ2 ≈

√

5

4
SNR

−1(1 + g2) (17)

So the final rate is

R ≈ 1
4
log+2 (SNR(1 + g2))− 1

4
log+2 (

5
4
)

≈ RUp.Bound − 0.08
(18)

Where RUp.Bound is the Upper Bound of the rate for a

SNR sufficiently large. So the gap between Upper Bound and

achievable sum-rate is very small.

Another illustration of this result which states that, at high

SNR, channel coefficients equivalent to the Golden ratio gives

a sum-rate close to the Upper Bound, consists of plotting the

same curve as in Fig. 1, but only sampling those g’s which

correspond to numbers equivalent to the Golden ratio.

In this method, we choose to sample g at values of the form

g =
aφ+ b

cφ + d

Where a, b, c, d ∈ Z, are not too big. Fig. 3 shows that the

Upper Bound is almost achievable without any fading behavior

for the strong and very strong interference regimes. The other

regimes remain untouched. For some specific values of g
this method is not suitable, because the approximation error

between channel coefficient and its equivalent to the Golden

ratio will not be negligible. If we consider this approximation

error in the achievable sum-rate, the fractal behavior in terms

of deep fadings will appear again. We need to use a method

which could hold up for any values of channel coefficient g. In

the next section, we will introduce a new method to improve

the behavior of achievable sum-rate for any value of g.

IV. COMPUTE-AND-FORWARD TRANSFORM WITH n TIME

SLOTS

For large values of SNR, the best choices for g are numbers

equivalent to the Golden Ratio. The worst choices are rational

numbers as it is shown below. Suppose that g = p

q
∈ Q.

In this case, the minimum of q(x, y) (for a sufficiently high

SNR) is given by setting x = q, y = p which gives λ1 =
(

p2 + q2
)

SNR
−1

. As

(

q2SNR−1 + p2 + q2
)2

λ1λ2

= q2
(

p2 + q2
)

SNR

we get

λ1λ2 =

(

SNR
−1 + 1 + g2

)2

(1 + g2)SNR

≈
(

1 + g2
)

SNR
−1

which gives limSNR→∞ λ2 = 1
q2

and

lim
SNR→∞

R =
1

2
log2

(

p2 + q2
)

So the rate does not scale with SNR and rational numbers

will mainly be responsible of deep fadings at high SNR. The

choice of p and q are important, we must choose them in a

way to have p and q as smallest possible integer.
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Fig. 4. Upper bound and achievable rate versus g for a 2−user Gaussian
symmetric interference channel for 2 time-slots.

In general, transmitters want to send their own codewords to

the destinations but the inference will play an important role

on the performance of achievable sum-rates. To avoid and limit

deep fadings in interested regimes, we have decided to send

the codewords to destination by using n different time-slots.

Our idea now is to precode for each time slot the transmitted

codewords by multiplying them, at the transmitters, by a real

number η. Of course, there will always be values of g such

that η ·g is rational (the worst case). But, by using at time slot

i, a value of ηi different of ηj for j 6= i such that, if ηi ·g ∈ Q,

then, ηj · g /∈ Q, ∀j 6= i. By using this strategy, only one time

slot over n will result in a small sum-rate, for all values of g.

By using this proposed scheme the 2-user GS-IFC will

transform to 2-user Gaussian Asymmetric Interference Chan-

nel (GA-IFC). The new GA-IFC is shown in Fig. 5.

For each user the new channel coefficients vectors are

respectively: hTs=i = [1, ηig] for i = 1, . . . , n. The quadratic

form, at time slot i is:

q′Ts=i (x, y) = (xgηi − y)2 +
1

SNR
(x2 + y2) (19)

More precisely, the Gram matrix corresponding to (19), will

be Gi,

Gi =

(

(ηig)
2 + 1

SNR
−gηi

−gηi (1 + 1
SNR

)

)



In this proposed scheme, achievable sum-rate will be calcu-

lated for each time-slot separately. The final achievable sum-

rate, at the end of the last time-slot, will be the average value

of the sum rates over the time-slots.

wi,1 E1

TX1

xi,1 1

zi,1
yi,1

D1

RX1

ŵi,1

wi,2 E2

TX2

xi,2

ηi

zi,2
yi,2

D2

RX2

ŵi,2

g

ηi · g

Fig. 5. 2-User Gaussian Asymmetric Interference Channel for Ts = i.

For comparing the performance of our proposed strategy

and the strategy used in [1], we choose SNR = 65dB. First

we decide to send codewords to destinations by using just two

different time-slots. For receiver 1 (RX1) in each time-slot the

channel coefficients vectors are respectively: hTs=1 = [1, φg],
and hTs=2 = [1, φ̄g]. At the end of the second time-slot, the

new achievable sum-rate expression and quadratic forms to

minimize are:

R′
Final =

1
2
{R′

Ts=1 +R′
Ts=2} (20)

With

R′
Ts=1 =

1

2
log+2

{

( 1
SNR

+ (1 + (ϕg)2))

(q′Ts=1 (x, y))

}

(21)

R′
Ts=2 =

1

2
log+2

{

( 1
SNR

+ (1 + (ϕ̄g)2))

(q′Ts=2 (x
′, y′))

}

(22)

And

q′Ts=1 (x, y) = (xgϕ− y)2 +
1

SNR
(x2 + y2), x, y ∈ Z (23)

q′Ts=2 (x
′, y′) = (x′gϕ̄− y′)2 +

1

SNR
(x′2 + y′2), x′, y′ ∈ Z

(24)

Indeed, with q′Ts=1 and q′Ts=2 we can create the two Gram

matrices G1 and G2 corresponding to the two positive new

quadratic forms. With these two Gram matrices we can use

the single lattice codes and lattice Han-Kobayashi described

in [1] for different interference regimes to find the achievable

sum-rate. The two Gram matrices are modeled as:

G1 =

(

((ϕg)2 + 1
SNR

) −gϕ

−gϕ (1 + 1
SNR

)

)

And

G2 =

(

((ϕ̄g)2 + 1
SNR

) −gϕ̄

−gϕ̄ (1 + 1
SNR

)

)

By using precoders, the two INRs will be different in each

time-slot; we define these two INRs, such as:

In Ts = 1 : INR1 , (ϕg)2SNR

In Ts = 2 : INR2 , (ϕ̄g)2SNR
(25)

The expression of Upper Bound defined in [12] must be

adapted for our proposed scheme. In this case for two time-

slots the Upper Bound will be:

RU.B,Final =
1

2
(RU.B,Ts=1 +RU.B,Ts=2) (26)
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Fig. 6. Upper bound and achievable rate versus g for a 2−user Gaussian
symmetric interference channel for 7 time-slots.

In Fig. 1 we can see the performance of method described

in [1] for SNR = 65dB. Fig. 4 is the performance of our

proposed scheme for the same value of SNR just by using 2
time-slots.

10
−2

10
0

10
2

0

2

4

6

8

10

g (Channel coefficients)

S
um

−
R

at
e[

B
its

/C
ha

nn
el

 U
se

]

Upper Bound And Achievable Sum−Rate On The Capacity (SNR = 65dB)

 

 

The Upper Bound
Achievable Sum−Rate

Fig. 7. Upper bound and achievable rate versus g for a 2−user Gaussian
symmetric interference channel for 13 time-slots.

As it can be seen in Fig. 1 for strong and very strong

interference regimes, we have deep fadings. For some chan-

nel coefficients, we can have a maximum gap of order

2.5 [Bits/Channel Use]. After using precoders and 2 time-

slots this gap could be reduce to 1.2 [Bits/Channel Use],
this is the benefit of using two time-slots. By increasing the

number of time-slots we can limit more fadings. Figure 6 and

7 shows the achievable sum-rate when using respectively 7
and 13 time-slots.



For weak and intermediate interference regimes, we have

decided to send codewords to destinations by using just one

time-slot. This strategy will increase the achievable sum-rate

by using Han-and-Kobayashi method. But for strong and very

strong interference regimes, 7 and 13 time-slots were used.

The ηi are all equivalent to the Golden ratio slightly greater

than 1, in consequence this choice will help us to keep the

Upper Bound in its original form and the achievable sum-rate

will be higher. We can assume that our proposed scheme have

limited the deep fadings and improved the achievable sum-

rate.

In a future work, we are going to evaluate the influence

of using different time-slots with specific precoders for each

time-slot. We will try to define the optimum number of time-

slots and precoder coefficients for the case of 2-user GS-IFC

to eliminate deep fadings in all regimes.

V. CONCLUSION

In this work, based on, the main frame work of [1] and

[2], we have developed two different schemes for 2-user GS-

IFC. First, we have characterized what are the best (equivalent

to the Golden ratio) and the worst (rational) channels. In

order to avoid the worst-case channels, we have proposed to

use a precoder (independent of the channel values and not

using any channel side information at the transmitters) for

sending codewords to destinations in different time-slots. The

proposed scheme has shown an important reduction of the

fading behavior of the sum-rate, similar to what is obtained in

fast fading channels when a diversity technique is used. Many

things remain to do, among which,

• The medium interference regimes.

• The optimal number of Ts to be used.

• Generalization to the K−user asymmetric interference

channel.
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