
HAL Id: hal-01070568
https://hal.science/hal-01070568

Preprint submitted on 1 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ZERO-ONE-IN-THREE 3SAT is in P
Frank Vega

To cite this version:

Frank Vega. ZERO-ONE-IN-THREE 3SAT is in P. 2014. �hal-01070568�

https://hal.science/hal-01070568
https://hal.archives-ouvertes.fr

ZERO-ONE-IN-THREE 3SAT is in P

Frank Vega

Desarrollo de Aplicaciones, Tecnologı́as y Sistemas, Havana, Cuba

Abstract

ONE − IN − T HREE 3S AT is the problem of deciding whether a given boolean formula φ in
3CNF has a truth assignment such that each clause in φ has exactly one true literal. This problem
is NP − complete. We define a similar language: ZERO − ONE − IN − T HREE 3S AT is the
problem of deciding whether a given boolean formula φ in 3CNF has a truth assignment such
that each clause in φ has at most one true literal. Indeed, ONE− IN −T HREE 3S AT ⊆ ZERO−
ONE − IN − T HREE 3S AT . In this work, we prove ZERO −ONE − IN − T HREE 3S AT ∈ P.

Keywords: P, NP, NP-complete, 3SAT
2000 MSC: 68-XX, 68Qxx, 68Q15

1. Introduction

The P versus NP problem is a major unsolved problem in computer science. It was intro-
duced in 1971 by Stephen Cook [1]. Today is considered by many scientists as the most important
open problem in this field [2].

Since the beginning of computation many tasks were done by computers, but sometimes
some difficult and slow to resolve were not feasible for even the fastest computers. The only way
to avoid the delay was to find a possible method that should not do the exhaustive search that was
accompanied by “brute force”. Even today, there are problems which have not a known method
to solve easily yet.

If P = NP, then it would ensure there are hundreds of problems that have a feasible solution.
This is largely derived from this result there will be a huge amount of problems that can be
verified easily and have some practical solution at the same time [3]. This so called P = NP
question has been one of the deepest, most perplexing open research problems in theoretical
computer science since it was posed in 1971.

The work is about an interesting class of problems, called the ”NP − complete” problems,
whose status is unknown. No polynomial-time algorithm has yet been discovered for an NP −
complete problem [4]. Most theoretical computer scientists believe that the NP − complete
problems are intractable. The reason is that if any single NP − complete problem can be solved
in polynomial time, then every NP − complete problem has a polynomial-time algorithm [4]. In
this work, we show a problem in P which has a close relation with an NP − complete problem.

Email address: vega.frank@gmail.com (Frank Vega)

Preprint submitted to Theoretical Computer Science October 1, 2014

2. Theory

The argument made by Alan Turing in the twentieth century proves mathematically that for
any computer program we can create an equivalent Turing Machine [5]. A deterministic Turing
Machine is a Turing Machine that has only one next action for each step defined in the transition
function [6]. However, a non-deterministic Turing Machine can contain more than one action
defined for each step of the program, where this program was no longer a function but a relation
[7].

A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [4]. There are two complexity classes that have a
close relationship with the previous concepts and are represented as P and NP. In computational
complexity theory, the class P contains the languages that are decided by a deterministic Turing
Machine in polynomial time [6]. The class NP contains the languages that are decided by a non-
deterministic Turing Machines in polynomial time [7]. Moreover, a language L ∈ NP if there is
a polynomial time decidable and polynomially balanced relation RL such that for all strings x:
there is a string y with RL(x, y) if and only if x ∈ L [8]. This string y is known as certificate.

On the other hand, there is a derived complexity class from NP that is the class NP−complete.
Informally, the NP−complete problems are a set of problems to which any other NP problem can
be reduced in polynomial time, but whose solution may still be verified in polynomial time. We
say that a language L1 is polynomial time reducible to a language L2, written L1 ≤p L2, if there
exists a polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 i f and only i f f (x) ∈ L2 (1)

and a language L ⊆ {0, 1}∗ is NP − complete if

• L ∈ NP, and

• L
′

≤p L for every L
′

∈ NP.

Furthermore, if L is a language such that L
′

≤p L for some L
′

∈ NP − complete, then L is
NP − hard [4]. Moreover, if L ∈ NP, then L ∈ NP − complete [4].

There is an important NP− complete problem known as S AT [4]. We formulate the formula
satisfiability problem in terms of the language S AT as follows. An instance of SAT is a boolean
formula composed of

• boolean variables: x1, x2, ;

• boolean connectives: any boolean function with one or two inputs and one output, such as
∧(AND), ∨(OR), ⇁(NOT),→(implication),↔(if and only if); and

• parentheses.

A truth assignment for a boolean formula φ is a set of values for the variables of φ, and a
satisfying assignment is a truth assignment that causes it to evaluate to true. A formula with a
satisfying assignment is a satisfiable formula. The satisfiability problem asks whether a given
boolean formula is satisfiable; in formal language terms,

S AT = {φ : φ is a satis f iable boolean f ormula} (2)

2

One convenient language is 3CNF satisfiability, or 3S AT [4]. We define 3CNF satisfiability
using the following terms. A literal in a boolean formula is an occurrence of a variable or its
negation. A boolean formula is in conjunctive normal form, or CNF, if it is expressed as an
AND of clauses, each of which is the OR of one or more literals. A boolean formula is in
3-conjunctive normal form, or 3CNF, if each clause has exactly three distinct literals.

For example, the boolean formula

(x1 ∨
⇁x1 ∨

⇁x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁x1 ∨
⇁x3 ∨

⇁x4) (3)

is in 3CNF. The first of its three clauses is (x1 ∨
⇁x1 ∨

⇁x2), which contains the three
literals x1, ⇁x1, and ⇁x2. In 3S AT , we are asked whether a given boolean formula φ in 3CNF is
satisfiable.

Many problems can be proved that belong to NP− complete by a polynomial time reduction
from 3S AT . For example, the problem ONE − IN − T HREE 3S AT which is the following:
Given a boolean formula φ in 3CNF, is there a truth assignment such that each clause in φ has
exactly one true literal?

3. Result

Definition 3.1. ZERO−ONE− IN −T HREE 3S AT is the problem of deciding whether a given
boolean formula φ in 3CNF has a truth assignment such that each clause in φ has at most one
true literal.

Lemma 3.2. ONE − IN − T HREE 3S AT ⊆ ZERO − ONE − IN − T HREE 3S AT.

Indeed, for every boolean formula φ in 3CNF if φ ∈ ONE − IN − T HREE 3S AT , then
φ ∈ ZERO − ONE − IN − T HREE 3S AT .

Definition 3.3. We could define the language TWO − OR − T HREE 3S AT as the boolean for-
mulas φ in 3CNF which have a satisfying truth assignment such that each clause in φ has at
least two true literals.

Theorem 3.4. TWO − OR − T HREE 3S AT ∈ P.

We could decide in polynomial time if any boolean formula φ in 3CNF of m clauses belongs
to TWO − OR − T HREE 3S AT in the following way,

• in the set of clauses {c1, c2, ..., cm} of φ, we create for each clause ci = (a ∨ b ∨ c) a new
boolean formula di = (a ∨ b) ∧ (b ∨ c) ∧ (a ∨ c) where a, b and c are literals , and thus,

• we create a new boolean formula φ
′

which is d1 ∧ d2 ∧ ...∧ dm and is the conjunction of all
di boolean formulas, and finally,

• we verify φ
′

∈ 2S AT and accept φ for TWO−OR−T HREE 3S AT otherwise we reject φ.

We could state the clause (a∨ b∨ c) has at least two true literals for some truth assignment if
and only if the boolean formula (a∨ b)∧ (b∨ c)∧ (a∨ c) is satisfiable with this truth assignment.
Indeed, if we want to guarantee this property through all the clauses of φ, then each boolean
formula di must have a satisfying truth assignment that should be contained into a single truth

3

assignment for φ. The union of simultaneous truth assignment of each boolean formula di could
be done by joining the di boolean formulas with the AND function. The result would be a new
boolean formula φ

′

in 2CNF. Therefore, a satisfying truth assignment to φ
′

exists if and only
if with this same truth assignment each clause in φ has at least two true literals, that is when
φ ∈ TWO − OR − T HREE 3S AT .

The construction of φ
′

is possible in polynomial time, because we only need to iterate with
a polynomial amount of steps through the m clauses of φ. In conclusion, the decision of φ ∈
TWO − OR − T HREE 3S AT could be done in polynomial time because 2S AT ∈ P [9].

Theorem 3.5. ZERO − ONE − IN − T HREE 3S AT ∈ P.

Given a boolean formula φ in 3CNF of m clauses, we could do the following actions,

• in the set of clauses {c1, c2, ..., cm} of φ, we create for each clause ci = (a ∨ b ∨ c) a new
clause di = (⇁a ∨ ⇁b ∨ ⇁c) where a, b and c are literals , and thus,

• we create a new boolean formula φ
′

which is d1 ∧ d2 ∧ ...∧ dm and is the conjunction of all
di clauses.

This construction of φ
′

could be done in order O(m). The clause (a ∨ b ∨ c) has at most one
true literal if and only if the clause (⇁a ∨ ⇁b ∨ ⇁c) has at least two true literals. Therefore,

φ ∈ ZERO−ONE − IN −T HREE 3S AT i f and only i f φ
′

∈ TWO−OR−T HREE 3S AT (4)

and thus, ZERO − ONE − IN − T HREE 3S AT ≤p TWO − OR − T HREE 3S AT .

Acknowledgement

I thank my mother Iris Delgado for her support and confidence.

References

[1] S. A. Cook, The complexity of theorem proving procedures, in: Proceedings of the 3rd Annual ACM Symposium
on the Theory of Computing (STOC’71), ACM Press, 1971, pp. 151–158.

[2] L. Fortnow, The status of the P versus NP problem, Communications of the ACM 52 (9) (2009) 78–86.
[3] M. Sipser, Introduction to the Theory of Computation, International Thomson Publishing, 1996.
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, Second Edition, MIT Press, 2001.
[5] A. M. Turing, On computable numbers, with an application to the entscheidungsproblem, Proceedings of the London

Mathematical Society 42 (1936) 230–265.
[6] H. R. Lewis, C. H. Papadimitriou, Elements of the theory of computation (2. ed.), Prentice Hall, 1998.
[7] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of

Books in the Mathematical Sciences), first edition Edition, W. H. Freeman, 1979.
[8] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.
[9] M. R. Krom, The decision problem for a class of first-order formulas in which all disjunctions are binary, Zeitschrift

fr Mathematische Logik und Grundlagen der Mathematik 13 (1967) 15–20.

4

	Introduction
	Theory
	Result

