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The Chowla and the Sarnak conjectures from

ergodic theory point of view (extended version)

H. El Abdalaoui J. Ku laga-Przymus∗ M. Lemańczyk∗ T. de la Rue

October 27, 2015

Abstract

We rephrase the conditions from the Chowla and the Sarnak conjec-
tures in abstract setting, that is, for sequences in {−1, 0, 1}N

∗
, and intro-

duce several natural generalizations. We study the relationships between
these properties and other notions from topological dynamics and ergodic
theory.
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1 Introduction

A motivation for the present work comes from a dynamical point of view on
some classical arithmetic functions taken up recently by Sarnak [22]. Namely,
we consider the following two functions: the Möbius function µ : N∗ := N\{0} →
{−1, 0, 1} given by µ(1) = 1 and

(1) µ(n) =

{
(−1)k if n is a product of k distinct primes,

0 otherwise,

and the Liouville function λ : N∗ → {−1, 1} defined by

λ(n) = (−1)Ω(n),

where Ω(n) is the number of prime factors of n counted with multiplicities. The
importance of these two functions in number theory is well known and may be
illustrated by the following statement

(2)
∑
n≤N

λ(n) = o(N) =
∑
n≤N

µ(n),

which is equivalent to the Prime Number Theorem, see e.g. [3], p. 91. Recall
also the classical connection of µ with the Riemann zeta function, namely

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
for any s ∈ C with <(s) > 1.

In [26], it is shown that the Riemann Hypothesis is equivalent to the following:
for each ε > 0, we have∑

n≤N

µ(n) = Oε

(
N

1
2 +ε
)

as N →∞.

In [5], Chowla formulated a conjecture on the correlations of the Liouville
function. The analogous conjecture for the Möbius function takes the following
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form: for each choice of 1 ≤ a1 < · · · < ar, r ≥ 0, with is ∈ {1, 2}, not all equal
to 2, we have

(3)
∑
n≤N

µi0(n) · µi1(n+ a1) · . . . · µir (n+ ar) = o(N).

Recently, Sarnak [22] formulated the following conjecture: for any dynamical
system (X,T ), where X is a compact metric space and T is a homeomorphism
of zero topological entropy, for any f ∈ C(X) and any x ∈ X, we have

(4)
∑
n≤N

f(Tnx)µ(n) = o(N).

From now on, we refer to (4) as the Sarnak conjecture. Moreover, it is also
noted in [22] that for any measure-theoretic dynamical system (X,B, µ, T ), for
any f ∈ L2(X,B, µ), the condition (4) holds for µ-almost every x ∈ X. As can
be shown, this a.e. version of (4) is a consequence of the following Davenport’s
estimation [6]: for each A > 0, we have

(5) max
z∈T

∣∣∣∣∣∣
∑
n≤N

znµ(n)

∣∣∣∣∣∣ ≤ CA N

logAN
for some CA > 0 and all N ≥ 2,

combined with the spectral theorem (for a complete proof see Section 3). Finally,
Sarnak also proved that the Chowla conjecture (3) implies (4).

The aim of this paper is to deal with the Chowla conjecture (3) and the
Sarnak conjecture (4) in a more abstract setting. In Section 4.1, we introduce
conditions (Ch) and (S0) in the context of arbitrary sequences z ∈ {−1, 0, 1}N∗ .
They are obtained from (3) and (4) by replacing µ with z, respectively. In other
words, we consider the sums of the form:

(6)
∑
n≤N

zi0(n)zi1(n+ a1) · . . . · zir (n+ ar)

and

(7)
∑
n≤N

f(Tnx)z(n),

and require that they are of order o(N) (as and is are as in (3), T , f and x are
as in (4)). Finally, we define a new condition (S), formally stronger than (S0),
by requiring that the sum given by (7) is of order o(N) for any homeomorphism
T of a compact metric space X, any f ∈ C(X) and any completely determin-
istic point x ∈ X.1 Note that if htop(T ) = 0 then all points are completely
deterministic.

We provide a detailed proof of the fact that (Ch) implies (S), see Theo-
rem 4.10 below. Classical tools from ergodic theory, such as joinings (see Sec-
tion 4.3), will be here crucial. This approach (for z = µ and (S0) instead of (S))

1Recall that x ∈ X is said to be completely deterministic if for any accumulation point ν
of ( 1

N

∑
n≤N δTnx)N∈N, the system (X, ν, T ) is of zero entropy.
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was suggested in [22], together with a rough sketch of the proof.2 Since (S) im-
plies (S0) directly from the definitions, we obtain the following:

(Ch) =⇒ (S) =⇒ (S0).

By replacing (7) with the sums of the form

(8)
∑
n≤N

f(Tnx)zi0(n) · zi1(n+ a1) · . . . · zir (n+ ar)

in (S0) and (S), we obtain conditions called (S0-strong) and (S-strong), re-
spectively. Notice that such sums generalize both (6) and (7). Clearly

(S-strong) =⇒ (S0-strong) =⇒ (Ch).

In Section 4.4, we show that the above three properties are, in fact, equivalent:

(S-strong) ⇐⇒ (S0-strong) ⇐⇒ (Ch).

Section 4.5 is devoted to the proof of Theorem 4.24 which says that although
formally (S) is stronger than (S0), in fact, we have

(S) ⇐⇒ (S0).

Section 5 answers some natural questions about possible relations between
the properties under discussion. First, in Section 5.1, we show that

(S) 6=⇒ (Ch).

In Section 5.2, we show that a sequence z ∈ {−1, 0, 1}N∗ satisfying (Ch) need
not be generic. In Section 5.3, we give an example of a sequence satisfying a
weakened version of (Ch), in which we consider only exponents is = 1, but
failing to satisfy (Ch) in its full form. Finally, in Section 5.4 and Section 5.5,
we discuss the properties of recurrence and unique ergodicity for sequences sat-
isfying (Ch).

Section 6 is motivated by the problem of describing the set

(9) {(htop(z2), htop(z)) : z ∈ {−1, 0, 1}N
∗

satisfying (Ch)}.

For any sequence w satisfying (Ch) and such that w2 = µ2, we have (cf.
[22] and Remark 6.13 below) (htop(w

2), htop(w)) = ( 6
π2 ,

6
π2 log 3). Moreover,

if u ∈ {−1, 1}N∗ satisfies (Ch) then (htop(u
2), htop(u)) = (0, 1). We will dis-

cuss, in general, what are possible values of (htop(z
2), htop(z)) for sequences

over {−1, 0, 1} and provide further examples of z satisfying (Ch) with htop(z
2)

being an arbitrary number in [0, 1] using Sturmian sequences.
In Section 7, we deal with Toeplitz sequences [8, 13] over the alphabet

{−1, 0, 1}. Although Toeplitz sequences are obtained as a certain limit of pe-
riodic sequences (and periodic sequences are orthogonal to µ), their behavior
differs from the behavior of periodic sequences in the context of the Chowla
and the Sarnak conjectures. Given a sequence z ∈ {−1, 0, 1}N∗ satisfying some

2Sarnak also announced a purely combinatorial proof of this result (and sent it to us in a
letter). See also [24].
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extra assumptions (see Theorems 7.1 and 7.3), we construct Toeplitz sequences
t, that are not orthogonal to z and are of positive topological entropy, providing
also more precise entropy estimates. We apply this to z = µ, z = µB and
to sequences satisfying (Ch), defined in Section 6.3.1 and Section 6.3.2. For
further motivations and related results see [1, 10].

The authors wish to address their thanks to the two referees for valuable
remarks and comments which improved the quality of the present work.

2 Preliminaries

2.1 Measure-theoretical dynamical systems

2.1.1 Factors and extensions

Let T : (X,B, µ)→ (X,B, µ) and S : (Y,A, ν)→ (Y,A, ν) be automorphisms of
standard Borel probability spaces.

Definition 2.1. We say that S is a factor of T (or T is an extension of S) if there
exists π : (X,B, µ) → (Y,A, ν) such that S ◦ π = π ◦ T . To simplify notation,
we will identify the factor S with the σ-algebra π−1(A) ⊂ B. Moreover, any T -
invariant sub-σ-algebra A ⊂ B will be identified with the corresponding factor
T |A : (X/A,A, µ|A)→ (X/A,A, µ|A).

Let now Si : (Yi,Ai, νi)→ (Yi,Ai, νi), i = 1, 2, be factors of T : (X,B, µ)→
(X,B, µ), with the factoring maps πi : X → Yi, i = 1, 2. We will denote by
(Y1,A1, ν1)∨ (Y2,A2, ν2) the smallest factor of B containing both π−1

1 (A1) and
π−1

2 (A2).3

2.1.2 Entropy

Let T be an automorphism of a standard Borel probability space (X,B, µ).
Recall that the measure-theoretic entropy of T is defined in the following way.
Given a finite measurable partition Q = {Q1, . . . , Qk} of X, we define

H(Q) := −
∑

1≤m≤k

µ(Qm) logµ(Qm).4

(We may also write Hµ(Q) if we need to underline the role of µ.) The measure-
theoretic entropy of T with respect to the partition Q is then defined as

hµ(T,Q) := lim
N→∞

1

N
H

(
N−1∨
n=0

T−nQ

)
,

where
∨N−1
n=0 T

−nQ is the coarsest refinement of all partitions T−nQ, n =
0, . . . , N − 1.

3This factor can be viewed as a joining of S1 and S2, see Section 2.1.3.
4We consider 2 as the base of logarithm.
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Definition 2.2 (Kolmogorov and Sinai). The measure-theoretic entropy of T
is given by

h(T, µ) = sup
Q
hµ(T,Q),

where the supremum is taken over all finite measurable partitions.

Definition 2.3. We say that T : (X,B, µ) → (X,B, µ) is a K-system if any
non-trivial factor of T has positive entropy.

Definition 2.4. Let Ti : (Xi,Bi, µi)→ (Xi,Bi, µi), i = 1, 2, be such that T2 is
a factor of T1.

• The quantity h(T1, µ1)−h(T2, µ2) is called the relative entropy of T1 with
respect to T2.

• If the extension T1 → T2 is non trivial, and if for any intermediate factor
T3 : (X3,B3, µ3) → (X3,B3, µ3) between T1 and T2, with factoring map
π3 : X3 → X2, the relative entropy of T3 with respect to T2 is positive
unless π3 is an isomorphism, we say that the extension T1 → T2 is rela-
tively K.

2.1.3 Joinings

Definition 2.5. Given automorphisms of standard Borel probability spaces

Ti : (Xi,Bi, µi)→ (Xi,Bi, µi), i = 1, . . . , k,

let J(T1, . . . , Tk) be the set of all probability measures ρ on (X1×· · ·×Xk,B1⊗
· · · ⊗ Bk), invariant under T1 × · · · × Tk and such that (πi)∗(ρ) = µi, where
πi : X1 × · · · × Xk → Xi is given by πi(x1, . . . , xk) = xi for 1 ≤ i ≤ k. Any
ρ ∈ J(T1, . . . , Tk) is called a joining.

Definition 2.6. Following [12], we say that T1 and T2 are disjoint if J(T1, T2) =
{µ1 ⊗ µ2}. We then write T1 ⊥ T2.

Suppose now that T3 : (X3,B3, µ3)→ (X3,B3, µ3) is a common factor of T1

and T2. To keep the notation simple, we assume that B3 is a sub-σ-algebra
of both B1 and B2. Given λ ∈ J(T3, T3), we define the relatively independent

extension of λ, i.e. λ̂ ∈ J(T1, T2), by setting for each Ai ∈ Bi, i = 1, 2:

λ̂(A1 ×A2) :=

∫
X3×X3

E(1A1
|B3)(x)E(1A2

|B3)(y) dλ(x, y).

Consider now those ∆̃ ∈ J(T1, T2) that project down to the diagonal joining

∆ ∈ J(T3, T3) given by ∆(A× B) := µ3(A ∩ B). If ∆̂ is the only such joining,
we say that T1 and T2 are relatively independent over their common factor T3.
We then write T1 ⊥T3 T2.

Remark 2.7 ([25], Lemme 3). If the extension T1 → T3 is of zero relative
entropy and T2 → T3 is relatively K then T1 ⊥T3

T2. In particular, (taking
for T3 the trivial one-point system) if T1 has zero entropy and T2 is K, then
T1 ⊥ T2.
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2.2 Topological dynamical systems

2.2.1 Invariant measures

Let T : X → X be a continuous map of a compact metric space. We denote by
PT (X) the set of T -invariant probability measures on (X,B) with B standing for
the σ-algebra of Borel sets. The space of probability measures on X is endowed
with the (metrizable) weak topology:

νn −−−−→
n→∞

ν ⇐⇒
∫
X

f dνn −−−−→
n→∞

∫
X

f dν for each f ∈ C(X),

where C(X) denotes the space of continuous functions on X. The weak topology
is compact, and PT (X) is closed in it.

By the Krylov-Bogolyubov theorem, PT (X) 6= ∅. In fact, for any x ∈ X, if
we set

δN,x :=
1

N

∑
n≤N

δTnx,
5

and if, for some increasing sequence (Nk)k∈N and some probability measure ν,
δNk,x −−−−→

k→∞
ν, then ν ∈ PT (X). In such a situation, we say that x is quasi-

generic for ν along (Nk), and we set

Q-gen(x) :=

{
ν ∈ PT (X) : δNk,x −−−−→

k→∞
ν for a subsequence (Nk)

}
.

If δN,x −−−−→
N→∞

ν, i.e. if Q-gen(x) = {ν}, we say that x is generic for ν.

Definition 2.8 ([28], see also [14]). We say that x ∈ X is completely determin-
istic if, for each ν ∈ Q-gen(x), we have h(T, ν) = 0. We will then write

(10) Q-gen(x) ⊂ [h = 0].

2.2.2 Symbolic dynamical systems

Let A be a nonempty finite set and I = N∗ or Z. Then AI endowed with the
product topology is a compact metric space. Coordinates of w ∈ AI will be
denoted either by wn or by w(n) for n ∈ I.

Definition 2.9. The subsets of AI of the form

Ct(a0, . . . , ak−1) = {w ∈ AI : wt+j = aj for 0 ≤ j ≤ k − 1},

where k ≥ 1, t ∈ I and a0, . . . , ak−1 ∈ A, are called cylinders and they form a
basis for the product topology.

Definition 2.10. Any C = (a0, . . . , ak−1) ∈ Ak, k ≥ 1, is called a block of
length k. For any 0 ≤ i ≤ k − 1, let C(i) := ai.

We will identify blocks with the corresponding cylinders:

C = (a0, . . . , ak−1) ∈ Ak ←→ C0(a0, . . . , ak−1).

5In what follows, we will also use the notation δT,N,x if confusion could arise.
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Definition 2.11. We say that a block C = (a0, . . . , ak−1) ∈ Ak appears in w if
w ∈ Ct(a0, . . . , ak−1) for some t ∈ I.

On AI there is a natural continuous action by the left shift S:

S : AI → AI, S((wn)n∈I) = (wn+1)n∈I for w = (wn)n∈I ∈ AI.

(For I = Z, S is clearly invertible and it is a homeomorphism.)

Definition 2.12. Let C = (a0, . . . , ak−1) ∈ Ak. The following quantity is called
the upper frequency with which C appears in w:

fr(C,w) := lim sup
N→∞

1

N

∑
n≤N

1C(Snw) = lim sup
N→∞

∫
AI

1C dδN,w.

We will denote by the same letter S the action by the left shift restricted
to any closed shift-invariant subset of AI (such a subset is called a subshift). In
particular, given w ∈ AI, we will consider the two following subshifts:

Xw := {u ∈ AI : all blocks that appear in u also appear in w}

and

(11) X+
w := {u ∈ AI : all blocks that appear in u

appear in w with positive upper frequency}.

Finally, let F ∈ C(AI) be given by

(12) F (w) := w(1) for w ∈ AI.

We will use the same notation F , even if the domain of F changes, e.g. when
we consider a subshift.

2.2.3 Topological entropy

Let T be a homeomorphism of a compact metric space (X, d). For n ∈ N, let

dn(x, y) := max{d(T ix, T iy) : 0 ≤ i < n}.

Given ε > 0 and n ∈ N, let

N(ε, n) = max{|E| : E ⊂ X, dn(x, y) ≥ ε for all x 6= y in E}.

Definition 2.13 (Bowen and Dinaburg). The topological entropy htop(T ) is
defined as

htop(T ) = htop(T,X) := lim
ε→0

(
lim sup
n→∞

1

n
logN(ε, n)

)
.

We consider now the special case of a subshift, namely, S : Xw → Xw, where
w ∈ AI. Let

pn(w) := |{B ∈ An : B appears in w}| .
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and put

htop(w) := lim
n→∞

1

n
log pn(w).

Then

(13) htop(w) = htop(S,Xw).

In a similar way, given ν ∈ PS(AI), we denote by htop(supp(ν)) the following
quantity:

htop(supp(ν)) := lim
n→∞

1

n
log pn(supp(ν)),

where
pn(supp(ν)) := |{B ∈ An : ν(B) > 0}| .6

In particular, if Q-gen(w) = {ν}, then htop(supp(ν)) = htop(S,X
+
w ) (see Lemma 5.12

below).

2.2.4 Invariant measures in symbolic dynamical systems

Remark 2.14. Any ν ∈ PS(AN∗) is determined by the values it takes on blocks,
so it can be extended to a measure in PS(AZ) taking the same value on each
block as ν. This measure will be also denoted by ν.7 Moreover, if w ∈ AN∗

is quasi-generic for ν ∈ PS(AN∗) along (Nk) then for any w ∈ AZ such that
w[1,∞] = w, the point w is quasi-generic for ν ∈ PS(AZ) along (Nk).

For any probability distribution (p1, . . . , p|A|) onA, we denote byB(p1, . . . , p|A|)

the corresponding Bernoulli measure on AI.
The cases A = {−1, 0, 1} or A = {0, 1} will be of special interest for us. Let

π : {−1, 0, 1}I → {0, 1}I be the coordinate square map:

(14) (π(w))n := w2
n,

which is clearly S-equivariant.
Given ν ∈ PS({0, 1}I), let ν̂ denote the corresponding relatively independent

extension of ν: for every block B, we set

(15) ν̂(B) := 2−|supp(B)|ν(π(B)) = 2−|supp(B)|ν(B2),

where supp(B) := {i : B(i) 6= 0} andB2(i) := B(i)2. Clearly, ν̂ ∈ PS({−1, 0, 1}I).

2.2.5 Möbius function and its generalizations

The following generalization of the Möbius function µ : N∗ → {−1, 0, 1} defined
by (1) has been introduced in [2]. Let B = {bk : k ≥ 1} ⊂ {2, 3, . . . } be such
that bk = a2

k and ak, ak′ are relatively prime for k 6= k′. For n ∈ N, let

ηB(n) :=

{
0 if bk|n for some k ≥ 1,

1 otherwise,

6It is not hard to see that pm+n(supp(ν)) ≤ pm(supp(ν)) · pn(supp(ν)).
7The invertible dynamical system S : (AZ, ν) → (AZ, ν) is the natural extension of the

non-invertible system S : (AN∗ , ν)→ (AN∗ , ν).
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δ(n) := |{k ≥ 1: ak|n}|

and

(16) µB(n) := (−1)δ(n) · ηB(n).

The classical case µ corresponds to B being the set of squares of all primes.

2.2.6 Sturmian sequences

Definition 2.15. Let A be a finite set. We say that w ∈ AI is a Sturmian
sequence if pn(w) = n + 1 for all n ∈ N∗ (in particular, |A| = 2, i.e. without
loss of generality, A = {0, 1}). If w is Sturmian or periodic, we will say that w
is a generalized Sturmian sequence.

Remark 2.16. Any generalized Sturmian sequence can be obtained in the
following way. Consider a line L with an irrational slope in the plane (see
Figure 1 on page 37). We build w by considering the consecutive intersections
of L with the integer grid, putting a 0 each time L intersects a horizontal line
and a 1 each time it intersects a vertical line of the grid (if the line intersects a
node, put either 0 or 1). In order to include also periodic sequences, we allow
the slope of L to be rational, provided that L does not meet any node of the
grid.

Remark 2.17. Recall that any (generalized) Sturmian sequence w is generic
for a measure ν of zero entropy. Moreover, ν(B) > 0 for any block B appearing
in w.

For more information on Sturmian sequences, we refer the reader e.g. to [11].

2.2.7 Toeplitz sequences

Definition 2.18. Let t ∈ AI, where A is a finite set. We say that the sequence
t is Toeplitz if for each a ∈ I there exists ra such that t(a) = t(a+ kra) for each
k ∈ I.

Each Toeplitz sequence t ∈ AI is obtained as a limit of some periodic se-
quences defined over the extended alphabet A ∪ {∗}. Namely, there exists an
increasing sequence (pn), pn|pn+1 such that for each n ≥ 1,

tn := T I
n, lim

n→∞
tn(j) = t(j) for each j ∈ N,

where, for each n ≥ 1, Tn is a block of length pn over the alphabet A∪ {∗} and
∗ at position k at instance n means that t(k) has not been defined at the stage
n of the construction8.

Whenever

(the number of ∗ in Tn)/pn → 0 when n→∞,

we say that t is regular. The dynamical systems generated by regular Toeplitz
sequences are uniquely ergodic and have zero entropy.

8As an illustration of the definition, consider A = {0, 1}, I = N∗, and set inductively
T1 := 0∗, T2n := T2n−11T2n−1∗, T2n+1 := T2n0T2n∗. In this example, pn = 2n. The
Toeplitz sequence obtained in this way is not periodic, but it is regular.
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For non-regular Toeplitz sequences the entropy can be positive. Moreover,
non-regular Toeplitz sequences can display extremely non-uniquely ergodic be-
havior.9

For more information about Toeplitz sequences, we refer the reader to [8,
13, 30].

3 Ergodic theorem with Möbius weights

Proposition 3.1. Let T be an automorphism of a standard Borel probability
space (X,B, µ) and let f ∈ L1(X,B, µ). Then, for almost every x ∈ X, we have

1

N

∑
n≤N

f(Tnx)µ(n) −−−−→
N→∞

0.

Proof. We may assume without loss of generality that T is ergodic. Fix f ∈
L2(X,B, µ). By the Spectral Theorem, we have∥∥∥ 1

N

∑
n≤N

f(Tnx)µ(n)
∥∥∥

2
=
∥∥∥ 1

N

∑
n≤N

znµ(n)
∥∥∥
L2(σf )

,

where σf is the spectral measure of f .10 Hence, by Davenport’s estimation (5),
for each A > 0, we obtain

(17)
∥∥∥ 1

N

∑
n≤N

f(Tnx)µ(n)
∥∥∥

2
≤ CA

logAN
,

where CA is a constant that depends only on A. Take ρ > 1, then for N = [ρm]
for some m ≥ 1, (17) takes the form∥∥∥ 1

N

∑
n≤N

f(Tnx)µ(n)
∥∥∥

2
≤ CA

(m log(ρ))
A

for any A > 0.

By choosing A = 2, we obtain∑
m≥1

∥∥∥ 1

[ρm]

∑
n≤[ρm]

f(Tnx)µ(n)
∥∥∥

2
< +∞.

In particular, by the triangular inequality for the L2 norm,

∑
m≥1

∣∣∣∣∣∣ 1

[ρm]

∑
n≤[ρm]

f(Tnx)µ(n)

∣∣∣∣∣∣ ∈ L2(X,B, µ)

and the above sum is almost surely finite. Hence, for almost every point x ∈ X,
we have

(18)
1

[ρm]

∑
n≤[ρm]

f(Tnx)µ(n) −−−−→
m→∞

0.

9Downarowicz [7] proved that each abstract Choquet simplex can be realized as the simplex
of invariant measures for a Toeplitz subshift.

10Recall that σf is a finite measure on the circle determined by its Fourier transform given

by σ̂f (n) =
∫
f ◦ Tn · f dµ, n ∈ Z.
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Suppose additionally that f ∈ L∞(X,B, µ). Then, if [ρm] ≤ N < [ρm+1] + 1,
we obtain∣∣∣ 1

N

∑
n≤N

f(Tnx)µ(n)
∣∣∣ =

∣∣∣ 1

N

∑
n≤[ρm]

f(Tnx)µ(n) +
1

N

∑
[ρm]+1≤n≤N

f(Tnx)µ(n)
∣∣∣

≤
∣∣∣ 1

[ρm]

∑
n≤[ρm]

f(Tnx)µ(n)
∣∣∣+
‖f‖∞
[ρm]

(N − [ρm])

≤
∣∣∣ 1

[ρm]

∑
n≤[ρm]

f(Tnx)µ(n)
∣∣∣+
‖f‖∞
[ρm]

([ρm+1]− [ρm]).

Since ‖f‖∞[ρm] ([ρm+1]− [ρm]) −−−−−→
m→+∞

‖f‖∞(ρ− 1), using (18) and the fact that ρ

can be taken arbitrarily close to 1, we obtain

1

N

∑
n≤N

f(Tnx)µ(n) −−−−→
N→∞

0 for a.e. x ∈ X.

To finish the proof, notice that for any f ∈ L1(X,B, µ), and any ε > 0, there
exists g ∈ L∞(X,B, µ) such that ‖f − g‖1 < ε. It follows by the pointwise
ergodic theorem that for almost all x ∈ X, we have

lim
N−→∞

∣∣∣ 1

N

∑
n≤N

(f − g)(Tnx)
∣∣∣ < ε.

Hence,

lim sup
N−→∞

∣∣∣ 1

N

∑
n≤N

f(Tnx)µ(n)
∣∣∣ ≤

lim
N−→∞

∣∣∣ 1

N

∑
n≤N

(f − g)(Tnx)
∣∣∣+ lim sup

N−→∞

∣∣∣ 1

N

∑
n≤N

g(Tnx)µ(n)
∣∣∣ < ε.

Since ε > 0 is arbitrary, the proof is complete.

4 The Chowla conjecture vs. the Sarnak con-
jecture – abstract approach

4.1 Basic definitions

We will now introduce the necessary definitions concerning the Chowla con-
jecture and the Sarnak conjecture in the abstract setting, i.e. for arbitrary se-
quences, not only for µ.

Definition 4.1 (cf. [5, 22]). We say that z ∈ {−1, 0, 1}I satisfies the condi-
tion (Ch) if

(Ch)
1

N

∑
n≤N

zi0(n) · zi1(n+ a1) · . . . · zir (n+ ar) −−−−→
N→∞

0

for each choice of 1 ≤ a1 < . . . < ar, r ≥ 0, is ∈ {1, 2} not all equal to 2.
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Whenever (Ch) is satisfied for z, we will also say that z satisfies the Chowla
conjecture.

Definition 4.2 (cf. [22]). We say that z ∈ {−1, 0, 1}I satisfies the condition (S0)
if, for each homeomorphism T of a compact metric space X with htop(T ) = 0,
for each f ∈ C(X) and for each x ∈ X, we have

(S0)
1

N

∑
n≤N

f(Tnx)z(n) −−−−→
N→∞

0.

Definition 4.3. We say that z ∈ {−1, 0, 1}I satisfies the condition (S) if, for
each homeomorphism T of a compact metric space X,

(S)
1

N

∑
n≤N

f(Tnx)z(n) −−−−→
N→∞

0

for each f ∈ C(X) and each x ∈ X that is completely deterministic.

Whenever (S) is satisfied for z, we will also say that z satisfies the Sarnak
conjecture.

Note that by the variational principle, see e.g. [27], if the topological entropy
of T is zero, then all points are completely deterministic. Hence (S) implies (S0).

4.2 About (Ch)

Fix z ∈ {−1, 0, 1}N∗ . Suppose that z2 is quasi-generic for ν along (Nk), i.e. we
have

(19) δNk,z2 :=
1

Nk

∑
n≤Nk

δSnz2 −−−−→
k→∞

ν ∈ PS(Xz2).

Remark 4.4. In the classical situation z = µ, z2 is generic for the Mirsky mea-
sure [18], cf. [4, 22]. Moreover, the Mirsky measure on Xz2 has full topological
support, cf. (50). In a more general framework, similar results hold for so called
B-free systems, see [2].

Recall that the function F was given by the formula (12), i.e. F (w) = w(1).

Lemma 4.5. Let 1 ≤ a1 < . . . < ar, r ≥ 0 and is ∈ {1, 2}, 0 ≤ s ≤ r. Then
the following equalities hold:∫

{−1,0,1}N∗
F i0 · F i1 ◦ Sa1 · . . . · F ir ◦ Sar dν̂ = 0,

when not all is are equal to 2.11 Moreover,∫
{−1,0,1}N∗

F 2 ·F 2 ◦ Sa1 · . . . ·F 2 ◦ Sar dν̂ =

∫
{0,1}N∗

F ·F ◦ Sa1 · . . . ·F ◦ Sar dν.

11Recall that ν̂ was defined in (15).
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Proof. The assertion follows directly by the calculation:∫
{−1,0,1}N∗

F i0 · F i1 ◦ Sa1 · . . . · F ir ◦ Sar dν̂

=
∑

j0,j1,...,jr=±1

ji00 · j
i1
1 · . . . · jirr

· ν̂
({
y ∈ {−1, 0, 1}N

∗
: (y(1), y(1 + a1), . . . , y(1 + ar)) = (j0, j1, . . . , jr)

})
=
( ∑
j0,j1,...,jr=±1

ji00 · j
i1
1 · . . . · jirr

)
· 1

2r+1
ν
({
u ∈ {0, 1}N

∗
: u(1) = u(1 + a1) = . . . = u(1 + ar) = 1

})
.

Lemma 4.6 (cf. [22] for µ). Let (Nk) be such that (19) holds. Then

(20)
1

Nk

∑
n≤Nk

zi0(n) · zi1(n+ a1) · . . . · zir (n+ ar) −−−−→
k→∞

0

for each choice of 1 ≤ a1 < . . . < ar, r ≥ 0, is ∈ {1, 2} not all equal to 2, if and
only if

(21) δNk,z −−−−→
k→∞

ν̂.

Proof. Note that, for each k ≥ 1,

(22)
1

Nk

∑
n≤Nk

zi0(n) · zi1(n+ a1) · . . . · zir (n+ ar)

=
1

Nk

∑
n≤Nk

(
F i0 · F i1 ◦ Sa1 · . . . · F ir ◦ Sar

)
(Sn−1z).

Suppose that (21) holds. Then it follows from (22) that

1

Nk

∑
n≤Nk

zi0(n) · zi1(n+ a1) · . . . · zir (n+ ar)

−−−−→
k→∞

∫
{−1,0,1}N∗

F i0 · F i1 ◦ Sa1 · . . . · F ir ◦ Sar dν̂.

Therefore, in view of Lemma 4.5, we obtain (20).
Suppose now that (20) holds. Without loss of generality, we may assume

that

(23) δNk,z −−−−→
k→∞

ρ.

In view of (22), this implies

1

Nk

∑
n≤Nk

zi0(n) · zi1(n+ a1) · . . . · zir (n+ ar)

−−−−→
k→∞

∫
{−1,0,1}N∗

F i0 · F i1 ◦ Sa1 · . . . · F ir ◦ Sar dρ.
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It follows from (20) that

(24)

∫
{−1,0,1}N∗

F i0 · F i1 ◦ Sa1 · . . . · F ir ◦ Sar dρ = 0,

whenever not all it are equal to 2. Moreover, since F 2(u) = F (u2) for any
u ∈ {−1, 0, 1}N∗ , we deduce from (19) that

(25)

∫
{−1,0,1}N∗

F 2 ·F 2◦Sa1 ·. . .·F 2◦Sar dρ =

∫
{0,1}N∗

F ·F ◦Sa1 ·. . .·F ◦Sar dν.

In view of Lemma 4.5, (24) and (25), we have∫
{−1,0,1}N∗

G dν̂ =

∫
{−1,0,1}N∗

G dρ

for any

G ∈ A := {F i0 · F i1 ◦ Sa1 · . . . · F ir ◦ Sar : 1 ≤ a1 < · · · < ar, r ≥ 0, is ∈ N}.

Since A ⊂ C({−1, 0, 1}N∗) is closed under taking products and separates points,
we only need to use the Stone-Weierstrass theorem to conclude that ρ = ν̂.

The above lemma can be also viewed from the probabilistic point of view.
Indeed, let (Xn)n≥1 (or (Xn)n∈Z) be a stationary sequence of random variables
taking values in {−1, 0, 1}. Notice that whenever

(26) P
(
{Xa1 = j1, . . . , Xar = jr}

)
=

1

2k
P
(
{X2

a1 = j2
1 , . . . , X

2
ar = j2

r}
)
,

for each choice of 1 ≤ a1 < . . . < ar and js ∈ {−1, 0, 1}, where k := |{s ∈
{1, . . . , r} : js 6= 0}|, then

(27) E(Xi1
a1 · . . . ·X

ir
ar ) = 0

for each choice of 1 ≤ a1 < . . . < ar, r ≥ 0, is ∈ {1, 2} not all equal to 2 (the
proof is the same as the one of Lemma 4.5 with notational changes only).12

In fact, the following holds:

Lemma 4.7. Conditions (26) and (27) are equivalent.

Proof. We have already seen that (26) implies (27). Let us show the converse
implication. In other words, we need to show that there exists at most one sta-
tionary process (that is, at most one S-invariant distribution on {−1, 0, 1}N∗)
such that (27) holds. However, each stationary process (Xn) is entirely deter-
mined by the family

{E(exp(i

n∑
j=1

tjXj)) : n ≥ 1, (t0, . . . , tn−1) ∈ Rn}.

Since E(exp(i
∑n
j=1 tjXj)) =

∑∞
k=0

ik

k!E
(∑n

j=1 tjXj

)k
, the result follows.

12Condition (26) means that the distribution of the process (Xn)n≥1 is the relatively inde-

pendent extension of the distribution of the (stationary) process (X2
n)n≥1.
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As the proof shows, the above lemma can be proved in a more general
framework, namely, for stationary processes having moments of all orders.

Remark 4.8. It follows immediately from Lemma 4.6 that each of the following
conditions is equivalent to (Ch):

• Q-gen(z) =
{
ν̂ : ν ∈ Q-gen(z2)

}
;

• δNk,z2 −−−−→
k→∞

ν if and only if δNk,z −−−−→
k→∞

ν̂.

Now, we can completely characterize sequences z ∈ {−1, 1}N∗ satisfying (Ch).

Proposition 4.9. The only sequences u ∈ {−1, 1}N∗ satisfying (Ch) are generic
points for the Bernoulli measure B(1/2, 1/2).

Proof. Notice that u2 is the generic point for the Dirac measure at (1, 1, ...) and
by Lemma 4.6, u is a generic point for the relatively independent extension of
that Dirac measure, which is the Bernoulli measure B(1/2, 1/2).

4.3 (Ch) implies (S)

In this section, we will provide a dynamical proof of the following theorem:

Theorem 4.10 (Sarnak). (Ch) implies (S).

Remark 4.11. In particular, (Ch) implies (S0) (see [22]), which has already
been proved by Sarnak. The proof of the implication (Ch) =⇒ (S) given
below is to be compared with Sarnak’s arguments on page 9 of [22]. Later, in
Theorem 4.24, we show that (S) and (S0) are equivalent. Hence, another way
to prove Theorem 4.10 is to use (Ch) =⇒ (S0) and (S) ⇐⇒ (S0).

Fix some ν ∈ PS({0, 1}Z).

Lemma 4.12. The dynamical system (S, {−1, 0, 1}Z, ν̂) is a factor of

(S, {0, 1}Z, ν)× (S, {−1, 1}Z, B(1/2, 1/2)).

Proof. It suffices to notice that, for ξ : {0, 1}Z × {−1, 1}Z → {−1, 0, 1}Z given
by

ξ(w, u)(n) := w(n) · u(n),

we have
ξ∗(ν ⊗B(1/2, 1/2)) = ν̂,

which is straightforward by the definition of ν̂.

Lemma 4.13. The extension (S, {−1, 0, 1}Z, ν̂)
π→ (S, {0, 1}Z, ν) is either trivial

(i.e. 1-1 a.e.) or relatively K.13

Proof. Notice that since the extension

(S, {0, 1}Z, ν)× (S, {−1, 1}Z, B(1/2, 1/2))→ (S, {0, 1}Z, ν)

is relatively K, so is any nontrivial intermediate factor (over (S, {0, 1}Z, ν)). To
see that (S, {−1, 0, 1}Z, ν̂) is an intermediate factor, by the proof of Lemma 4.12,
all we need to check is that π ◦ξ equals to the projection on the first coordinate.
The latter follows from the equality w = (w · u)2 which holds for w ∈ {0, 1}Z
and u ∈ {−1, 1}Z.

13Recall that π was defined in (14).
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Remark 4.14. It is possible that the extension (S, {−1, 0, 1}Z, ν̂)
π→ (S, {0, 1}Z, ν)

is trivial. In fact, it happens only if ν = δ(...,0,0,0,...). For, suppose that

Y ⊂ {−1, 0, 1}Z, ν̂(Y ) = 1 is such that π|Y is 1-1. Fix a block B ∈ {0, 1}k
with ν(B) > 0. Then the set {x ∈ π(Y ) : x(n) = B(n), n = 0, 1, . . . , k−1} is of
positive ν-measure, and |π−1(x) ∩ Y | ≥ 2supp(B) as each block C ∈ {−1, 0, 1}k,
C2 = B, has positive ν̂-measure (whence ν̂(Y ∩C) > 0). It follows immediately
that the support of B has to be empty.

Lemma 4.15. Eν̂(F |π(w) = u) = 0 for ν-a.e. u ∈ {0, 1}Z.

Proof. We have

Eν̂(F |π(w) = u) = Eν̂(F |{0, 1}Z)(u) =

∫
π−1(u)

F d ν̂u,

where ν̂u denotes the relevant conditional measure in the disintegration of ν̂ over
ν. Notice that ν̂u is the product measure (1/2, 1/2) of all positions belonging
to the support of u. If u(1) = 0 then the formula holds. If u(1) = 1 then F
on π−1(u) takes two values ±1 with the same probability, so the integral is still
zero.

Lemma 4.16. Let T be a homeomorphism of a compact metric space X, let
x ∈ X be completely deterministic, and suppose that z is a quasi-generic point
for ν̂ along the sequence (Nk). Assume that

(28) δT×S,Nk,(x,z) → ρ

weakly in PT×S(X × {−1, 0, 1}Z). Then:

(a) ρ is a joining of (T,X, κ) and (S, {−1, 0, 1}Z, ν̂) for some zero entropy
measure κ ∈ Q-gen(x);

(b) the factors (T,X, κ) ∨ (S, {0, 1}Z, ν) and (S, {−1, 0, 1}Z, ν̂) are relatively
independent over (S, {0, 1}Z, ν) as factors of (T × S,X × {−1, 0, 1}Z, ρ).

Proof. It follows from (28) that

κ := ρ|X = lim
k→∞

δT,Nk,x,

and h(T, κ) = 0 since x is completely deterministic. Hence ρ is a joining of
(T,X, κ) and (S, {−1, 0, 1}Z, ν̂), and the extension

(T,X, κ) ∨ (S, {0, 1}Z, ν)→ (S, {0, 1}Z, ν)

has relative entropy zero (by the Pinsker formula, see e.g. [20], Theorem 6.3).
On the other hand, by Lemma 4.13, the extension

(S, {−1, 0, 1}Z, ν̂)→ (S, {0, 1}Z, ν)

is relatively K. To complete the proof, we only need to use Remark 2.7.

Proof of Theorem 4.10. Assume that z ∈ {−1, 0, 1}N∗ satisfies (Ch), let T be a
homeomorphism of the compact metric space X, and let x ∈ X be a completely
deterministic point. Fix (Nk) such that

(29) δT×S,Nk,(x,z) −−−−→
k→∞

ρ
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for some measure ρ. Then by Remark 4.8, the projection of ρ onto the second
coordinate is of the form ν̂ for some ν ∈ Q-gen(z2). Take a function f ∈ C(X).
It follows from (29) that

(30)
1

Nk

∑
n≤Nk

f(Tnx)z(n) =
1

Nk

∑
n≤Nk

f(Tnx)F (Snz) −−−−→
k→∞

∫
f ⊗ F dρ.

Using Lemma 4.15, we have

(31) Eρ(F |{0, 1}Z) = Eν̂(F |{0, 1}Z) = 0.

By this and using also Lemma 4.16 (b), we obtain

Eρ(f ⊗ F |{0, 1}Z) = Eρ(f |{0, 1}Z) Eρ(F |{0, 1}Z) = 0.

This yields
∫
f ⊗ F dρ = 0.

4.4 (Ch), (S0-strong) and (S-strong) are equivalent

In this section, we will throw some more lights on Theorem 4.10, by considering
some strengthening of properties of (S)-type.

Definition 4.17. A sequence z ∈ {−1, 0, 1}I is said to satisfy the condition
(S0-strong) if for each homeomorphism T of a compact metric space X, with
htop(T ) = 0, we have

(S0-strong)
1

N

∑
n≤N

f(Tnx)zi0(n) · zi1(n+ a1) · . . . · zir (n+ ar) −−−−→
N→∞

0

for each f ∈ C(X), each x ∈ X and each choice of 1 ≤ a1 < . . . < ar, r ≥ 0,
is ∈ {1, 2} not all equal to 2.

Definition 4.18. A sequence z ∈ {−1, 0, 1}I is said to satisfy the condition
(S-strong) if for each homeomorphism T of a compact metric space X, we
have

(S-strong)
1

N

∑
n≤N

f(Tnx)zi0(n) · zi1(n+ a1) · . . . · zir (n+ ar) −−−−→
N→∞

0

for each f ∈ C(X), each completely deterministic x ∈ X and each choice of
1 ≤ a1 < . . . < ar, r ≥ 0, is ∈ {1, 2} not all equal to 2.

If the above holds, we will also say that z satisfies the strong Sarnak conjec-
ture. In particular, for z = µ the strong Sarnak conjecture takes the form

1

N

∑
n≤N

f(Tnx)µi0(n) · µi1(n+ a1) · . . . · µir (n+ ar) −−−−→
N→∞

0

for f, T, x, r, as, is as above.

Proposition 4.19. The conditions (Ch), (S0-strong) and (S-strong) are
equivalent.

For the proof, we will need the following result.
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Lemma 4.20. Let z ∈ {−1, 0, 1}I and let

u(n) := zi0(n) · zi1(n+ a1) · . . . · zir (n+ ar), n ∈ I,

for some natural numbers 1 ≤ a1 < a2 < . . . < ar and is ∈ {1, 2}. Then the
following holds:

(a) If z satisfies (Ch) then u satisfies (Ch) provided that not all is are equal
to 2.

(b) If z is completely deterministic, then so is u.14

Proof. We write

1

N

∑
n≤N

uj0(n) · uj1(n+ b1) · . . . · ujt(n+ bt)

=
1

N

∑
n≤N

r∏
α=0

t∏
β=0

ziαjβ (n+ aα + bβ)

with a0 = b0 = 0. Consider then the smallest α and β such that iα = jβ = 1.
Since both sequences (ai), (bj) are strictly increasing, the sum aα + bβ can be
obtained only as aγ + bδ with either aγ < aα or bδ < bβ . It follows that, in the
above sum, the term z(n+ aα + bβ) appears with the power

iαjβ + even number,

that is, an odd power, which completes the proof of part (a) of the lemma.
We will show now that assertion (b) also holds (see [14], Lemma 5.1). Sup-

pose that
δS,Nk,u → ρ

and consider the following sequence of measures on {−1, 0, 1}I×· · ·×{−1, 0, 1}I:

ρ̃k :=
1

Nk

∑
n≤Nk

δSnz ⊗ δSnSa1z ⊗ · · · ⊗ δSnSar z

=
1

Nk

∑
n≤Nk

δ(
S × . . .× S︸ ︷︷ ︸

r+1

)n
(z,Sa1z,...,Sar z)

, k ≥ 1.

Passing to a subsequence if necessary, we may assume that ρ̃k converges to ρ̃.
Then ρ̃ is a joining of (S, κ0), (S, κ1), . . . , (S, κr), where κs ∈ Q-gen(z) for 0 ≤
s ≤ r. Hence h(S, κs) = 0 for 0 ≤ s ≤ r and it follows that h(S×(r+1), ρ̃) = 0.
Notice that S : ({−1, 0, 1}I, ρ)→ ({−1, 0, 1}I, ρ) is a factor of

S×(r+1) : (({−1, 0, 1}I)×(r+1), ρ̃)→ (({−1, 0, 1}I)×(r+1), ρ̃),

with the factoring map (x0, . . . , xr) 7→ x0 ·. . .·xr. Therefore, we obtain h(S, ρ) =
0 and the assertion follows.

Remark 4.21. Part (b) of Lemma 4.20 will not be used in this section. We
will need it later, in the proof of Proposition 6.7.

14In particular, this holds, if we replace z with z2 and u with u2. Note in passing that we
can have z satisfying (a) while z2 satisfies (b).

19



Proof of Proposition 4.19. Since clearly (S-strong) implies (S0-strong), which,
in turn, implies (Ch), it suffices to show that (Ch) implies (S-strong). This
however follows immediately from Theorem 4.10 and Lemma 4.20.

Moreover, in view of Proposition 4.19 and Propositon 4.9, we immediately
obtain the following:

Corollary 4.22. If (Ch) holds for the Liouville function λ then for each home-
omorphism T of a compact metric space X, we have

1

N

∑
n≤N

f(Tnx)λ(n) · λ(n+ a1) · . . . · λ(n+ ar) −−−−→
N→∞

0

for each f ∈ C(X), each completely deterministic x ∈ X and for each choice of
1 ≤ a1 < a2 < . . . < ar, r ≥ 0.15

Remark 4.23. Since the Bernoulli shifts are disjoint from all zero entropy
transformations, arguments similar to those used in the proof of Theorem 4.10,
together with Lemma 4.20, can be used to obtain another proof of Corollary 4.22.

4.5 (S0) and (S) are equivalent

The purpose of this section is to prove the following result.

Theorem 4.24. Properties (S0) and (S) are equivalent.

The first part of the proof deals with the symbolic case and shows that if a
sequence u is quasi-generic for some shift-invariant measure of zero entropy, then
u can be well approximated by a sequence that has zero topological entropy.
In [29], the following characterization of completely deterministic points was
stated without a proof:

A sequence u is completely deterministic if and only if, for any ε > 0
there exists K such that, after removing from u a subset of density
less than ε, what is left can be covered by a collection C of K-blocks
such that |C| < 2εK .

The following lemma is a reformulation of this criterion in a language suitable
for our needs.

Lemma 4.25. Let A be finite nonempty set, and let (Nk)k≥1 be an increasing
sequence of integers, with Nk|Nk+1 for each k. Assume that u ∈ AN∗ satisfies

(32) δNk,u =
1

Nk

∑
n≤Nk

δSnu −−−−→
k→∞

ν,

where ν is such that h(S, ν) = 0.
Then, for any ε > 0, we can find an arbitrarily large integer k and a map

ϕ : ANk → ANk , satisfying the following properties:

•
∣∣ϕ(ANk)∣∣ < 2εNk ;

15Clearly, since λ takes values in {−1, 1}, we can remove the exponents is appearing origi-
nally in the condition (Ch).
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• the sequence u obtained from u by replacing, for each j ≥ 0, the block

u|(j+1)Nk
jNk+1 by its image by ϕ, is such that for each s ≥ 0,

(33)
1

Nk+s

∣∣{1 ≤ n ≤ Nk+s : un 6= un
}∣∣ < ε;

• the first symbol occuring in u is the same as in u.

We will need the following lemma taken from [23], (Lemma 1.5.4 p. 52).

Lemma 4.26. For 0 < δ < 1, set

H(δ) := −δ log δ − (1− δ) log(1− δ).

Then, for any integer N ≥ 1 and any 0 < δ ≤ 1/2,∑
k≤δN

(
N

k

)
≤ 2NH(δ).

Proof of Lemma 4.25. Let P be the finite partition of AN∗ determined by the
values of the first coordinate. Then

∨n−1
j=0 S

−jP is the partition of AN∗ according
to the n-block appearing in coordinates from 1 to n. Since the entropy of (S, ν)
vanishes, given an arbitrary δ > 0, we can take n large enough so that

(34)
1

n
Hν

n−1∨
j=0

S−jP

 < δ.

Now, let us say that an n-block is heavy if the ν-measure of the corresponding
cylinder set is larger than 2−εn, and say it is light otherwise. We claim that
the ν-measure of the union of all light n-blocks is arbitrarily small whenever δ
is chosen small enough. Indeed, for any light n-block B, we have

(35) ν(B) log ν(B) ≤ ν(B) log
1

2nε
= −ν(B) · nε.

This and (34) imply

εn
∑

light n-blocks B

ν(B) ≤ −
∑

light n-blocks B

ν(B) log(B) < δn,

which gives ∑
light n-blocks B

ν(B) <
δ

ε
.

Observe also that the number of heavy n-blocks cannot exceed 2εn.
Say that an integer j ≥ 1 is good in u if the n-block u|j+n−1

j is heavy. By (32)
(applied to the characteristic function of the union of all light n-blocks), and
assuming δ is small enough, we can take k large enough so that, for each s ≥ 0,

(36)
1

Nk+s
|{1 ≤ j ≤ Nk+s : j is not good in u}| < ε2/2.
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We can also assume that k is large enough so that

(37)
n

Nk
<
ε

2
.

Let us now define the map ϕ : ANk → ANk . Let W ∈ ANk ; we say that j ∈
{1, . . . , Nk} is good in W if j + n− 1 ≤ Nk and the n-block W |j+n−1

j is heavy.
We say that W is acceptable if the proportion of j ∈ {1, . . . , Nk} which are good
in W is larger than 1 − ε. The definition of ϕ(W ) will depend on whether W
is acceptable or not. If W is not acceptable, then we simply set ϕ(W ) := aNk ,
where a ∈ A is the first symbol occuring in the sequence u. If W is acceptable,
then we run the following algorithm. Let j1 be the first integer which is good
in W , and inductively, define ji+1 as the smallest integer larger than or equal
to ji + n which is good in W , provided such an integer exists. This algorithm
outputs a finite list of integers j1, . . . , jr which are good in W , such that ji+n ≤
ji+1, and such that the disjoint heavy n-blocks W |ji+n−1

ji
, 1 ≤ j ≤ r, cover a

proportion at least 1−ε ofW (because symbols which are not covered correspond
to integers which are not good in W ). Then, in W , replace by a all symbols
which are not covered by these heavy n-blocks, and define ϕ(W ) as the resulting
Nk-block.

The number of Nk-blocks which are images of some acceptable block W by
this procedure is bounded by the number of choices for the subset of {1, . . . , Nk}
where we put the letter a, times the number of choices for the heavy blocks. The
former is bounded by the number of subsets of {1, . . . , Nk} which have less than
εNk elements, which is at most 2H(ε)Nk by Lemma 4.26. Since the number of
heavy blocks is at most 2εn, the latter is bounded by (2εn)r, which is less than
2εNk (indeed, nr ≤ Nk because in W we see r disjoint heavy blocks of length
n).

Observe that, by the construction of ϕ and by the choice of a, the first
symbol in u is the same as in u.

Now, it only remains to show that (33) holds. Let s ≥ 0. Each m ∈
{0, . . . , Nk+s/Nk − 1} such that u|(m+1)Nk

mNk+1 is not acceptable gives rise in the
corresponding subblock to at least εNk integers j which are not good in this
subblock. But there are two reasons why this could happen:

• either j is one of the last n positions of the subblock, which by (37) only
concerns a number of integers bounded by εNk/2,

• or j is not good in u, which therefore concerns at least εNk/2 integers j
in this subblock.

Then, (36) ensures that the proportion of integers m ∈ {0, . . . , Nk+s/Nk − 1}
such that u|(m+1)Nk

mNk+1 is not acceptable is less than ε. Moreover, observe that if
W is an acceptable Nk-block, then ϕ(W ) differs from W in at most εNk places.
This concludes the proof of the lemma.

Lemma 4.27. Let k and u be produced as in Lemma 4.25. Let us consider u
as a sequence in (ANk)N

∗
, and denote by SNk the action of the shift map in this

setting (that is, SNk shifts Nk letters in A at the same time). Set also, for each
integer s ≥ 0, Ms := Nk+s/Nk. Then there exists an increasing sequence of
integers (s`)`≥1, and an SNk -invariant probability measure ν on (ANk)N

∗
such

that
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• we have the weak convergence

δSNk ,Ms`
,u =

1

Ms`

∑
n≤Ms`

δSnNku
−−−→
`→∞

ν,

• h(SNk , ν) = 0.

Proof. First, let µ be any weak limit of a subsequence of the form δSNk ,Ms`
,u,

` ≥ 1. Then µ is SNk -invariant. Moreover, we have

ν =
1

Nk
(µ+ S∗µ+ · · ·+ SNk−1

∗ µ).

Since h(ν, SNk) = 0, we have also h(µ, SNk) = 0. Let Φ be the continuous map
defined by the Nk-block recoding ϕ from Lemma 4.25. We get the announced
result with ν the pushforward measure of µ by Φ.

Lemma 4.28. With the same assumptions as in Lemma 4.25, for any ε > 0,
we can find a sequence u ∈ AN∗ and a subsequence (Nk(`))`≥1 such that:

• htop(u) = 0;

• for each ` ≥ 1, (33) with k replaced by k(`), is satisfied.

Proof. Let u(1) be the sequence we obtain applying Lemma 4.25 with ε/2, and
let k(1) be the corresponding integer k. Then u(1) can be viewed as an infinite
concatenation of at most 2Nk(1)ε/2 different Nk(1)-blocks. By Lemma 4.27, and
since all integers Nk, k ≥ k(1), are multiples of Nk(1), we can apply Lemma 4.25

to the new sequence u(1) itself, viewed as a sequence in (ANk(1))N
∗
. Doing this

with ε/4, we obtain a new sequence u(2) and an integer k(2). If we consider
both u(1) and u(2) as concatenation of Nk(1)-blocks, all blocks used in u(2) are

already used in u(1), so that u(2) is itself an infinite concatenation of at most
2Nk(1)ε/2 different Nk(1)-blocks. On the other hand, if we consider now both u(1)

and u(2) as sequences in AN∗ , they coincide on their first Nk(1) symbols.
We go on in the same way by induction. At step `, we have constructed a

sequence u(`) and we have an integer k(`) satisfying

(38)
1

Nk(`)+s

∣∣∣{1 ≤ n ≤ Nk(`)+s : un 6= u(`)
n }
∣∣∣ < ε

2
+ · · ·+ ε

2`
for all s ≥ 0,

and for each 1 ≤ j ≤ `,

(39)
u(`) is an infinite concatenation of at most 2Nk(j)ε/2

j

different
Nk(j)-blocks.

Consider u(`) as a sequence on the alphabet ANk(`) , which is quasi-generic for
some SNk(`) -invariant probability with zero entropy along a subsequence of the

original sequence (Nk). We apply on it Lemma 4.25 with ε/2`+1 to get a new
sequence u(`+1) and an integer k(` + 1), satisfying the analogous properties
to (38) and (39) at level `+ 1, and such that u(`+1) coincides with u(`) on their
first Nk(`) symbols.

23



The sequence (u(`))`≥1 which is obtained in this way, converges to a sequence
u, satisfying for all ` ≥ 1,

u|Nk(`)1 = u(`)|Nk(`)1 .

By (38), this ensures that for each ` ≥ 1,

1

Nk(`)

∣∣{1 ≤ n ≤ Nk(`) : un 6= un}
∣∣ < ε.

Moreover, by (39), for each ` ≥ 1, u is an infinite concatenation of at most

2Nk(`)ε/2
`

different Nk(`)-blocks. Therefore, there are at most Nk(`) · 2Nk(`)ε/2
`

different Nk(`)-blocks which appear in u. This implies that htop(u) = 0.

To conclude the proof of the equivalence of (S) and (S0), we need also some
tool to pass from the continuous case of a general sequence

(
f(Tnx)

)
n∈N∗ to

the discrete case of a symbolic sequence x ∈ AN∗ for some finite A ⊂ R. This is
the object of what follows.

For each finite subset A ⊂ R, we denote by ϕA the function from [minA,+∞)
to A which maps t ≥ minA to the largest element a ∈ A satisfying a ≤ t. We
also denote by ΦA the function from [minA,+∞)N

∗
to AN∗ which maps each

sequence (yn)n∈N∗ to
(
ϕA(yn)

)
n∈N∗ .

Lemma 4.29. Let y = (yn)n∈N∗ be a bounded sequence of real numbers, with
values in some compact interval [α, β]. We assume that, along some increasing
sequence of integers (Nk), the following weak convergence holds:

δS,Nk,y −−−−→
k→∞

µ,

where µ is a shift-invariant probability on [α, β]N
∗
. Then, for each ε > 0, we

can find a finite subset A ⊂ R such that:

• ∀t ∈ [α, β], |ϕA(t)− t| < ε,

• we have the weak convergence

(40) δS,Nk,ΦAy −−−−→
k→∞

(ΦA)∗µ.

Proof. The first condition required on A is easily satisfied: we just have to
choose A so that

• minA < α,

• supA ≥ β,

• the distance between two consecutive elements of A is always less than ε.

Then, for such an A, observe that ϕA is continuous on [minA,+∞) \ A (A is
the set of discontinuity points of ϕA), and that ΦA is continuous on

[minA,+∞)N
∗
\ r(A),

where
r(A) := {y ∈ [α, β]N

∗
: yn ∈ A for some n ∈ N}.
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Consider the pushforward measure of µ by the projection of [α, β]N
∗

to the first
coordinate. This is a probability measure on the interval [α, β], hence with at
most a countable number of atoms. Moreover, the pushforward measure of µ
by the projection of [α, β]N

∗
to any other coordinate has the same atoms, since

µ is shift-invariant. Choosing the elements of A from the complement of this
set of atoms is always possible, and ensures that

(41) µ
(
r(A)

)
= 0.

Finally, note that for any k, the pushforward of δS,Nk,y by ΦA is precisely
δS,Nk,ΦAy. Since by (41), the set of discontinuities of ΦA has µ-measure 0, we
get (40).

Proof of Theorem 4.24. It is clear from the definitions that condition (S) implies
(S0).

Assume that z ∈ {−1, 0, 1}N∗ does not satisfy (S). Then there exist a home-
omorphism T of a compact metric space X, a continuous function f : X → R,
and a completely deterministic point x ∈ X such that 1

N

∑
n≤N f(Tnx)zn does

not converge to 0 as N → ∞. We can thus find some increasing sequence of
integers (Nk), and some θ 6= 0 such that

(42)
1

Nk

∑
n≤Nk

f(Tnx)zn −−−−→
k→∞

θ.

Without loss of generality, we can further assume that Nk|Nk+1 for each k.
Indeed, extracting a subsequence if necessary, we can always assume that

Nk/Nk+1 −−−−→
k→∞

0,

and then replace inductively each Nk+1 by the closest multiple of Nk.
We can also assume that

δT,Nk,x −−−−→
k→∞

ν,

where ν is a T -invariant probability measure on X satisfying h(T, ν) = 0 (be-
cause x is completely deterministic). Let α := min f , β := max f . If we set
y = (yn)n∈N :=

(
f(Tnx)

)
n∈N∗ ∈ [α, β]N

∗
, then we also have

δS,Nk,y −−−−→
k→∞

µ,

where µ is the pushforward of ν to [α, β]N
∗

by the topological factor map defined
by f . In particular, we have h(S, µ) = 0.

Now, choose ε > 0 small enough so that

(43) ε < |θ|/4.

Let A be the finite set given by Lemma 4.29 applied to y = (f(Tnx))n∈N∗ and
ε, and set u = (un)n∈N∗ := ΦA(y). Then, we have

(44) |un − f(Tnx)| < ε for all n ∈ N,

and
δS,Nk,u −−−−→

k→∞
(ΦA)∗µ.

25



Moreover, since h(S, µ) = 0 and
(
S,AN∗ , (ΦA)∗µ

)
is a measure-theoretic factor

of
(
S, [α, β]N

∗
, µ
)
, we also have h

(
S, (ΦA

)
∗µ) = 0.

We apply now Lemma 4.28 to u and ε, obtaining a sequence u with htop(u) =
0 and a subsequence (Nk(`)) such that

(45)
1

Nk(`)

∣∣{1 ≤ n ≤ Nk(`) : un 6= un
}∣∣ < ε.

Then

1

Nk(`)

∑
n≤Nk(`)

unzn =
1

Nk(`)

∑
n≤Nk(`)

(un − un)zn

+
1

Nk(`)

∑
n≤Nk(`)

(un − f(Tnx))zn +
1

Nk(`)

∑
n≤Nk(`)

f(Tnx)zn.

It follows from (45), by (44) and by (42) that for ` sufficiently large∣∣∣∣∣∣ 1

Nk(`)

∑
n≤Nk(`)

unzn

∣∣∣∣∣∣ ≥ |θ|/2− 2ε.

Therefore (43) implies that

1

N

∑
n≤N

unzn 6→ 0,

i.e. z does not satisfy (S0) and the assertion follows.

5 (Ch) vs. various properties

5.1 (S) does not imply (Ch)

A natural question arises, whether it is possible to find a sequence which satis-
fies (S) and does not satisfy (Ch). We will provide now such an example.

Example 5.1 (z that satisfies (S) but not (Ch)). Consider the shift on {0, 1, 2, 3}N∗

with the Bernoulli measure B( 1
4 ,

1
4 ,

1
4 ,

1
4 ) =: κ and let

θ : {0, 1, 2, 3}N
∗
→ {−1, 0, 1}N

∗

be given by the code of length 2: θ(01) = θ(12) = −1, θ(02) = θ(23) = 1, all
remaining blocks of length 2 sent to 0. Let ω ∈ {0, 1, 2, 3}N∗ be a generic point for
κ (such a point exists by the ergodic theorem). Then ν := θ∗(κ) is an invariant
measure for the subshift Y := θ({0, 1, 2, 3}N∗) ⊂ {−1, 0, 1}N∗ . Moreover, z :=
θ(ω) is a generic point for ν and (S, Y, ν) is a Bernoulli automorphism [19].
Recalling that F (u) := u(1) for u ∈ Y , we have

1

N

∑
n≤N

zi0(n) · zi1(n+ a1) · . . . · zir (n+ ar)

=
1

N

∑
n≤N

(
F i0 · F i1 ◦ Sa1 · . . . · F ir ◦ Sar

)
(Sn−1z).
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In particular (by genericity),

(46) lim
N→∞

1

N

∑
n≤N

z(n)z(n+ 1) =

∫
Y

F · F ◦ S dν.

Observe that

(47)

∫
Y

F dν = 0.

However, the function F · F ◦ S takes the value 1 with probability 2/43 (given
by the blocks 012 and 023), while the value -1 has probability 1/43 (it is given
by 123). It follows that the integral in (46) is not equal to zero, i.e. (Ch) does
not hold. Note that, in this construction, z is a generic point (so the more z2 is
a generic point).

It remains to show that z satisfies (S). This is however clear: for any
topological dynamical system (X,T ) and any x ∈ X, each accumulation point,
say ρ, of the sequence of empiric measures δT×S,N,(x,z), N ≥ 1, is a joining of
(T,X, ρ|X) and (S, Y, ν) (the latter, since z is generic for ν). If x is completely
deterministic, then ρ|X ∈ Q-gen(x) has zero entropy, hence (X,T, ρ|X) is disjoint
from any K-system. In particular, ρ = ρX ⊗ ν and (S) follows from (47).

Remark 5.2. The point z in the above example is clearly not completely de-
terministic. In fact, if z satisfies (S) and is completely deterministic, then
1
N

∑
n≤N z

2(n) = 1
N

∑
n≤N z(n) · z(n)→ 0, so the support of z has zero density

and z automatically satisfies (Ch).

Remark 5.3. Example 5.1 can be seen as a starting point for a construction of
sequences such that the convergence in (Ch) holds whenever ar < k0 (k0 ≥ 2),
and fails for some choice of 1 ≤ a1 < · · · < ar = k0. Indeed, consider again the
shift on {0, 1, 2, 3}N∗ with the Bernoulli measure B(1/4, 1/4, 1/4, 1/4) and let

θ : {0, 1, 2, 3}N
∗
→ {−1, 0, 1}N

∗

be given by the code of length k0: θ(0∗1) = θ(1∗2) = −1, θ(0∗2) = θ(2∗3) = 1,
where ∗ stands for any sequence of symbols from {0, 1, 2, 3} of length k0−2 and
all remaining blocks of length k0 sent to 0. Let ν, ω and z be as in Example 5.1.
By genericity

lim
N→∞

1

N

∑
n≤N

zi0(n) · zi1(n+ a1) · . . . · zir (n+ ar)

=

∫
Y

F i0 · F i1 ◦ Sa1 · . . . · F ir ◦ Sar dν.

If ar < k0 then each of the functions F ◦Sa in the above integral take the values
1 and −1 with probability 2/42 and these events (as a varies from 0 to k0 − 1)
are independent. Therefore, whenever ar < k0, then the corresponding integral
equals zero (when one of the is equals 1). However, the function F · F ◦ Sk0
takes the value 1 with probability 2/43 (given by the blocks 0∗1∗2 and 0∗2∗3)
while the value −1 has probability 1/43 (it is given by 1 ∗ 2 ∗ 3), so the integral
is not equal to zero. In other words, (Ch) fails for this sequence when r = 1
and a1 = k0.

27



5.2 (Ch) without genericity

We will show that z may satisfy (Ch) without being a generic point (in fact,
even z2 may fail to be generic).

Example 5.4 (z that satisfies (Ch) with z2 not generic). Let w0 ∈ Y :=
{−1, 0, 1}N∗ be a generic point for the Bernoulli measure κ0 := B(1/3, 1/3, 1/3),
and w1 ∈ Y a generic point for the Bernoulli measure κ1 := B(1/2, 0, 1/2). Since
the measures κ0 and κ1 are mutually singular, up to a set of (κ0 + κ1)-measure
zero, we can represent Y as a union Y0 ∪ Y1, Y0 ∩ Y1 = ∅ with Yi being a set of
full measure for κi, i = 0, 1.

Let Z 3 an →∞ and set

(48) M1 := 1, Mn+1 := an+1Mn.

We define a new sequence w ∈ {−1, 0, 1}N∗ by setting

w[M2i+1,M2i+2 − 1] := w0[0,M2i+2 −M2i+1 − 1], i ≥ 0,

w[M2i,M2i+1 − 1] := w1[0,M2i+1 −M2i − 1], i ≥ 1.

Lemma 5.5. We have Q-gen(w) = {ακ0 + (1− α)κ1 : α ∈ [0, 1]}.

Proof. Suppose that, for some increasing sequence (Pi), δPi,w → ν. Then, for
each i ≥ 1, there exists si ≥ 1, so that Msi ≤ Pi < Msi+1. By considering
subsequences, if necessary, we can assume that Msi/Pi → α (moreover, for any
α ∈ [0, 1] the sequence (Pi) can be chosen so that this convergence holds). Since

Msi−1/Pi =
Msi

asiPi
→ 0, the sequence of measures 1

Pi

∑
n<Msi−1

δSnw converges

to 0 when i → ∞. Moreover, since (Msi −Msi−1 − 1)/Pi → α, the measure
1
Pi

∑
Msi−1≤n<Msi

δSnw is arbitrarily close to ακji , where κji is either κ0 or κ1

depending on the parity of si (we pass again to a subsequence if necessary). In
a similar way, 1

Pi

∑
Msi
≤n<Pi δSnw → (1− α)κ1−ji and the result follows.

Clearly, w is not generic, and we can easily check that neither is w2 (we
obtain that w2 is quasi-generic for all convex combinations of the Dirac measure
at (1, 1, . . .) and a Bernoulli measure).

Now, since (Ch) holds for w0 and w1, the integral of F i0 ·F i1◦Sa1 ·. . .·F ir◦Sar
with respect to κi for i = 0, 1 is equal to zero for any choice of 1 ≤ a1 < . . . < ar,
r ≥ 0, is ∈ {1, 2} not all equal to 2. Therefore, for any such choice we also have∫

F i0 · F i1 ◦ Sa1 · . . . · F ir ◦ Sar d(ακ0 + (1− α)κ1) = 0,

which shows that (Ch) holds for w.

5.3 The squares in (Ch) are necessary

We will now show that the squares in (Ch) are necessary. In other words, we
will show that (Ch) is not equivalent to the following condition:

(Ch1)
1

N

∑
n≤N

z(n) · z(n+ a1) · . . . · z(n+ ar) −−−−→
N→∞

0
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for each choice of 1 ≤ a1 < . . . < ar, r ≥ 0. The example will be introduced in
the probabilistic language (cf. the discussion on page 15). In order to obtain a
sequence z ∈ {−1, 0, 1}N∗ satisfying (Ch1) and not satisfying (Ch) it suffices to
take a generic point for the distribution of the process (Xn)n∈N∗ considered in
the following example.

Example 5.6. Let (Yn)n∈N∗ be a sequence of independent random variables,
taking values ±1, each with probability 1/2. Set

Xn := Yn1Yn+1=1.

Then for each choice of 0 ≤ a1 < · · · < ar, we have

E(Xa1 · . . . ·Xar ) = E(Ya11Ya1+1=1Ya21Ya2+1=1 . . . Yas1Yas+1=1) = E(Ya1Z),

where Z is measurable with respect to the σ-algebra generated by Ya1+1, Ya1+2, . . .,
hence is independent from Ya1 . Since E(Ya1) = 0, we get

E(Xa1 · . . . ·Xar ) = 0.

However, since X2
1 · Y2 = 1Y2=1, we have

E(X2
1X2) = E(1Y2=11Y3=1) =

1

4
6= 0.

Remark 5.7. The dynamical system determined by (Xn)n∈N∗ is a non-trivial
factor of the system determined by (Yn)n∈N∗ . Moreover, (Yn)n∈N∗ is an inde-
pendent process, so the associated dynamical system is K. Hence htop(z) > 0
for any z ∈ {−1, 0, 1}N∗ generic for the distribution of (Xn)n∈N∗ .

Question 5.8. Does there exist z ∈ {−1, 0, 1}N∗ with htop(z) = 0, for which (Ch)
fails but that satisfies (Ch1)?

Remark 5.9. Note that if htop(z) = 0, and if the density of the support of z is
positive, then (Ch) automatically fails because (S) fails.

5.4 (Ch) vs. recurrence

In this section we discuss the recurrence properties of sequences satisfying (Ch).

Definition 5.10. Let A be a nonempty finite set. A sequence w ∈ AN∗ is said
to be recurrent if each block B appearing in w appears in it infinitely often.

Note that, if

(49) X+
w = Xw,

then obviously w is recurrent.
It is well-known (see, e.g. [9], pp. 189-190) that under the recurrence as-

sumption, one can construct the topological natural extension of the one-sided
subshift generated by w. More precisely, under the assumption of recurrence of
w, there exists w̃ ∈ AZ such that:

• w̃[0,∞] = w;
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• each block appearing in w̃ appears in w.

Our main result in this section is the following:

Proposition 5.11. Suppose that (49) holds for z2, i.e.

(50) X+
z2 = Xz2

and z satisfies (Ch). Then (49) holds for z; in fact,

(51)
⋃

ν∈Q-gen(z2)

supp(ν̂) = Xz.

In particular, z is recurrent.

For the proof we will need two lemmas.

Lemma 5.12. Let w ∈ AN∗ and consider the subshift Xw ⊂ AN∗ . Then given
a block B ∈ Ar (for some r ≥ 1), the following two conditions are equivalent:

• there exists ν ∈ Q-gen(w) such that ν(B) > 0,

• B appears in w with positive upper frequency.

In other words, X+
w =

⋃
ν∈Q-gen(w) supp(ν).

Proof. Let (Nk) and ν ∈ Q-gen(w) be such that δNk,w −−−−→
k→∞

ν and let B ∈ Ar,

r ≥ 1, be such that ν(B) > 0. Since 1B ∈ C(AN∗), it follows that

fr(B,w) ≥ lim
k→∞

∫
1B d δNk,w =

∫
1B dν = ν(B) > 0.

Suppose now that B appears in w with positive upper frequency, i.e. we have

(52) lim
k→∞

∫
1B dδNk,w > 0,

for some increasing sequence (Nk). Passing to a subsequence if necessary, we
may assume that δNk,w −−−−→

k→∞
ν weakly; in particular, ν ∈ Q-gen(w). Moreover,

by (52), ν(B) > 0.

Fix z ∈ {−1, 0, 1}N∗ , and set XN := π−1(Xz2), X+
N := π−1(X+

z2).

Lemma 5.13. If (Ch) holds for z then X+
z = X+

N .

Proof. Clearly, X+
z ⊂ X+

N . Take B̃ ∈ X+
N . Then B := π(B̃) ∈ X+

z2 and by
Lemma 5.12 there exists ν ∈ Q-gen(z2) such that ν(B) > 0. Therefore

ν̂(B̃) =
1

2|suppB| ν(B) > 0.

Since z satisfies (Ch), it follows from Lemma 4.6 that ν̂ ∈ Q-gen(z). Lemma 5.12

implies now that B̃ ∈ X+
z and the assertion follows.
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Proof of Proposition 5.11. By Lemma 5.12 and Remark 4.8 (which can be ap-
plied since z satisfies (Ch)), we have

(53) X+
z =

⋃
ν̃∈Q-gen(z)

supp(ν̃) =
⋃

ν∈Q-gen(z2)

supp(ν̂).

It follows from (50) that X+
N = XN . This and Lemma 5.13 imply

Xz ⊂ XN = X+
N = X+

z ⊂ Xz

so (49) holds for z. Therefore, and using also (53), we conclude that (51)
holds.

Remark 5.14. Note that condition (50) is satisfied if Q-gen(z2) = {ν} and
supp ν = Xz2 . This is the case for z = µ; in particular, µ2 is recurrent.
However, it is not known whether µ is recurrent (Sarnak, see also recent [17]).

It is possible to have z satisfying (Ch) and non-recurrent with z2 being
recurrent. Consider the following two examples:

Example 5.15. For i ≥ 1, let Bi be the block consisting of 10i zeroes. Then
set A1 := 1B1, A2 := A1A1B2 and in general As+1 := AsAsBs for s ≥ 2 to
obtain in the limit the sequence z2 which is recurrent. Replace first 1 by -1
without changing other positions to define z. Then z satisfies (Ch) and z is not
recurrent. A “drawback” of this example is that the density of zeroes is equal
to 1.

Example 5.16. We will use that same idea as in Example 5.15. Let (ni) be
an increasing sequence of natural numbers and let Bi be a block of length 2ni
of alternating ones and zeroes: Bi = 1010 . . . 10. Then set A1 := 11B1, A2 :=
A1A1B2 and in general As+1 := AsAsBs. In the limit, we obtain an infinite
sequence w. If (ni) increases fast enough then w differs from w′ := (1, 0, 1, 0, . . .)
on a set of density zero, whence w is generic for ν := 1

2 (δ(1,0,1,0,...) + δ(0,1,0,1,...)).

Let u ∈ {−1, 1}N∗ be generic for B(1/2, 1/2) and let z′ := ξ(w′, u), where
ξ(a, b)(n) := a(n) · b(n) for n ∈ N∗. Since w′ is of zero entropy, (w′, u) is
generic for ν ⊗ B(1/2, 1/2). Hence z′ is generic for ξ∗(ν ⊗ B(1/2, 1/2)) = ν̂.
The sequence z′ is a concatenation of blocks of length 3 of ±1 separated by long
blocks of −1, 0, 1 in which every second position is 0. To obtain z, we now modify
z′ in the following way. The first block of 3 consecutive ±1 (i.e. z′(1)z′(2)z′(3))
is replaced with (−1,−1,−1) while all other 3-blocks of consecutive ±1 are
replaced with 111. Then z differs from z′ on a subset of density zero, so z is still
a generic point for ν̂, i.e. (Ch) holds for z. Clearly, z is not recurrent, whereas
w = z2 has this property. Moreover, the density of 0’s in z is equal to 1/2.

5.5 (Ch) vs. unique ergodicity

Proposition 5.17. Let z ∈ {−1, 0, 1}N∗ be such that (Ch) holds. Moreover,
suppose that there exists a block B with

(54) supp(B) 6= ∅ and B appears in z with positive upper frequency.

Then the subshift Xz cannot be uniquely ergodic.
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Proof. It suffices to show that the subshift X+
z is not uniquely ergodic. By

Lemma 5.13, we have X+
z = X+

N , whence X+
z2 ⊂ X

+
z . Therefore

(55) ∅ 6= Q-gen(z2) ⊂ PS(X+
z ).

By Remark 4.8, we have Q-gen(z) = {ν̂ : ν ∈ Q-gen(z2)}. Let B be the
block with non-empty support given by (54). Then it follows from Lemma 5.12
that there exists ν ∈ Q-gen(z2) such that ν̂(B) > 0. Moreover, for any block
C with B2 = C2 we have ν̂(C) = ν̂(B) > 0. It follows that ν 6= ν̂, but
{ν, ν̂} ⊂ PS(X+

z ).

For z = µ or z = µB the fact that the subshift Xz is not uniquely ergodic
“comes” from Xz2 . To see this, we need first to recall the following definition
[15]:

Definition 5.18. A subshift X ⊂ {0, . . . , k}N∗ is hereditary if for any x ∈ X
and y ∈ {0, . . . , k}N∗ the condition y(n) ≤ x(n) satisfied for all n, implies that
y ∈ X.

Remark 5.19. In view of [22] and [2], for z = µ or z = µB, the subshift Xz2

consists of all sequences w ∈ {0, 1}Z which are B-admissible, i.e. such that

t(supp(w), b) < b for all b ∈ B,

where for A ⊂ Z and b ≥ 1, t(A, b) := |{c ∈ Z/bZ : ∃n ∈ A, n = c mod b}| is
the number of classes modulo b in A.

It follows immediately from the above remark that the subshiftXµ2
B

is hered-

itary. Now, each hereditary system of positive topological entropy (and such
are (S,Xµ2

B
) [2]) is not uniquely ergodic, e.g. [16].16

Remark 5.20. We can choose a generic point z ∈ {−1, 1}N∗ for the Bernoulli
measure B(1/2, 1/2) to obtain an example of z satisfying (Ch) and for which
(S,Xz) is not uniquely ergodic while (S,Xz2) has this property.

5.6 Characterization of completely deterministic sequences
by orthogonality to (Ch)

In response to an interesting question asked by an anonymous referee, we include
the following characterization of completely deterministic sequences by orthog-
onality to sequences satisfying (Ch). We express our thanks to the referee and
to Teturo Kamae who helped us proving this result.

Proposition 5.21. A sequence t ∈ {−1, 1}N∗ is completely deterministic if and
only if, for each sequence z ∈ {−1, 0, 1}N∗ satisfying (Ch), we have

1

N

∑
n≤N

zntn −−−−→
N→∞

0.

16A direct proof of non-unique ergodicity of (S,Xµ2
B

) follows from the fact that each hered-

itary system has a fixed point, whereas the Mirsky measure is positive on each non-empty
open subset of Xµ2

B
.
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Proof. One side of the equivalence follows easily from the preceding results:
if t is completely deterministic, and if z satisfies (Ch), then in particular z
satisfies (S) by Theorem 4.10 and we get the desired orthogonality.

(Kamae) Conversely, assume that t ∈ {−1, 1}N∗ is not completely determin-
istic. Then there exists an increasing sequence (Nk) such that

δNk,t −−−−→
k→∞

ν ∈ PS({−1, 1}N
∗
),

with h(S, ν) > 0. Consider the Cartesian square of {−1, 1}N∗ , and denote by
x =

(
x(1), x(2), . . .

)
and y =

(
y(1), y(2), . . .

)
the two coordinates in this space.

Applying Lemma 3.1 in [14], we get a joining γ of ν and the Bernoulli measure
B(1/2, 1/2) on {−1, 1}N∗ , under which x(1) and y(1) are not independent: set-
ting p := γ

(
x(1) = 1 | y(1) = 1

)
and q := γ

(
x(1) = 1 | y(1) = −1

)
, we have

p 6= q. It follows that

(56)

∫
{−1,1}N∗×{−1,1}N∗

x(1)y(1) dγ(x, y)

=
1

2
p− 1

2
(1− p)− 1

2
q +

1

2
(1− q) = p− q 6= 0.

Now, by Theorem 2 in [14], we can find z ∈ {−1, 1}N∗ that is generic for
B(1/2, 1/2) (which is equivalent to the fact that z satisfies (Ch) by Propo-
sition 4.9), such that

1

Nk

∑
n≤Nk

δ(Snt,Snz) −−−−→
k→∞

γ.

But then, using by (56), we get

1

Nk

∑
n≤Nk

zntn −−−−→
k→∞

p− q 6= 0.

6 Sequences satisfying (Ch)

In this section our main goal is to give natural examples of sequences z satis-
fying (Ch). We begin in Section 6.1 by discussing the possible values of the
pair (htop(z

2), htop(z)) when z satisfies (Ch). Without any more restriction,
this problem has no satisfactory answer. Indeed, we show with the help of a
replacement lemma that even the condition of having a support of density 0,
which is clearly stronger than (Ch), does not restrict the possible values of this
pair of entropies. However, we prove that if z satisfies (Ch), then its topological
entropy is bounded from below by the density of its support (Proposition 6.3).
In Section 6.2.1 we describe a method of obtaining sequences satisfying (Ch).
Section 6.2.2 contains background on Sturmian sequences. These tools are used
in Section 6.3, where we provide two classes of sequences z satisfying (Ch): with
htop(z

2) = 0 and htop(z
2) > 0.
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6.1 Entropy of sequences satisfying (Ch)

The authors would like to thank Benjamin Weiss for fruitful discussions which
resulted in the material presented in this section and in the appendix.

Note that, under the assumption that the Chowla conjecture is true for µ,
we have in particular (htop(µ

2), htop(µ)) = ( 6
π2 ,

6
π2 log 3). A natural question

arises, what kind of pairs of numbers can be obtained as (htop(z
2), htop(z)) for

sequences z ∈ {−1, 0, 1}N∗ satisfying (Ch).
First, we observe that there are some natural restrictions for the values of

the pair (htop(z
2), htop(z)) for z ∈ {−1, 0, 1}N∗ . These restrictions are detailed

in the appendix of the present paper. The following replacement lemma is useful
for further investigations.

Lemma 6.1. Let z, w ∈ {−1, 0, 1}N∗ . Then there exists z ∈ {−1, 0, 1}N∗ such
that:

• limk→∞
1
Nk

∑
n≤Nk δSnz = limk→∞

1
Nk

∑
n≤Nk δSnz for each increasing

sequence (Nk) such that one of these limits exists,

• htop(z) = max(htop(z), htop(w)),

• htop(z2) = max(htop(z
2), htop(w

2)).

Proof. For a sequence x over a finite alphabet, we set

Cn(x) := {B : |B| = n,B appears in x}, so that pn(x) = |Cn(x)| for n ∈ N.

The sequence z will be defined as a limit of sequences zk, which will be con-
structed inductively. Fix 0 < εk → 0. Let z1 := z, and choose d1 large enough
so that 1/d1 < ε1. Suppose that d1, . . . , dk and z1, . . . , zk are already chosen.
Let dk+1 be large enough, so that

min{i : zk(j) = z(j) for j ≥ i}
dk+1

< εk+1.

Let Bk+1 ∈ {−1, 0, 1}3dk+1 be a block which appears in zk infinitely many times.
We define zk+1 by replacing some of the occurrences of Bk+1 in zk by blocks of
the form

0 . . . 0︸ ︷︷ ︸
dk+1

B 0 . . . 0︸ ︷︷ ︸
dk+1

, where B ∈ Cdk+1
(w)

in such a way that

• zk+1[1, dk+1] = zk[1, dk+1],

• Cdk+1
(w) ∪ Cdk+1

(z) ⊂ Cdk+1
(zk+1).

It follows immediately that

htop(z) ≥ max(htop(z), htop(w)).

On the other hand,

pdk+1
(z) ≤ εk+1dk+13εk+1dk+1pdk+1

(z)dk+1 + pdk+1
(z)2dk+1 + pdk+1

(w)2dk+1,

34



whence

htop(z) ≤ max

(
lim
k→∞

1

dk
log pdk(z), lim

k→∞

1

dk
log pdk(w)

)
= max(htop(z), htop(w)).

Therefore
htop(z) = max(htop(z), htop(w)).

In a similar way, we conclude that

htop(z
2) = max(htop(z

2), htop(w
2)).

Moreover, if the replacement of blocks made in course of the construction is
scarce enough, the resulting sequence z will be such that

lim
k→∞

1

Nk

∑
n≤Nk

δSnz = lim
k→∞

1

Nk

∑
n≤Nk

δSnz,

for any increasing sequence (Nk) such that one of the above limits exists. This
completes the proof.

Applying the above lemma with z = (0, 0, . . . ), we get the following result.

Proposition 6.2. For any (hz2 , hz) ∈ [0, 1] × [0, log 3], such that for some
w ∈ {−1, 0, 1}N∗ , we have

(hz2 , hz) = (htop(w
2), htop(w)),

there exists z whose support has density 0 (hence satisfying (Ch)), such that

(hz2 , hz) = (htop(z
2), htop(z)).

Of course, one can object that the examples of sequences z satisfying (Ch)
provided by the above propositions are rather trivial, since the density of nonzero
terms vanishes. If we restrict ourselves to sequences z for which the (upper)
density of nonzero terms is positive, Remark 5.9 proves that the topological
entropy of z has to be positive if z satisfies (Ch). In fact, we have the following
more precise result.

Proposition 6.3. Let z ∈ {−1, 0, 1}N∗ , satisfying (Ch) and such that

(57) lim sup
N→∞

1

N

∑
n≤N

z2(n) = δ > 0.

Then htop(z) ≥ δ.

Proof. By (57), z2 is quasi-generic for some shift-invariant probability measure
ν on {0, 1}N∗ satisfying ν

(
[1]
)

= δ (where [1] stands for the cylinder set {w :
w(1) = 1}). In particular, the support of ν contains cylinder sets of arbitrarily
large length, for which the density of 1’s is at least δ. Then, since z satisfies (Ch),
Remark 4.8 shows that z is quasi-generic for ν̂, and we deduce that htop(z) ≥
δ.
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6.2 Tools

6.2.1 General method

Let u ∈ {−1, 1}N∗ be a generic point for the Bernoulli measure B(1/2, 1/2).

Proposition 6.4. If η ∈ {0, 1}N∗ is completely deterministic then (Ch) holds
for z := η · u.

Proof. Let (Nk) be a subsequence such that

δS×S,Nk,(η,u) −−−−→
k→∞

ρ̃.

Then
δS,Nk,η −−−−→

k→∞
ρ,

where ρ is the projection of ρ̃ onto the first coordinate and, by the assumption
on η, h(S, ρ) = 0. Moreover, since u is generic for B(1/2, 1/2), the measure ρ̃
is a joining of (S, ρ) and (S,B(1/2, 1/2)). Since (S, ρ) ⊥ (S,B(1/2, 1/2)), this
must be the product joining, i.e. ρ̃ = ρ⊗B(1/2, 1/2).

It follows that η·u is quasi-generic along (Nk) for the image of ρ⊗B(1/2, 1/2)
via the map

(58) m : {0, 1}N
∗
× {−1, 1}N

∗
→ {−1, 0, 1}N

∗
,

given by m(a, b)(n) := a(n) · b(n). Clearly, m∗(ρ ⊗ B(1/2, 1/2)) = ρ̂. The
assertion follows from Lemma 4.6.

Remark 6.5. Since µ2 yields a system with discrete spectrum [4], in particular
µ2 is completely deterministic.

Corollary 6.6. Suppose that (Ch) holds for the Liouville function λ. Then (Ch)
holds for µ.

Proof. The assertion follows directly from the fact that µ(n) = λ(n) · µ2(n),
Remark 6.5 and Proposition 6.4.

Proposition 6.4 turns out to be a particular case of the following result.

Proposition 6.7. Suppose that (Ch) holds for u ∈ {−1, 0, 1}N∗ and that η ∈
{−1, 0, 1}N∗ is completely deterministic. Then (Ch) holds for z := η · u.

Proof. For each 1 ≤ a1 < . . . < ak, k ≥ 0 and is ∈ {1, 2}, 1 ≤ s ≤ k, we set

w(n) = ηi0(n) · ηi1(n+ a1) · . . . · ηik(n+ ak).

Then w is completely deterministic by Lemma 4.20 (b), and we obtain

1

N

∑
n≤N

zi0(n) · zi1(n+ a1) · . . . · zik(n+ ak)

=
1

N

∑
n≤N

w(n)ui0(n) · ui1(n+ a1) · . . . · uik(n+ ak)

=
1

N

∑
n≤N

F (Sn−1w)ui0(n) · ui1(n+ a1) · . . . · uik(n+ ak) −−−−→
N→∞

0

by Proposition 4.19.

Remark 6.8. In Proposition 6.7, the condition (Ch) can be replaced by (S);
the proof goes along the same lines.
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6.2.2 Sturmian sequences – background

In this section, we give the necessary background on Sturmian sequences.

Lemma 6.9. For any δ ∈ [0, 1] there exists a Sturmian sequence η ∈ {0, 1}N∗

such that for n large enough

δn− 3 < #1(Bn) < δn+ 3 for any Bn ∈ {0, 1}n appearing in η,

where #1(Bn) = |{0 ≤ k ≤ n− 1 : Bn(k) = 1}|. Moreover, for any Sturmian
sequence η there exists a unique δ ∈ [0, 1] such that the above inequalities hold.

Proof. For δ ∈ {0, 1} the proof is immediate: we consider the sequences (0, 0, 0, . . . )
and (1, 1, 1, . . . ), respectively. Thus, we may assume that δ ∈ (0, 1).

Consider the integer grid and a line L in the plane17 and build η ∈ {0, 1}N∗

by writing down 0 or 1 depending on whether L intersects a horizontal or a
vertical line of the grid (if L meets a node, we write either 0 or 1). Given t > 0,

x x x

x

x

x

x

x

x

Figure 1: Sturmian sequence

we fix a line segment Lt of the line L of length t. Denote by a and b the absolute
values of the sine and cosine of the angle at which L intersects the vertical lines
of the grid, respectively. Note that Lt intersects as many vertical lines of the
grid as the side of the triangle opposed to angle α does (see Figure 1). Since
this side has length at, therefore Lt intersects either [at] or [at]+1 vertical lines.
This is the number of 1’s in the corresponding block of η; we will denote it by
#1(Lt). In a similar way, the number of 0’s is equal to [bt] or [bt] + 1; we denote
it by #0(Lt). Then

(59) at < #1(Lt) ≤ at+ 1 and bt < #0(Lt) ≤ bt+ 1.

Therefore
(a+ b)t− 2 < n(Lt) ≤ (a+ b)t+ 2,

where n(Lt) = #1(Lt) + #0(Lt). It follows that

(60)
n(Lt)− 2

a+ b
≤ t < n(Lt) + 2

a+ b
.

17Recall that among lines L with a rational slope, we consider only those which do not
intersect the nodes of the grid.
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Now, fix Bn ∈ {0, 1}n. Then n = n(Lt) for some t > 0 and for some line
segment Lt of length t. It follows now by (59) and (60) that

(61) #1(Bn) = #1(Bn(Lt)) = #1(Lt) ≤ at+ 1

< a
n(Lt) + 2

a+ b
+ 1 =

a

a+ b
(n+ 2) + 1 <

a

a+ b
n+ 3

and in a similar way

(62) #1(Bn) >
a

a+ b
(n− 2)− 1 >

a

a+ b
n− 3.

This completes the proof as a
a+b = | tanα|

1+| tanα| takes any value between 0 and
1.

Remark 6.10. In particular, it follows from the above lemma that

δ − 3

N
=

1

N
(δN − 3) ≤ 1

N

∑
n≤N

η(n) ≤ 1

N
(δN + 3) = δ +

3

N
,

whence

(63)
1

N

∑
n≤N

η(n)→ δ.

Moreover,

(64) δ > 0 for any Sturmian sequence other than (0, 0, 0, . . . ).

6.3 Examples

6.3.1 Sequences z with htop(z
2) = 0

Let u ∈ {−1, 1}N∗ be a generic point for the B(1/2, 1/2) measure and let
η ∈ {0, 1}N∗ be a Sturmian sequence. Then, by Proposition 6.4, z = η · u
satisfies (Ch). Moreover, we have htop(z

2) = 0. We will now calculate htop(z).

Proposition 6.11. For any Sturmian sequence η ∈ {0, 1}N∗ and any u ∈
{−1, 1}N∗ generic for the Bernoulli measure B(1/2, 1/2), the sequence z := η ·u
satisfies (Ch), htop(z

2) = 0 and htop(z) = δ, where δ is uniquely determined
by the second assertion of Lemma 6.9. Moreover, for every δ ∈ [0, 1], the pair
(0, δ) is realized as (htop(z

2), htop(z)) for a sequence z satisfying (Ch).

Proof. Let η ∈ {0, 1}N∗ be a Sturmian sequence, and δ be as in Lemma 6.9, i.e.

(65) δn− 3 < #1(Bn) < δn+ 3

for any Bn ∈ {0, 1}n appearing in η. Fix a generic point u ∈ {−1, 1}N∗ for the
measure B(1/2, 1/2). Then by Proposition 6.4, z = η · u satisfies (Ch).

Since z satisfies (Ch), it is generic for the relatively independent extension
of the measure given by the block frequencies in z2 = η. In particular, given
a block C appearing in η = z2, and B such that B2 = C, B will appear in z.
Hence

(66) pz2(n) · 2δn−3 < pz(n) < pz2(n) · 2δn+3,

which yields htop(z) = δ.
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6.3.2 Sequences z with arbitrary htop(z
2) > 0

We will now give examples of z satisfying (Ch) with arbitrary htop(z
2) > 0.

Proposition 6.12. For any Sturmian sequence η ∈ {0, 1}N∗ and any u ∈
{−1, 0, 1}N∗ generic for the Bernoulli measure B(1/4, 1/2, 1/4), the sequence
z := η · u satisfies (Ch), htop(z

2) = δ and htop(z) = δ log 3, where δ is
uniquely determined by the second assertion of Lemma 6.9. Moreover, each pair
(δ, δ log 3) is realized as (htop(z

2), htop(z)) for a sequence z satisfying (Ch).

Proof. Take u ∈ {−1, 0, 1}N∗ generic for the Bernoulli measure B(1/4, 1/2, 1/4).
Notice that u2 is generic for B(1/2, 1/2), and that B(1/4, 1/2, 1/4) is the rela-
tively independent extension of B(1/2, 1/2). By Lemma 4.6, u satisfies (Ch).
Let η ∈ {0, 1}N∗ be a Sturmian sequence, and let δ be as in Lemma 6.9. By
Proposition 6.7, z := u · η also satisfies (Ch).

Notice that any block B appearing in z arises by replacing some of the 1’s
in a block C appearing in η by 0’s or −1’s. Moreover, all blocks of this form
appear in z. Thus,

3δn−3 ≤ pz(n) ≤ (n+ 1) · 3δn+3,

whence htop(z) = δ log 3. In a similar way, we obtain htop(z
2) = δ, which

completes the proof.

Remark 6.13. Suppose that bk = a2
k, k ≥ 1 are pairwise relatively prime

and let µB be given by formula (16). Let z ∈ {−1, 0, 1}N∗ be a sequence
satisfying (Ch), such that z2 = µ2

B (we can get such a sequence as the product
of µ2

B and a sequence of−1’s and 1’s which is generic forB(1/2, 1/2), noting that
µ2

B is completely deterministic by [2], and using Propositin 6.4). By Theorem

5.3. in [2], we have htop(z
2) =

∏
k≥1

(
1− 1

bk

)
. Moreover, the same arguments

yield htop(z) = log 3 ·
∏
k≥1

(
1− 1

bk

)
. Recall (cf. [22, 21]) that in the classical

case when z = µ, we have
∏
k≥1

(
1− 1

bk

)
= 6

π2 .

7 Toeplitz sequences correlating with a given se-
quence, and their topological entropy

Since the Sarnak conjecture holds for periodic sequences, the following question
arises:

Are all sequences that display some strong periodic structure orthog-
onal to µ?

Toeplitz sequences (see Section 2.2.7) are a natural class to consider in this
context, since they are explicitly given as some limits of periodic sequences:
indeed, any block appearing in a Toeplitz sequence, appears in it periodically
(the period may vary, depending on the chosen block). It was however already
shown in [1] that there are Toeplitz sequences that are not orthogonal to µ.18

The aim of this section is to work in an abstract setting, dealing, instead of µ,

18The entropy of such sequences was not computed in [1].
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with a sequence z ∈ {−1, 0, 1}N∗ satisfying some additional assumptions. Under
these assumptions, we will construct Toeplitz sequences t = (tn) such that

(67)
1

N

∑
n≤N

tn · z(n) 6→ 0

and show that htop(t) > 0, giving more precise entropy estimates.
The starting point for our constructions is the following simple observation:

if the upper density of 1’s in z2 is positive then

1

N

∑
n≤N

z(n) · z(n) 6→ 0.

The underlying idea of the constructions is to find a Toeplitz sequence t which
has “as much as possible in common” with the sequence z under consideration.

We apply our results to the following two classes of sequences:

(a) sequences satisfying (Ch), related to Sturmian sequences (see Section 6.3.1
and Section 6.3.2);

(b) z = µ, z = µB and any sequence z such that z2 = w2, where w is as
in (a).

Notice that in case (a), in view of Theorem 4.10, (67) clearly implies that t is
not completely deterministic, so, in particular, htop(t) > 0. Therefore, what we
are really interested in, are the obtained entropy (lower) estimates. In case (b),
we cannot refer to (Ch) anymore to show that htop(t) > 0, it needs to be shown
separately. Note however that our entropy estimates are not as precise as in
case (a) (the reason is that we have less knowledge about z). It is also unclear
whether the constructed Toeplitz sequences are not completely deterministic.

7.1 Abstract setting

Let z ∈ {−1, 0, 1}N∗ be such that

(68) lim inf
N→∞

1

N

∑
n≤N

z2(n) > 0.

We will show that there exists a Toeplitz sequence t ∈ {−1, 0, 1}N∗ which cor-
relates with z, i.e.

(69) lim inf
N→∞

1

N

∑
n≤N

tn · z(n) > 0

(see Proposition 7.7 below). Moreover, under some additional assumptions on
z, we will give estimates for htop(t). More precisely, we will prove the following.

Theorem 7.1. Suppose that (68) holds. If, moreover, z is such that:

(a) z is quasi-generic for some ν̃ ∈ PS({−1, 0, 1}N∗),

(b) H := htop(supp(ν̃)) > 0,

40



(c) there exist q ≥ 2 and b ≥ 1 such that, for all m ≥ 1, the number of ergodic
components of the action of Sq

m

on ({−1, 0, 1}N∗ , ν̃) is bounded by b,

then, for any ε > 0, t can be chosen so that htop(t) ≥ (1− ε)H and (69) holds.

Remark 7.2. Note that condition (c) above holds for an arbitrary q ≥ 2 when-
ever (S, ν̃) is ergodic and there exists b ≥ 1 such that for any rational eigenvalue
λ of (S, ν̃), λc = 1 for some 1 ≤ c ≤ b. In particular, (c) holds if (S, ν̃) is totally
ergodic.

Theorem 7.3. Suppose that (68) holds. If moreover z is such that

(a’) z2 is quasi-generic for some ν ∈ PS({−1, 0, 1}N∗),

(b’) H := htop(supp(ν)) > 0,

(c’) there exist q ≥ 2 and b ≥ 1 such that, for all m ≥ 1, the number of ergodic
components of the action of Sq

m

on ({0, 1}N∗ , ν) is bounded by b,

then, for any ε > 0, t can be chosen so that htop(t) ≥ (1− ε)H and (69) holds.

Remark 7.4. Although Theorem 7.1 seems to give a better lower entropy
estimation than Theorem 7.3, it cannot be applied in many interesting cases
(see Section 7.2.1) because of the assumption (c) which we are not able to
verify. In such cases, we apply Theorem 7.3. Independently of us, Downarowicz
and Kasjan proved in [10] a result similar to Theorem 7.3 in the particular case
z = µ.

The proofs of Theorems 7.1 and 7.3 go along the same lines. Since they are
quite technical, they will be split into several sections.

7.1.1 A Toeplitz sequence correlating with z

Fix some q ≥ 2 and, for each j ≥ 1, consider the arithmetic progression

Aj := {j + nqj : n ≥ 0} ⊂ N∗.

Definition 7.5. We say that j ∈ N∗ is initial if there is no j′ < j with j ∈ Aj′ .
Then,

{Aj : j initial} is a partition of N∗.

When j is initial, we denote by A∗j the set Aj \ {j}. Elements of A∗j for some
initial j are said to be non-initial. We denote the set of all non-initials by N .

The Toeplitz sequence we are interested in, is the sequence t = (tn)t∈N∗ ∈
{−1, 0, 1}N∗ defined by

(70) tn :=

{
z(n) if n is initial,

z(j) if n ∈ A∗j for some initial j.

Lemma 7.6. For any N ≥ 1, we have

N ∩ {1, . . . , N}
N

≤ 1

q − 1
.
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Proof. Let j be initial. Since the difference of two consecutive terms in A∗j is

qj , and since the first term of the arithmetic progression Aj is missing in A∗j ,

we have
∣∣A∗j ∩ {1, . . . , N}∣∣ ≤ N

qj
for each N ≥ 1. Hence,

|N ∩ {1, . . . , N}|
N

≤
∑
j 6∈N

1

qj
≤
∑
j≥1

1

qj
=

1

q − 1
.

Proposition 7.7. Suppose that (68) holds. Then, for q sufficiently large, the
Toeplitz sequence t defined by (70) correlates with z, i.e.

lim inf
N→∞

1

N

∑
n≤N

tn · z(n) > 0.

Proof. We have

(71)
1

N

∑
n≤N

tn · z(n) =
1

N

∑
n≤N,n∈N

tn · z(n) +
1

N

∑
n≤N,n6∈N

tn · z(n),

where

(72)

∣∣∣∣∣∣ 1

N

∑
n≤N,n∈N

tn · z(n)

∣∣∣∣∣∣ ≤ |N ∩ {1, . . . , N}|N
≤ 1

q − 1

by Lemma 7.6. Moreover, using once more Lemma 7.6, we have

1

N

∑
n≤N,n6∈N

tn · z(n) =
1

N

∑
n≤N,n6∈N

z2(n)

=
|supp(z) ∩N c ∩ {1, . . . , N}|

N
= 1− |((supp(z))c ∪N ) ∩ {1, . . . , N}|

N

≥ 1− |(supp(z))c ∩ {0, . . . , N}|
N

− |N ∩ {1, . . . , N}|
N

≥ |supp(z) ∩ {1, . . . , N}|
N

− 1

q − 1
=

1

N

∑
n≤N

z2(n)− 1

q − 1
.

Therefore
1

N

∑
n≤N

tn · z(n) ≥ 1

N

∑
n≤N

z2(n)− 2

q − 1
.

By (68), the latter expression is bounded below by a fixed positive number
whenever q and N are large enough, which completes the proof.

7.1.2 Two types of non-initial numbers

Fix an integer m ≥ 1. For any integer k ≥ 0, we consider the interval

Im,k :=
(
kqm, (k + 1)qm

]
∩ N∗.

We distinguish two types of non-initials in Im,k:
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Definition 7.8. A non-initial in Im,k is said to be:

• of type 1 if it belongs to some A∗j with j ≤ m,

• of type 2 if it belongs to some A∗j with j > m.

Remark 7.9. Observe that, if for some k ≥ 1 and some 1 ≤ r ≤ qm, kqm + r
is a non-initial of type 1 in Im,k, then for any other k′ ≥ 1, k′qm + r ∈ Im,k′ is
also a non-initial of type 1 (since it belongs to the same A∗j ). Hence, the pattern
formed by non-initials of type 1 inside Im,k does not depend on which k ≥ 1 we
consider.

On the other hand, consider A∗m+h for some h ≥ 1. This set of non-initial

numbers intersects Im,k every qh-th integer k, and when it does, the single non-
initial point of type 2 in the intersection is always of the form kqm + r for some
r depending on h but not on k.

7.1.3 The end of the interval

Fix additionally an integer 1 ≤ ` < m, set L := q`, and consider the last L
elements of Im,k:

Im,k,L :=
(

(k + 1)qm − L, (k + 1)qm
]
∩ N∗.

Definition 7.10. We say that the integer k is good if the only non-initial
integers in Im,k,L are of type 1.

By Remark 7.9, for all good k’s, the pattern formed by non-initial integers
inside Im,k,L is always the same.

Proposition 7.11. The upper density of the set

M := {k ≥ 1 : k is not good}

is bounded from above by 1/qq
m−m−L.

Proof. Let n ∈ Im,k,L be a non-initial element of type 2. Then n ∈ A∗j for some

initial j > m, and we have n ≡ j mod qj , hence also n ≡ j mod qm. This and
the definition of Im,k,L imply j > qm − L, i.e.

(73)
the non-initials of type 2 inside Im,k,L belong to some A∗j with
j > qm − L.

Now, fix an initial j > m and let k0 be such that j ∈ Im,k0 . Then

{k ≥ 0 : Im,k ∩A∗j 6= ∅} = {k0 + i · qj−m : i ≥ 1}.

Hence, for any K ≥ 1, we have

1

K

∣∣{0 ≤ k < K : Im,k ∩A∗j 6= ∅}
∣∣ ≤ 1

qj−m
.

It follows that

1

K

∣∣{0 ≤ k < K : Im,k ∩A∗j 6= ∅ for some j > qm − L}
∣∣

≤
∑

j>qm−L

1

qj−m
=

1

qqm−m−L

∑
h≥1

1

qh
<

1

qqm−m−L
.

In view of (73), this ends the proof.

43



7.1.4 Density of non-initials of type 1 inside Im,k,L

We want now to bound the density of non-initials of type 1 inside Im,k,L (which
are the only non-initials in this interval when k is good).

Lemma 7.12. Let n ∈ Im,k,L be a non-initial of type 1. Then n ∈ A∗j , where j

satisfies j > qj − L ( cf. (73)).

Proof. Let n be a non-initial of type 1 inside Im,k,L. Then, by the definition of
type 1, there exists an initial j with j ≤ m such that n ∈ A∗j . Thus n ≡ j mod qj ,
and also

n ≡ (k + 1)qm + j mod qj .

Since n ≤ (k + 1)qm, there exists an integer s ≥ 1 with

n = (k + 1)qm + j − s qj .

But n > (k + 1)qm − L, hence

(k + 1)qm − L < (k + 1)qm + j − s qj ≤ (k + 1)qm + j − qj ,

and the assertion follows.

Proposition 7.13. For k ≥ 1, the proportion of non-initial elements of type 1
inside Im,k,L is equal to

(74)
1

q
+

1

q2
+ · · ·+ 1

q`
·

Proof. First, let us show that there are no non-initial elements of type 1 inside
Im,k,L which are in some A∗j with j > `. Indeed, suppose that such an element
exists. Then, we can write j = ` + s for some integer s ≥ 1, and Lemma 7.12
gives

`+ s > q`+s − q` = q`(qs − 1).

If qs − 1 = 1, then q = 2 and s = 1, and we get ` ≥ 2`, which is impossible.
Otherwise, using the inequality αβ ≥ α+ β for any α ≥ 2, β ≥ 2, we obtain

`+ s ≥ q` + qs,

which is also impossible since ` < q` and s < qs.
It remains to estimate the contribution of non-initial elements of type 1

which are in some A∗j with j ≤ `. For each such j, since qj divides the length

L = q` of Im,k,L, we have

|Aj ∩ Im,k,L|
L

=
1

qj
.

Since j ranges from 1 to `, (74) follows.
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7.1.5 Ergodic components

Proposition 7.14. Let A be a finite alphabet, and let ν be a shift-invariant
probability measure on AN∗ . Let n ≥ 1 and suppose that (Sn, ν) has b ≥ 1

ergodic components. If ν = 1
n

∑n−1
s=0 (Ss)∗η, where η is Sn-invariant then

ν =
1

n

[n
b!

] b!−1∑
s=0

(Ss)∗(η) +

(n mod b!)−1∑
s=0

(Ss)∗(η)

 .

Proof. For 0 ≤ i ≤ b− 1, let ρ(i) be the ergodic components of (Sn, ν), i.e.

ν = α0ρ
(0) + · · ·+ αb−1ρ

(b−1)

for some 0 < α0, . . . , αb−1 < 1,
∑b−1
i=0 αi = 1. Then

ν = S∗(ν) = α0S∗(ρ
(0)) + . . . αb−1S∗(ρ

(b−1)).

For any 0 ≤ i ≤ b − 1, S∗(ρ
(i)) is again an ergodic Sn-invariant measure.

Since the ergodic decomposition of (Sn, ν) is unique, this yields a permutation
π : {0, 1, . . . , b− 1} → {0, 1, . . . , b− 1},

π(i) = j ⇐⇒ S∗(ρ
(i)) = ρ(j).

Clearly, πb! = Id. Now, since η � ν,

η = β0ρ
(0) + · · ·+ βb−1ρ

(b−1)

for some 0 ≤ βi ≤ 1,
∑b−1
i=0 βi = 1, whence (Sb!)∗(η) = η and the assertion

follows.

Corollary 7.15. Under the assumptions of Proposition 7.14, whenever n ≥ 2b!,
for any finite family of sets {Ai : i ∈ I} with ν(Ai) > 0, there exists 0 ≤ s ≤ b!−1
such that ∣∣∣∣{i ∈ I : (Ss)∗(η)(Ai) ≥

1

2
ν(Ai)

}∣∣∣∣ ≥ |I|b! .
Proof. By Proposition 7.14, for every i ∈ I, there exists 0 ≤ si ≤ b! − 1 such
that

1

n

([n
b!

]
+ 1
)

(Ssi)∗(η)(Ai) ≥
1

b!
ν(Ai).

Since 1
n

([
n
b!

]
+ 1
)
≤ 2

b! , we have (Ssi)∗(η)(Ai) ≥ 1
2ν(Ai) and the result easily

follows by Fubini’s argument.

Proposition 7.16. Fix ε > 0. Let A be a finite alphabet, fix w ∈ AN∗ and
suppose that the following conditions hold:

(a) w is quasi-generic for some shift-invariant measure ν for which

(b) H := htop(supp(ν)) > 0,

(c) there exist q ≥ 2 and b ≥ 1 such that, for all m ≥ 1, the number of ergodic
components of the action of Sq

m

on (AN∗, ν) is bounded by b.
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Then, for all ` ≥ 1 large enough, there exists τ` > 0 such that, for all m > `,
we can find 0 ≤ s ≤ b!− 1 satisfying (using as before the notation L := q`)∣∣∣∣∣
{
C ∈ AL−b! :

lim sup
K→∞

1

K

∑
0≤k<K

1C

(
S(k+1)qm−L+1+sw

)
≥ τ`

}∣∣∣∣∣ ≥ 2H(1−ε)L.

Proof. It follows by (b) that

(75)
∣∣{C ∈ AL−b! : ν(C) > 0

}∣∣ ≥ 2H(1−ε/3)(L−b!) ≥ 2H(1−2ε/3)L,

when ` (and hence also L) is large enough. Fix such an `, which additionally
satisfies the following inequality:

(76)
2H(1−2ε/3)L

b!
≥ 2H(1−ε)L.

Let

(77) τ` :=
1

2
min

{
ν(C) : C ∈ AL−b!, ν(C) > 0

}
and take m > `.

By (a), we may find an increasing sequence (Nj) such that

ν = lim
j→∞

δS,Nj ,w.

Since
[
Nj
qm

]
qm/Nj → 1, by replacing Nj with

[
Nj
qm

]
qm if necessary, we can

assume that qm|Nj for j ≥ 1. Passing to a subsequence if necessary, we can
further assume the existence of

η := lim
j→∞

δSqm ,Nj/qm,w.

Then ν = 1
qm

∑qm−1
s=0 (Ss)∗(η). From (77), Corollary 7.15 applied to {C ∈

AL−b! : ν(C) > 0}, (75) and (76), it follows that there exists 0 ≤ s ≤ b!− 1 such
that

(78)
∣∣∣{C ∈ AL−b! : (Sq

m−L+1+s)∗(η)(C) ≥ τ`
}∣∣∣

≥
∣∣∣∣{C ∈ AL−b! : (Sq

m−L+1+s)∗(η)(C) ≥ 1

2
ν(C)

}∣∣∣∣
≥ 2H(1−2ε/3)L

b!
≥ 2H(1−ε)L.

Notice that, if C is a cylinder such that (Sq
m−L+1+s)∗(η)(C) ≥ a for some

a > 0, then

lim sup
K→∞

1

K

∑
0≤k<K

1C(S(k+1)qm−L+1+sw) ≥ a.
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This and (78) imply∣∣∣∣∣∣
C ∈ AL−b! : lim sup

K→∞

1

K

∑
0≤k<K

1C(S(k+1)qm−L+1+sw) ≥ τ`


∣∣∣∣∣∣

≥ 2H(1−2ε/3)L

b!
≥ 2H(1−ε)L,

which completes the proof.

An immediate consequence of Proposition 7.16 are the following two corol-
laries.

Corollary 7.17. Let ε > 0 and suppose that the assumptions (a’), (b’) and (c’)
of Theorem 7.3 hold. Then for all ` ≥ 1 large enough, there exists τ` > 0 such
that, for all m > `, we can find 0 ≤ s ≤ b!− 1 satisfying∣∣∣∣{C ∈ {0, 1}L−b! :

lim sup
K→∞

1

K

∑
0≤k<K

1C

(
S(k+1)qm−L+1+sz2

)
≥ τ`

}∣∣∣∣ ≥ 2H(1−ε/2)L.

Corollary 7.18. Let ε > 0 and suppose that the assumptions (a), (b) and (c)
of Theorem 7.1 hold. Then for all ` ≥ 1 large enough, there exists τ` > 0 such
that, for all m > `, we can find 0 ≤ s ≤ b!− 1 satisfying∣∣∣∣{C ∈ {−1, 0, 1}L−b! :

lim sup
K→∞

1

K

∑
0≤k<K

1C

(
S(k+1)qm−L+1+sz

)
≥ τ`

}∣∣∣∣ ≥ 2H(1−ε/2)L.

7.1.6 Entropy estimates

Proof of Theorem 7.3. We will need the following notation: if A = {a1 < a2 <
· · · < ar} is a finite subset of N∗, and if x = (x(n))n∈N∗ is a sequence in {0, 1}N∗ ,
we denote by x(A) the finite sequence

x(A) :=
(
x(a1), . . . , x(ar)

)
∈ {0, 1}r.

Fix ε > 0. Replacing q by qr if necessary, for some large r (which does not
alter the validity of (c’)), we can assume that q is large enough to satisfy the
assertion of Proposition 7.7, and also that

(79)
1

q − 1
<
ε

2
H.

Let ` be an integer large enough to satisfy the assertion of Corollary 7.17, and
set L := q`. Then, by Proposition 7.11, we can take m large enough so that the
upper density of the set of integers k which are not good is strictly less than τ`.
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Let 0 ≤ s ≤ b! − 1 be given by Corollary 7.17. Then, for any C ∈ {0, 1}L−b!
satisfying

lim sup
K→∞

1

K

∑
0≤k<K

1C

(
S(k+1)qm−L+1+sz2

)
≥ τ`,

there exist infinitely many good integers k such that the block corresponding to
the cylinder set C appears at position s of Im,k,L in the sequence z2. Since, by
Corollary 7.17, the number of such cylinder sets is at least 2H(1−ε/2)L, we can
deduce that

(80)
∣∣{z2(Im,k,L) : k good}

∣∣ ≥ 2H(1−ε/2)L.

We will show now that for ` sufficiently large, the number of blocks of length
L in t is at least 2H(1−ε)L, more precisely, we claim that

|{t(Im,k,L) : k is good}| ≥ 2H(1−ε)L.

We have
Im,k,L = Am,k,L tBm,k,L,

where

Am,k,L := {n ∈ Im,k,L : n ∈ N},
Bm,k,L := {n ∈ Im,k,L : n /∈ N}.

By Proposition 7.13,

|Am,k,L| = L

(
1

q
+ · · ·+ 1

ql

)
<

L

q − 1
whenever k is good,

whence

(81) |{z2(Am,k,L) : k is good}| ≤ 2
L
q−1 .

Observe also that, when k is good, the relative positions of Am,k,L and
Bm,k,L inside Im,k,L are always the same. Hence,

(82)
∣∣{z2(Im,k,L) : k is good}

∣∣
≤
∣∣{z2(Am,k,L) : k is good}

∣∣ · ∣∣{z2(Bm,k,L) : k is good}
∣∣.

Therefore, in view of (81), (80) and (79), we obtain

(83) |{z2(Bm,k,L) : k is good}| ≥ |{z
2(Im,k,L) : k is good}|

|{z2(Am,k,L) : k is good}|

≥ 1

2
L
q−1

|{z2(Im,k,L) : k is good}| ≥ 2H(1−ε/2)L

2
L
q−1

≥ 2H(1−ε)L.

Finally

(84) |{t(Im,k,L) : k is good}| ≥ |{t(Bm,k,L) : k is good}|
= |{z(Bm,k,L) : k is good}| ≥ |{z2(Bm,k,L) : k is good}| ≥ 2H(1−ε)L

and the result follows.
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Proof of Theorem 7.1. The proof goes along the same lines as the proof of The-
orem 7.3 (instead of {0, 1}, we consider the alphabet {−1, 0, 1}). First, (using
Corollary 7.18 instead of Corollary 7.17) we show that

(85)
∣∣{z(Im,k,L) : k good}

∣∣ ≥ 2H(1−ε/2)L

(cf. formula (80)). The formulas (82) and (83) are still valid, with z playing
now the role of z2. In (84) it suffices to remove the part involving z2 to obtain
the result.

7.2 Applications

7.2.1 µ and its generalizations: htop(z
2) > 0

Let B = {bk : k ≥ 1} be a set of pairwise coprime numbers with bk = a2
k and

let z(n) = µB(n) be given by formula (16). Then the following is true:

(a) The point z2 is generic for some measure ν. Moreover, for any block C
appearing in z2, ν(C) > 0 (for z = µ, see [21] and for the general case,
see [2]).

(b) 1
N

∑
n≤N z

2(n) −−−−→
N→∞

htop(supp(ν)) = htop(z
2) > 0.

(c) (S, ν) has purely discrete spectrum. Moreover, for q prime:

• if q - bk for all k ≥ 1 then (Sq, ν) is ergodic,

• if q | bk for some k ≥ 1 then such k is unique and for any m ≥ 1, Sq
m

has at most bk ergodic components

(see Theorem 4.4 in [2]).

Thus, we can apply Theorem 7.3 to z:

Corollary 7.19. Fix ε > 0. For z = µB (including the case z = µ), there exists
a Toeplitz sequence t which correlates with z, such that htop(t) ≥ (1−ε)htop(z2).

Remark 7.20. It would be interesting to know, whether we can find a Toeplitz
sequence t so that t correlates with µB and, moreover, htop(t) ≥ (1− ε)htop(z)
(cf. Remark 7.4).

Remark 7.21. Recall that htop(µ
2) = 6/π2. Therefore, in view of Propo-

sition 7.7 and Theorem 7.3, in case z = µ, it suffices to take q = 5 in the
construction of t, in order to obtain htop(t) > 0.

7.2.2 Sturmian sequences

Let η ∈ {0, 1}N∗ be a Sturmian sequence and let u ∈ {−1, 0, 1}N∗ be a generic
point for some Bernoulli measure B. Let z := η · u. Let ν be the measure from
Remark 2.17. Denote ρ = m∗(ν ⊗ B), see (58).

Lemma 7.22. htop(supp(ρ)) = htop(z) > 0.
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Proof. In view of Remark 5.9, it suffices to show that htop(supp(ρ)) = htop(z).
Clearly, whenever B is such that ρ(B) > 0, then B appears in z. Let now

B be a block which appears in z. Then B = B1 · B2 (the multiplication is to
be understood coordinatewise) for some block B1 which appears in η and some
block B2 which appears in u. Therefore

ρ(B) = ρ(B1 ·B2) = ν ⊗ B(m−1(B1 ·B2))

≥ ν ⊗ B(B1 ×B2) = ν(B1) · B(B2) > 0

by Remark 2.17 and since B(C) > 0 for any block C. This ends the proof.

Lemma 7.23. limN→∞
1
N

∑
n≤N z

2(n) > 0.

Proof. It follows from Remark 2.17 that (S,Xη, ν) ⊥ (S,Xu,B), whence (η, u)
is generic for ν ⊗ B. Therefore,

1

N

∑
n≤N

z2(n) =
1

N

∑
n≤N

η2(n) · u2(n) =
1

N

∑
n≤N

η(n) · u2(n)

=
1

N

∑
n≤N

(1{w:w(1)=1} ⊗ 1{w:w(1)=±1})((S × S)n(η, u))

−−−−→
N→∞

∫
1{w:w(1)=1} ⊗ 1{w:w(1)=±1} d(ν ⊗ B)

= ν({w : w(1) = 1}) · B({w : w(1) = ±1}) > 0.

Remark 7.24. Notice that (S,Xz, ρ) with ρ = m∗(ν ⊗ B) is a factor of
(S,Xη, ν) × (S,Xu,B). Therefore, z is generic for ρ. Moreover, the eigen-
values of (S,Xη, ν) × (S,Xu,B) and (S,Xη, ν) are the same, and there exists
some λ ∈ C with |λ| = 1 such that these eigenvalues are of the form λn, n ∈ Z.
In particular, any eigenvalue of (S,Xz, ρ) is of the form λn for some n ∈ Z.

Lemma 7.25. There exists b ≥ 1 such that (Sr, Xz, ρ) has at most b ergodic
components for any r ≥ 1.

Proof. If (S,Xz, ρ) is totally ergodic, the assertion of the lemma is true. Assume
now that (S,Xz, ρ) is not totally ergodic. Let λ ∈ C be as in Remark 7.24 and
let n0 ≥ 1 be the smallest natural number such that λn0 = 1. It follows that
(Sr, Xz, ρ) has at most n0 ergodic components for any r ≥ 1, which ends the
proof.

Corollary 7.26. Fix ε > 0. For z defined as above, there exists a Toeplitz
sequence t which correlates with z and such that

htop(t) ≥ (1− ε)htop(z).

Proof. In view of Lemma 7.22, Lemma 7.23, Remark 7.24 and Lemma 7.25, the
assumptions of Theorem 7.1 are satisfied for z and the assertion follows.
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(a) Functions x+H−1
1 (x) and x+H−1

2 (x). (b) Functions f1 and f2.

Figure 2: Graphs of the functions used in the bounds for measure-theoretic
entropy (left) and topological entropy (right).

A Possible pairs of entropies

The purpose of this appendix is to study the set of possible values of the pair
(htop(z

2), htop(z)) for z ∈ {−1, 0, 1}N∗ (we do not assume here that z satis-
fies (Ch)). Recall the definition of function H from Lemma 4.26:

H(x) = −x · log x− (1− x) · log(1− x) for x ∈ (0, 1)

and consider H1 := H|(0,1/2], H2 := H|[1/2,1). Moreover, define f1, f2 : [0, 1] →
R by

f1(x) := x+H−1
1 (x), f2(x) :=

{
x+H−1

2 (x), for x < H(2/3),

log 3, for x ≥ H(2/3),

see Figure 2a and 2b.

Remark A.1. Elementary calculation shows that x 7→ x+H−1
2 (x) is increasing

on (0, H(2/3)].

We have the following restrictions for (htop(z
2), htop(z)):

Proposition A.2. Let z ∈ {−1, 0, 1}N∗ . Then

htop(z) ≤ f2(htop(z
2))

with the equality htop(z) = f2(htop(z
2)) if and only if htop(z) = log 3. If addi-

tionally

(86) Xz = π−1(Xz2),

then f1(htop(z
2)) < htop(z).

One can also show that the bounds given by Proposition A.2 cannot be
improved:
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Proposition A.3. For any hz2 ∈ (0, 1] and ε > 0 there exists z ∈ {−1, 0, 1}N∗

such that

• htop(z2) ∈ [hz2 − ε, hz2 + ε],

• htop(z) ≥ f2(hz2)− ε.

Moreover, there exists z ∈ {−1, 0, 1}N∗ satisfying condition (86) and such that

• htop(z2) ∈ [hz2 − ε, hz2 + ε],

• htop(z) ≤ f1(hz2) + ε.

The main idea in the proof of Proposition A.2 is to study the pairs (h(ν), h(ν̂))
for ν ∈ PS({0, 1}Z). We have the following:

Proposition A.4. Let ν ∈ PeS({0, 1}Z) and set d := ν([1]). Then

h(ν̂) = h(ν) + d, and d ∈ [H−1
1 (h(ν)), H−1

2 (h(ν))].

Moreover, the following conditions are equivalent:

(a) d = H−1
i (h(ν)) for i = 1 or i = 2,

(b) ν = B(1− d, d).

The proof of these results starts with the following simple observation:

Lemma A.5. Let z ∈ {−1, 0, 1}N∗ . Then

htop(z
2) ≤ htop(z) ≤ min(htop(z

2) + 1, log 3).

Proof. Clearly, if z2(k) = 1 for some k ∈ Z then z(k) ∈ {−1, 1}. Hence pz(n) ≤
2n · pz2(n). It follows immediately that

htop(z) = lim
n→∞

1

n
log pz(n) ≤ lim

n→∞

1

n
log(2n · pz2(n))

= 1 + lim
n→∞

1

n
log pz2(n) = 1 + htop(z

2).

This completes the proof as clearly htop(z
2) ≤ htop(z) ≤ log 3.

A.1 Measure-theoretical setting

The restrictions on the pairs (h(ν), h(ν̂)) for ν ∈ PS({0, 1}Z) are described in
Proposition A.4. For its proof, we will need the following lemma.

Lemma A.6. Let d ∈ [0, 1], n ≥ 1 and ε > 0. Let

An,d,ε :=
{
C ∈ {0, 1}n :

∣∣∣∣ |supp(C)|
n

− d
∣∣∣∣ < ε

}
.

Then

(87) |An,d,ε| ≤ 2n sup{H(d′):d−ε≤d′≤d+ε}.

Moreover, if ν ∈ PeS({0, 1}Z) with ν([1]) = d, then for n sufficiently large there
exists Cn ⊂ An,d,ε such that

ν

( ⋃
C∈Cn

[C]

)
> 1− ε and |Cn| ≥ 2n(h(ν)−ε).
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Proof. If d−ε ≤ 1/2 ≤ d+ε, (87) is obvious because H(1/2) = 1. If d+ε < 1/2,
this is a consequence of Lemma 4.26. Otherwise, we have 1 − d + ε < 1/2, so
we can apply Lemma 4.26 to An,1−d,ε, and observe that H is symmetric, and
that |An,d,ε| = |An,1−d,ε|.

Now, let ν ∈ PeS({0, 1}Z) with ν([1]) = d. Set h := h(ν). It follows from
the Shannon-McMillan theorem and from the mean ergodic theorem that for n
sufficiently large there exists Cn ⊂ An,d,ε such that

ν

( ⋃
C∈Cn

[C]

)
> 1− ε/2,

and, for all C ∈ Cn,
2−(h+ε)n < ν([C]) < 2−(h−ε)n.

It follows that
1− ε/2 <

∑
C∈Cn

ν([C]) < |Cn| · 2−(h−ε)n,

whence |Cn| > (1− ε/2)2n(h−ε) ≥ 2n(h−ε).

Proof of Proposition A.4. Let ε > 0, set h := h(ν) and d := ν([1]). Let An,d,ε
be as in Lemma A.6. Then

2(h−ε)n ≤ 2n sup{H(d′):d−ε≤d′≤d+ε}

for all n sufficiently large. Thus, by the continuity of H, we obtain h ≤ H(d),
which implies that

(88) d ∈ [H−1
1 (h), H−1

2 (h)].

We are now ready to estimate h(ν̂). We have

1

n

∑
B∈{−1,0,1}n
ν̂(B)>0

−ν̂(B) log ν̂(B)

=
1

n

∑
C∈An,d,ε

∑
B∈{−1,0,1}n

B2=C

− ν(C)

2|supp(C)| · log
ν(C)

2|supp(C)|

+
1

n

∑
B∈{−1,0,1}n

B2∈Acn,d,ε
ν(B2)>0

−ν̂(B) log ν̂(B).

Let δ := ν̂
(⋃

B∈{−1,0,1}n

B2∈Acn,d,ε

B
)

= ν
(⋃

C∈Acn,d,ε
C
)
< ε. Then

∑
B∈{−1,0,1}n

B2∈Acn,d,ε
ν(B2)>0

(−ν̂(B)) log ν̂(B) = δ
∑

B∈{−1,0,1}n

B2∈Acn,d,ε
ν(B2)>0

− ν̂(B)

δ
· log

ν̂(B)

δ
− δ log δ

≤ δn log 3− δ log δ.

53



It follows that

h(ν̂) ≤ lim
n→∞

1

n

∑
C∈An,d,ε

∑
B∈{−1,0,1}n

B2=C

− ν(C)

2|supp(C)| · log
ν(C)

2|supp(C)| + δ log 3

≤ lim
n→∞

 1

n

∑
C∈An,d,ε

(−ν(C) log ν(C)) +
1

n

∑
C∈An,d,ε

ν(C)|supp(C)|

+ ε log 3

≤ h(ν) + d+ ε+ ε log 3.

Since ε is arbitrarily small, and remembering that (88) holds, we obtain

h(ν̂) ≤ h(ν) + d ≤ h(ν) +H−1
2 (h(ν)).

On the other hand, by similar arguments,

h(ν̂) ≥ h(ν) + d ≥ h(ν) +H−1
1 (h(ν)),

and the first part of the assertion follows.
Now, consider the partition {[0], [1]}. This is a generating partition and it

follows that h(ν) ≤ H(d); the inequality is sharp, unless ν = B(1 − d, d). In
other words, (a) does not hold, unless (b) holds. Clearly, (b) implies (a).

A.2 Topological setting

The restrictions on the pairs (htop(z
2), htop(z)) are listed in Proposition A.2.

For the proof, we will need some auxiliary lemmas.

Lemma A.7. Let ν ∈ PS({0, 1}Z). Then

h(ν̂) = max{h(ρ) : ρ ∈ PS({−1, 0, 1}Z), π∗(ρ) = ν}.

Proof. For any ρ ∈ PS({−1, 0, 1}Z) satisfying π∗(ρ) = ν, we have

−h(ρ) = lim
n→∞

1

n

∑
B∈{−1,0,1}n

ρ(B) log ρ(B) = lim
n→∞

1

n

∑
C∈{0,1}n

∑
B2=C

ρ(B) log ρ(B)

≥ lim
n→∞

1

n

∑
C∈{0,1}n

∑
B2=C

ν̂(B) log ν̂(B) = −h(ν̂)

(the inequality follows from the fact that
∑n
i=1 ai log(ai) ≥

∑n
i=1

a
n log a

n , where
a =

∑n
i=1 ai).

Remark A.8. Suppose that z ∈ {−1, 0, 1}N∗ satisfies (86), that is, for each B
appearing in z2 and each C such that C2 = B, the block C appears in z. Then
clearly

ν ∈ PS(Xz2) ⇐⇒ ν̂ ∈ PS(Xz).

It follows that if ρ ∈ PS(Xz) is such that htop(z) = h(ρ) then, by Lemma A.7,

htop(z) = h(ρ) ≤ h(π̂∗(ρ)) ≤ htop(z),

i.e. htop(z) = h(π̂∗(ρ)).
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Lemma A.9. Let z ∈ {−1, 0, 1}N∗ . Then

htop(z) ≤ sup{h(ν̂) : ν ∈ PS(Xz2)} = max{h(ν̂) : ν ∈ PS(Xz2)}.

Proof. Let X := π−1(Xz2). Let ρ ∈ PS(X) be such that h(ρ) = htop(X). Then
by Lemma A.7

htop(z) ≤ htop(X) = h(ρ) ≤ h(π̂(ρ)) ≤ htop(X).

But π(ρ) ∈ PS(Xz2), hence

h(π̂(ρ)) ≤ sup{h(ν̂) : ν ∈ PS(Xz2)}.

On the other hand, if ν ∈ PS(Xz2), ν̂ ∈ PS(X), and h(ν̂) ≤ h(ρ) = htop(X). It

follows that the supremum in the statement of the lemma is equal to h(π̂(ρ)),
and the result is proved.

Proof of Proposition A.2. By Lemma A.9,

htop(z) ≤ max{h(ν̂) : ν ∈ PS(Xz2)}.

Let κ ∈ PS(Xz2) be such that

h(κ̂) = max{h(ν̂) : ν ∈ PS(Xz2)}.

By Proposition A.4,

h(κ̂) ≤ f2(h(κ)) ≤ sup{f2(h(ν)) : ν ∈ PS(Xz2)}.

By Remark A.1, the latter expression is equal to f2(htop(z
2)), whenever htop(z

2) <
H(2/3). But if htop(z

2) ≥ H(2/3), then f2(htop(z
2)) = log 3 ≥ f2(h(ν)) for any

ν ∈ PS(Xz2htop(z). Thus, we have obtained

sup{f2(h(ν)) : ν ∈ PS(Xz2)}(z) ≤ f2(htop(z
2)).

If all of the above inequalities are equalities, then in particular

h(κ̂) = f2(h(κ)),

which by Proposition A.4 happens only if κ is Bernoulli. This implies htop(z
2) =

log 2 = 1. But then

htop(z) = f2(htop(z
2)) = f2(1) = log 3.

On the other hand, if htop(z) = log 3, then htop(z
2) = log 2 and we obtain

htop(z) = log 3 = f2(htop(z
2)).

Suppose now that (86) holds and let ν ∈ PS(Xz2) be such that htop(z
2) =

h(ν). Then, by Proposition A.4,

htop(z) ≥ h(ν̂) ≥ f1(h(ν)) = f1(htop(z
2)).

We claim that the second inequality is sharp. Indeed, assume it is an equality.
Then by Proposition A.4, ν is Bernoulli. This, together with (86) gives htop(z) =

log 3. Then htop(z
2) = 1. But for these values, we have log 3 >

3

2
= f1(log 2).
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Proposition A.3 shows that the bounds given by Proposition A.2 cannot be
improved.

Proof of Proposition A.3. The proof of both parts of the assertion goes along
the same lines and we will provide details only for the first part.

Let d ≥ 1/2 be such that H(d) = hz2 . Fix ε > 0 and for n ∈ N let An,d,ε be
as in Lemma A.6. Then,

|AN,d,ε| ≤ 2N sup{(H(d′):d−ε≤d′≤d+ε}.

Applying the second part of Lemma A.6 with ν := B(1−d, d), for N sufficiently
large, we get

2(H(d)−ε)N ≤ |AN,d,ε|.

Fix such N and let X ⊂ {0, 1}N∗ be the subshift consisting of these points x, for
which any block appearing in x is a subword of a concatenation of some words
form AN,d,ε. Let

CnN := {B ∈ X : |B| = nN}.

Then
|AN,d,ε|n ≤ |CnN | ≤ N · |AN,d,ε|n+1,

whence
H(d)− ε ≤ htop(X) ≤ sup{H(d′) : d− ε ≤ d′ ≤ d+ ε}.

Moreover, if n is sufficiently large, then, for B ∈ CnN we have∣∣∣∣ |supp(B)|
nN

− d
∣∣∣∣ < 2ε.

For n ∈ N, let
DnN := {C ∈ {−1, 0, 1}nN : C2 ∈ CnN}.

It follows that

|DnN | ≥ 2(d−2ε)nN |CnN | ≥ 2(d−2ε)nN |AN,d,ε|n ≥ 2(d−2ε)nN · 2(H(d)−ε)nN .

Then
H(d) + d− ε− 2ε ≤ htop(π−1(X)).

By the choice of d, d = H−1
2 (hz2). Then, by continuity of H, to complete the

proof, it suffices to pick z ∈ π−1(X) such that any block appearing in π−1(X)
also appears in z.
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Rouen, CNRS – Avenue de l’Université – 76801 Saint Etienne du Rouvray, France
elhoucein.elabdalaoui@univ-rouen.fr

Joanna Ku laga-Przymus
Institute of Mathematics, Polish Acadamy of Sciences, Śniadeckich 8, 00-956 Warszawa,
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