
HAL Id: hal-01070549
https://hal.science/hal-01070549v1

Submitted on 7 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Frame-based Modeling for Automatic Synthesis of
FPGA-Software Defined Radio

Ganda Stephane Ouedraogo, Matthieu Gautier, Olivier Sentieys

To cite this version:
Ganda Stephane Ouedraogo, Matthieu Gautier, Olivier Sentieys. Frame-based Modeling for Auto-
matic Synthesis of FPGA-Software Defined Radio. 9th International Conference on Cognitive Radio
Oriented Wireless Networks, Jun 2014, Oulu, Finland. pp.203-208. �hal-01070549�

https://hal.science/hal-01070549v1
https://hal.archives-ouvertes.fr

Frame-based Modeling for Automatic Synthesis of

FPGA-Software Defined Radio

Ganda Stephane Ouedraogo, Matthieu Gautier and Olivier Sentieys

IRISA, INRIA, University of Rennes 1, France

ganda-stephane.ouedraogo@irisa.fr; matthieu.gautier@irisa.fr; olivier.sentieys@irisa.fr

Abstract—Software Defined Radio (SDR) is now becoming a
ubiquitous concept to describe and implement Physical Layers
(PHYs) of wireless systems. Moreover, even though the FPGA
is expected to play a key role in SDR, describing a PHY at
the Register-Transfer-Level (RTL) requires tremendous efforts.
This paper introduces a novel methodology to rapidly implement
PHYs for SDR. The work relies upon High-Level Synthesis tools
and dataflow modeling in order to infer an efficient RTL control
unit for the application. The proposed software-based over-layer
partly handles the complexity of programming an FPGA and
integrates reconfigurable features. It consists essentially of a
Domain-Specific Language (DSL) combined to a DSL-Compiler.
An IEEE 802.11a transceiver has been explored via this approach
in order to show the flexibility features.

I. INTRODUCTION

Software Defined Radio (SDR) is a concept that has come to

maturity [1]. According to the wireless innovation forum [2],

an SDR is a radio in which some of the physical layer

(PHY) functions are software defined. Indeed, these radios

are mainly characterized by their ability to support different

waveforms. Different attempts to standardized SDR have led

to two major works, namely the Software Communication

Architecture (SCA) [3] and the Space Telecommunication

Radio System (STRS) [4]. These two frameworks provide the

building environment for SDR, however a need for tools to

design the PHY is still pointed out. The GNURADIO [5]

and the SDRPHY [6] projects are examples of software

frameworks. They both use a block-based model of the PHY

applications, namely a dataflow program, to implement such

PHYs.

The dataflow Model of Computation (MoC) [7] has en-

countered a lot of success in the real-time signal processing

domain. It describes an application as a set of functional

blocks that run concurrently and communicate through FIFO

channels. This view of the MoC represents the processing unit

of the application, which is usually associated to a control

unit. This associated control unit can be modeled as a Finite

State Machine (FSM), which provides a behavioral description

of the application. In most of the SDR frameworks, the

functional description of the blocks are written using high-

level languages such as C/C++ and the application runs over

Digital Signal Processors (DSP) based platforms. Blocks can

be also written at the register level (RTL) level by using a

Hardware Description Language (HDL) and run over Field

Programmable Gate Array (FPGA), however this description

differs from the initial idea of SDR where the blocks are

software defined.

In this paper, a novel software over-layer to specify a PHY

and implement it over FPGA platforms is proposed. Indeed,

the nascent radio protocols are expected to meet a certain data

throughput and the FPGAs include specialized resources such

as DSP slices, Block-RAM (BRAM) and clocking resources,

which enable achieving such data throughput requirements.

The proposed design flow relies upon High Level Synthesis

(HLS) tools [8] that provide a mean to compile an abstracted

description (C/C++) of an application down to its RTL de-

scription. To enable the specification of a multi-rate dataflow

application running on FPGA, the main contributions describes

in the paper are:

• a Domain Specific Language (DSL) [9] which provides

the primitives to rapidly prototype the dataflow applica-

tions meant for SDR. The DSL is combined to HLS tools

to take advantage of their features.

• a data frame-based algorithm to automatically generate

an appropriate control unit capable of handling the re-

configuration issues of a multi-rate complex dataflow

specification.

The paper is structured as follows. In Section II a discussion

over the chosen dataflow model of computation is held,

together with its requirements in terms of control. Section III

details the frame-based algorithm to generate the control struc-

ture given a high level specification of a dataflow application.

Section IV discusses an example through the specification

of the IEEE 802.11a standard with the proposed framework.

Finally a conclusion is drawn while future work is discussed.

II. IMPLEMENTING DATAFLOW MODELS FOR SDR

A. The Dataflow MoC and Control Modeling for SDR

A MoC is an abstract specification of how the computation

is managed. Radio link applications can be modeled using

the Synchronous Data Flow (SDF) MoC [10]. This MoC

represents a program as a directed graph in which each node,

communicating via channels, consumes or produces a prede-

termined and fixed number of data (tokens) per invocation.

An example of SDF signal flow graph is given in Fig. 1,

where FB1, FB2, FB3 and FB4 denote functional blocks (FBs)

communicating through channels. An SDF implementation

requires a static scheduling and SDF was employed in various

embedded systems design tools such as the development

environments derived from the Ptolemy project [11].

Fig. 1. SDF signal flow graph example.

A typical SDF-based dataflow architecture is given in Fig. 2

where the FBs depict the computing cores. Fig. 2 can be

interpreted as an implementation of the graph in Fig. 1. At the

inputs and outputs of the FBs, FIFOs are interfaced to control

the streaming flow. An important element that is making

the waveform structure consistent is the control logic, which

purpose is to orchestrate the data routing and computing in

graph. Indeed, it provides the system with specific signals

that are used to change the state of the system. This generic

overview of the dataflow architecture clearly shows that, for

efficiency purposes, enhancements can be performed at three

distinct levels, namely the FBs, the communication infrastruc-

ture and finally the control unit. In this work, the FBs and

the communication infrastructure are synthesized using HLS

tools/languages as it will later be explained. An emphasis

is given on the controller required to schedule the resulting

waveform running on an FPGA device in context of multi-

rate SDR.

On a running platform such as FPGA on which each

function is mapped to dedicated resources, an FSM is a good

candidate to implement a control unit. Its main task is to

handle consistently the traversal of data through the graph.

Thus, depending on the current state and the conditions on

the inputs and outputs channels, the controller activates or

deactivates a set of FBs. This approach is only valid when

the properties of the graph remain unchanged. The FSM in

this case appears to be relatively simple to implement. In the

context of SDR, some part of the graph could be reconfigured

at run-time. For instance, most of modern standards [12] [13]

implement Adaptive Coding and Modulation (ACM) technique

in order to enhance the bandwidth efficiency. ACM consists in

adapting the modulation and coding schemes according to the

environment. Thus, each part of the data frame may be modu-

lated or coded differently. On the receiver side, data should be

Fig. 2. Typical SDF dataflow RTL architecture.

decoded with the appropriate demodulation algorithm so that

the decoding remains consistent. Modern waveforms require a

controller that can switch between configurations at run-time.

This example further illustrates the fact that the control re-

quirements are more complex in the context of SDR. Changing

some parts of the waveform (i.e. the dataflow) at run-time is

quite complex. This complexity in terms of processing and

control in modern PHYs led the designers to re-think the

overall designing process. The HLS partly addressed these

issues by enabling to go straight from specifications to the

implementation. Nonetheless, issues relative to control remain

while considering HLS.

B. HLS for Rapid Prototyping

A typical FPGA-based development process of a dataflow

application is twofold. The first part consists in specifying

the system in an abstracted way using High-Level Languages

(HLL) such as C/C++ or Matlab. This representation highlights

the sub-elements of the system and their interactions. It often

considers streaming data as floating-point data types that are

refined to fixed points when it comes to implementation. The

second part consists in a hardware description of the system.

Hardware Description Languages (HDL) such as Verilog or

VHDL are used to implement the specification previously

written in HLL. The implementation gives a functional de-

scription of the system and takes account of the computing

and communication resources available. A mainstream trend

is to merge these two designing steps into a single one.

The HLS bridges the gap between the specification and the

implementation. It takes as an input a function specification

written in a HLL and generates its RTL description for a

specific target platform (e.g. FPGA). The existing HLS tools

emphasize on the functional aspects of the application and

they propose several design optimization techniques to fulfill

the performance requirements without shortcomings.

In the context of FPGA-based SDR, HLS significantly

helps with rapid prototyping. As aforementioned, it shortens

the design time and improves the overall productivity. Thus,

given the requirements in terms of flexibility of SDR and

the capabilities of HLS, integrating HLS within an SDR-PHY

design flow can yield the development process. A preceding

study [15] consisted in showing the gain for an HLS-based de-

sign flow. To this end, a software-based over-layer is proposed

to abstract the SDR-PHY designing process and anticipate on

SDR requirements. In our design flow, we will consider FBs

being specified in HLL and synthesized by HLS tools.

III. A FRAME-BASED DATAFLOW MODELING

Data framing is imposed by most of the modern radio

protocols and often specified accurately by the wireless stan-

dards [12] [13]. A frame is composed of fields, conveying

various type of information. This structure enables a consistent

data coding and decoding while ensuring the inter-operability

of software and hardware solutions released in the market. By

considering a unique data frame structure, the designers are

given the freedom to implement the solutions to process the

frame. The resulting datapath and control are deeply associated

to structure of the data frame.

A. High Level Modeling of FPGA-SDR Waveform

The growth of the platforms complexity exhibits the limi-

tations of the current programming languages. Furthermore,

these platforms evolve rapidly while the application codes

are still written and maintained manually. A mainstream

approach to handle such platform evolution is the Model-

Driven Engineering (MDE) [14]. It comprises both Domain-

Specific Languages (DSL), which formalize the application

structure behavior and requirements in a declarative way, and

transformation engines and generators to generate multiple

artifacts such as source code. The MDE approach ensures a

”correct-by-construction” development of the final product.

One of the interests of working with models is the pos-

sibility to automate different steps throughout the develop-

ment process. The principal advantage is the automatic code

generation achieved from these models. In addition, they can

gradually evolve to cover a larger spectrum of capabilities. The

models also give a mean to infer diverse information, such as

the control, and shorten considerably the system development

time. We have defined a DSL which provides the primitives to

model a dataflow waveform. This language is featured with the

HLS tools and is detailed later in this paper. It combines both a

data-path and data-frame specification to build the processing

and the control units for an SDR waveform. Methodologies for

automatic hardware synthesis from data frame specifications

are not often discussed in the literature. An example is given

in [6], where an XML-based SDR waveform specification flow

including frame definition is discussed. It is called SDRPHY

and is a proposal for SDR physical layers specification using

XML as an entry point by contrast to our approach based

on a brand new DSL. XML hardware-specific interpreters

are used to convert the XML physical layer description for

a specific running platform. Thus, this approach focuses more

on the portability of the SDR waveform over various running

platforms and the HLS features are not included.

Our solution is quite similar while relying on a DSL. It is

also specific to FPGA-based SDR. An algorithm is proposed

to infer a control unit from a DSL specification as discussed

in the next section.

B. Frame-based SDR Waveform Control Description

A frame is generally considered at distinct levels, namely

the bit level, the symbol level, and optionally the sample level.

It is mainly characterized by its duration, its source (e.g. an

FB) and is composed out of fields. The nature of the data

conveyed by each field can be either specific information

(e.g. modulation schemes or coding rate), synchronization

information (e.g. preamble) or useful data (e.g. data payload).

An OFDM frame is given as an example in Fig. 3 where each

field is characterized by its duration and the type of transported

data.

One can notice that the structure of a frame gathers ex-

ploitable information (duration, source, data properties) that

Fig. 3. IEEE 802.11a data frame.

can be leveraged to achieve better control performance. The

duration of each field helps generating the read and write clock

signals during the appropriate slot of time. The oversampling

or down sampling mechanisms imply some rate changes that

are tracked across the graph. To manage the block-level

communication, FIFOs are interfaced between two consecutive

blocks. In our approach, these FIFOs are inferred from the

specifications. They are implemented by HLS tools by using

the FPGA memory resources. In addition, each block within

the graph is meant to perform a given action on a specific

set of data. Once this action terminates, the blocks may no

longer be required then disabled. For instance, some functional

blocks may address only synchronization and some others

address only data decoding. It is then convenient to control

the activation and deactivation of each FB.

The inferred control unit is an FSM working in both

transmitter (TX) and receiver (RX) modes. Its overall structure

is given in Fig. 4, where dash lines denote parallel states. In

TX mode, the controller first waits for a start signal from

the upper layers indicating that a data frame is available. In

this mode, the controller consists of two major states called

super-states. First is the IDLE super-state corresponding to

the inactive state of the transmitter. After detecting a start

from the MAC layer for example, it transitions from the IDLE

to the FRAMING super-state where data coding is sketched.

Generally speaking, dataflow transmitters are feed-forward

architectures hence less complex to implement as compared

to their associated receiver. The FRAMING super-state is de-

clined into three parallel sub-states namely, the CODING state,

the INSERT state and finally the BL-RECONF state. In the

CODING, typical mapping operations together with filtering

operations are performed. The output samples are fed to the

DACs (Digital to Analog Converter) prior to carrier frequency

modulation. In parallel to the CODING state, an INSERT state

is active. This state manages the insertion of specific data in

the frame, both at the time and spectral levels. Considering

the standards using an OFDM modulation, they require to

inject pilot symbols from time to time within the spectrum

for coherent detection. Moreover, a data frame often includes

constant fields (e.g. preamble) that remain the same in all the

transmitted frames. For the purpose of reducing the overall

computation, such fields are one-time computed and inserted

(at run-time) at the sample level in the frame before DACs.

The BL-RECONF state handles the block-level (fine-grained)

reconfiguration of the transmitter. As aforementioned, modern

standards require certain blocks to be adaptive (ACM) i.e.

Fig. 4. Transceiver FSM.

changing their properties on-the-fly. One approach consists in

hard-coding all the configuration of the block once, then using

software controlled switch to select the desired configuration

at run-time. A second approach is to reconfigure the block

when a given configuration is desired. It is a suitable approach

which fits the best to the paradigm of SDR and requires indeed

partial reconfiguration capabilities.

In RX mode, the FSM is composed of three super-states. An

IDLE state, as in TX mode, denotes the inactive state of the

receiver. In this state, the receiver monitors the environment

seeking for an incoming signal. Once a signal is detected

through an RSSI (Received Signal Strength Indicator) for

instance, the receiver transitions from the IDLE state to the

PRE-SOF state. The PRE-SOF state consists essentially of

synchronization tasks as imposed by most of the standards.

Once the system enters the PRE-SOF state, a set of synchro-

nization elements has to be detected and computed within a

certain delay. If not, the system returns in the IDLE state.

These synchronization elements detection and computation are

associated to an event that is called Start-Of-Frame (SOF). An

SOF detection makes the system transition from PRE-SOF

to POST-SOF where a coherent data decoding is sketched.

The POST-SOF state is declined into three parallel sub-

states namely, the DECODING state where most of the signal

processing is required, the SYNC-TRACK state in which the

system keep on tracking synchronization elements and finally

the BL-RECONF state to handle the run-time block-level

reconfiguration as in TX mode.

In each of the states, a set of dataflow computation is

intended. In the context of FPGA, the data-path is once

mapped to dedicated resources and ready to operate as soon as

the FPGA is powered on. One of the roles of the controller is

to distribute the clock signal to activate or deactivate the FBs

when required. We leverage the properties of the data frame

together with the intrinsic structure of the data-path (dataflow)

to build the control unit. First, a data frame F is as a collection

of fields i.e.:

F = ∪N
i=1

Fi, (1)

where Fi denotes the i-th field. Each field Fi is characterized

by its duration Ti its constant or variable nature State of its

transported data Payload:

Fi = {Ti, State, Payload}. (2)

The duration TF of the overall frame F is computed as:

TF =

N∑

i=1

Ti. (3)

The datapath, on both the transmitter and receiver side, is a

set of interconnected FBs as illustrated in Figure 2. They are

characterized by their latency (L), throughput (TP), input and

output data rates (fin and fout). For each block, the inputs and

outputs rate are known and they can be managed using enable

signals. Moreover, each block is activated or deactivated on a

per-field basis since computation happens to be specific to a

given field. Thus, let FBj be the j-th FB within the dataflow

graph:

FBj = {finj
, foutj , Lj , TPj}. (4)

Assuming that FBj processes the field Fi of duration Ti at

an input rate of fin and output rate of fout, the block requires

being enable a number to time equals to:

ki,j = Tifin. (5)

Thus, each block is affected a time slot to process a field

when this field is traversing the graph. They are then activated

depending on the ongoing field. To achieve this, the controller

decides a starting moment for each block in the graph. This

starting time is computed by considering both the graph struc-

ture and the properties (latency and throughput) of each block

composing it. Indeed, each state is associated to a distinct

data-path and once the system enters a state, the processing

starts with a specific block that is tagged as a reference block.

The activation moment of the remaining blocks in the graph is

then estimated based on the latency and the throughput of the

blocks preceding them. Blocking reads and blocking writes are

also implemented since the blocks are interfaced with FIFOs.

This algorithm has been integrated into an SDR PHYs de-

sign flow. The flow is implemented as a DSL which addresses

rapid prototyping of the PHY. It relies on the principle of the

MDE and its details are discussed in the next section.

IV. IMPLEMENTATION OF THE CONCEPT FOR AN SDR

DESIGN FLOW

In this section, a design flow that was defined to enable

rapid prototyping of FPGA-based SDR physical layers is

presented. In addition, a practical example of a radio protocol

specification is depicted as proof of concept. This flow relies

on a DSL which enables to specify a data frame, its attributes

and a data-path. A DSL-Compiler is provided to both infer the

control unit of the physical layer and operate the connection

between the instantiated blocks. The instantiated FBs are

compiled down to RTL with HLS tools that are integrated

to the flow.

A. A Dedicated DSL to Model SDR-PHY

The idea to define a new language instead of using an

existing language aims first at making the most of the expres-

siveness given by a specialized language. A DSL can be either

internal or external [9]. An internal DSL is a language that is

nested within a host language. The host language is generally

a well-known General Purpose Language (GPP) such as C++

or Java. External DSLs in opposition enable to explicit any

domain by defining a new syntax and an appropriate grammar.

They require a lot more efforts to be implemented but they

remain much less constrained in comparison to internal DSLs.

An external DSL has been defined to model the PHYs meant

for SDR applications running on FPGA devices. The DSL

provides the primitives to describe on one side the data frame

and on the other side the data-path by considering the data

frame attributes. A frame is considered as a collection of fields

that are destined to be processed independently by the FBs of

the processing unit. A typical specification with the DSL starts

by including FBs HLS-based libraries. After that, a set of data

rates are defined in order to model the multi-rate constraints

within the graph. These definitions are used to impose reading

and writing rates to the different blocks. Then, each field of the

data frame is described independently by highlighting some

of their features like duration or eventually data redundancies

for optimization purposes. Constant fields are stamped with

the key word #fieldC. They are once computed, in contrast

to variable fields that are specified with the key word #fieldV

and modulated through the data-path. In RX mode, since the

system requires a detection of an SOF to switch from the

PRE-SOF to the POST-SOF state in order to further process

the data, one of the fields is designated as an SOF. This field

is typically a preamble that is appended for synchronization

purposes.

The data-path is described by using a set of heterogeneous

FBs that are sourced from HLS-based libraries. The instantia-

tion of each block requires specifying both the inputs and the

outputs data rates using the rates defined at the beginning of

the specification. The idea is to provide a rich description for

each block in order to optimally synthesize the corresponding

RTL. The HLS tool intended for each block is specified at

that time by using the annotations #catapultc or #vivadohls.

Indeed, an important development work has been carried out

to implement multiple FBs that are gathered in libraries. So

far, those blocks are synthesizable either by CatapultC from

Calypto or by Vivado-HLS from Xilinx. An ongoing work

aims at including native RTL FBs, by using the annotation #rtl.

Furthermore, real-time constraints for each block are taken

into account. These constraints are the latency, the throughput

or the clocking requirements of the block that are further

used to implement the control unit of the waveform. The

provided DSL-Compiler generates, for each FB, a .tcl script

which is used as an interface with the intended HLS tools to

synthesize the RTL solution. The compiler is also charged of

the consistent gluing of the generated RTL solutions by using

RTL wrappers. It also performs some type checking and many

other verification in order to ensure consistency in the final

waveform.

As discussed in Section III-B both the frame and the data-

path are used to infer the control unit and the DSL provides

an environment to describe a rich specification of these two

aspects of a waveform. An important feature that was added

in the DSL is to clearly mention, for each FB, a list of the

fields that it is intended to process and their respective source

(i.e. another FB) by using the key words processing and from

respectively. These information make it possible to track each

field within the graph hence activating the FB when required.

The DSL-Compiler parses these information and generates the

controller.

Another feature that is making this flow specific to SDR

is the fact enabling the reconfiguration of FB at run-time.

Indeed, all the FBs that are subject to run-time reconfiguration

are annotated with the key word adaptive. In practice, they

are defined into Partial Reconfiguration Region on the FPGA

and interfaced with larger memory resources in order to store

the incoming data stream while operating the reconfiguration.

Once the system enters the BL-RECONF state, all the blocks

that are not impacted by the reconfiguration are held active

by the controller while the rest of the graph is being stalled.

As soon as the reconfiguration terminates the data coding or

decoding is performed normally.

B. A Case Study through the IEEE 802.11a PHY

Remembering the structure of the frame illustrated in Fig. 3,

a piece of prototype of an IEEE 802.11a PHY is presented.

In Fig. 5, a piece of DSL-based description of an IEEE

802.11a [13] source code is provided. Constant fields are

sourced from local files and mapped to memories. They are

multiplexed to the rest of the frame at run-time when required.

Variable fields are sourced from upper layers or different FBs.

The details of the DSL-Compiler are not in the scope of this

paper. Its main task is to parse the DSL and then to infer the

desired control unit. The SHORTPB for instance is appended

for synchronization purpose. It is a constant field that remains

the same for any data frame. Moreover, this field is computed

only by the synchronization FBs. It has an overall duration of

8 microseconds that sets a deadline for the FBs intended to

process this field. The DATA field conveys the data payload

from the upper layer. Both its content and its size vary on a

per-frame basis. The exact size of the field is embedded in the

/ / S h o r t t r a i n i n g f i e l d s p e c i f i c a t i o n

f i e l d C SHORTPB{
c o n s t a n t ShT ra in ingSb : . / shpb . d a t ;

redundancy 1 0 ;

durat ion 8 us ;

}
/ / Long t r a i n i n g f i e l d s p e c i f i c a t i o n

f i e l d C LONGPB{
c o n s t a n t L gT ra in ingSb : . / lgpb . d a t ;

redundancy 2 ;

durat ion 8 us ;

}
/ / Header (SIGNAL) f i e l d d e f i n i t i o n

f i e l d V HEADER{
data h d p a y l o a l ;

s i z e 3 b y t e s ;

durat ion 4 us ;

}
/ / DATA f i e l d s p e c i f i c a t i o n

f i e l d V DATA{
data d t p a y l o a d ;

maxsize 2312 b y t e s ;

mins ize 0 b y t e s ;

}
/ /OFDM PPDU s p e c i f i c a t i o n

complex frame PPDU{
SHORTPB, LONGPRB, HEADER, DATA

} s o f a f t e r SHORTPB

/ / FFT i n s t a n t i a t i o n

f f t i : adapt ive ip FFT p r o c e s s i n g LONGPB HEADER

DATA from c p r e m o v a l i{
read cpRemov on por t f f t i n at f e ;

w r i t e cp lx s ymbol on por t f f t o u t at f s ;

c o n s t r a i n t l a t e n c y N;

}

Fig. 5. DSL-based IEEE 802.11a PHY.

frame within its HEADER field. Only a range is provided by

the standard and most of the solutions usually consider a fixed

size not to bother with the control requirements. The inferred

control unit handles this issue by generating a stop signal after

the exact DATA field time has elapsed. A complex (consisting

of in phase and quarter-phase channel) is built out of the fields

and the SHORTPB is designated as Start-Of-Frame.

An adaptive Fast Fourier Transform (FFT) block, as the

main block of the IEEE 802.11a PHY, specification is also

given in Fig. 5. It corresponds to a set of FFT blocks varying

by the size of the FFT. Partial reconfiguration technique is

used to configure the desired FFT at run-time. In order to

comply with the requirements of partial reconfiguration, i.e.

non varying I/O set between two configurations, we have

made the FFT input and output non vector type. The samples

are then reordered inside the FFT for a given FFT size.

Fig. 6 shows a design space exploration for a 256-point

FFT, performed with CatapultC in order to obtain different

solutions of the same design. The solutions were synthesized

for a Virtex 6 FPGA platform by using the Xilinx ISE tool

suit and the results are collected after place and route. It is

important to mention that as the FPGAs are getting larger,

i.e. including more resources; it is now possible to program

complex waveforms into a single one. This exploration shows

indeed an increasing number of slices depending on the data

rate. Hence suitable solution can be chosen for the final design.

V. CONCLUSION

SDR is an outstanding concept that requires to be further

developed. As the FPGA technology evolves, it turns out

5 10 15 20 25 30 35
900

1000

1100

1200

1300

1400

1500

Throughput (Mbit/s)

N
u
m

b
es

r
o
f

sl
ic

e

Fig. 6. Resource estimation versus Datarate of the IEEE 802.11 receiver.

to be a good candidate for SDR solutions. The MDE ap-

proach is a promising alternative toward the optimization of

the development process of an embedded system in general.

Our contribution is essentially to bring together both SDR

and MDE concepts into an SDR-PHY design flow, with an

emphasis on control aspects. The flow is featured with the

nascent HLS tools and implements several PHY artifacts from

the specifications. This combination enables to achieve good

design performance, thanks to HLS tools, and to significantly

shorten the required development time.

REFERENCES

[1] Dr. Joseph Mitola III, Software radios: Survey, Critical Evaluation and

Future Directions. IEEE Aerospace and Electronic Systems Magazine,
8(4):25-36, April 1993.

[2] Wireless Innovation Forum, Driving the future of radio communications
and systems worldwide http://www.wirelessinnovation.org

[3] J. Bard, Software defined radio: the software communication architecture.
Wiley, New York, 2007.

[4] Reinhart RC et al (2010), Space Telecommunications Radio System

(STRS) architecture standard. NASA glenn research center, Cleveland,
TM 2010-216809

[5] GNU Radio, The free and open software radio ecosystem
http://www.gnuradio.org

[6] E. Grayver, H.S. Gree, J.L. Roberson, SDRPHY - XML Description for

SDR Physiczl Layer. The 2010 Military Communications Conference -
Unclassified Program - Systems Perspectives Track, 2010.

[7] Stephen A. Edwards, Language for digital embedded systems. Kluwer
Academic Publication, 2000.

[8] Stephen A. Edwards, The Challenges of Synthesizing Hardware from C-

Like Languages.
[9] M. Fowler and R. Parsons, Domain-Specific Languages. The Addison-

Wisley Signature Series, 2011.
[10] E.A. Lee and D.G. Messerschmitt, Synchronous data flow. Proceedings

of the IEEE, 36(1) : 24-35, 1987.
[11] Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef

Ludvig, Sonia Sachs, Yuhong Xiong, Taming heterogeneity - the Ptolemy

approach. Proceedings of the IEEE, 91(1):127-144, January 2003.
[12] IEEE Standard for Information Technology, Wireless Medium Acess

Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate

Wireless Personal Area Networks (WPANs). IEEE Std 802.15.4-2006.
[13] Supplement to IEEE Standard for Information Technology, Wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifi-

cations. IEEE Computer Society-1999.
[14] Douglas C. Schmidt, Model-Driven Engineering. IEEE Computer (Vol.

39, No. 2) pp. 25-31, 2006.
[15] V. Bahtnagar, G. S. Ouedraogo, M. Gautier, A. Carer and O. Sentieys

An FPGA Software Defined Radio with a High-Level Synthesis Flow.
IEEE Vehicular Technology Conference (VTC-Spring13), June 2013.

