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ABSTRACT. The paper investigates the co-evolutionary patterns of the dynamics of 

technological alliances and of the structure of the knowledge base in the pharmaceutical 

sector. The main hypothesis under scrutiny is that technological alliances represent a key 

resource for firms in knowledge intensive sectors to cope with dramatic changes in the 

knowledge base, marked by the introduction of discontinuities opening up new technological 

trajectories. By using patent information and data on technological alliances drawn from the 

CATI-MERIT database, we compare the evidence concerning the so-called triad, i.e. United 

States, Europe and Japan. The empirical results confirm the existence of a life cycle in 

biotechnology affecting the pharmaceutical industry. Furthermore, the dynamics of alliances 

is found to depend on (i) the phase of the biotechnology life cycle, (ii) the strength of the 

region in biotechnology and (iii) the general features of the economic environment of the 

region.  
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1 Introduction 

 

During the 1980s and the 1990s the phenomenon of cooperative agreements among firms has 

received increasing attention in the economic and management literature, both from a 

theoretical and an empirical viewpoint. In the field of the economics of the firm, Oliver 

Williamson (1985), following the tracks opened by Coase (1937) and also by Richardson 

(1960, 1972), is now recognized as the economic scholar having framed the problem within a 

transaction-cost heuristic framework. In that perspective, many efforts have been produced at 

understanding the rationale behind firms choices between vertical integration pursed by 

means of mergers and acquisitions and more flexible organizational forms consisting in the 

establishment of cooperation schemes with other firms. Within the industrial organization and 

strategic management literature, the choice between M&As and alliances was understood with 

respect to main firms‟ objectives like market entry, the increase of market power and the 

development of synergies to the access to foreign markets, enlarging the scale of production 

processes, and hence the search for scale and scope economies (King et al., 2004; Mukherjee 

et al., 2004). This literature contributed to shift the focus on cooperative alliances as a stable 

form of organization, clearly distinguishable from the firm and the market. 

 

More recently the role of innovation as an incentive for M&As or alliances has been 

recognized of growing importance (Duysters, 2001; Lipton, 2006; Moeller and Brady, 2007). 

Out of generic strategic alliances, technological alliances have been therefore defined as those 

“modes of inter-firm cooperation for which a combined innovative activity or an exchange of 

technology is at least part of the agreement” (Hagerdoorn and Duysters, 2002: p. 168). A wide 

body of empirical literature has then emerged focusing on the analysis of the relationships 

between strategic alliances and innovation, above all in correspondence with the gradual 

relaxing of the linear approach to knowledge creation in favor of theories emphasizing the 

interactive and collective nature of the processes of knowledge creation and exploitation 

(Lundvall, 1992; Nelson, 1993; Foray, 2004). 

 

The changing focus in the analysis of strategic alliances and the increasing attention towards 

their links with the creation of new technological knowledge allowed to going beyond the 

traditional transaction costs framework by grafting the insights of the resource based theory of 

the firm (Penrose, 1959). The choice between looser or tighter organizational forms is not 
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only influenced by the nature of interactions between supposed partners or the completeness 

degree of contracts. Technological alliances differ from traditional cooperation schemes as 

they involve important assets stemming from learning dynamics and knowledge transfer 

(Mayer and Teece, 2008). Within the resource based perspective, each firm can be considered 

as a bundle of skills and competences which are developed through learning dynamics and 

intentional efforts in R&D. In this direction, firms‟ incentives to establish strategic alliances 

focused on the exchange of knowledge or on its collective development may be due to the 

inability of firms to undertake the innovation efforts on their own in the technological domain 

covered by the alliance (Teece, 1986; Gomes-Casseres et al., 2006).  

 

Therefore, technological alliances appear to be strategic for firms as they help their internal 

learning as well as the knowledge transfer processes. For this reason, the investigation of the 

relationships between the dynamics of technological alliances and innovation seems to be 

particularly relevant. A wide body of the literature has devoted attention to the importance of 

sector specificities in shaping the choice between alliances and integration. Strategic alliances 

have proven to be the most effective governance scheme in presence of fast rates of change 

(Brusoni et al., 2001; Langlois and Robertson, 1995; Langlois, 2003). In this direction, due 

also to their higher degree of flexibility, they are mostly used in high-tech sectors, when the 

research activity involves technological fields that are distant from the core competences of 

the company seeking for an alliance. Moreover, the more the research activity is related to 

new and uncertain technological trajectories, the more firms are willing to rely on 

technological alliances to go through it (Duysters and de Man, 2003; Hagerdoorn and 

Duysters, 2002; Tether, 2002). Thus alliances are not only stable forms of organization, they 

also appear as a key form of organization for the development of innovation. 

 

These studies shed an interesting and important light to gain a better understanding of 

technological alliances, and in particular of its relationships with different patterns of 

innovation. However, they are mostly focused in the analysis of a specific sector in a given 

period or at the comparison of different sectors in correspondence of specific phases of their 

lifecycle.  

 

In this paper we try and provide an assessment of the co-evolutionary patterns of 

technological alliances and knowledge creation by focusing our analysis on the 
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pharmaceutical sector in a lifecycle perspective. To this purpose we compare the evidence of 

Europe, US and Japan since 1980 to 2003. The main argument is that the dynamics of 

alliances change not only across different sectors, but also in the same sector across different 

stages of its technology lifecycle. We will adopt an approach to technological knowledge 

emphasizing its collective and recombinant nature, as well the key properties able to 

characterize the technology lifecycle with respect to random screening versus organized 

search innovation strategies (Krafft, Quatraro and Saviotti, 2009). While this approach has 

been successfully implemented in the analysis of productivity performances at different levels 

(Nesta, 2008; Quatraro, 2010; Antonelli, Krafft, Quatraro, 2010), there are no contributions 

yet in the literature that have used it in the investigation of technological alliances. This paper 

also aims at contributing to the debate on the relationships between innovation, industrial 

dynamics and industry evolution, by analyzing the links between the knowledge-base of the 

pharmaceutical sector and the patterns of collaboration for innovation (Malerba, 2007). 

 

The rest of the paper is organized as follow. Section 2 will provide the basic theoretical 

background and articulate our working hypotheses. In Section 3 we will provide an outline of 

the evolution of the pharmaceutical sector, by emphasizing the fit with the phenomenon we 

want to investigate. Section 4 will describe the data and the methodology. In Section 5 we 

present and discuss the results of the analysis. Section 6 will conclude. 

2 Theoretical background 

 

One of the merits of the evolutionary approach developed in economics in the early 1980s is 

the rejuvenation of Schumpeter‟s contribution to the understanding of the dynamics by which 

firms introduce and exploit technological innovations (Nelson and Winter, 1982). The 

behavior of economic agents began to be framed more and more in out of equilibrium 

contexts, in which a constant pressure to change could be devised. This endless tension 

towards mutation is, according to Schumpeter, an intrinsic characteristic of capitalistic 

systems, whereby creative destruction is the process through which novelty is brought about 

into the economy (Schumpeter, 1942). 

 

Schumpter‟s legacy has also influenced the investigation and the understanding of industrial 

dynamics. Indeed, his Business Cycles represent a key reference in the long-run analysis of 
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industry evolution, along with the seminal contribution by Simon Kuznets published in the 

same period (Schumpeter, 1939; Kuznets, 1930). New industries emerge as a consequence of 

the introduction of radical technological changes, and evolve following an S-shaped dynamics 

characterized by an initial explosion, maturity and then saturation. This has paved the way to 

the elaboration of life-cycle theories of product innovation (Abernathy and Utterback, 1978) 

and, more recently, to the elaboration of the concept of industry lifecycle (Klepper, 1997). 

 

As Malerba and Orsenigo (1997) point out, the concept of industry lifecycle is useful in that it 

allows to devise different innovative behaviors not only when one compares two different 

sectors, but also when one looks at one single sector from a diachronic viewpoint. They 

propose the well-known distinction between Mark I and Mark II Schumpeterian patterns of 

innovation. „Creative destruction‟ is a distinctive feature of the Schumpeter Mark I. In 

particular such pattern is also characterized by ease of entry, the appearance of new firms 

based on business opportunities, which challenge incumbents and continuously disrupt the 

current ways of production, organization and distribution. On the contrary, the Mark II pattern 

is characterized by „Creative accumulation‟, the relevance of industrial R&D labs and the key 

role of large firms. They also label the two patterns as „widening‟ and „deepening‟. The 

former is related to an innovative base which is continuously growing, while the latter are 

characterized by accumulation strategies based on the existing technological premises 

(Malerba and Orsenigo, 1995). This distinction has been mostly used to characterize different 

sectors, but has remained rather unexploited in the analysis of the different stages of the 

evolution of a given industry. 

 

In this paper we focus on a technology lifecycle which occurs due to the presence of 

knowledge discontinuities. The lifecycle begins with the emergence of the knowledge 

discontinuity and proceeds by the gradual transformation of such discontinuity into a routine. 

This lifecycle is in principle distinct from product or industry lifecycles. However, as it will 

turn out, this technology lifecycle can induce corresponding changes in industrial 

organization. In particular, as we will show, it is capable of affecting the formation and 

behavior of strategic alliances. 

     

In this direction, the grafting of the lifecycle perspective into the analysis of strategic alliances 

is likely to be far reaching in that it allows to contributing both of the perspectives. Indeed, we 
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have already emphasized that the analysis of strategic alliances focusing on the development 

and transfer of new technologies is quite recent. However, most of the empirical studies in the 

field look like a sort of comparative statics, whereby firms in different sectors are likely to 

show different attitudes towards technological alliances according to idiosyncratic features of 

the sector and of the technology they are working on. When long-run analyses have been 

conducted, these have been mostly directed towards the understanding of the changing 

structure of cooperation networks, rather than to emphasizing the links between the 

evolutionary patterns of technological change and the choice to look for a technological 

alliance. 

 

A key finding in this respect concerns the higher propensity of firms to undertake a strategic 

alliance focused on the development of technological knowledge as the fields in which the 

research activity is focused move far away from their core competences (Duysters and de 

Man, 2003; Hagerdoorn and Duysters, 2002; Tether, 2002). In this direction the introduction 

of a discontinuity by means of a radical innovation within a given sector is likely to create a 

serious threat to incumbent firms, which are not able to command the necessary technological 

capabilities to run the competitive race in the economic arena (see also Langlois and 

Roberston, 1995; Langlois, 2003). Therefore, to resort to strategic alliances with new firms 

mastering the new technology represents one of the main tools to address the challenge. 

 

If one thinks about technological innovation as the outcome of a search behavior conducted in 

the knowledge landscape, one can maintain that firms well localized in a given point of such a 

landscape are more likely to look for a technological alliance the more the knowledge base of 

the sector in which they operate moves far from that point. Indeed, this is where the issues of 

the dynamics of technological alliances and the processes of creation of new knowledge 

closely interact. 

 

It seems necessary at this point to add another element to the picture. Indeed, most of the 

empirical analyses of innovation processes, even within the alliances framework, have been 

conducted by using a knowledge production function approach, which in turn implies a view 

of knowledge as a black box, i.e. as an homogeneous good, while the interactive dynamics of 

its creation are left completely unexplored (Ahuja and Katila, 2001; Cloodt, Hagedoorn, and 

Van Kranenburg 2006).  
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In order to take into account its internal properties an approach starting from a representation 

of knowledge as a structure seems more appropriate. Such an approach can be constructed 

from two properties of knowledge, those of being (a) a co-relational structure and (b) a 

retrieval-interpretative structure (Saviotti, 2004, 2007). According to knowledge establishes 

generalizations by finding relations, or connections, between variables and concepts. 

According to (b) the probability for any human being or organization to learn new knowledge 

falls with the dissimilarity, or distance, between the knowledge previously held and the 

external knowledge to be learned. According to (a) the whole space of human knowledge can 

in principle be represented as a network the nodes of which are either variables or concepts 

and the links of which are the connections between different variables or concepts. Both the 

number of nodes and the number of links of such a knowledge network can be expected to 

change in the course of time as new concepts and variables are discovered and as new links 

are created between previously unconnected variables or concepts. The overall network of 

human knowledge can never be expected to be fully connected as the rate of addition of new 

nodes and that of creation of new links are unlikely to be identical at all times. Thus, the 

density or connectivity of the network of knowledge can be expected to fluctuate in the course 

of time, rising or falling depending on whether the rate of creation of new links or the rate of 

creation of new nodes prevails. Such fluctuations are not in general random but are likely to 

be related to the phases of a technological life cycle or of a technological paradigm.  

 

Our representation of knowledge is very similar to the recombinant knowledge approach 

(Weitzmann, 1998; Kauffman, 1993), but goes a step ahead. According to this recombinant 

knowledge approach the creation of new knowledge is represented as a search process across 

a set of alternative components that can be combined one another. A crucial role is played 

here by the cognitive mechanisms underlying the search process aimed at exploring the 

knowledge space so as to identify the pieces that might possibly be combined together. The 

set of potentially combinable pieces turns out to be a subset of the whole knowledge space. 

Search is supposed to be local rather than global, while the degree of localness appears to be 

the outcome of cognitive, social and technological influences. The ability to engage in a 

search process within spaces that are distant from the original starting point is likely to 

generate breakthroughs stemming from the combination of brand new components 

(Nightingale, 1998; Fleming, 2001). 
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The network corresponding to the recombinant knowledge approach would have a constant 

number of nodes and a growing number of links. The step ahead with our approach is that the 

network of knowledge has a variable number of nodes and a variable number of links. Our 

approach encompasses the recombinant knowledge approach (creation of links between pre-

existing nodes) but in addition allows the emergence of radically new concepts (introduction 

of new nodes).  

 

As a consequence, the knowledge base of a sector can be represented by the network 

including both the nodes corresponding to newly acquired components of knowledge  and the 

relations occurring between the different pieces of knowledge that are combined with one 

another. Some of the key properties that are based on the process of creative discovery and 

recombination are the following: 

• Variety measures the technological differentiation within the knowledge base. We can 

further distinguish unrelated variety, which is likely to be affected by radically new type of 

knowledge, from related variety, which is likely to be affected by incremental recombination 

of already existing types of knowledge. 

• Coherence can be defined as the extent to which the pieces of knowledge that agents 

within the sector combine to create new knowledge are complementary with respect to one 

another. 

• Similarity (alternatively dissimilarity) refers to the extent to which the pieces of 

knowledge used in the sector are close one another in the technology space.  

 

The dynamics of technological knowledge can therefore be understood as the patterns of 

change in these properties, i.e. in the patterns of recombination across the elements in the 

knowledge space. This allows for qualifying both the cumulative character of knowledge 

creation, as well as for linking them to the relative stage of development of a technological 

trajectory (Dosi, 1982; Saviotti, 2004 and 2007; Krafft, Quatraro and Saviotti, 2009). 

 

Such representation enables the investigation of the patterns of change of knowledge structure 

in relation to the dynamics of industry lifecycles, especially in that it allows to better detecting 

the introduction of a discontinuity in the sector knowledge base. Discontinuities occur in the 

production of knowledge when entirely new concepts and theories non comparable to pre-
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existing ones emerge. They are therefore signaled by increasing levels of dissimilarity and 

decreasing levels of coherence, as well as by the predominance of unrelated over related 

variety.  

 

In sum, the evolution of knowledge intensive industries is punctuated by the introduction of 

major discontinuities in the knowledge base by means of radical innovations, which mark the 

shift to a new technological paradigm. In correspondence of the introduction of such 

discontinuities, search strategies are more likely to rely on exploration rather than exploitation 

(March, 1991). Technological alliances are therefore expected to increase, as incumbent firms 

are no longer able to manage the discovery process in domains of the knowledge space that 

are so different from their established competences. As the technological paradigm moves 

towards the exploitation phase, the knowledge base of the sector stabilizes and the strategic 

role of technological alliances becomes less and less important. Consequently, the 

predominance of technological alliances dedicated to develop and sustain the creation of new 

knowledge, i.e. the expansion of the knowledge base, should also decrease over time in a 

phase of maturity or exploitation of the technological paradigm. 

   

In view of the arguments elaborated so far, we are now able to spell out our main working 

hypotheses. The characterization of the knowledge base of sectors in terms of their knowledge 

properties (variety, coherence, similarity) provides a set of useful tools to capture the 

transition in technology lifecycles from exploration to exploitation phases. The intra-

paradigmatic lifecycle followed by knowledge is likely to have an impact on industrial 

organization. The representation of knowledge we propose will allow us to study with greater 

analytical depth the relationship between knowledge and industrial dynamics, based on the 

following two propositions.   

 

Proposition 1: Discontinuities in the generation of knowledge can be better characterized by 

the consideration of key properties of the knowledge base (coherence, similarity and variety). 

- The emergence of a discontinuity in a type of knowledge suitable to become the future 

knowledge base of a sector occurs according to a sequence of two periods, the former 

random search occurring in the exploitation phase, and the latter of organized search 

occurring later in the exploitation phase; 
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- During the exploration phase knowledge variety rises, coherence decreases and the 

similarity with previous knowledge existing in the sector decreases. During the 

exploitation phase, the rate of growth of variety decreases, knowledge coherence 

increases and the technological similarity between the previous knowledge existing in 

the sector and the new emerging knowledge rises as well. 

- Moving from the exploration to the exploitation phase knowledge variety tends to shift 

from unrelated to related, as the pattern of differentiation changes from adding 

completely new elements of knowledge to differentiating around the most promising 

ones.    

 

Proposition 2: Discontinuities in the generation of new knowledge affect the probability and 

propensity of firms to develop technological alliances.  

- During the exploration phase, the probability of forming an alliance is rising while the 

propensity may be decreasing either because of the increasing number of new firms, or 

because of the difficulty to form an alliance between firms with highly different 

knowledge bases. 

- During the exploitation phase, the probability is still rising, and the propensity starts 

increasing with knowledge bases being more similar and more coherent, the issue for 

firms being now predominantly to recombine already existing pieces of knowledge. 

 

These predictions seem to imply that there is a one to one mapping between the properties of 

the knowledge base of a sector and more qualitative concepts such as paradigms or 

exploration and exploitation. In reality not only such a precise correspondence does not exist 

but multiple possible patterns of change can correspond to a technological paradigm or to 

each of the phases of exploration and exploitation. For example, the transition from 

exploration to exploitation can occur for very different ratios unrelated to related knowledge 

variety. Thus, the properties of the knowledge base we introduce not only allow us to quantify 

the different phases of the technology life cycle but can reveal a considerable diversity of 

behaviour in correspondence to each of those phases.         

3 The Empirical Context 
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This paper analyses the relationships between the patterns of change of knowledge structure 

and the dynamics of technology alliances in a lifecycle perspective. The focus on the 

pharmaceutical sector is particularly appropriate for this purpose for two sets of different and 

yet related arguments. 

First of all, there is a wide body of literature dealing with the history of the pharmaceutical 

sector, which provides a somewhat converging picture (Orsenigo, 1989; Gambardella, 1995; 

Galambos and Sturchio, 1996 and 1998; Henderson et al. 1999). According to these 

contributions, the evolution of the technologies and of the knowledge base of pharmaceuticals 

has been interested by three main discontinuities, which determined a dramatic change in the 

process of drug discovery. 

Following Lee (2003), the first major source of modern drug discovery had its origins in 

chemical research. At the end of the XIX century the core of research in the field was carried 

out in Germany, in laboratories which were able to routinely synthesize and screen chemical 

compounds in search of new drugs. The first discontinuity is represented by the emergence of 

biology as a source of drug discovery. Fleming‟s discovery of penicillin in 1928 is viewed as 

the key event in this respect, although its exploitation came only in the 1940s. It is the 

antibiotic revolution, based on microbial biochemistry and enzymology. 

The origins of the second discontinuity can be rooted in the discovery of the technique of 

recombinant DNA (r-DNA), which was invented by Cohen and Boyer in 1973 on the basis of 

Watson, Crick and Franklin hypothesis concerning the double-helix model of DNA. This 

marks the entry of molecular biologists in an industrial knowledge regime that was mainly 

dominated by synthetic and organic chemistry (Quéré, 2003). While these achievements 

appeared in the early 1970s, they began to be integrated into the pharmaceutical industry only 

in the 1980s, when a large number of biotechnology firms started entering the 

pharmaceuticals markets (Gottinger and Umali, 2008). 

The third discontinuity is instead related to the so-called genomics revolution in the 1990s, 

characterized by the spread of gene sequencing activity and the rise of bio-informatics. As 

compared with the previous wave of technological innovations, the pharmaceutical 

knowledge base in this phase appears to be more inter-disciplinary, and shows the features of 

a general purpose technology suitable to be applied in a wide range of contexts. 
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Besides the evolutionary dynamics of its knowledge base, the different phases or „epochs‟ 

characterizing the pharmaceuticals are also featured by related changes in the organization of 

innovation activities and in market structures. These are due on the one hand to the kind of 

search strategy made possible by the technologies underlying the different paradigms. 

Malerba and Orsenigo (2002) indeed stress that in the first phase firms were characterized by 

a kind of „random screening‟ behavior, as the techniques typical of organic chemistry did not 

allow for targeted search, while the advent of r-DNA made it possible „guided drug 

discovery‟, i.e. the rise of significantly more effective ways to screen compounds. 

On the other hand, when radical technological changes determined a discontinuity in the 

knowledge base incumbent firms had to face competitive pressures such that they were forced 

to adapt their innovation strategies. In particular moving from organic chemistry to genomics 

through r-DNA, the role of technology alliances has become more and more important. Large 

incumbents were indeed hardly able to command the knowledge base underlying the new 

paradigms, and hence needed to resort to the so-called dedicated biotechnology firms (DBFs), 

mostly run by academic researchers, in order to run effective R&D activities. On the opposite, 

DBFs did not possess the necessary competences and resources to industrialize and 

commercialize new discovered drugs. Such a symbiotic relationship made the practice of 

establishing alliances between large incumbents and small start-ups a persistent feature of 

pharmaceutical industry in the last decades (Galambos and Sturchio, 1998). As noted by 

Quéré (2003) and Philippen and Riccaboni (2007), the structure and function of innovation 

networks were slightly different in the epoch of r-DNA and in that of genomics. In the former 

technological reasons were amplified by financial difficulties of new start-ups, and the 

structure of the network was characterized by links occurring mostly intra-disease areas. In 

the latter instead, the higher degree of complexity of the knowledge base made uncertainty 

and limited technological capabilities the main reasons underlying the establishment of 

network. Given the general purpose nature of the knowledge base, the structure of network is 

featured by links occurring across different disease areas. 

In conclusion, the pharmaceutical sector provides the ideal setting to investigate the dynamics 

of knowledge structure and its relationships with the evolution of technological alliances. The 

data we use cover the period between 1980 and 2001, i.e. the decades characterized by the 

establishment of the r-DNA and the genomics revolution.  
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4 Data and Methodology 

4.1 The Data 

 

In order to analyze the relationships between the dynamics of technological alliances and the 

evolutionary patterns of knowledge base in the pharmaceutical sectors gather information 

contained in two different databases, the CATI-MERIT database on technological alliances 

and the Espacenet database on patent applications2 provided by the European Patent Office. 

 

CATI-MERIT contains data on nearly 13.000 cooperative technology agreements involving 

about 5.000 parent companies. Since 1987 data on inter-firm alliances has been systematically 

collected, including a retrospective search, and the database currently covers the period 

between 1970 and 1993. The most important data sources are a large number of international 

and specialized trade and technology journals for each sector of industry and many fields of 

technology. These journals cover in particular companies from North America, Europe and 

Asia. Companies' annual reports, the Financial Times' Industrial Companies Yearbooks and 

Dun and Bradstreet's Who Owns Whom provided information about dissolved equity ventures 

and investments, as well as ventures that we did not register when surveying alliances. 

Cooperative agreements are defined as the establishment of common interests between 

independent (industrial) partners which are not connected through (majority) ownership. The 

transfer of technology or the undertaking of joint research is considered as crucial to these 

arrangements. Examples in this respect are joint research pacts and joint development 

agreements. In addition data are collected on joint ventures with technology sharing or with a 

                                                           
2
 The limits of patent statistics as indicators of technological activities are well known. The main drawbacks can 

be summarized in their sector-specificity, the existence of non patentable innovations and the fact that they are 

not the only protecting tool. Moreover the propensity to patent tends to vary over time as a function of the cost of 

patenting, and it is more likely to feature large firms (Pavitt, 1985; Griliches, 1990). Nevertheless, previous 

studies highlighted the usefulness of patents as measures of production of new knowledge (Acs et al., 2002). 

Besides the debate about patents as an output rather than an input of innovation activities, empirical analyses 

showed that patents and R&D are dominated by a contemporaneous relationship, providing further support to the 

use of patents as a good proxy of technological activities (Hall et al., 1986). Moreover, it is worth stressing that 

our analysis focuses on the dynamics of technological alliances, wherein the use of patent to proxy innovation 

has been found less noisy than any other indicator (Ahuja and Katila, 2001; Cloodt, Hagedoorn, and Van 

Kranenburg 2006). 
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joint R&D program. Mere production or marketing joint ventures are excluded. R&D oriented 

joint ventures and jointly-owned research corporations are seen as joint ventures, joint 

development agreements, joint research pacts and research contracts are taken together as 

contractual agreements. Within the CATI database there are 65 classifications with respect to 

sectors and fields of technology. A major distinction is made between new core technologies 

(information technologies, biotechnology, new materials) and other industrial sectors. 

Additional information on this data bank can be found in Hagedoorn (1993) and Hagedoorn 

and Schakenraad (1994).  

 

The information concerning patent applications required to test our working hypotheses has 

been obtained from the Espacenet data base provided by the European Patent Office. The 

initial dataset consisted of 2,659,301 items, including both EU and Worldwide applications, 

over the period 1978 – 2005. The analysis thus focuses on a subset of patent applications 

concerning the pharmaceutical sector.  

 

The assignment of patent applications to the sector has been carried out by starting from the 

CATI-MERIT database. As already mentioned, such dataset already reports the sector 

classifications of each alliance. Pharmaceuticals are sharply identified therein, while some 

difficulties apply to define the boundaries of the sector as far as patents are concerned. To this 

purpose, we use the MERIT concordance table between industrial classification (ISIC) and 

international patent classification (IPC) (Verspagen et al., 1994). In such table the 

pharmaceutical sector corresponds to the ISIC (rev. 2) 3522 and to thirteen IPC classes (see 

Table 1). Our search strategy then consisted in submitting queries reporting the IPC classes 

that define the knowledge intensive sector under study. 

 

>>> INSERT TABLE 1 ABOUT HERE <<< 

 

4.2 Methodology 

We propose a way of describing the emergence of alliances by adopting a network-based 

approach to the representation of technological alliances. The representation as a network 

enables us to better appreciate the dynamics of technological alliances by monitoring the 

changes in nodes and links. We allow the nodes to represent each individual firm and the links 

to represent the interactions between firms forming technological alliances. The dynamics of 
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technological alliances can thus better be appraised by considering the number of firms and 

the number of technological classes (observed or potentially formed). Let n and l be 

respectively the number of firms and the number of links observed in country j in the sector i, 

we then propose the two following measures (time subscripts are omitted for the sake of 

clarity): 

 

• Probability to observe an alliance (relative frequency measure) can be defined as the 

sectoral share of observed alliances weighted by firms number: 

        (1) 

• Propensity to establish an alliance (density measure) can be defined as ratio between 

observed alliances and all possible alliances one can form: 

        (2) 

 
When a discontinuity is likely to occur in the knowledge base then this should affect both 

propensity and probability. Probability should be increased in most cases, while propensity 

should only increase when the interactions between firms is higher than the number of firms. 

When the discontinuity emerges, the number of new firms able to create new knowledge may 

jump, but not necessarily the number of interactions which depends on the ability of firms to 

develop alliances between them. This ability ultimately depends on the knowledge properties 

in terms of coherence, similarity, and variety of firms involved in the sector and willing to 

form an alliance. 

 

The general properties of the knowledge base we described in the section 2, i.e. coherence, 

similarity and variety, can be implemented by means of different methodologies, like social 

network analysis or the calculation of indicators based on co-occurrence matrixes in which the 

elements of rows and columns are bits of knowledge, while each cell reports the frequency 

with which each pair of technologies is observed. Moreover, in order to provide an 

operational translation of such concepts one needs to identify both a proxy of the bits of 

knowledge and a proxy of the elements that make their structure. For example one could take 

as a proxy of knowledge scientific publications, and look either at keywords or at scientific 

classification (like the JEL code for economists) for the constituting elements of the 

knowledge structure. Alternatively, one may consider patents as a proxy of knowledge, and 
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look at technological classes to which patents are assigned as the constituting elements of its 

structure.   

In this paper we use patent statistics to derive measures drawing upon co-occurrence matrices. 

Each technological class i is linked to another class j when the same patent is assigned to both 

of them. The higher is the number of patents jointly assigned to class i and j, the stronger is 

this link. Since the technological classes attributed to patents are reported in the patent 

document, we will refer to the link between i and j as the co-occurrence of both of them 

within the same patent document3.  

On this basis we calculated the following three key characteristics of the knowledge base of 

pharmaceuticals (see the appendix A for the methodological details): 

a) Knowledge variety (KV) measures the degree of technological diversification of the 

knowledge base. It is based on the information entropy index, and it can be 

decomposed in related knowledge variety (RKV) and unrelated knowledge variety 

(UKV).  

b) Knowledge coherence (COH) measures the degree of complementarity among 

technologies. 

c) Cognitive distance (CD) expresses the dissimilarities amongst different types of 

knowledge. 

 

This set of indicators provides us with useful measures to investigate the evolutionary 

patterns of knowledge structure and compare them with the dynamics of technological 

alliances in the pharmaceutical sector. The next section will present the results of our 

calculation and provide interpretation in the light of the working hypotheses spelled out in 

Section 2. 

5 Results 

5.1 General evidence 

 

                                                           
3
 It must be stressed that to compensate for intrinsic volatility of patenting behaviour, each patent application is 

made last five years. 
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Figs 1a,b,c and d show the results of our calculations for the whole data base, including the 

USA, Japan and Europe.  In Fig 1a we can see that the probability of creation of alliances 

increases while the propensity to form alliances falls during the whole period of observation. 

This behavior is understandable considering that the probability of alliance formation can be 

expected to increase when the number of potential partners grows – in this case the potential 

partners were DBFs (dedicated biotechnology firms),  the number of which has clearly risen. 

Given that, as explained before, the propensity to form alliances is essentially a measure of 

density of the innovation networks formed by LDFs (Large diversified firms), DBFs 

(dedicated biotechnology firms) and by PROs (public research organizations), the observed 

fall in propensity could be explained if the rate of creation of DBFs was higher than the rate 

of creation of alliances. A fall in network density due to a rate of creation of DBFs higher than 

the rate of alliance formation can be expected to occur during periods in which a knowledge 

discontinuity is emerging (Saviotti and Catherine, 2008).  It is to be noticed that the rate of 

growth of the probability to form alliances was initially very low and started to rise only after 

1983.  

 

Fig 1b shows that the knowledge coherence goes through two cycles, within each of which 

coherence rises first, then reaches a maximum and finally falls. Each of these cycles was 

started by a knowledge discontinuity which sharply reduced knowledge coherence and was 

continued by the subsequent rise in coherence due to the normalization or maturation of the 

once new knowledge type as the absorption capacity of it has increased. The first of these 

knowledge discontinuities coincides with the emergence of r-DNA and the second with that of 

genomics (Saviotti and Catherine, 2008). Cognitive distance shows an overall decreasing 

trend after an initial rise, with several oscillations superimposed upon the trend. This behavior 

can be explained by the impact of the initial discontinuity constituted by r-DNA followed by a 

gradual process of absorption of the new technology by most pharmaceutical firms.  

 

The oscillations superimposed upon the trend could be due to the emergence of 'smaller' 

discontinuities and by their subsequent absorption. However, this explanation seems to be 

incompatible with the presence of two knowledge discontinuities indicated in Fig 1b. Related 

knowledge variety (RKV) is always considerably greater than unrelated knowledge variety 

(UKV) (Fig 1d). RKV remains almost constant with some small fluctuations while UKV 

keeps increasing during the whole period of observation. Overall knowledge variety shows a 
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clearly overall increasing trend with sharper rises in the initial and final parts of the period. 

These two rises in overall variety correspond approximately to the two discontinuities shown 

by the curve of knowledge coherence.  

 

>>>INSERT FIGURE 1 ABOUT HERE<<< 

 

Some features of the evolution of biotechnology within the pharmaceutical industry, such as 

the initial rise and the subsequent fall in cognitive distance, correspond to the pattern of 

behavior to be expected by a technological life cycle. However, other features of these figures 

do not correspond to the simplest possible representation of a technology life cycle. Thus, 

there are not one but two discontinuities, as shown by the evolution of knowledge coherence.  

 

Furthermore, the evolution of both cognitive distance and of knowledge variety seems to 

indicate that each of these two discontinuities does not follow a smooth pattern going from 

high to low cognitive distance and from low to high knowledge variety. Each of the two 

generations of biotechnology giving rise to the cycles in knowledge coherence seems to have 

an internal structure, as shown by the intra-generation peaks and troughs of cognitive distance 

and of knowledge variety. For the moment the interpretation of the intra-generation peaks is 

not completely clear. To proceed we have to bear in mind that the results examined so far do 

not correspond to a homogeneous sample within which the only possible variations could be 

due to the evolution of biotechnology. On the contrary, the data set used contains information 

about three different geographical regions within which the evolution of technology and of 

industrial organization could have differed considerably. For example, we know that the rate 

of creation of DBFs during the 1980s was much higher in the USA than in Europe and even 

more so than in Japan (Escourrou, 1992; Walsh et al, 1995; Senker and Sharp, 1997). As a 

consequence, the results displayed in Figs 1a-1d are not due only to the intrinsic dynamics of 

knowledge and to its impact on industrial organization but also to the aggregation of samples 

of firms and research organizations belonging to different regions. In order to try and 

understand the mechanisms underlying the relative dynamics of knowledge in these different 

regions we now turn to the analysis of Figs 3a-3f.           

 

5.2 Cross country comparison 
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The probability of formation of alliances increased in all three regions during the period 

considered. This means that in all three regions the pharmaceutical sector increased its share 

of alliances with respect to other sectors. In all three regions the factors which tend to favor 

alliances, such as new discoveries of potential economic applicability, must have become 

particularly abundant in pharmaceuticals. In this sense the observed behavior of the three 

regions is very similar. The only very slight difference is that the probability starts rising later 

in the USA with respect to the EU or to Japan. The propensity to form alliances is always 

higher in Japan than in the EU, and in the EU than in the USA. In the USA it declines all the 

time while it falls initially and then recovers for the EU and Japan. 

 

>>>INSERT FIGURE 2 ABOUT HERE<<< 

 

Thus, propensity (Fig 2a) differs by value and by trend amongst the three regions. Bearing in 

mind that according to its definition propensity measures the density of the innovation 

networks formed by the partners DBFs, LDFs and PROs, we can say that the density of 

pharmaceutical innovation networks was systematically higher in Japan than in Europe and in 

Europe than in the USA. Furthermore, propensity falls all the time in the USA while it first 

falls and then rises in Europe and in Japan. Considering that network density measures the 

fraction of all possible links which are used at a given time, we can expect network density to 

depend on the balance between the rates of growth of links and of nodes. In our case new 

links are formed by new alliances while new nodes are mostly formed by new DBFs. In 

general we can expect the density of innovation networks to bear a systematic relationship to 

the phases of a technology lifecycle. Thus, during the paradigm emergence, or exploitation 

phase, we can expect to observe a higher rate of growth of nodes than of links, leading to a 

falling network density. Conversely, during the paradigm consolidation, or exploitation phase, 

we can expect a higher rate of growth of links than of nodes (Saviotti, 2009). Such a 

relationship has been empirically observed for the first and second generations of 

biotechnology (Saviotti and Catherine, 2008). For what concerns the comparison of 

propensity to form alliances, a lower propensity, corresponding to a lower network density, 

need not be interpreted as a competitive disadvantage. On the contrary, a higher network 

density could simply indicate an economic environment where the rate of creation of DBFs is 

very low and where, as a consequence, new alliances can absorb a higher percentage of 

possible links. This is likely to be the explanation of the higher propensity to form alliances of 
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Japan relative to the USA. Thus, a lower network density could indicate a more creative 

economic environment, and a growing network density an economic environment which is 

rather consolidating than creative. Always referring to the propensity to form alliances, Japan 

shows a cyclical trend in the dynamics of nodes and links in contrast to the almost continuous 

one observed for the USA or the EU (Figs. 2 b, 2c, 2d). The reason for this difference is likely 

to be found in the relative lack of success of the early policies aimed at creating DBFs in 

Japan. (Odagiri, 2006)              

 

The picture emerging from Fig 3a is of (i) the USA being the dominant power in the creation 

of DBFs and in the formation of alliances in pharmaceuticals during the whole period, (ii) in 

spite of the growing number of DBFs created in Europe, and somewhat less so in Japan since 

the 1990s, the rate of formation of alliances in both regions is likely to have remained lower 

than in the USA. The interpretation we propose, a faster rise in RDBFs than in RAll  for both the 

EU and Japan from the second half of the 1990s, is one of those which could have led to an 

increase in the propensity to form alliances but not the only possible one. Our choice of this 

interpretation is not based uniquely on these results but it has benefited from the use of 

research findings about the relative rates of creation of DBFs in the three regions. 

 

>>> INSERT FIGURE 3 ABOUT HERE <<< 

 

Knowledge coherence is always higher for the USA than for the EU or for Japan (Fig 3b) and 

this advantage of the USA tends to increase with time. Knowledge coherence for the USA not 

only increases with time but shows two peaks – beginning in the early 1980s and in the mid 

1990s – and corresponding to the two generations of biotechnology. Knowledge coherence for 

the EU and for Japan is always lower than that of the USA and falls gently in the course of 

time. Even for the EU and for Japan we can detect two barely perceptible peaks 

corresponding to the two generations of biotechnology. Bearing in mind that knowledge 

coherence measures the capability of firms to combine different pieces of knowledge, old and 

new, the advantage of the USA has been based not only on the ability to learn new knowledge 

but also on that to integrate different pieces of knowledge. Given that knowledge coherence 

has been found to be a determinant of the technological and of the stock market performance 

of pharmaceutical firms (Nesta and Saviotti, 2005, 2006) we can interpret Fig 3a as showing 

that the USA has been gaining a growing competitive advantage with respect to the EU and to 
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Japan during the period studied. As far as the EU is concerned, this corresponds to the 

observed diminished capacity of EU pharmaceutical firms to create new drugs.  

 

Cognitive distance (CD) was initially much higher for Japan than for the USA and for the EU 

but it has been falling for the three regions (Fig 3c). At the end of the period Japan has almost 

caught up with the USA and the EU and the three regions have similar values of CD. The CD 

curves of three regions show two peaks, once more corresponding to the two generations of 

biotechnology. Such peaks are much more pronounced for Japan than for the USA or the EU, 

but are still visible for the last two regions. In particular, the USA has a higher CD than the 

EU for the first peak but a lower one for the second peak. CD is expected to rise at the 

emergence of a discontinuity, for example of a new technological paradigm, and to fall as the 

discontinuity is absorbed into the KB of incumbent firms. The high values of CD at the 

beginning of the period show the existence of a corresponding barrier to learning. The 

subsequent fall in CD shows that pharmaceutical firms in the three regions have gradually 

acquired an absorption capacity for the new biotechnological knowledge. The relative values 

of CD also show that at the beginning of the period Japan had a much lower absorption 

capacity than either the USA or the EU. The CDs of the USA and of the EU were very similar 

during the whole period although their relative positions underwent a reversal. At the 

beginning and during the first generation of biotechnology the USA had a slightly higher CD 

while during the second generation the EU had a slightly higher CD. These subtle differences 

are more difficult to explain but they could be due to the different rates at which 

pharmaceutical firms internalized the new knowledge, higher for USA firms in the 1st 

generation and for EU firms in the second generation. This could be explained if EU firms 

and research institutions were more capable of learning knowledge of the r-DNA generation 

than of the genomics generation. By the end of the period Japan has a very similar, although 

still slightly higher, CD than both the EU and the USA.    

 

Total technological variety (TKV) shows a tendency to increase for the three regions (Fig 3d), 

but with considerable differences amongst them. Japan, which at the beginning of the period 

had a much lower technological variety than both the USA and the EU, by the end of the 

period, has caught up with both of them and in fact it has overcome the EU. The differences 

in the relative behavior of the three regions are even more evident when we differentiate 

between related (RKV) and unrelated technological variety (UKV) (Figs 3e, 3f). The 
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advantage of the USA is more pronounced in RKV than in UKV. Furthermore, Fig 3e shows 

that the advantage of Japan in TKV is exclusively based on RKV. By the end of the period the 

three regions have very similar levels of UKV (Fig. 3f).  The curves for RKV, UKV and TKV 

show two peaks corresponding to the two generations of biotechnology. The second peak, 

corresponding to the emergence of genomics, shows a much faster rate of growth of RKV 

than the first one.  

 

The analysis of the evolution of the properties of the knowledge base of pharmaceutical firms 

in the three regions confirms the competitive advantage accumulated by the USA since the 

advent of 3rd generation biotechnology in the late 1970s (Figs 4, 5 and 6). Such advantage is 

shown by all the properties of the knowledge base we examined but not to the same extent. In 

particular, the advantage seems more limited for CD and UKV and much more pronounced 

for COH and RKV. Thus, it is quite likely that, in view of the very clear evidence for the 

growing share of new drugs accounted for by USA pharmaceutical firms (Mitchell, 2007), not 

all properties of the KB have the same impact on the economic performance of firms. It seems 

as if the impact of COH and RKV on firm performance is much more pronounced than that of 

CD and UKV. To try and understand such a result we return to the meaning of these 

properties.  

 

>>> INSERT FIGURES 4, 5 AND 6 ABOUT HERE <<< 

 

In previous papers we found that both COH and TKV are determinants of the technological 

(Nesta and Saviotti, 2005) and economic (Nesta and Saviotti, 2006) performance of firms. 

These findings are confirmed by the results of the present paper. However, those papers did 

not introduce the distinction between related and unrelated variety, while the distinction 

proved to be very fruitful in the analysis of the impact of output and of export variety on the 

economic growth of regions and of countries. Related output variety turned out to be a 

determinant of growth in the regions of the Netherlands (Frenken et al, 2007) and related 

export variety was found to be a determinant of the short run growth of OECD countries 

(Saviotti and Frenken, 2008). However, unrelated export variety is a determinant of longer 

run growth of OECD countries. In the last paper, related export variety was interpreted as 

measuring the extent of differentiation of exports in the neighborhood of the position 

previously occupied by the country in product and knowledge space. On the other hand, 
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unrelated export variety involves a greater extent of differentiation, or equivalently, a greater 

distance in product and in knowledge space. Those results had been interpreted as implying 

that countries and regions need to differentiate their output and exports in order to grow but 

that in the short run they will obtain a higher pay-off by differentiating in the neighborhood of 

their previous products. However, growth can only be sustained in the longer run if countries 

and regions start preparing a more radical type of differentiation by attempting to move 

further away from their previous products. In the present paper, the distinction between 

related and unrelated variety has a similar interpretation when applied to knowledge, but its 

implications for the dynamics of knowledge are somewhat different. 

 

RKV measures the extent of differentiation of the knowledge base at a lower level of 

aggregation than UKV. Thus, the differentiation measured by RKV is more local, or intra-

group. If we could apply the same interpretation to the knowledge base of pharmaceutical 

firms as to the output of countries and regions, we should expect RKV to be a more effective 

determinant of the performance of firms in the short run while UKV would become a more 

important determinant of performance in the longer run. While that may be true, we have 

evidence that the evolution of technologies tends to proceed through a life cycle, beginning 

with a knowledge discontinuity which increases CD and reduces COH. The life cycle 

proceeds by differentiating the knowledge base of the firms adopting the new type of 

knowledge, by gradually reducing CD and by gradually raising COH. As this happens the 

search strategies of firms move away from exploring at random the new dimensions of 

knowledge space, what we called 'random search', and start focusing on the more promising 

findings which had so far emerged. During this second phase, which we called organized 

search, the process of differentiation of the knowledge base continues but in the neighborhood 

of the new findings, or at a more local level. Thus, in this phase we can expect the rate of 

growth of UKV to start falling and that of  RKV to start increasing. In previous papers 

(Krafft, Quatraro, Saviotti, 2009) it is pointed out that the measurement of these properties of 

the KB can provide a more accurate and semi quantitative interpretation of concepts such as 

technological paradigms and technological trajectories or of the transition from exploration to 

exploitation. However, the ordered transition from high to low CD, from low to high COH, 

from high UKV to high RKV is unlikely to happen always in the same way and many variants 

and combinations are possible.       
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One of the implications of the existence of this life cycle is that the performance of firms 

could depend on different factors depending on the phases of the life cycle. Thus, RKV and 

UKV could differ in terms of their impact on performance not in different time horizons but 

in different phases of the technology life cycle. For example, during the very early phases 

following the emergence of a discontinuity UKV could be expected to be a more important 

determinant of firm performance while RKV could become more important in later phases. 

Our results here do not seem to indicate this dependence since RKV is always higher than 

UKV. Our findings here indicate some variant with respect to the most simplified version of 

the life cycle. Thus, each of the two generations of biotechnology has its own life cycle and 

the overall path we observe is the combination of two life cycles.  

 

We can now turn back to explore the reasons for the different impact of KB properties on firm 

performance. COH can be expected to measure the ability of firms or organizations to 

combine different pieces of knowledge. The observed impact of COH on firm performance 

can be explained by the fact that no drug or new plant variety can be created by means of only 

one piece of knowledge. The creation of any industrial application requires the combination 

of many different pieces of knowledge. Furthermore, the ability of firms to combine different 

pieces of knowledge is expected to increase after the emergence of a discontinuity. Thus, it is 

understandable that an advantage in COH can lead to a competitive advantage in the 

economic performance of firms. That the importance of COH grows in the same conditions as 

that of RKV is also understandable based on the nature of RKV. RKV is expected to measure 

the extent of differentiation of the KB  of firms after that, during the organized search phase 

of the technology life cycle, all firms have focused on a more restricted but more promising 

subset of the knowledge space as compared to the one explored during the random search 

phase. During the organized search phase the process of differentiation of the KB is more 

local, or intra-group, with the consequence that the expected average similarity between any 

possible pair of units of knowledge is likely to be greater than in the random search period. 

Thus, the more local is the level at which the process of differentiation of the KB occurs in 

knowledge space the easier we can expect it will be to combine different pieces of knowledge. 

Thus, high COH and high RKV are likely to exist simultaneously and firms acquiring an 

advantage in them are likely to acquire an overall competitive advantage.  
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We can finally observe that the analysis of the above properties of the KB provide us with the 

capacity to detect the emergence of knowledge discontinuities. In fact, such discontinuities 

are detected not as discrete events but as a sudden rise or fall in one or more of those 

properties. For example, CD is expected to rise rapidly at the emergence of a discontinuity 

and to fall subsequently as the new knowledge matures and becomes part of the routines of 

the economic system. However, one of the findings of this paper is that not all discontinuities 

are alike. Thus, at the end of the 1st generation of biotechnology, COH for the whole sample 

fell back to very low values before recovering during the second generation. On the other 

hand, for the USA at the end of the 1st generation, COH did not fall back to values as low as 

those prevailing at the beginning of the same generation, but only fell slightly and then started 

rising very rapidly. Obviously, the 2nd generation of biotechnology was not equally 

discontinuous for the USA as for the EU or Japan. The 2nd generation of biotechnology 

differs from the 1st for the advent of bioinformatics but shares with the 1st all the basic 

concepts introduced by molecular biology. For what concerns the pharmaceutical industry we 

can observe that for the USA the 2nd generation of biotech was less discontinuous than the 

1st one while for the EU and Japan they were both equally discontinuous. This raises the very 

interesting question of whether a discontinuity is intrinsic to knowledge or whether it depends 

on the overall learning organization of a society, what is called social technology (Nelson 

1993).       

 

6 Summary and conclusions 

 

The findings of this paper confirmed the hypothesis that technologies develop according to a 

life cycle following a predictable pattern beginning with the emergence of a knowledge 

discontinuity and proceeding with the gradual transformation of such discontinuity into a 

routine of the economic system. During this process a number of properties of the knowledge 

base of firms or of other knowledge using organizations undergo systematic changes 

following a lifecycle consisting of moving away from an initial phase of random search 

towards a final phase of organized search.  

 

In general at the emergence of a discontinuity coherence falls, cognitive distance increases 

and knowledge differentiation starts growing. However, the study of individual cases shows 
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that many variants can occur within the general framework of a technology life cycle. For 

example, while in general we can expect knowledge differentiation to start moving from 

unrelated (UKV) to related (RKV) there may be cases where this sequence is not followed. In 

other words, we can see that general concepts such as paradigms or trajectories can 

encompass a considerable diversity of situations. The quantitative framework we propose 

allows us to separate cases which could seem to be describable as paradigmatic transitions 

and to elucidate their differential implications for industrial dynamics. Thus, in this paper we 

can see that in the application of biotechnology to the pharmaceutical industry there have 

been not one but two technology life cycles corresponding to two generations of 

biotechnology. Each of these generations leads to a detectable change in some of the 

properties of the KB. Yet, the two generations of biotechnology do not seem to have the same 

impact on the pharmaceutical industries of the three regions studied. Thus, USA 

pharmaceutical firms seem to experience a lower extent of discontinuity with the advent of 

the 2nd generation of biotechnology than either EU or Japanese pharmaceutical firms. This 

raises the important question of whether a knowledge discontinuity is an intrinsic feature of 

particular types of knowledge or whether and to what extent it depends on the social 

organization of learning.  

 

In this paper we not only investigated the dynamics of knowledge but started exploring the 

impact it can have on firm competiveness and on alliance formation. This can be done by 

measuring both properties of the knowledge base of the sector and properties of the alliance 

networks formed. Amongst the latter we measured the probability of alliance formation and 

the propensity to form alliances. It seems as if not all the properties of the KB have the same 

impact on firm performance in the pharmaceutical industry. In particular, COH and RKV 

seem to have a much more marked impact on firm performance than either CD or UKV. In 

the previous section we propose an explanation of why that should be the case. Furthermore, a 

high propensity to form alliances as defined in this paper does not necessarily lead to a better 

economic performance of the pharmaceutical industry. This can be explained by using a 

network approach to analyzing technological alliances. Since the propensity to form alliances 

is proportional to network density, a falling propensity can indicate a very creative economic 

environment in which so many new DBFs are created that the process of alliance formation 

cannot keep pace. In this sense we can explain why the USA, by far the strongest region 

biotechnology and in alliance formation, has a lower and falling propensity to form alliances 
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than the EU or Japan. In interpreting the relationship between alliance formation and the 

properties of the knowledge base of pharmaceuticals it must be remembered that the two are 

related by a co-evolutionary pattern in which a 'good' knowledge base in one period leads to 

better alliances in the subsequent period, which in turn improves the knowledge base in the 

next period.  

 

The paper shows the usefulness of measuring the above properties of the KB and the progress 

this entails with respect to concepts such as technological paradigms and trajectories or 

exploration and exploitation.  Based on these properties of the KB we can show that more 

than one type of evolution can occur due to both the intrinsic characteristics of knowledge and 

to the relative effectiveness of different research and industrial systems.   

 

While the dynamics of knowledge in biotechnology was the same all over the world, the 

translation of this new knowledge into industrial applications and the corresponding industrial 

dynamics has been quite different in the three regions we studied here. The leadership 

position of the USA appears quite clearly as well as the late start and the different rates of 

catching up of the EU and of Japan. Thus, the use of the above properties of the KB allows us 

both to give a clearer operational meaning to concepts such as technological paradigms and 

trajectories or exploration and exploitation and to better articulate them.   

 

  



28 

 

7 References 

 

Abernathy, W.J. and Utterback, J.M., 1978. Patterns of industrial innovation. Technology 
Review 80, 41-47. 

Acs, Z.J., Anselin, L. and Varga, A., 2002. Patents and innovation counts as measures of 
regional production of new knowledge. Research Policy 31, 1069-1085. 

Antonelli, C., Krafft, J. and Quatraro, F., 2010. Recombinant knowledge and growth: The 
case of ICTs. Structural Change and Economic Dynamics 21, 50-69. 

Ahuja, G. and Katila, R. 2001. Technological acquisitions and the innovation performance of 
acquiring firms: A longitudinal study. Strategic Management Journal 22, 197-220. 

Brusoni, S., Prencipe, A. and Pavitt, K. 2001. Knowledge specialization, organizational 
coupling, and the boundaries of the firm: Why do firms know more than they make? 
Administrative Science Quarterly 46, 597-621. 

Coase, R. H. 1937. The Nature of the Firm, Economica N.S., 4, 386-405. Reprinted in O. E. 
Williamson and S. Winter, eds., 1991. The Nature of the Firm: Origins, Evolution, 
Development. New York: Oxford University Press, pp. 18-33. 

Cloodt, M.,  Hagedoorn, J. and Van Kranenburg, H., 2006. Mergers and acquisitions: Their 
effect on the innovative performance of companies in high-tech industries. Research Policy 
35, 642-654. 

Dosi, G., 1982. Technological paradigms and technological trajectories: A suggested 
interpretation of the determinants and directions of technical change. Research Policy 11, 
147–162. 

Duysters, G. and de Man, A.P. 2003. Transitory alliances: An instrument for surviving 
turbulent industries? R&D Management 33, 49-58.  

Duysters, G., 2001. Partner or perish: surviving the network economy. Inaugural lecture 22 
June. Eindhoven University of Technology. 

Escourrou N., (1992) Les sociétés de biotechnologie européennes, un réseau très imbriqué, 
Biofutur, July-August, 40-42  

Fleming, L., 2001. Recombinant Uncertainty in Technological Search. Management Science 
47, 117-132. 

Foray, D. 2004. The economics of knowledge. Cambridge, Mass.: MIT Press. 

Frenken, K., van Oort F.G., Verburg, T., 2007. Related variety, unrelated variety and regional 
economic growth. Regional Studies 41, 685-697. 

Galambos, L. and Sturchio, J.J.,1996. The Pharmaceutical Industry in the Twentieth Century: 
a Reappraisal of the Sources of Innovation. History and Technology 13, 2, 83-100. 

Galambos, L. and Sturchio, J.J., 1998. Pharmaceutical firms and the transition to 
biotechnology: A study in strategic innovation. The Business History Review 72, 250-278. 

Gambardella, A., 1995. Science and Innovation in the US Pharmaceutical Industry. 
Cambridge  University Press, Cambridge. 

Gomes-Casseres, B., Hagerdoorn, J. and Jaffe, A.B. 2006. Do alliances promote knowledge 
flows? Journal of Financial Economics 80, 5-33. 



29 

 

Gottinger, H.W. qnd Umqli, C.L. 2008. The evolution of the pharmaceutical-biotechnology 
industry. Business History 50, 583-601. 

Griliches, Z., 1990. Patent statistics as economic indicators: A survey. Journal of Economic 
Literature 28, 1661-1707. 

Hagerdoorn, J. 1996. Trends and patterns in strategic technology partnering since the early 
Seventies. Review of Industrial Organization 11, 601-616. 

Hagerdoorn, J. and Duysters, G. 2002. External sources of innovative capabilities: The 
preference for strategic alliances or mergers and acquisitions. Journal of Management Studies 
39, 167-188. 

Hagerdoorn, J. and Schakenraad, J. 1994. The effect of strategic technology alliances on 
company performance.  Strategic Management Journal 15, 291-309. 

Hall, B.H., Griliches Z. and Hausman J.A., 1986. Patents and R and D: Is there a lag?. 
International Economic Review 27, 265-283. 

Henderson, R., Pisano, G. P. and Orsenigo, L., 1999. The Pharmaceutical Industry and the 
Revolution in Molecular Biology: Interactions Among Scientific, Institutional, and 
Organizational Change. In Mowery, D. and Nelson, R. (eds) Sources of Industrial 
Leadership: Studies of Seven Industries. Cambridge University Press, 1999. 

Kauffman, 1993. Origins of order: Self-Organization and selection in evolution. Oxford 
University Press, Oxford. 

King, M.D.R., Dalton, D.R., Daily, C.M. and Covin, J.G., 2004. Meta-analyses of post-
acquisition performance: indications of unidentified moderators. Strategic Management 
Journal 25, 187–200. 

Klepper, S., 1997. Industry life cycles. Industrial and Corporate Change 6, 145-182. 

Krafft, J., Quatraro F. and Saviotti P.P., 2009. Evolution of the knowledge base in knowledge 
intensive sectors.  Industrial and Corporate Change, revised and resubmitted. 

Kuznets S., 1930. Secular Movements in Production and Prices.  Houghton Mifflin, Boston. 

Langlois, R.N. 2003. Cognitive Comparative Advantage and the Organization of Work: 
Lessons from Herbert Simon‟s Vision of the Future. Journal of Economic Psychology 24. 
187-207. 

Langlois, R.N. and Robertson, P.L. 1993. Business Organization as a Coordination Problem: 
Toward A Dynamic Theory of the Boundaries of the Firm. Business and Economic History 
22, 31-41. 

Langlois, R.N. and Robertson, P.L. 1995. Innovation, Networks, and Vertical Integration. 
Research Policy 24, 543-562. 

Lee, J. 2003. Innovation and strategic divergence:  An empirical study of the U.S. 
pharmaceutical industry from 1920 to 1960. Management Science 49, 143-159. 

Lipton, M., 2006. Merger Waves in the 19th, 20th and 21st Centuries. The Davies Lecture 
Osgoode Hall Law School, York University. 

Lundvall B.A. (ed.) 1992. National Systems of Innovation, London: Pinters. 

Malerba, F. 2007. Innovation and the dynamics and evolution of industries: Progress and 
challenges. International Journal of Industrial Organization 25, 675-699. 



30 

 

Malerba, F. and Orsenigo, L., 1995. Schumpeterian patterns of innovation. Cambridge 
Journal of Economics 19, 47-65. 

Malerba, F. and Orsenigo, L., 1997. Technological Regimes and Sectoral Patterns of 
Innovative Activities. Industrial and Corporate Change 6, 83-118. 

Malerba, F. and Orsenigo, L. 2002. Innovation and market structure in the dynamics of the 
pharmaceutical industry and biotechnology: A history-friendly model. Industrial and 
Corporate Change 11, 667-703. 

March, J. 1991. Exploration and exploitation in organizational learning. Organization Science 
2, 71-87. 

Mayer, K.J. and Teece, D.J. 2008. Unpacking strategic alliances: The structure and purpose of 
alliance versus supplier relationships. Journal of Economic Behavior and Organization 66, 
106-127 

Mitchell, P. 2007. Price controls seen as key to Europe's drug innovation lag, Nature Reviews 
Drug Discovery 6, 257-258. 

Moeller, S. and Brady, C. 2007. Intelligent M&A. Navigating the mergers and acquisitions. 
Chichester, Wiley. 

Mukherjee, T.K., Kiymaz, H. and Baker, H.K., 2004. Merger Motives and Target Valuation: 
A Survey of Evidence from CFOs. Journal of Applied Finance 14, 7-24.  

Nesta L., 2008. Knowledge and productivity in the world‟s largest manufacturing 
corporations. Journal of Economic Behavior and Organization 67, 886-902. 

Nesta, L., and Saviotti, P.P., 2005. Coherence of the knowledge base and the firm's innovative 
performance: Evidence from the U.S. pharmaceutical industry.  Journal of Industrial 
Economics 53, 123-42. 

Nesta L. and Saviotti P.P., 2006. Firm knowledge and market value in biotechnology. 
Industrial and Corporate Change 15, 625-652. 

Nelson, R. (ed.) 1993. National Innovation Systems. A Comparative Analysis, New 
York/Oxford: Oxford University Press. 

Nelson, R.R. and Winter, S.W., 1982. An Evolutionary Theory of Economic Change. 
Cambridge: Harvard University Press. 

Nightingale, P., 1998. A cognitive model of innovation. Research Policy 27, 689-709. 

Odagiri, Hiroyuki, 2006. The Economics of Biotechnology in Japanese Tokyo; Toyokeizai, 
cited in Okamoto Y., . Paradox of Japanese Biotechnology: Can the Regional Cluster 
Development Approach be a Solution? 

Orsenigo L., 1989. The Emergence of Biotechnology. Pinter Publishers, London. 

Pavitt, K., 1985. Patent statistics as indicators of innovative activities: Possibilities and 
problems. Scientometrics 7, 77-99. 

Penrose, E. 1959. The Theory of the Growth of the Firm. New York: John Wiley and Sons. 

Phillippen, S. and Riccaboni, M. 2007. Radical innovation and network evolution: The effect 
of the genomic revolution on the evolution of the pharmaceutical R&D network. Annales 
d’Economie et Statistique 87/88, 325-350. 



31 

 

Quatraro, F., 2010. Knowledge Coherence, Variety and Productivity Growth: Manufacturing 
Evidence from Italian Regions. Research Policy 39, 1289-1302. 

Quéré, M. 2003. Knowledge dynamics: Biotechnology‟s incursions into the pharmaceutical 
industry. Industry and Innovation 10, 255-273.    

Richardson, G.B., 1960, Information and Investment, 1990, 2nd edition, Clarendon Press, 
Oxford. 

Richardson, G.B., 1972, “The organization of industry”, Economic Journal, 82, p. 883-896. 

Saviotti P.P., 2009. Knowledge networks structure and dynamics, in Pyka A., Scharnorst A., 
(Eds) Innovation Networks, New Approaches in Modeling and Analyzing, Berlin. Heidelberg, 
Springer. 

Saviotti, P.P., 2007. On the dynamics of generation and utilisation of knowledge: The local 
character of knowledge. Structural Change and Economic Dynamics 18, 387-408. 

Saviotti, P.P., 2004. Considerations about the production and utilization of knowledge. 
Journal of Institutional and Theoretical Economics 160, 100-121. 

Saviotti P.P. and Catherine D., 2008. Innovation networks in biotechnology. in Holger 
Patzelt, Thomas Brenner, David B. Audretsch (Eds), Handbook of Bioentrepreneurship. 
Springer. 

Saviotti, P.P. and Frenken, K., 2008. Export variety and the economic performance of 
countries, Journal of Evolutionary Economics 18, 201-218. 

Schilling, M. 2008. Understanding the alliance data. Strategic Management Journal 30, 233-
260. 

Schumpeter, J. A., 1939. Business Cycles. A Theoretical, Historical and Statistical Analysis 
of the Capitalist Process. McGraw Hill. New York and London. 

Schumpeter, J.A., 1942. Capitalism, Socialism and Democracy. Harper and Row, New York. 

Senker J., Sharp M. (1997) Organisational learning in cooperative alliances: some case studies 
in biotechnology, Technology Analysis and Strategic Management, 9, 35-51   

Teece, D.J. 1986. Profiting from technological innovation: Implications for integration, 
collaboration, licensing and public policy. Research Policy 15, 285-305. 

Tether, B.S. 2002. Who co-operates for innovation and why. An empirical analysis. Research 
Policy 31, 947-967. 

Verspagen, B., van Moergastel, T. and Slabbers, M., 1994. MERIT concordance table: IPC - 
ISIC (rev. 2). MERIT Research Memorandum 2/94-004, University of Maastricht. 

Walsh V., Niosi J., Mustar P.,(1995) Small firm formation in biotechnology: a comparison of 
France, Britain and Canada, Technovation, 15, 303-27   

Weitzmann, M.L 1998. Recombinant growth. Quarterly Journal of Economics 113, 331-360. 

Williamson, O. E. 1985. The Economic Institutions of Capitalism. New York: Free Press. 

 

 

  



32 

 

A) Appendix A  

A.1 Knowledge variety 

 

We decided to measure technological variety by using the information entropy index. Entropy 

measures the degree of disorder or randomness of the system, so that systems characterized by 

high entropy will also be characterized by a high degree of uncertainty (Saviotti, 1988). 

Differently from common measures of variety and concentration, the information entropy has 

some interesting properties (Frenken and Nuvolari, 2004). An important feature of the entropy 

measure is its multidimensional extension. Consider a pair of events (Xl, Yj), and the 

probability of co-occurrence of both of them plj. A two dimensional total variety (TV) measure 

can be expressed as follows: 

l j lj
lj p

pYXHKV
1

log),( 2       (A1) 

If one considers plj to be the probability that two technological classes l and j co-occur within 

the same patent, then the measure of multidimensional entropy focuses on the variety of co-

occurrences of technological classes within regional patents applications. 

Moreover, the total index can be decomposed in a “within” and a “between” part anytime the 

events to be investigated can be aggregated into a smaller numbers of subsets. Within-entropy 

measures the average degree of disorder or variety within the subsets, while between-entropy 

focuses on the subsets measuring the variety across them. Frenken et al. (2007) refer to 

between- and within- group entropy respectively as unrelated and related variety. 

It can be easily shown that the decomposition theorem holds also for the multidimensional 

case. Hence if one allows l Sg and j Sz (g = 1,…,G; z = 1,…, Z), we can rewrite H(X,Y) as 

follows: 

G
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Where the first term of the right-hand-side is the between-entropy and the second term is the 

(weighted) within-entropy. In particular: 
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We can therefore refer to between- and within-entropy respectively as unrelated technological 

variety (UTV) and related technological variety (RTV), while total information entropy is 

referred to as general technological variety.  

A.2 Knowledge coherence 

 

Knowledge coherence measures the degree of complementarity among technologies. We 

expect it to provide us with an indication of the difficulty, or cost, a firm has to face to learn a 

new type of knowledge. Typically a firm needs to combine, or integrate, many different 

pieces of knowledge to produce a marketable output. Thus, in order to be competitive a firm 

not only needs to learn new 'external' knowledge but it needs to learn to combine it with other, 

new and old, pieces of knowledge. We can say that a knowledge base in which different 

pieces of knowledge are well combined, or integrated, is a coherent knowledge base. The 

technologies contained in the knowledge base are by definition complementary in that they 

are jointly required to obtain a given outcome. For this reason, we turned to calculate the 

coherence of the knowledge base, defined as the average relatedness of any technology 

randomly chosen within the sector with respect to any other technology (Nesta and Saviotti, 

2005 and 2006; Nesta, 2008). 

To yield the knowledge coherence index, a number of steps are required. In what follows we 

will describe how to obtain the index at the sector level. First of all, one should calculate the 

weighted average relatedness WARl of technology l with respect to all other technologies 

present within the sector. Such a measure builds upon the measure of technological 

relatedness lj (see Nesta and Saviotti, 2005, for details). Following Teece et al. (1994), WARl 
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is defined as the degree to which technology l is related to all other technologies j l in the 

sector, weighted by patent count Pjt: 

lj jt

lj jtlj

lt P

P
WAR         (A5) 

Finally the coherence of knowledge base within the sector is defined as weighted average of 

the WARlt measure: 

jl l lt

lt
ltt P

P
WARCOH        (A6) 

It is worth stressing that such index implemented by analysing co-occurrences of 

technological classes within patent applications, measures the degree to which the services 

rendered by the co-occurring technologies are complementary to one another. The relatedness 

measure  lj indicates indeed that the utilization of technology l implies that of technology j in 

order to perform specific functions that are not reducible to their independent use. This makes 

the coherence index appropriate for the purposes of this study. 

A.3 Knowledge similarity and dissimilarity (cognitive distance) 

 

We need a measure of cognitive distance (Nooteboom, 2000) able to express the 

dissimilarities amongst different types of knowledge. A useful index of distance can be 

derived from the measure of technological proximity. Originally proposed by Jaffe (1986 and 

1989), who investigated the proximity of firms‟ technological portfolios. Subsequently 

Breschi et al. (2003) adapted the index in order to measure the proximity, or relatedness, 

between two technologies. The idea is that each firm is characterized by a vector V of the k 

technologies that occur in its patents. Knowledge similarity can first be calculated for a pair of   

technologies l and j as the angular separation or un-cented correlation of the vectors Vlk and 

Vjk. The similarity of technologies l and j can then be defined as follows: 
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The idea underlying the calculation of this index is that two technologies j and l are similar to 

the extent that they co-occur with a third technology k. The cognitive distance between j and l 

is the complement of their index of the similarity:  

ljlj Sd 1          (A8) 

Once the index is calculated for all possible pairs, it needs to be aggregated at the industry 

level to obtain a synthetic index of technological distance. This can be done in two steps. First 

of all one can compute the weighted average distance of technology l, i.e. the average distance 

of l from all other technologies.  

lj jit

lj jitlj
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Where Pj is the number of patents in which the technology j is observed. Now the average 

cognitive distance at time t is obtained as follows: 
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Table 1 - Concordance Table CATI-MERIT, ISIC and IPC 

CATI-MERIT Database ISIC (rev. 2) International Patent Classification 

A3  3522 A61J, A61K, C07B, C07C, C07D, 

C07F, C07G, C07H, C07J, C07K, 

C12N, C12P, C12S. 

 

Source: Verspagen et al. (1994) 
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Figure 1 – Technology alliances and Knowledge Structure : overall evidence 
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Figure 2 – Alliances : nodes and links in the Pharmaceutical sector 
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Figure 3 – Technology Alliances and Knowledge Structure : Cross-country Comparison 
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Figure 4 - Technology Alliances and Knowledge Structure : United States 
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Figure 5 - Technology Alliances and Knowledge Structure: Japan 
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Figure 6 - Technology Alliances and Knowledge Structure: Europe 
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