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Abstract

This paper proposes a new method for the identification of bound-
ary forces (shear force or bending moment) in a beam, based on dis-
placement measurements. The problem is considered in terms of the
determination of the boundary spatial derivatives of transverse dis-
placements. By assuming the displacement fields to be approximated
by Taylor expansions in a domain close to the boundaries, the spatial
derivatives can be estimated using specific point-wise derivative esti-
mators. This approach makes it possible to extract the derivatives
using a weighted spatial integration of the displacement field. Fol-
lowing the theoretical description, numerical simulations made with
exact and noisy data are used to determine the relationship between
the size of the integration domain and the wavelength of the vibra-
tions. The simulations also highlight the self-regularization of the
technique. Experimental measurements demonstrate the feasibility
and accuracy of the proposed method.

Key-words:Numerical differentiation, Boundary identification, In-
direct Force measurement

1 Introduction

Source characterization is a major issue in the analysis of structural vi-
brations. In many vibro-acoustic problems, structures are excited by their
boundaries. The identification of boundary forces (such as shear forces or
bending moments in beam-like structures) is not straightforward, because
these physical quantities are not readily accessible and sensors can rarely
be positioned at suitable locations. From a more general point of view, the
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identification of these forces/sources provides information related to the
type of vibration generated. They make it possible to: analyse stress inside
the structure, describe how vibration energy propagates, through the use of
structural intensity calculations [1], [2], and localize external forces applied
to the structure.

Force localisation and estimation is a wide subject. A lot approaches ex-
ist. These approaches include transfer-function-based methods [3], numeri-
cal model-based methods [4], modal analysis [5], methods using discretised
differential motion equation [6], [7], [8], [9], or using an operator obtained
with the Finite Element Method [10], etc... An interesting review of certain
methods is proposed in [11]. Even if many force identification methods ex-
ist, few allow to identify boundary forces. Indeed, methods using discretized
differential motion equation, which are very successful in a lot of applica-
tions, cannot be applied at structure boundaries. This is due to the fact
that it is difficult to approximate the derivatives of a quantity, when this
quantity is defined on only one side of a point of interest. The techniques
described above are therefore unsatisfactory. The use of the annihilator op-
erator, as proposed in this work, avoids this drawback during the derivative
estimation step, which is a necessary step for this kind of approach. Other
approaches as transfer-function-based [3] or transmissibility-function-based
methods [12] work well if a measurement is located at the point where the
force has to be estimated. This can be an important drawback. Indeed,
the displacements measured at a structure’s boundaries contain the high-
est levels of error, because the structure’s absolute displacements are often
very small at these locations, i.e. the signal-to-noise ratio is relatively low.
Measurement errors in the vicinity of a structure’s boundaries generally
lead to large variations in the estimation of the boundary forces.

The goal of the technique proposed in the present study is to identify
shear forces and/or bending moments at any point in a structure, in par-
ticular at its edges, where such forces can in some cases be associated with
the sources. Few force identification methods focus on the boundaries. In
the literature, boundary condition identification is a topic that is usually
treated independently to sources identification.

Many methods for boundary conditions identification use Finite Ele-
ment Approach. The general procedure is to apply idealized constraints or
to make use of previous experience in modelling apparently similar bound-
aries. Boundary conditions may be determined by using conventional iden-
tification or updating methods [13]. In many cases, for this kind of inverse
problems, measurement errors and ill-conditioning lead to unsatisfactory
estimates of the spatial model by the equation error method [14], [15], [16].
Indeed measurement errors at the boundaries produce large variations in
estimates of boundary parameters. One of the most popular methods in
the determination of boundary parameters is the sensitivity method [17];
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the difference between model predictions and test observations is defined
using linearised first order sensitivities. Another approach [18] considers a
method for the identification of structural boundary conditions which re-
lies on the measured natural frequencies of the structure. From an another
point of view, identification of boundary condition can be linked to the
estimation of the boundary spatial derivatives.

If the spatial derivatives of the structural displacements are known,
they can be used to determine these shear forces and/or bending moments.
One derivative approximation technique involves the use of finite difference
schemes [6], [8], spatial Fourier transforms [7], and modal expansions [19].
The major difficulty with this type of approach is that derivation amplifies
the influence of noise in the recorded data, and the higher the order of the
derivative, the greater the sensitivity of spatial derivatives to measurement
errors. It is thus not possible to use such techniques, since they are, and
must include, regularization developments, such as wave number filtering
[8], modal truncation [19], regularization techniques [10] which require the
adjustment of regularization parameters. To estimate derivatives, some
approaches present a natural regularizing aspect using an integral formu-
lation for boundary characterization [20][21][22][23], using polynomial ap-
proximation for damage detection [24], via operational calculus allowing
algebraic derivative [23][25][26] or based on a least square approximation
[27][28]. This kind of differentiation by integration methods allows an ac-
curate and robust estimation of the derivative. The approach developed for
temporal signals in [23] is used and adapted in the method detailed in this
paper. Since boundary forces are proportional to the spatial derivatives of
the structure’s displacements, these approaches can be helpful to estimate
these forces. But their quantification remains highly sensitive to uncer-
tainties, especially at the boundaries, when post-processing techniques are
applied.

To summarise, as for the force identification methods, two major diffi-
culties are encountered when determining these spatial derivatives: they are
highly sensitive to measurement uncertainties, and are difficult to measure
at the structure’s boundaries. The boundaries are often the transmission
routes for vibrations, and measurements made at these points are also a
major issue in terms of source identification.

It is known that classical characterization methods which use finite
difference techniques are not suitable at boundaries. In [20], the spatial
derivatives of a beam were determined using a weak form of the equation
of motion. The principle consists in multiplying the equation of motion
by a specific test function, and then integrating the resulting product by
means of several successive integrations by parts. This approach allows
the shear force (third spatial derivative) and/or the bending moment (sec-
ond spatial derivative) to be extracted at one boundary of the integration
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domain. The integration is carried out using discretization, in which the
displacements are measured with classical point sensors such as accelerom-
eters, laser vibrometers, etc. The main drawback of this technique is the
need to measure a spatial domain, which contains at least one wavelength at
the angular frequency under consideration. An extension of this technique
to the analysis of a plate structure presenting the same characteristics has
also been proposed [21]. This approach was recently implemented directly,
through the use of a distributed PVDF sensor. Since the output of a piezo-
electric sensor corresponds to the weighted average of the surface strains in
the region covered by the sensor electrodes, discrete integral calculations
are not needed [22].

The method presented in the present paper is based on a numerical
differentiation technique proposed by Mboup [23], which was initially de-
veloped to handle the case of temporal signals involving a very large number
of data-points. This approach has been adapted to the case of structural
vibrations, and modified to allow the derivatives to be estimated through
the use of iterative integrals of the spatial displacement. The resulting es-
timation of a structure’s spatial derivatives allows its boundary forces to
be identified. This novel approach to the physics of the problem has an
impact on the method’s accuracy. Various limitations, such as the relation-
ship between the size of the integration domain, the vibration wavelengths,
sensitivity to noise, and the order of the Taylor expansion on which the
approach is based, are identified. The first section of this paper describes
the theory of the proposed method. The second section makes use of nu-
merical simulations to evaluate its advantages and drawbacks. The last
section describes the experimental validation of this technique, in the case
of boundary shear force identification.

2 Theory

2.1 System equations

In this paper, the transverse vibrations of a beam are modelled using the
standard Euler-Bernoulli theory for flexural motion. Harmonic oscillations
are considered:

v(z,t) = v(z)el (1)
where v(z) is the transverse displacement and w is the angular frequency.
For the sake of clarity, the time dependence e/** is simplified in the follow-
ing. The equation of motion can thus be written as follows:

4
EI%(IL‘) — pSw?v(z) = F(x) (2)
where E is the complex Young’s modulus, I is the flexural inertia, p is the
mass density, S is the cross-section of the beam and F(z) is the excitation.
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The boundary forces identified in the present study can be computed
using the spatial derivatives of v(x):

{ T(z) = B1ZY@

gz 3
M(z) = 1% )

where T'(z) is the shear force and M (z) is the bending moment.

2.2 Estimation of the boundary forces
2.2.1 Exact displacements

It is known from beam theory [29] that transverse displacements verify
Eq.(2) and can be written as the sum of two propagative and two evanescent
bending waves on the left and right sides of the excitation point:

vi(x) = Ajcos(kx) + Bysin(kz) + Cre " + Dyeh® (4)
va(z) = Agcos(kx) + Basin(kz) + Cee™" + Daeh®

where v(z) = vi(x) for z €]0,2¢], v(x) = va(x) for x € [vy, L[), k is the
natural wave number, satisfying the dispersion equation:

pS o
k=2 5
FoT i (5)
and Ay, By, C1, Dy, Aa, By, Cs, and Dy are the wave amplitudes. These
must be computed in order to satisfy boundary and continuity conditions
at =0, 2 =xy and x = L.

2.2.2 Displacement approximation

The first step in this approach is to consider that in a domain = [0, zq)]
(with g < x¢), the exact solutions (4) can be approximated by a trunca-
tion of the Taylor series expansion of the displacements. Assuming v(x) to
be an analytic function over €2, it can be approximated by:

N iy g
o)=Y S0 (6)
i=0

where N is the truncation number. Fig.1 illustrates this notion and its
limitations for the first flexural mode of a simply supported beam, with
N=8, N=5 and N=7. For the purposes of simplicity, the modes are nor-
malized such that the maximum amplitude is equal to 1. In the following
examples, the proposed method is presented using these 3 truncation val-
ues, thereby illustrating the dependence of the computed approximation on
this parameter.
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1
05
0
—Beam
-0.5H-—N=3
~N=5
~-N=7 \
T L/2 L

Figure 1: Taylor series approximation for beam displacement, at x=0, for
the first mode of a simply supported beam: w = (7L)2\/EI/pS

This figure contains various types of information. As could be expected,
the greater the value of IV, the more accurate the approximation. The ap-
proximation can nevertheless be accurate, whatever the truncation numbers
is, if a small domain close to the boundary is considered. Although € in-
cludes the whole beam in this example, in practice this is not a good choice:
it can be difficult to measure physical parameters over the whole structure,
and at higher frequencies the Taylor approximation is clearly inaccurate
(even with N = 7), as shown in Fig. 2 for the 2"¢ vibration mode.

It has been shown in previous studies ([20]) that with this type of in-
tegral technique, the key parameter is not simply the angular frequency or
the size of the domain €2, but rather the number of wavelengths contained
in the domain (2.

Since a smaller number of wavelengths is present in 2 when the size
of this domain is reduced, the accuracy of the Taylor series approximation
is improved. The most well-adapted representations use the number of
wavelengths included in €2, as shown Fig. 3, which do not depend on the
size of €2, nor on w (the angular frequency of the excitation): under such
circumstances, the accuracy of the identification is related directly to the
number of wavelengths present in the domain €.

Fig. 4 illustrates the difference between the signal and its truncated
Taylor expansion, in a domain limited to one half wavelength. The Taylor
series approximation can be seen to deviate from the exact solution at \/4
when N = 3, at 3\/8 when N =5, and at \/2 when N = 7. It illustrates
also the interest to use the number of wavelength in the considered domain
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0.5¢

T L/4 U2 34 L

Figure 2: Taylor series approximation for beam displacements at x=0, for
the second mode of a simply supported beam: w = (27 L)%2\/EI/pS

—Beam [0, A/2]
-0.5F | TN=3
e N=5
---N=7
T N4 M2

Figure 3: Taylor series approximation for x = 0, Q = [0; A\/2], Yw

to plot the results. Indeed the Figs. 3 or 4 can correspond to the whole
beam at its first natural frequency (Fig.1) or to half of the beam at its
second natural frequency (Fig.2).

2.2.3 Derivative estimation

It has been shown that, through the use of an algebraic approach, a Taylor
series expansion (6) can be used to numerically differentiate a quantity of
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Figure 4: Error in the Taylor approximation for x = 0, Q = [0; /2], Yw

interest [23]. This process can be summarised as follows:
In the Laplace domain, (6) can be written:

un(s) = v(0)/s + v (0)/s% + ... + v (0) sV (7)

where v()(z) is the i derivative of the beam’s displacement at the coor-
dinate x. In order to identify the boundary shear force, the third spatial
derivative at = 0, which is v(3(0) in the Laplace domain, needs to be es-
timated. All of the terms v(p)(O) in the expansion, for which p # 3, should
thus be rejected. This can be achieved by applying various derivations or
multiplications with the Laplace variable s. This operator is referred to
as the ’annihilator’ [23]. With standard finite element methods, an Euler-
Bernoulli beam element is described by a third order polynomial function.
In order to be coherent with the represented physical phenomenon, and to
be able to compute the function’s third derivative, a truncation number
N > 3 has to be chosen.

This method is illustrated in the following example, using N = 3. If
both sides of expression (7) are multiplied by the annihilator II, defined as:

_ 60 20 50

II
" 95" 0s” 95 ®
(7) then becomes:

65 *v(s) + 185 30N (5) + 95720 (5) + s~ 1) (s) ()
= —65"%03)(0)

This can be re-written in the spatial domain as:
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(4) (3) 2
6/ v(x)dzt — 18/ zv(x)da® + 9/ 22 (x)da? (10)
Q Q

9
(1) v
_/Q o(z)dr = —6AT/(71) 55 (0)

where A is the length of the integration domain, defined by © = [0; 4],
and [ (@) i the iterated integral of order a.

The Cauchy formula can be used to transform this iterated integral into
a simple one, giving:

(o) 1 A
—1)P2Po(z)dz® = ——— — ) N (=1)P2Pu(z)dx
| et = o[- ot e @ )

Expression (10) can thus be written as:

v =Tl 4 A 3 A 9 A 9 3 d
%”<O)_(W/O [(A—2)° —9(A—2)°z + 9(A — z)2” — 2°] v(z)dw
(12)

The integral expression (12) can be used to estimate the third derivative of
the displacements, and has the substantial advantage of being based on in-
tegral calculations, thus making it potentially less sensitive to measurement
noise.

As previously shown, when the truncation number IV used for the Taylor
approximation is increased, the accuracy of the approximation vy(z) is
improved. The third derivative can by computed using a longer Taylor

. 3
expansion, and 88;’5,\’ (0) can be computed as:

Poy

A
8563(0):/0 Py (x)v(z)dx (13)

where Py (x) are the polynomial functions given in Appendix A, for N=3,
5 and 7.

2.3 Analytical results

Three main sources of error are naturally present in this method:

e the influence of the truncation number N corresponding to the dis-
placement approximations.

e the influence of discretization of the integral (13), when using discrete
measurement points.

e the influence of the noise present in the input data, corresponding to
measurement uncertainties.
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Figure 5: An Euler-Bernoulli cantilever beam, € represents the measure-
ment domain. zy > A

The aim of the present section is to identify the influence of the trun-
cation number N on identification, in the absence of errors arising from
discretization of the integral, or noise on the measured displacements.

The displacements are computed analytically using Maple software, ac-
cording to expression (4) for the case of the cantilever beam shown in Fig. 5.
The integral of expression (13) is also computed analytically. Fig.6 shows
the estimated shear force at the boundary x = 0, computed using three
different Taylor series expansions (N = 3, 5 and 7), expressed as a function
of the number of wavelengths in the integration domain. Fig.7 shows (on a
logarithmic scale) the corresponding relative identification error, given by
the ratio between the identified and exact values.

It should be noted that the same representation is used, whatever the
frequency (see [20]). By comparing Fig.4 with Fig.7, it can be seen that
the identification error is directly related to the error in the truncated
Taylor series expansion. The identification is correct for A < A/4 when
N = 3, for A < 3\/8 when N = 5, and for A < A\/2 when N =7
(A being the size of the integration domain €2). These values are similar
to those observed in Fig. 4 and appear to be appropriate limits for the
selection of the order of the polynomial test function Py(x). Although
a more accurate estimation is achieved for greater values of N, when the
analytical expression is used in the absence of noise, it is shown in the
following section that the estimation’s robustness with respect to noise
follows a different pattern.

It should be noted that neither the structural parameters of the beam,

Published in Journal of Sound and Vibration, Vol. 333(24), 2014, p6438-6452
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Figure 6: Boundary shear force estimation (analytical computations)
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Figure 7: Relative error in the boundary shear force estimation (analytical

computations)

nor the size of the domain €2, change the behaviour of these errors. The
parameters selected for the simulation and used here as reference values
are: Steel beam, length: 1m, width: 5¢m, height: 1em, A = 0.95m.
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3 Numerical Simulations

In practice, displacements must be measured at distinct locations, and the
integral (13) must be discretized. This is one of the approximations associ-
ated with the present method, even when theoretically exact displacements
are used. When the displacements are measured, the measurement uncer-
tainties introduce additional errors into the identification.

3.1 Numerical integration

Various numerical techniques can be used to discretize an integral. In [20]

r [21], the trapezoidal method was studied for similar problems, but was
found to be highly sensitive to measurement noise. This technique thus
requires too many measurement points to be of any practical interest in
the case of the present study. The Gauss-Legendre method is known to
be exact when integrating polynomial functions if the discretization uses
a sufficiently large number of points. In the general case, the integral
approximation can be written:

A n
/0 f(@)de = A/2 3 Wif ;) (14)
=1

where f(z) is the function to be integrated, n is the number of points used,
and W; are the weights applied to each of these points x;. In practice, the
Gauss-Legendre method has the advantage of producing a better approx-
imation, but requires the implementation of an accurate, irregular mesh.
Moreover, this method does not necessitate the knowledge of the function’s
value at the boundaries. This can be an advantage when it is not possible
to make measurements at the boundaries of the beam. It is known that an
n-point Gaussian quadrature integral yields an exact result for polynomials
of degree 2n — 1 or less. This approach appears to be naturally more suit-
able for the analysis of the present problem. In fact, N is the truncation
parameter of the Taylor expansion, but is also the degree of the weight
function Py(x). Consequently, Eq.(13) can be thought of as the integral
of a polynomial function of degree 2/N. The Gauss-Legendre integration is
used in the analyses presented in the following.

3.2 Influence of noise

The aim of this section is to demonstrate the influence of noisy displace-
ments (which can be expected when using experimental data) on the recon-
structed shear force, and to show that this method is not characterized by
the usual instabilities of inverse problems. The case studied here is based
on that used in the previous section (Fig. 5), but noise has been added to
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the input data. In order to take these errors into account, and to illustrate
their influence on the method, the integral (13) is computed using noisy
displacements. The displacement noise is of the form:

Uxfoisy(xi) _ Q}]e\fad(l‘,’).AUm.equb (15)

where Avy, is a real random number (with a Gaussian distribution) having
a mean value equal to unity and a standard deviation equal to 1/100 x the
magnitude of the displacement. A¢ is another Gaussian real random num-
ber having a zero mean value and a standard deviation equal to 1 deg. This
type of noise is representative of the measurement accuracy. The simula-
tions use only 8 Gaussian integration points. With this number of points,
the Gauss-Legendre integration is theoretically exact for the integration of
a 15 degree polynomial function. This number was chosen with respect
to Eq.(13). The highest degree polynomial test function presented in this
study is N = 7, also implying the use of a 7" degree Taylor expansion,
and leading to a globally 14" degree function to be integrated. As a con-
sequence, the errors are not directly related to a problem of discretization.
Fig.8 shows the shear forces at the boundary = = 0, estimated using noisy

~Reference

~N=3
| N=g
~N=7

o 0.5 1 1.5
Number of wavelengths in the integration domain

Figure 8: Estimation of the boundary shear force, using various truncation
numbers and their corresponding test functions (noisy data)

displacements for three different Taylor series expansions (N = 3, 5 and
7), as a function of the number of wavelengths in the integration domain.
Fig.9 shows, on a logarithmic scale, the resulting relative error of the iden-
tification. These figures show that for a small number of wavelengths in the
integration domain, the method becomes more sensitive for greater values
of N. In the case of a small value of N (N = 3), the polynomial function

Published in Journal of Sound and Vibration, Vol. 333(24), 2014, p6438-6452
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Relative error (dB)

\ /
\ / ™,
P R S

-10
o 0.5 1 1.5

Number of wavelengths in the integration domain

Figure 9: Relative error (dB) on the boundary shear force estimation, using
various truncation numbers and their corresponding test functions (noisy
data).

P;(x) is smooth (see annex) and acts like a low pass filter, thereby reducing
the influence of noise. When N increases, the polynomial’s natural ability
to filter noise appears to be shifted towards slightly higher wave numbers.

As a consequence, the choice of the correct parameter N and its as-
sociated test function Py(z) results from a compromise between a good
Taylor series approximation and an adequate filtering capability. In Fig.
9, the vertical dotted lines (set at 0.4 and 0.9 wavelengths) provide an ap-
proximate indication of the regions in which it is recommended to use each
of the three polynomial functions, in order to obtain a global error below
3dB. These choices were applied to the reconstruction of shear forces in
the cantilever beam, using each of the 3 polynomial functions over various
ranges. As the limits are not accurately defined, basic weight functions
were designed, as shown in Fig. 10. These weights were applied directly
to the spectrum of Fig. 8, to reconstruct the new estimation shown in Fig.
11. The simulation is accurate over the observed range of frequencies. It
should be noted that for a higher number of wavelengths, the estimation is
necessarily inaccurate, since the method is based on the fact that the dis-
placement field can be approximated by a limited Taylor series expansion.

Published in Journal of Sound and Vibration, Vol. 333(24), 2014, p6438-6452
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Figure 10: Weight functions: W3, W5 and W7

~— Reference

Reconstruction

o 0.5 1 1.5
Number of wavelengths in the integration domain

Figure 11: Boundary shear force estimation using various truncation num-
bers and their corresponding test functions (noisy data), following applica-
tion of the weight functions.

4 Experimental validation

4.1 Experimental setup

Various experiments were carried out, in order to validate the proposed

method with

measured displacements, in the case of shear force identifica-

tions. A Gauss-Legendre integration was implemented, using 8 points in
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Indeterminate boundary
condition

Shaker

> Measurement area
25cm

Z Clamped force sensor

Figure 12: Experimental setup

a 25 cm domain. The beam was aligned vertically, attached at its upper
end, and excited by a shaker at a point outside the measurement area (see
Fig. 12). All displacements were measured with a laser vibrometer and
random band excitation was used to study the reconstruction over a wide
range of frequencies. As the method is local, the quality of the boundary
fixation and location of the shaker (outside the measured domain €2) had no
influence on the results. A force sensor was placed at the lower boundary,
between the beam and a rigid support. This measurement, correspond-
ing to the identified boundary shear force, was used as a reference. The
beam was made of steel, and its dimensions were: width [ = 5¢m, height
h = 0.5¢cm.

4.2 Results

4.2.1 Displacement field measurement and design of the weight
function W

In order to estimate the forces over a large range of frequencies, the first
step involves defining frequency limits and appropriate weight functions
W. Simulations showed that these limits could be set at approximately

Published in Journal of Sound and Vibration, Vol. 333(24), 2014, p6438-6452
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0.4 NoWID and 0.9 NoWID (see Fig. 10). These limits can be found in
terms of frequencies when looking at the shape of the displacement fields.
At 190Hz and 1100Hz (see Figs.13 and 14) the displacement fields using 8
Gauss points correspond to these criteria.

X10

Displacement (m)

0.1 0.15
Domain Q (m)

Figure 13: Measured displacements at 8 Gauss points in the domain €2, at
190Hz

-9
X10

Displacement (m)
o

0.1 0.15
Domain Q (m)

Figure 14: Measured displacements at 8 Gauss points in the domain €2, at
1100Hz

In practice, these limits are not exact, and can vary slightly. Due to the
proximity of the boundary, the analytical wavelength (Eq.5) is not repre-
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sentative of the observed shapes, and this parameter had to be chosen by
observing the displacement field as done previously. The cutoff frequencies
of the weight functions W were simply computed by adding or removing
10% of the chosen frequency limits. These weight functions are equal to 1
in the frequency range of interest. At the cutoff frequency, they linearly de-
crease until zero, and are equals to 0.5 when crossing the chosen frequency
limits identified in Fig.13 and 14. Fig. 15 shows these 3 weight functions.

190Hz 1100Hz
(Fig13) (Fig4)
T T T T T T

1 -W3
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o
=
0.4
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/
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Figure 15: Weight functions W3(f), W5(f) and W7(f)

4.2.2 Amplitude and phase reconstruction using 8 Gauss inte-
gration points

Figs. 16 and 17 show the amplitude and phase of the reconstructed shear
forces, which are compared with the reference measurements. As predicted
by the simulations, the amplitude and phase are very close to the values
given by the reference sensor over the observed range of frequencies. The
estimations given by independent test functions can be found in the annex.
The small differences observed in Figs. 16 and 17 can be explained by the
fact that the reference sensor does not only measure the shear force from
the Euler Bernoulli theory. Indeed, due to the presence of this sensor, a
point force is created at the location where the Saint Venants principle is
not locally respected. Differences also appear at frequencies for which the
test function is shifted. These are due mainly to a loss of phase information
in the estimated complex frequency response function.
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Figure 16: Amplitude of the reference force sensor and force reconstruction,
using 8 measurement points and 3 polynomial test functions with their
associated weights.
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Figure 17: Phase of the reference force sensor and force reconstruction,
using 8 measurement points and 3 polynomial test functions with their
associated weights.

5 Conclusion and discussions

This paper shows that the identification of boundary forces can be un-
derstood in terms of the determination of boundary spatial derivatives of
transverse displacements. It is proposed to approximate the displacements
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in the vicinity of the boundary by Taylor series expansions, thus allowing
the spatial derivatives to be estimated using specific point-wise derivative
estimators. This approach makes it possible to extract these quantities
through the use of a weighted spatial integration of the displacement field.
Numerical simulations using exact and noisy data have revealed the rela-
tionship between the size of the integration domain, wavelength, and noise
sensitivity, allowing an appropriate truncation order to be selected. Exper-
imental measurements have demonstrated the feasibility and accuracy of
the proposed method.

In comparison with others force identification methods, the proposed
approach presents some drawbacks. The use of Gauss points to discretize
and to estimate integral (13) can appear as a difficult task. The location
of each measurement point has to be as accurate as possible. Depending
on the measurement set up, it can be time consuming. But, nowadays, the
use of technologies like scanning vibrometer makes this part easy and fast.
The point coordinates are automatically generated and the measurement
points are very accurately located. Nevertheless the different points are
not measured simultaneously and real time estimation of the boundary
forces is not allowed with this technology. The main limitation of the
proposed approach is the fact that frequency range is directly linked to
the size of the measurement domain and the truncation order used for the
Taylor expansion estimation. Compared to numerical model-based methods
as [4], the main advantage of the proposed approach is its local aspect.
No global measurement is needed, only a few number of point near the
boundary is required. The only restriction is that the equation of motion
(2) (leading to eqgs (3)) has to be verified inside the measurement domain
Q). Another advantage is that there is no particular equation to solve or a
regularization step to tune after the measurement step (contrary to [16] or
[18]). Some simple weights have to be applied at each measurement points
to obtain directly an estimation of the boundary forces. We remind that
these weights are associated to Gauss points or to the weight functions W
linked to the truncation order used for the Taylor expansion estimation.
From this standpoint the approach is simple to apply.
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A Polynomial functions

In this annex the expression Py(x) is derived, for the estimation of the
third derivative over a domain €2 = [0, A]. These polynomial functions are
shown in Fig. A.1 (for A =1).

Py(z) = —7!/(6A7) x [(A—2)° —9(A—2)°z+9(A —2)2* —2°] (A1)
Ps(z) = —9!/(12A4%) x

[3/2(A — x)° — 69/2(A — z)*x+ (A.2)
127(A — x)32? — 117(A — 2)%2® + 27(A — 2)2* — 2°]

Pr(x) = —11!/(144A) x
[2(A — 2)" — 434/5(A — 2)%2 + 3486/5(A — x)°2*—(A.3)
1742(A — z)*2® + 1579(A — z)?z" — 519(A — 2)%2° + 53(A — z)2® — 2]

B Shear force estimation with various test func-
tions

Fig. B.2 shows the amplitude spectrum measured by the reference force
sensor, as well as the estimated boundary shear force spectrum, computed
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Figure A.1: Polynomial test functions Ps(z), Ps(x) and Py(z)

using various test functions without weights. The measured behaviour can
be seen to be very similar to that determined by simulation. At low fre-
quencies, a high value of IV leads to a greater sensitivity to noise. As the
frequency increases, the term N at which the Taylor series expansion is
truncated also needs to be increased, in order to maintain the accuracy of
the estimation.

C Amplitude reconstruction using 15 Gauss inte-
gration points

In order to test the proposed method, an additional experiment was car-
ried out using 15 Gauss integration points. With this number of points,
improved reconstruction quality could be expected. Fig. C.3 shows the
amplitude spectra given by the reference force sensor, together with the
boundary shear force estimations determined using 15 integration points.
The same truncation numbers N and the same weight function W were
used. The reconstruction is plotted over a larger frequency range ([0-3200]
Hz, rather than [0-1600]Hz). At approximately 1800 Hz, the number of
wavelengths included in the integration domain €2 exceeds 1.5. At this
frequency, the Taylor series approximation is no longer valid and the es-
timation would theoretically be incorrect. The spectra shown in Fig. C.3
confirm this theoretical consideration, as well as the observations done in
the simulations.

In order to improve the results at such frequencies, the value of N and
the number of measurement points should be increased. This modification
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Figure B.2: Amplitude spectra corresponding to the reference force sensor
measurements, and the simulated force reconstruction, using 8 measure-
ment points and the test functions P3 , P; and Py

Point ‘$1‘$2‘$3‘$4‘$5‘$6‘$7‘l‘8

Location(cm) | 0.0050 | 0.0254 | 0.0593 | 0.1021 | 0.1479 | 0.1907 | 0.2246 | 0.2450
Weight 0.0127 | 0.0278 | 0.0392 | 0.0453 | 0.0453 | 0.0392 | 0.0278 | 0.0127

Table 1: Locations and the weights of the Gauss points for N=8 on a 25
cm length domain

should however be accompanied by measurements characterised by a very
low level of noise, since a higher truncation number implies an increase in
noise sensitivity.

D Gauss points locations and weight

The tables 1 and 2 give the locations and the weights of the Gauss points
for N=8 and N=25, on a 25 ¢m length domain.
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Figure C.3: Amplitude spectra corresponding to the reference force sen-
sor and the force reconstruction simulations, made using 15 measurement

points and 3 polynomial test functions, associated with weights applied to
the high frequency range.

Point ‘ T To T3 T4 T5 T T7 T8
Location(cm) 0.0015 | 0.0078 | 0.0190 | 0.0344 | 0.0536 | 0.0757 | 0.0999 | 0.1250
Weight 0.0038 | 0.0088 | 0.0134 | 0.0174 | 0.0208 | 0.0233 | 0.0248 | 0.0253
Point Zg T10 T11 T12 713 T14 15
Location(cm) 0.1501 | 0.1743 | 0.1964 | 0.2156 | 0.2310 | 0.2422 | 0.2485

Weight 0.0248 | 0.0233 | 0.0208 | 0.0174 | 0.0134 | 0.0088 | 0.0038

Table 2: Locations and the weights of the Gauss points for N=15 on a 25
cm length domain
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