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a b s t r a c t

Allocating the right person to a task or job is a key issue for improving quality and performance of

achievements, usually addressed using the concept of ‘‘competences’’. Nevertheless, providing an accu-

rate assessment of the competences of an individual may be in practice a difficult task. We suggest in this

paper to model the uncertainty on the competences possessed by a person using a possibility distribu-

tion, and the imprecision on the competences required for a task using a fuzzy constraint, taking into

account the possible interactions between competences using a Choquet integral. As a difference with

comparable approaches, we then suggest to perform the allocation of persons to jobs using a robust opti-

misation approach, allowing to minimise the risk taken by the decision maker. We first apply this frame-

work to the problem of selecting a candidate within n for a job, then extend the method to the problem of

selecting c candidates for j jobs (cP j) using the leximin criterion.

1. Introduction

Human factor is now considered as a key point for industrial

performance (Pépiot, Cheikhrouhou, Fürbringer, & Glardon,

2008). The link between a person and a task (or role, job, position,

etc.) is usually made through the concept of ‘‘competence’’,

now quite universally understood as the ‘‘ability’’ or ‘‘potential’’

to act effectively in a given working situation (Rozewski &

Malachowski, 2009). As a consequence, the ISO 9000 standard

version 2005 (ISO, 2005) requires the organisations to justify the

competences of the human resources involved in the processes,

defined as their ‘‘demonstrated ability to apply knowledge and

skills’’. An efficient management of the operational performance

of human resources therefore requires being able to allocate the

right person to a task or role within a business process. This neces-

sitates to address two problems:

- how to model and assess the competences (competences

required by a process and competences possessed by an

individual),

- how to allocate tasks or roles to actors according to their

competences.

Two of the authors have developed a Competence Management

software which has been implemented in several companies of dif-

ferent industrial sectors: railway industry (1 company), aeronautic

(2 companies), petroleum (2 companies), construction (8 compa-

nies) and paper industry (1 company). In each case, the compe-

tences attached to a considered position or role have been

identified and grouped in ‘‘types of competences’’. The number of

levels of the competences has been defined, and the competences

possessed by the actors have been assessed (self assessment plus

evaluation by the supervisor). Tools have then been provided for

comparing required and possessed competences, and to address

the detected gaps using trainings.

The longest implementation of this framework has taken more

than two years. Some lessons learnt from these experiments have

been detailed in Grabot and Houé (2009), concluding on the fol-

lowing requirements which would in our opinion allow to better

address the present industrial needs concerning the allocation of

persons to tasks or positions:

- like many human characteristics, the competences required by

a process, so that those possessed by an individual, can hardly

be precisely assessed. Defining required competences is a mat-

ter of preferences, and could benefit from a flexible model,

while there may be some uncertainty on the validity of the

assessment of the level of a possessed competence. Therefore,

a framework allowing to model the possible imprecision and
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uncertainty on the required and possessed competences would

allow to cope with partial ignorance, often realistic in this

domain;

- in real situations, the combination of competences required for

performing a job may have to be modelled more subtly than

using a classical ‘‘and’’ (e.g. ‘‘Competences X and Y and Z are

required for performing job J’’). Models denoting alternatives

(‘‘X or Y’’), but also synergies or oppositions between compe-

tences may be useful for describing some real situations;

- allocating persons to jobs according to their competences may

be done in different ways. The most classical one is to try to

maximise the consistence between required and possessed

competences. Nevertheless, if competences are imprecisely

known, minimising the risk taken by an allocation, i.e. a ‘‘robust

optimisation’’ approach, would express a more natural attitude

of the decision maker (Kahneman & Tversky, 1979).

The first point has been addressed in several studies, especially

using fuzzy logic for modelling imprecisely known competences.

The state of the art provided in Section 2 shows that the two other

points have not yet been fully considered in the literature. In order

to address these requirements, we suggest to use the possibility

theory for taking into account the imprecision on the competences,

by defining the satisfaction level of the competences required for a

job using fuzzy constraints. We suggest to assess as a second step

the global level of satisfaction provided by the allocation of a per-

son to a job using the Choquet integral, which allows to take into

account interactions between competences (Section 3). In the con-

text of resource allocation under the uncertainty modelled by pos-

sibility theory, ‘‘robust optimisation’’ consists in maximising the

minimal expected value for each allocation. In that purpose, we

maximise the necessity of satisfaction of each allocation, again

using a Choquet integral. As an illustration, we first apply this

framework to the problem of selecting a candidate within n for a

job described in Barbera and Jackson (1988)), using the leximin cri-

terion as a robust criterion (Section 4). We then address the prob-

lem of c candidates for j jobs (cP j) in Section 5.

2. Competence modelling: from crisp to fuzzy models

2.1. Modelling competence

The capacity of a person to perform an activity has first been

considered using the qualification framework (Zarifian, 1994,

chap. 6), which denotes the recognition of an aptitude. Neverthe-

less, listing all the activities that a person may perform in a given

job is unrealistic; therefore the more generic concept of ‘‘compe-

tence’’ has been introduced. Competences are for instance defined

in Peters and Zelewski (2007) as the ability of an employee to use

his knowledge to achieve a predefined goal at a given level of per-

formance. As pointed out in Boucher, Bonjour, and Grabot (2007),

this concept may be covered by different words in the literature,

especially ‘‘skills’’ (de Korvin, Shipley, & Kleyle, 2002; Otero,

Centeno, Ruiz-Torres, & Otero, 2009; Valls, Perez, & Quintanilla,

2009), or to a lower extent ‘‘abilities’’ (Huang, Chiu, Yeh, &

Chang, 2009) or even ‘‘suitability’’ (Yaakob & Kawate, 1999). Nev-

ertheless, ‘‘skills’’ seem to be usually considered as close to

‘‘know-how’’, denoting a technical aptitude to perform some tasks,

while ‘‘competences’’ are more generic: for most of the authors,

competences are a fluid mix of knowledge, skills (possibly given

by experience) and attitudes (Léné, 1999; Tobias & Dietrich,

2003). A close distinction is made in Warhurst, Keep, and

Grugulis (2004), in which ‘‘skills’’ are distinguished from ‘‘generic

skills’’, also called ‘‘competences’’. In what follows, we shall com-

bine the previous definitions, by defining competences as

‘‘knowledge, know-how and attitudes used to achieve a goal at a

required level of performance’’, this goal being associated to a role

or activity of the actor.

Since companies have now the necessity to justify the compe-

tence of the human resources involved in their business processes,

many Competence Management tools have recently been devel-

oped by software editors, as standalone applications, included in

Human Resource Management modules, or as part of ERP (Enter-

prise Resource Planning) systems. Such tools usually allow to com-

pare the competences required by a position and those possessed

by a person. The competence levels are sometimes described using

linguistic expressions (e.g. poor, adequate, average, good, very

good and excellent) but they are always associated to integers

for building graphics on which required and possessed competenc-

es are compared one by one, through radars or bar graphs. No

aggregated score summarising the adaptation of a person to an

activity or position is usually provided.

Industrial applications of such ‘‘crisp’’ competence models are

for instance described in Grabot and Houé (2009), with the conclu-

sion that defining precisely the level of a competence required by a

process may be difficult in real cases. Similarly, assessing the pre-

cise level of competence of an individual is still more complex. A

solution is to describe the available knowledge on required and

possessed competences with its intrinsic ambiguity. This is for

instance possible using fuzzy logic, allowing to describe categories

with imprecise boundaries: fuzzy logic is known as providing an

easy-to-use framework for expressing subjective knowledge,

which is the case of required and possessed competence.

This idea has already been applied in the literature on skill/

competence modelling: even if the term ‘‘competence’’ is not used,

an early work dealing with fuzzy competence modelling is (Liang &

Wang, 1992), in which decision-makers’ fuzzy assessments about

‘‘personnel suitability ratings relative to various evaluation crite-

ria’’ are aggregated using fuzzy arithmetic. In Wang and Wang

(1998), competences modelled by fuzzy sets are used for finding

an optimal process to expand a worker’s competence set. Triangu-

lar fuzzy numbers are also used in Yaakob and Kawate (1999) to

assess the ‘‘suitability’’ of workers for performing given jobs. In

Huang et al. (2009), required and available competences are again

modelled by trapezoidal fuzzy sets, and compared using a degree

equal to the maximum of the intersection of the two sets: both

over-competence and lack of competence are in that case

penalised.

Other works are more precisely oriented on the process of eval-

uating competences: (Cannavacciulo, Capaldo, Ventre, Volpe, &

Zollo, 1996) uses fuzzy logic for modelling the activity of compe-

tence evaluation. Pépiot et al. (2008) focus on the modelling of ele-

mentary competences, then on their aggregation in order to define

a ‘‘global’’ competence on a given domain using fuzzy inference,

while in Rozewski and Malachowski (2009), a fuzzy competence

model is used for providing a detailed, behavioural description of

the employee’s characteristics required to effectively perform a

task. In Suleman and Suleman (2012), a fuzzy approach is sug-

gested to rank workers according to their competences, while in

Zemkova (2008), a comparison between the fuzzy competences

possessed by individuals and those requested by a ‘‘role’’ is sug-

gested. Weights are often associated to elementary competences

in order to express their relative importance. Korkmaz, Gokcen,

and Cetinyoku (2008) and Huang et al. (2009) suggest to use AHP

(Analytic Hierarchy Process; Saaty, 1980) for capturing the exper-

tise on these weights. Aggregation may also be performed using

more complex operators, like Hurwicz and OWA (Ordered

Weighted Average) operators (Nasibov, 2007), both allowing to

express a compromise between optimistic (the global index is

the maximum of the elementary ones) and pessimistic (the global

index is the minimum of the elementary ones) attitudes.



All these approaches provide a more robust and flexible frame-

work than ‘‘crisp’’ models for describing required and possessed

competences. It his shown in next section how these frameworks

have been used for employees’ allocation.

2.2. Allocating people to tasks or jobs using competences

The literature on workforce scheduling is very rich, but compe-

tences and skills are only taken into account in some studies, usu-

ally through simple models (list of required and possessed

competences, often assessed on a binary scale); a survey can for

instance be found in Boucher et al. (2007). Some studies go further

and address the problem of task allocation under constraints of

competences, for instance in the fields of maintenance (Marmier,

Varnier, & Zerhouni, 2009a), line balancing (Sabar, Montreuil, &

Frayret, 2005), call centre (Valls, Perez, & Quintanilla, 2009), pro-

ject management (Hlaoittinum, Bonjour, & Dulmet, 2008), soft-

ware development (Gonsalves & Itoh, 2010; Otero et al., 2009) or

military personnel assignment (Korkmaz, Gokcen & Cetinyoku,

2008). In these studies, competence levels are assessed through a

number, weights are associated to the competences, and a com-

pound index, usually calculated using a weighted sum, shows the

global adequacy between a person and a position (see for instance

Otero et al., 2009), allowing to rank candidates according to their

adequacy with the task or position.

Some studies address the allocation problem in a fuzzy frame-

work. Marmier, Varnier, and Zerhouni (2009b) suggest for instance

to allocate workers to maintenance activities on the base of a com-

petence expressing their ability to perform a task. Only one aggre-

gated competence is considered for each task. Heuristics are for

instance suggested in de Korvin et al. (2002) for allocating workers

to tasks, based on possessed and required levels of competences: a

‘‘goal’’ is defined as a required level for each considered compe-

tence, and a compatibility measure between the goal and an indi-

vidual is suggested. For similar purposes, (Liang & Wang, 1992)

suggests to aggregate decision maker’s fuzzy assessment on crite-

ria weights and personal suitability ratings. A polynomial algo-

rithm for personnel placement under fuzziness is suggested by

combining fuzzy set theory and a weighted bipartite graph. Recent

studies often use metaheuristics for performing the allocation:

simulated annealing is used in Baykasoglu, Dereli, and Das

(2007) for solving a model using a ‘‘suitability objective’’ (linked

to the satisfaction of the required competences) and constraints

aiming at minimising the team size, and respecting the budget of

the project. Genetic algorithms are used in Nasibov (2007) for solv-

ing an allocation problem where persons and tasks are linked by

fuzzy relations: the objective is to maximise the degree of compe-

tence of the entire allocation and the degree of the overall level of

employment of standard executives. In Malachoswki (2011), fuzzy

required and possessed competences are compared, the cost and

time possibly required for expanding the competence set being

considered for building an allocation of persons to projects.

In Yaakob and Kawate (1999), a fuzzy suitability ranking of each

worker for a given job is calculated thanks to fuzzy arithmetic. The

types of relationships between workers are then considered for

defining the final allocation, aiming at matching workers to jobs.

Nevertheless, the method mainly uses the average values of the

fuzzy sets, and the interest to imprecisely define the competences

is not clear in that case. In Karsak (2000), a fuzzy multiple objec-

tives Boolean linear programming model is suggested for solving

the problem using undominated solutions.

How these various references address the requirements listed in

the introduction is shown in Table 1. If most of these studies aim at

allocating people to tasks, jobs or positions, others have a different

goal, like the evaluation of the employees (Cannavacciulo et al.,

1996; Zemkova, 2008), Competence Management (Pépiot et al.,

2008) or performance prediction (Poveda & Fayek, 2009). Only

few studies (Cannavacciulo et al., 1996; Huang et al., 2009) address

the (minor) requirement concerning the possibility to modify a lin-

guistic label using a fuzzy operator. The comparison between

required and possessed competences is not always explicitly

addressed: a ‘‘suitability’’ between what is required and what is

available is sometimes an input of the method (Liang & Wang,

1992; Nasibov, 2007) whereas in other works, the required compe-

tences are defined as binary (Zemkova, 2008), or are not consid-

ered, as in studies aiming at listing available competences

(Marmier et al., 2009a).

In some cases in which a fuzzy inference is used for aggregating

the elementary degrees of ‘‘suitability’’ of the competences, the

required competences are implicitly present in the rule base (e.g.

in Poveda & Fayek, 2009). Most of the time, weighted sums are

used for aggregating elementary degrees of matching between

required and possessed competences, weights being either crisp

or fuzzy, sometimes defined using AHP or its variants (Huang

et al., 2009; Malachoswki, 2011). ‘‘Ad hoc’’ operators are some-

times defined for the aggregation, like the ‘‘compound compe-

tence’’ of Wang and Wang (1998) or the ‘‘fuzzy compatibility’’ in

de Korvin et al. (2002). Possible interactions between competences

are never taken into account.

The only study suggesting a way to take into account different

attitudes of the decision maker regarding the uncertainty of the

data is (Nasibov, 2007). Using the Hurwicz criterion or the OWA

operator for aggregation, this study allows to depict a full range

of decision maker’s behaviours, from optimism to pessimism. The

later case can be interpreted as the ‘‘robust’’ assessment present

in our requirements. Nevertheless, the work does not consider

the aggregation of elementary competences: the suitability

between a person and a task is assessed through a single parameter

(competence of an executive to perform a task). In this study, the

aggregation aims at assessing the entire allocation of persons to

tasks. Obtaining such a ‘‘compatibility matrix’’, which is an input

in Nasibov (2007), is one of the objectives of the method suggested

in the present article.

Since none of the analysed references addresses all the targeted

requirements (especially, providing a modelling framework allow-

ing to take into account the possible interactions between compe-

tences, which is never considered), we suggest in next sections a

comprehensive framework addressing all these points.

3. A framework for fuzzy competence modelling

As shown in Dubois, Prade, and Testemale (1988), the compar-

ison between a required and an available ‘‘object’’ may lead to two

different modelling problems:

- the requirement may be imprecise. Fuzzy logic may be used in

that case if the boundaries between categories are not crisp, as

suggested in previous studies;

- the assessment of the competences of the available ‘‘candi-

dates’’ may be uncertain. In that case, a distribution of possibil-

ities is more adapted than a fuzzy set for representing the

knowledge on the ‘‘object’’.

In Dubois et al. (1988) is shown how the comparison between a

requirement (denoted by a fuzzy linguistic label) and a property of

a candidate element (denoted by a distribution of possibilities) can

be done through two degrees: a necessity degree expressing to

what extend it is necessary that the candidate fits the requirement,

and a possibility degree expressing to what extend it is possible.

Even if their interpretation may be difficult, these two degrees

allow a richer comparison between requirement and object than

simple membership degrees. Within this framework, fuzzy



required competences and possibilistic possessed ones will denote

uncertainty leading to risk in the allocation process. With this

point of view, we suggest in the following an approach based on

robust optimisation, i.e. aiming at minimising risk, which is in our

opinion consistent with industrial needs. In that purpose, a frame-

work for fuzzy competence modelling will firstly be defined in next

section.

3.1. Model of the required competences

Let us consider the following definition of a fuzzy constraint:

Definition 1 (Dubois et al., 1994)). A fuzzy constraint is defined

by a constraint C and a fuzzy relation eR such that the degree of

satisfaction of a solution �d 2 X (with X the set of possible

solutions) is described by the function k
eR
ð�dÞ of X in L such as:

� k
eR
: X ! ½0;1�;

� k
eR
ð�dÞ ¼ 1 means that �d totally satisfies the constraint C;

� k
eR
ð�dÞ ¼ 0 means that �d totally violates the constraint C;

� k
eR
ð�dÞin½0;1�means that �d partially satisfies the constraint C.

As already suggested (see Section 2.2), the levels of compe-

tence required by a task or position can be described by fuzzy

constraints (Definition 1), but unlike most of previous studies,

it has been chosen here to keep some flexibility for defining

the requirement on a given competence. In Fig. 1 are for

instance shown classical fuzzy constraints corresponding to com-

petence levels which may be associated with linguistic labels

like ‘‘beginner, basic, average, good, expert’’, but also others like

‘‘at least average’’ or ‘‘average to good’’ which may be useful in

some cases (this possibility was already used in Cannavacciulo

et al. (1996) and Huang et al. (2009)). The scale of the compe-

tence level can be chosen (0–4 has been taken as an example

in Fig. 1), so that the number of fuzzy sets and their degree of

overlapping, which should be consistent with the accuracy of

the available data.

The ‘‘at least’’ modifier has an important interest: if only trian-

gular fuzzy sets are used, a competence with a higher level than

Table 1

Position of the literature regarding the requirements.

Model of required

competences

Model of

possessed

competences

Modifiers Interactions Aggregation

operator

Purpose Optimisation

criterion

Liang and Wang

(1992)

Fuzzy suitability ratings No No Weighted sum Assign persons to jobs Max aggr. degree of

suitability

Cannavacciulo et al.

(1996)

Implicit Fuzzy sets Yes No Weighted sum Employees’ evaluation No

Wang and Wang

(1998)

Degree Degree No No Compound

competence

Expand competences Min. Cost for getting

required comp.

Herrera et al.

(1999)

Fuzzy set (denoting

both required comp.

And weight)

Fuzzy set No No Weighted sum Assign persons to

positions

Max aggr. Degree of

competence

Yaakob and Kawate

(1999)

Fuzzy sets Fuzzy sets No No Weighted sum Assign persons to jobs Max aggr. Degree of

competence

Karsak (2000) No: comp. Should be

maximised

Fuzzy sets No No Fuzzy

weights + weighted

sum

Assign persons to

positions

Compromise

between

suitability and cost

de Korvin et al.

(2002)

Degree to which a

skill

is required

Degree to

which a skill

is

possessed

No No Fuzzy compatibility Assign persons to

project

steps

Max. Compatibility

Baykasoglu et al.

(2007)

Fuzzy sets Fuzzy sets No No Weighted sum for

assignment

Team selection Max aggr. Degree of

competence

Nasibov (2007) Matrix of compatibility person/task

with

numbers e [0,1]

No Hurwicz, owa Assign persons to tasks Max. Aggr. Suitability

of

assignment

Pépiot et al. (2008) No (fuzzy sets for

properties of

competences)

No No No Fuzzy inference Competence

management

No

Zemkova (2008) Binary (0,1) Fuzzy sets No No Weighted average

of fuzzy numbers

Employees’ evaluation No

Huang et al. (2009) Fuzzy sets Fuzzy sets Partial (‘‘at

least’’)

No ANP + weighted

sum

Assign persons to

positions

Max aggr. Degree of

competence

Marmier et al. (2009a) No Trapezoidal

fuzzy sets

No No No Calculate completion

time of each job

according

to allocation

Minimise fuzzy

completion time and

maximise robustness

Otero et al. (2009) Linguistic labels Linguistic

labels

No No Sum of

‘‘suitabilities’’

Assign persons to tasks Max aggr. Degree of

competence

Poveda and Fayek

(2009)

Not directly (in the

rules of inference

system)

Fuzzy sets No No Fuzzy inference Predict performance No

Rozewski and

Malachowski

(2009)

Fuzzy sets Fuzzy sets No No No Compute cost of

competence expansion

No

Malachoswki

(2011)

Fuzzy set Fuzzy sets No No AHP + weighted

sum

Assign candidates to

tasks

Minimise cost

Suleman and

Suleman (2012)

No Crisp number No No No (fuzzy

partitions)

Classify competences No



required will be considered as different from what is required.

This is consistent if the goal of the allocation is to find a person

having exactly the expected competence (for instance because

people with higher competence may have a higher cost). If no

penalty is expected for allocating a person with a higher

competence, an easy solution is to modify all the triangular

membership functions using the ‘‘at least’’ modifier (see the case

of ‘‘average’’ and ‘‘at least average’’ in Fig. 1): in this case, ‘‘good’’

or ‘‘expert’’ are l(X) = 1 for instance fully consistent with ‘‘at least

average’’.

3.2. Global satisfaction level of required competences using the

Choquet integral

Let us consider the two following definitions:

Definition 2 (Sugeno, 1974)). A capacity l is a function

l:2X? [0, 1], satisfying the following axioms:

i. l(£) = 0.

ii. A � B � X => l(A) 6 l(B).

We assume here that as it is often done, although it is not neces-

sary in general. The concept of ‘‘capacity’’ will allow us to describe

weights to be applied on sets of criteria.

Weighted sums have often been used in the literature for per-

forming multi-criteria aggregation (including in Competence Man-

agement, see Table 1) because of their simplicity. Nevertheless, it

does not allow to describe interactions between elementary crite-

ria. The Choquet integral is a possible way to address this problem

(Grabisch & Roubens, 2000), since it allows to define the aggrega-

tion of elementary criteria using (i) a linear part similar to a

weighted sum, and (ii) another part taking into account the inter-

actions between elementary criteria. These interactions may

decrease the Global satisfaction, or increase it, according to the

choice of the parameters. More formally:

Definition 3 (Choquet, 1953)). Let us consider a capacity l on 2X,

which elements are denoted x1, . . ., xn here and f : X ! R
þ a

function representing the scores of an object on n criteria (satis-

faction level of the fuzzy constraints k
eR
Þ. The discrete Choquet

integral of function f with respect to l (global score of the objet) is

defined by:

Clðf Þ :¼
X

n

i¼1

½f ðxðiÞÞ ÿ f ðxðiÿ1ÞÞ�lðAiÞ ð1Þ

With Ai:={x(i), . . ., x(n)}, f(x(0)) = 0, and x(i) is a permutation of xi so

that 0 6 f(x(1)) 6 f(x(2)) 6 . . . 6 f(x(n)).

In multi-criteria decision making, the capacities (Definition 2)

and the Choquet integral (Definition 3) are powerful tools for mod-

elling the global preferences of the decision maker, since they

allow the introduction of weights not only on each criterion, but

also on each subset of criteria (thanks to the permutation x(i)). As

a consequence, all the possible combinations of the n criteria can

be considered. In this way, a capacity, which is a non-additive

monotonic measure, is able to express human subjectivity in

multi-criteria aggregation, taking into account that human reason-

ing does not always use additive frameworks (Marichal, 2009). In

practice, this framework may allow to describe the synergy

between two criteria (i.e. they become more important when they

are both at a high level) or, on the opposite, their redundancy

(being both satisfied does not bring much to the global index). This

is very consistent with the requirements expressed in the introduc-

tion. Nevertheless, the ‘‘importance’’ of a criterion cannot be repre-

sented by its capacity alone, since this importance also depends on

the interactions with other criteria. For addressing this problem, it

has been suggested to define an importance index / as follows

(Grabisch, 2006):

Let us consider a group of criteria in interaction A with

a = card(A), n being the total number of criteria and l a capacity

denoting a weight on a criterion or on a set of criteria.

/ðiÞ ¼
X

AvXni

ðnÿ aÿ 1Þ!a!

n!
½lðA

[

figÞ ÿ lðAÞ� ð2Þ

With this definition,
P

i/(i) = l(X) (Grabisch & Roubens, 2000). It is

considered in studies like (Grabisch, 2006) that this sum has to be

equal to 1, but in others (Grabisch & Roubens, 2000), this sum can

be superior to 1.

This importance index allows to calculate the final weight of a

criterion, according to its elementary weights and to its interac-

tions. Conversely (see Section 4), it is possible to choose the global

importance of a criterion, then to check that it is consistent with its

interactions.

As an additional problem, it can be seen in formula (1) that the

flexibility provided by the capacity model has a cost (Grabisch,

2006): for n criteria, the model is composed of 2n ÿ 2 parameters

expressing the weights on the groups of criteria, which makes

the identification of all the required parameters difficult. Fortu-

nately, it has been experimentally shown that using a n-additive

capacity, i.e. a capacity that takes into accounts all the possible

combinations of the n criteria, does not increase significantly the

precision of the results when compared to a 2-additive capacity

measure, i.e. a capacity only taking into account the combinations

of two criteria among the n possible (Grabisch, Duchêne, Lino, &

Perny, 2002). Therefore, we have chosen to use a 2-additive capac-

ity measure in this article, which means that interactions between

more than two criteria are considered as null.

In the case of 2-additive capacity, the Choquet integral can be

written as follows (Grabisch, 1997):

Clðf Þ ¼
X

i;jjIij>0

ðf ðiÞ ^ f ðjÞÞIij þ
X

i;jjIij<0

ðf ðiÞ _ f ðjÞÞjIijj

þ
X

i2N

f ðiÞ /ðiÞ ÿ
1

2

X

j–i

jIijj

" #

ð3Þ

With /ðiÞ ÿ 1
2

P

j–ijIijjP 0 being the condition of consistence

between the importance of a criterion and its interactions, Iij denot-

ing the interaction between criteria i and j. It can be seen that the

interactions and importances are needed, but not the elementary

weights, already present in the importances.

This equation is composed of three terms (Grabisch, 2006):

- the first term (active when Iij > 0) aggregates the pairs of criteria

that are in positive interaction using a ‘‘min’’ operator (i.e.,

obtaining a good global index requires that both elementary

criteria are satisfied),

Fig. 1. Examples of levels for required competences.



- the second term (active when Iij < 0)aggregates the terms that

are in negative interaction using a ‘‘max’’ operator (i.e. the

result will be good as soon as one of the criteria is satisfied),

- the third one is a weighted sum which weights are the indices

of importance decreased by the sum of the interactions related

to the considered criterion (the /(i) represent the linear part of

Choquet integral).

In the next section, we propose a model for computing the local

satisfaction level of fuzzy constraints (k
eR
) and show how to com-

pute a Global satisfaction level taking into account the subjectivity

intrinsic to our problem (competences allocation), taking into

account the interactions between competences that can be

expressed using a Choquet integral.

3.3. Possessed competences

While required competences are described by fuzzy sets

expressing loose constraints, the semantic of the possessed compe-

tences is different: on the scale given by the considered levels of

competences (e.g. 0–4 in Fig. 1), a possessed competence can be

described by a distribution of possibilities pv (Definition 4)

expressing the uncertainty on the knowledge on the real level of

competence of the person.

Let us consider an information v e A where A is a subset of S

which contains more than one element.

Definition 4. A possibility distribution pvof v quantifies the

plausibility of the information v. pv is a function of S in L such as

"s e S, pv(s) e L, and $s, pv(s) = 1 with v denoting an ill-known

value in S, and L the scale of plausibility ([0,1] for the theory of

possibility).

Using a possibility distribution, we can evaluate the plausibility

and the certainty that v belongs to an interval g, the plausibility

being defined as the possibility degree P(v e g) = supseg pv(s) and

the certainty as the necessity degree N(v e g) = 1 ÿ supsRg pv(s).
The necessity and possibility measures that v belongs to an interval

g are respectively the lower and upper bound of the probability:

N(v e g) 6 P(v e g) 6P(v e g).

The degree of necessity is used as the criterion to maximise in

robust optimisation, since it represents the certainty to have a sat-

isfaction level (Dubois et al., 1988).

3.4. Taking into account the uncertainty in a robust way using Choquet

integral

The possibility and the necessity measures are non-additive

capacity measures. So, the Choquet integral can be adapted to the

case where l is a possibility measure: CP(f) (Eq. (4)) and to the case

where l is a necessity measure: CN(f) (Eq. (5)). The possibility and

the necessity measures are respectively the upper and lower bound

of the set of probabilities defined by the possibility distribution.

These two values are then the upper and the lower bounds of the

possible expected values of the global comparison between the

objects and the criteria, so that CNðf Þ ¼ Eðf Þ 6 Eðf Þ 6 CPðf Þ ¼ Eðf Þ,

E(f) being the expected value of f. So, a robust decision is a decision

that maximises the minimal expected value CN(f).

CPðf Þ ¼
X

n

i¼1

½f ðxðiÞÞ ÿ f ðxðiÿ1ÞÞ�PðAiÞ ð4Þ

CNðf Þ ¼
X

n

i¼1

½f ðxðiÞÞ ÿ f ðxðiÿ1ÞÞ�NðAiÞ ð5Þ

With f : X ! R
þ a function representing the scores, Ai := {x(i), . . ., x(n)},

f(x(0)) = 0, and is a permutation of xi so that 06 f(x(1))6

f(x(2))6 . . . 6 f(x(n)).

4. Selecting a candidate within n for a job

The steps of the method are represented in Fig. 2. The first

one is to evaluate the satisfaction degree provided by each

(uncertain) competence possessed by a candidate in relation

with the (possibly imprecise) required competence. The global

satisfaction provided by each candidate can then be assessed,

once the interactions between competences have been modelled.

As a final step, it is possible to take into account the uncertainty

denoted in the possibility distributions by computing the worst

satisfaction provided by each candidate. In this ‘‘robust’’

approach, the chosen candidate is the one who maximises the

worst satisfaction.

The Choquet integral will be used twice in this method:

- firstly, to deal with the multi-criteria dimension of our problem

(computation of the global satisfaction provided by each candi-

date according to all his competences).

- secondly, if the possessed competences are uncertain, for com-

puting a global satisfaction degree taking into account the

uncertainty on the data. Indeed, when the possessed compe-

tences are uncertain, the aggregated preference is uncertain

too. To deal with this uncertainty in a ‘‘robust’’ way, we propose

to compute the lower bound of the expected value, defined by a

possibility distribution of the aggregated preference, using a

second Choquet integral.

4.1. Build the lower bound of the possibility distribution of satisfaction

The possibility distribution of a possessed competence

c, c = 1, . . ., C noted p
eLc

is a trapezoidal fuzzy interval represented

by a quadruplet eLc ¼ ða; b; c; dÞ (see Fig. 3). The possibility distribu-

tions associated with the competences induce a possibility distri-

bution p(s) with s = (s1, . . ., sC) (Eq. (6)) where lc = sc, for

c = 1, . . ., C (it is assumed that the competences are independent

from each other) (see Dubois et al., 2003):

pðsÞ ¼ Pððl1 ¼ s1Þ ^ . . . ^ ðlC ¼ sCÞÞ ¼ min
c¼1;...;C

Pðlc ¼ scÞ ð6Þ

Since the Choquet integral is non-linear, it is not possible to com-

pute analytically the matching of a person to a job using the fuzzy

sets of the required competences and the possibility distributions of

the possessed competences. Therefore, the aggregation should be

constructed ‘‘point by point’’ using a-cuts (Definition 5), until the

minimum value of satisfaction is found (since we are in a ‘‘robust’’

approach, we look for the individual who maximises the minimum

satisfaction).

Definition 5. The a-cuts of p(s) are the sub-sets of s defined by the

elements of p(s) that have a possibility greater or equal than a (Eq.

(7) and Fig. 3).

fs : pðsÞP ag ¼ ½l
ÿ½a�
1 ; l

þ½a�
1 � � . . .� ½l

ÿ½a�
C ; l

þ½a�
C � ð7Þ

To compute the lower bound of the possibility distribution of the

global satisfaction, we first have to compute the minimal satisfac-

tion for each competence with regards to the possibility degree

(a). This minimal satisfaction (noted kc;aÞ is computed using Eq.

(8) where kcðlcÞ denotes the degree of satisfaction of the trapezoidal

fuzzy constraints on competence c (see Definition. 1, Section 3.1).

kc;a ¼ min
lc2½l

ÿ½a�
c ;l

þ½a�
c �

kcðlcÞ; for c ¼ 1; . . . ;C ð8Þ

From kc;a we can build the lower bound of the satisfaction degree for

a competence c. To find the solution of Eq. (8), we use Proposition 1

(see hereafter).



Proposition 1. The minimal possible satisfaction degree of compe-

tence c is kc;a ¼ minðkc;aðl
ÿ½a�
c Þ; kc;aðl

þ½a�
c ÞÞ.

Proof. kc;aðlcÞ is a trapezoidal membership function on

lc 2 ½l
ÿ½a�
c ; l

þ½a�
c � so its minimal value is on the bound l

ÿ½a�
c or l

þ½a�
c . h

4.2. Build the lower bound of the possibility distribution of the global

satisfaction using the Choquet integral

From the minimal satisfaction level, we compute the lower

bound of the Global satisfaction noted Cl,a, Definition 6 using a

Choquet integral with a 2-additive capacity measure (see Eq. (3)

Section 3.2), i.e. a capacity measure only considering elementary

criteria and combinations of two criteria (see Section 3.2).

Definition 6. The lower bound of the global satisfaction (noted

Cl,a) is the lower value for a given degree of possibility a e [0, 1] of

the multi-criteria aggregation using the Choquet integral with

capacity l.

From Proposition 2 and Eq. (3) (Section 3.2), the equation of the

lower bound of the global satisfaction, i.e., formally Cl;aðkÞ for a

given capacity measure l, possibility degree a and a vector of sat-

isfaction degree k ¼ ðk1; . . . kcÞ is given in Eq. (9) (with

^ =min, _ =max):

Cl;aðkÞ ¼ min
k2½ka ;�ka �

X

i;jjIij>0

ðki ^ kjÞIij þ
X

i;jjIij<0

ðki _ kjÞjIijj þ
X

i2N

ki /ðiÞ ÿ
1

2

X

j–i

jIijj

" #

0

@

1

A

ð9Þ

where ½ka; �ka� is the interval of satisfaction degree for a possibility

degree a.

Proposition 2. The minimal global satisfaction degree using a

Choquet integral with a 2-additive capacity measure for possibility

degree a is obtained for the minimal satisfaction degree of each

competence f ðiÞ ¼ ki;a8i 2 f1; . . . ;Cg.

Proof. The Choquet integral with a 2-additive capacity measure is

an increasing function on f(i), "i e {1, . . ., C} so the minimal value

of Cl,a(f) noted Cl,a(f) is for f(i), "i e {1, . . ., C}. h

From Proposition 2, we know that the lower bound appears

when the satisfaction function is kc so the lower bound of the glo-

bal satisfaction can be easily computed using Eq. (10) (with

^ =min, _ =max).

Cl;a ¼
X

i;jjIij>0

ðki;a ^ kj;aÞIij þ
X

i;jjIij<0

ðki;a _ kj;aÞjIijj

þ
X

i2N

ki;a /ðiÞ ÿ
1

2

X

j–i

jIijj

" #

ð10Þ

Fig. 2. Steps of the suggested method.

Fig. 3. Possibility distribution of a possessed competence.



To build the lower bound of possibility distribution of the global

satisfaction, we compute for each a -cut the lower bound of the

global satisfaction degree (Cl;a) using (Eq. (10) and Fig. 4).

4.3. Computing the global satisfaction degree taking into account the

uncertainty

From Section 4.2, we get a lower bound of the possibility distri-

bution of the global satisfaction. For evaluating the candidate in a

pessimistic manner, we choose to use the minimal expected utility

of the possibility distribution of the global satisfaction. This bound

is the Choquet integral of the global satisfaction using the necessity

measure, i.e., formally, CNðCl;aÞ, where a is the variable ranging

from 0 to 1, since Cl;a 6 Cl;aþd8a 2 ½0;1ÿ d� (with d the step

between two a-cuts).
We have Aa ¼ ½Cl;a;þ1½so CNðCl;aÞ ¼

P

a¼f0;0þd;...;1g½Cl;a ÿ Cl;aÿd�

Nðs 2 ½Cl;a;þ1½Þ with Cl,ÿd = 0. Moreover, N(Aa) = 1 ÿP(Aa) = 1

ÿ a. So CN is computed using Eq. (11).

CN ¼
X

a¼f0;0þd;...;1g

ð½Cl;a ÿ Cl;aÿd�ð1ÿ aÞÞ ð11Þ

With Cl;ÿd ¼ 0.

The optimal candidate (ca� e CA) is the candidate who maximis-

es the minimum expected value of the Global satisfaction (CN(ca))

(Eq. (12)).

ca� ¼ arg min
ca2CA

CNðcaÞ ð12Þ

4.4. Example

In this section, we illustrate the method on an example with

four candidates (ca e {1, 2, 3, 4}) for one job and five competences.

4.4.1. Requirements

Even if competences are usually defined in relation with work-

ing activities, the literature on competence based assignment also

considers the assignment of people to positions (see Table 1): posi-

tions and roles can indeed be considered as sets of types of activi-

ties. Let us consider that a leader is needed for a project related to

software development, to be achieved in a limited amount of time.

The considered ‘‘competences’’ (understood here in a broad sense)

are the followings:

- Education level1 (denoted hereafter as ‘‘education’’).

- Know-how.

- Leadership.

- Ability for Risk assessment.

- Ability for Quick decision-making.

The links between these competences (which will we described

through interactions in the Choquet integral) can be qualitatively

expressed as follows:

1. Education is only taken into account if the candidate has a low

know-how (brought by experience).

2. Quick decision-making is needed, but Risk assessment becomes

more critical if this competence is possessed at a high level, in

order to prevent too impulsive decisions.

3. Leadership is not critical, and can be compensated by Know-

how, which is considered as leading to recognition by the other

members of team. On the other hand, a minimum level of Lead-

ership is required from an inexperienced person.

4. A high Leadership may lead to arbitrary decisions, therefore the

requirement on Risk assessment will be reinforced by a high

Leadership.

The qualitative weights of the competences for the assessment

of the candidates are as follows:

- high importance: Education/Know how,

- average importance: Quick decision, Risk assessment,

- secondary importance: Leadership.

4.4.2. Modelling the requirements

The required and possessed competences are supposed to be

assessed using the basic framework described in Fig. 5, the func-

tions being fuzzy constraints for the required competences and

possibility distributions for the possessed ones, on a scale between

0 and 5. The functions are defined by trapezoidal fuzzy sets with

linguistic labels ‘‘weak, low, average, good, very good, high’’.

Some flexibility for describing the required or possessed com-

petences are allowed by linguistic modifiers such as:

- ‘‘at least x’’, expressed by a fuzzy set (x ÿ 1; x; x; 5) (see ‘‘at least

3’’ and ‘‘at least 4’’ on Fig. 5).

- ‘‘x or more’’, defined here as an interval [x,5], i.e. a trapeze (x; x;

5; 5) (see ‘‘4 or more’’ in Fig. 5).

- ‘‘nearly x’’ (x ÿ 0.5; x; x; x).

According to these labels, the levels of the required competenc-

es have been chosen as:

- Education: ‘‘at least 4’’ = (3; 4; 5; 5).

- Know-how: ‘‘3 or more’’ = (3; 3; 5; 5).

- Leadership: ‘‘good’’ = (2; 3; 3; 4).

- Risk assessment: ‘‘at least 3’’ = (2; 3; 5; 5).

- Quick decision making: ‘‘3 to 4’’ = (2; 3; 4; 5).

It can be noticed that possessing Leadership and Quick decision-

making competences at a higher level than required will be

Fig. 4. Lower bound of the fuzzy interval of global satisfaction.

1 An education level is not stricto sensu a competence, but it is clearly linked to

‘‘knowledge’’ and can be easily assessed, for instance through a diploma. It is

therefore often considered both in industrial and academic works on the subject (see

for instance Suleman and Suleman, 2012; Korkmaz, Gokcen & Cetinyoku, 2008 or

Zemkova, 2008).

Fig. 5. Competence levels.



penalised (otherwise, it would have been possible to use con-

straints like ‘‘at least x’’ or ‘‘x or more’’).

Choosing weights of criteria in multi-criteria decision-making is

a subject which has often been addressed in the literature. In that

purpose, a very successful approach is for instance AHP (Analytic

Hierarchy Process, (Saaty, 1980)): pairwise comparison matrices

are built by the user, resulting in a hierarchy of criteria and sub cri-

teria. Once this hierarchy has been built, the method allows to

identify consistent elementary weights for each criterion. This

method has for instance been used in the field of competence-

based assignment in Korkmaz et al. (2008) and Huang et al.

(2009)). When using the Choquet integral, how to choose weights

and interactions according to the decision maker’s preferences is

for instance explained in details in Grabisch and Roubens (2000).

Two methods are suggested, based on examples given to a decision

maker, like in AHP. The first one uses the minimisation of the

squared error: it is supposed that on l experiences, the decision

maker can give a numerical score to each criterion and to his Glo-

bal satisfaction. A fuzzy measure is then computed, which mini-

mises the total squared error of the model. Nevertheless, the

solution is not unique when there is too few data, and on the con-

trary, the dimensions of the vectors and matrices grow exponen-

tially when many examples are considered. Heuristic methods

have so been investigated: in Grabisch and Roubens (2000) is

described the HLMS algorithm (Heuristic Least Mean Squares),

based on the principle that in absence of any information, the most

non-arbitrary (least specific) way of aggregation is the arithmetic

mean, thus a Choquet integral with respect to an additive equidis-

tributed fuzzy measure.

Since the focus is here on robust allocation, and not on weights

identification, already addressed by the listed references, we sup-

pose that the following importances have been identified: (Educa-

tion) = 0.15, / (Know how) = 0.3, / (Leadership) = 0.1, (Risk

assessment) = 0.25, / (Quick decision) = 0.2.

The condition /ðiÞ ÿ 1
2

P

j–ijIijjP 0 (see Eq. (9)) means that the

influence of a criterion alone in the final aggregation (not taking

into account its interactions) is its importance decreased by the

half-sum of its interactions. This means that choosing its interac-

tions as twice the importance of a criterion will make that it has

no influence alone. The following interaction indexes have been

defined in our example:

- IEducation,Know-how = ÿ0.3.

- IKnow how, Leadership = ÿ0.1.

- ILeadership, Risk Assessment = 0.1.

- IRisk Assessment, Quick Decision = 0.2.

Using these data, it is possible to calculate the weights of the

linear part of the Choquet integral /ðiÞ ÿ 1
2

P

j–ijIijj (see Eq. (9)).

Imp(Education) = 0, Imp(Know-how) = 0.1, Imp(Leadership) = 0,

Imp(Risk Assessment) = 0.1, Imp(Quick Decision) = 0.1.

This modelling framework can be interpreted as follows:

- Know-how alone has a weight (importance) of 0.1 in the final

result, while Education alone is not taken into account.

- Education and Know-how: the best satisfaction between Educa-

tion and Know-how is considered with a weight 0.3 (IEd,Ex = -

ÿ0.3). It leads to take into account Education only if it is

better satisfied than Know-how.

These two statements provide a possible model for requirement

1 (see Section 4.4.1).

- Risk assessment and Quick decision making benefit from a

strong reinforcement: their weight as standalone criteria is high

(0.1) but their common satisfaction has also a weight of 0.2

through their positive interaction (requirement 2).

- Leadership is not important alone (Importance: 0) but the best

satisfied between Leadership and Know-how is considered with

an importance of 0.1 (requirement 3).

- Risk assessment has a high standalone influence (impor-

tance = 0.1) and the conjunction between Risk assessment and

Leadership is favoured by a high interaction index (0.2)

(requirement 4).

Other possible choices of the parameters could address different

requirements. Examples dealing with Education and Know-how

are suggested in Table 1, in order to illustrate the capacity of this

modelling framework to express quite subtle considerations.

All the interactions not mentioned in Table 2 are here set to 0.

In case 1, Education and Know-how are considered separately,

therefore a candidate has to satisfy the two constraints for getting

a good global assessment: the candidate needs a good diploma and

a great know-how.

In case 2, the best satisfied of the two criteria has a great influ-

ence on the result (weight 0.3) whereas the two elementary crite-

ria have similar impacts alone (0.15). Know-how or Education is

required.

In case 3, Know-how is only taken into account if it is better sat-

isfied than the Education criterion, since its impact as a standalone

criterion is null.

In case 4, the Education is only taken into account if it is greater

than Know-how.

In case 5, Know-how and Education are in positive interaction:

if both the Education and Know-how are high, these criteria have a

very strong influence on the result, through their elementary

weights of 0.15 plus their strong interaction (weight 0.3). A good

candidate must so have both the required education and required

know-how.

4.4.3. Results

Let us remind the considered weights and interactions (see pre-

vious section):

Imp(Edu) = 0, Imp(KnowHow) = 0.1, Imp(Lead) = 0, Imp(Risk-

Ass) = 0.1, Imp(Quick Dec) = 0.1.

IEdu,KnowHow = ÿ0.3, IKnowHow,Lead = ÿ0.1, ILead,RiskAss = 0.1,

IRiskAss,QuickDec = 0.2.

Within the possibilistic framework, in spite of what may suggest

‘‘good sense’’, a candidate who would possess competences similar

to the required ones does not provide maximum satisfaction. In

Table 2

Modelling of various relationships between two criteria.

Case /(Education) /(Know-how) IKH,Ex Impact(Ed) Impact(Know-How)

1 0.3 0.3 0 0.3 0.3

2 0.3 0.3 ÿ0.3 0.15 0.15

3 0.3 0.15 ÿ0.3 0.15 0

4 0.15 0.3 ÿ0.3 0 0.15

5 0.3 0.3 0.3 0.15 0.15



our example, such candidate would have a global satisfaction of

0.6875. The reason is that the possessed competences are known

through possibility distributions: if the possibility distribution of a

possessed competence is denoted by the same fuzzy set than the

fuzzy constraint expressing the required competence (for instance

a triangle like ‘‘good’’ (see Fig. 5)), the ‘‘real’’ (ignored) value of the

competence lc may for instance be in the ascending front of the tri-

angle. So, there is a (low) possibility that the fuzzy constraint has a

poor satisfaction.

The maximum satisfaction (i.e. 1) would be provided by a can-

didate whose possessed competences are necessarily fully consis-

tent with the fuzzy constraints, i.e. the possibility distributions of

the possessed competences are included in the kernel of the fuzzy

sets denoting the requirements.

Let us consider four candidates whose possessed competences,

together with the requirements, are given in Table 3 and graphi-

cally illustrated in Fig. 6. One of the interests of fuzzy logic and pos-

sibility theory is illustrated here: it is possible to mix fuzzy sets

(e.g. ‘‘Good’’), intervals (‘‘3 or more’’) and crisp data (‘‘4’’) in the

same model. Five a-cuts have been performed for computing the

degrees of satisfaction, with a = 0, 0.25, 0.5, 0.75, 1. More accurate

results can sometimes be obtained with a more precise

discretisation.

The global satisfaction of each candidate (results of Eq. (10),

Section 4.3) is shown in Table 4 for several cases illustrating the

influence of interactions on the results (see Fig. 7 for a graphical

representation):

- no interaction (only the importances are considered),

- all interactions listed in the beginning of Section 4.4.3 are

considered,

- strong interactions (only IEdu,KnowHow and, IRiskAss, QuickDec are

considered).

Without any interactions, Eq. (9) becomes comparable to a

weighted sum, often used in comparable studies (see Section 2.3).

In that case, the weights of the elementary criteria are equal to

their importance U(i). The ranking is 2, 1, 3, 4, the two first ones

and the two last ones being quite close (left bars in Fig. 7): candi-

date 2 has the worst satisfaction on Leadership, but all the other

candidates have a possibility of null satisfaction for this compe-

tence, so it does not work against him (only the minimum value

Fig. 6. Possessed and required competences.

Table 3

Possessed competences of the candidates.

Candidate Education Know how Leadership Risk assessment Quick decision

Requirement At least 4 (3; 4; 5; 5) 3 or more (3; 3; 5; 5) Good (2; 3; 3; 4) At least 3 (2; 3; 5; 5) 3–4 (2; 3; 4; 5)

1 4 (4; 4; 4; 4) High (4; 5; 5; 5) Good (2; 3; 3; 4) Good (2; 3; 3; 4) 4.5 (4.5; 4.5; 4.5; 4.5)

2 High (4; 5; 5; 5) 3 or more (3; 3; 5; 5) Average to good (1; 2; 3; 4) At least 3 (2; 3; 5; 5) 3 (3; 3; 3; 3)

3 Good (2; 3; 3; 4) 3 or more (3; 3; 5; 5) At least good (2; 3; 5; 5) High (4; 5; 5; 5) Very good (3; 4; 4; 5)

4 Very good (3; 4; 4; 5) 4 (4; 4; 4; 4) Very good (3; 4; 4; 5) Good (2; 3; 3; 4) Nearly 3 (2.5; 3; 3; 3)



is considered). He has the maximum satisfaction for Education,

Know-how and Quick decision. Only candidate 3 is better for Risk

assessment, but candidate 3 has a null satisfaction concerning Edu-

cation. Like candidate 3, candidate 1 has a null satisfaction for

three competences, but the degrees of satisfaction of the two oth-

ers are better. Candidate 4 is close to candidate 3: he has a null

possibility of satisfaction for three competences, but has better

minimum satisfaction degrees than 3 for the two remaining ones.

If all the interactions are taken into account, the ranking is mod-

ified: 2 and 3 are the best candidates, followed by 1 then 4. The

appreciation on candidate 3 is improved since his poor satisfaction

concerning Education is compensated by his Know-how (there is

now an ‘‘or’’ between Education and Know-how). Candidates 2

and 3 have inversed satisfactions for ‘‘Risk assessment’’ and ‘‘Quick

decision’’: the result is the same since, according to the considered

interactions, the weights of ‘‘Risk assessment’’ and ‘‘Quick decision

making’’ being both 0.1 (let us remind that the weight of criterion i

in presence of interactions is Impi ¼ /ðiÞ ÿ 1
2

P

j–ijIijj).

If only the ‘‘strong’’ interactions are taken into account

(IEdu,KnowHow and IRiskAss, QuickDec), the ranking is again different with

3, 2, 1 and 4. The context is globally the same than in previous par-

agraph, but taking into account only the ‘‘strong’’ interactions, the

weight of Risk assessment is now 0.15 while the weight of Quick

decision making is 0.1. Since Cand. 3 is better than Cand. 2 for Risk

assessment, he gets a slightly higher evaluation and becomes the

best candidate.

This example illustrates that quite different results may be

obtained when interactions between criteria are taken into

account, especially because a ‘‘robust’’ approach has been chosen:

the degrees mentioned in Table 3 denote the minimum satisfaction

provided by the candidates, depending on the uncertainty on the

evaluation of their possessed competences.

5. Selecting C candidates for J jobs

In this section is shown how to complement the method for

being able to address the problem of allocating a set of candidate

to a set of jobs. This problem was for instance considered in

Herrera, Lopez, Mendana, and Rodriguez (1999) or Korkmaz,

Gokcen & Cetinyoku (2008) with classical optimisation

approaches. We apply here the aggregation method presented in

Section 4 to each couple (job, candidate), then solve a Mixed-Inte-

ger Programming model in which the objective function is to max-

imise, from the worst to the best, the global competence of a

candidate allocated to a job (in order to provide the required

robustness). We illustrate hereafter what may bring a robust-opti-

misation approach, and how interactions may again allow to

improve the expressivity of the models. In consistence with the

method used for solving the previous problem, we suggest in that

purpose to use the leximin criterion to find a robust allocation of

candidates.

Let us consider as a starting point that the compatibility of C

candidates has been assessed for J jobs using the method explained

in Section 4. How to describe then optimise the allocation of the

candidates to the jobs is shown in next sections.

5.1. Allocation assignment

Let us denote as:

� xc,j: a binary variable which takes the value 1 if candidate c is

allocated to the job j;

� CNc;j: the considered utility (benefice) function which is the

crisp evaluation CN (Section 4.3) of a candidate c for a job j;

� FcðxÞ ¼
PJ

j¼1xc;j � CNc;j
: the utility of the candidate c for the given

allocation (xc,1, xc,2, . . ., xc,J).

The problem is to find the allocation of c candidates to j jobs

that minimises the utility function, i.e. maxx

PC
c¼1FcðxÞ ¼

maxx

PC
c¼1

PJ
j¼1xc;j � CNc;j

under the following constraints:

s:t:

ð1Þ
X

C

c¼1

xc;j 6 18j 2 f1; . . . ; Jg

ð2Þ
X

J

j¼1

xc;j ¼ 18c 2 f1; . . . ; Cg

xc;j 2 f0;1g8c 2 f1; . . . ;Cg; j 2 f1; . . . ; Jg

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Constraint (1) means that one and only one candidate c can be allo-

cated to a job j. Constraint (2) means that a job j is allocated to only

one candidate c.

5.2. Model of the allocation assignment problem within a robust

approach

From the evaluation of the satisfaction provided by each candi-

date for each job, as described in previous sections, we propose an

optimisation model addressing the allocation of c candidates to j

jobs using the leximin ranking criteria (see Definition 7). This crite-

rion has been chosen because it maximises the minimal satisfac-

tion for each job, i.e. no compensation between two jobs is

accepted, and each job has to be necessarily satisfied. This problem

(LexAlloc) can be written as follows:

LexAlloc : maxx LeximinðFcðxÞÞ

s:t:

ð1Þ
X

C

c¼1

xc;j 6 1 8j 2 f1; . . . ; Jg

ð2Þ
X

J

j¼1

xc;j ¼ 1 8c 2 f1; . . . ;Cg

xc;j 2 f0;1g 8c 2 f1; . . . ; Cg; j 2 f1; . . . ; Jg

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Fig. 7. Graphical display of the results.

Table 4

Results.

Candidate 1 2 3 4 Ranking

No interactions 0.68 0.74 0.62 0.59 2, 1, 3, 4

All interactions 0.69 0.71 0.71 0.68 {2,3}, 1, 4

Strong interactions 0.66 0.68 0.71 0.65 3, 2, 1, 4



Definition 7 (Barbera & Jackson, 1988)). Let ujð
�dÞ be the satisfac-

tion of decision �d for criterion j 2 f1; . . . ;mg and a 2 ½0;1�. We

define Jða; �dÞ ¼ fjjujð
�dÞ 6 ag and jJða; �dÞj the cardinality of Jða; �dÞ.

We write �u�Lm�v if decision �u is preferred to decision �v using the

leximin criterion defined as follows:

�u�Lm�v $ 9 a such that jJða; �uÞj < jJða; �vÞj& 8b < ajJðb; �uÞj ¼ jJðb; �vÞj

To solve this problem, we first formulate the criterion leximin as an

aggregation function. In that purpose, we use the fact that the OWA

aggregator can model the leximin by giving non-increasing weights

with large step: wi = dwi+1"i e {1, . . .,m ÿ 1} and wi > 0"-

i e {1, . . .,m}, with d a large number (Ogryczak & Sliwinski, 2003).

In our problem, the objective function can be rewritten as follows:

max
x

X

C

i¼1

W iFðcÞðxÞ

with (c) a permutation of c so that 0 6 F(1)(x) 6 F(2)(x) 6 . . . 6 F(C)(x).

Then, we need to linearise the objective function. A clever lin-

earisation has been proposed in Ogryczak and Sliwinski (2003))

under the assumption that the weights in OWA are non-increasing.

Using this assumption, we need for linearising our problem

‘‘LexAlloc’’ to add three new decision variables rk, di,k and Ci, and

to transform the OWA in a new objective function and two

constraints (1) and (2) (with Wk = wk ÿ wk+1):

max
X

K

k¼1

ðkWkrkÞ ÿ
X

K

k¼1

X

I

i¼1

ðWkdi;kÞ

s:t:

ð1Þdi;k P rkÿi; 8i; k 2 f1; . . . ;mg

ð2ÞCi ÿ
X

J

j¼1

xijcij ¼ 0; 8i 2 f1; . . . ; Cg

ð3Þ
X

C

i¼1

xi;j 6 1; 8j 2 f1; . . . ; Jg

ð4Þ
X

J

j¼1

xi;j ¼ 1; 8i 2 f1; . . . ; Cg

xi;j 2 f0;1g 8i 2 f1; . . . ; Cg; j 2 f1; . . . ; Jg

dj;i P 8i; j 2 f1; . . . ;mg

8
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:

The result of this linearisation makes that the problem can be effi-

ciently solved using a MIP (Mixed Integer Programming) solver for

small sizes (in this paper we use the solver GLPK2). For larger prob-

lems, it is for instance possible to use the algorithm proposed by

Dubois and Fortemps (1999) for solving flexible constraints satisfac-

tion problems.

5.3. Example

The example is based on the one suggested in Herrera et al.

(1999). Let us first point out the main differences between the

two approaches: Herrera et al. suggest linguistic labels for describ-

ing the possessed competences, but no clear distinction is made

between the levels of the required competences and the weights

of the competences in the aggregation. On the other hand, relation-

ships between jobs, used to know which job should get the best

candidate in case of conflict, are considered, which are not taken

into account in the present study. As a consequence, the compari-

son between required and possessed competences takes into

account imprecision (the compatibility between two fuzzy sets is

assessed), and not uncertainty like in our approach, where the

required level of a competence for a job is an utility function,

whereas the level of competence of a candidate is known through a

distribution of possibility. Therefore, a strict comparison of the

results of the two studies has no sense.

The competence levels are modelled by nine triangular fuzzy

sets on a scale between 0 and 1. This choice makes that a fuzzy

set is for instance denoted (0.625, 0.75, 0.875) (‘‘Fairly high’’ in

Herrera et al. (1999)). In order to simplify the notation, let us con-

sider these levels of competences on a different scale, as suggested

in Fig. 8.

A consequence of Herrera’s model is that over-competences are

penalised (see Section 3.2). Since this is seldom the case in real sit-

uations, we have chosen to modify these levels by using the ‘‘at

least’’ operator, as described in Section 3.2. For instance, ‘‘moder-

ate’’ denoted by (3, 4, 4, 5) becomes using our notation ‘‘at least

moderate’’ (3, 4, 8, 8).

Eight candidates and five jobs are considered in the original

example. For simplification, we have only kept here c = 4 candi-

dates and j = 4 jobs although the method described in previous sec-

tion can be applied whatever c and j. Similarly, we have only kept

five competences per job whereas Herrera et al. describe one of the

jobs with six competences.

The competences required by the jobs are listed in Table 5 (all of

them being modified by the operator ‘‘at least’’) together with the

weight of each competence for a given job.

In order to illustrate that taking into account interactions

between competences may make some difference in the final

assignment, we have introduced the following interactions, which

are of course not in Herrera’s example:

Manager:

- Directing-Authorising/delegating: ÿ0.3, expressing that author-

ity or delegation are two possible solutions for managing a

team.

- Fixing objectives-strategic vision: 0.3: expressing the synergy

between being able to have a strategic vision and a good apti-

tude in fixing objectives.

Administrative officer:

- Multitasking-flexibility:ÿ0.2. The idea is here that being able to

switch from one activity to another is a way to perform several

tasks at the same time.

- Teamwork-flexibility: 0.2, showing that flexibility allows to be

better in team working.

Administrative clerk:

- Personal charm-customer orientation: ÿ0.3: personal charm is

considered here as an alternative to customer orientation for

performing administrative tasks in a teamwork context.

Fig. 8. Levels of required competences.2 http://www.gnu.org/software/glpk/.



The set of possessed competences suggested in (Herrera et al.,

1999) and listed in Table 6 has been considered in this illustrative

example.

We have considered here the two cases (with/without interac-

tions) and have compared on both cases the ‘‘robust’’ allocation

we suggest to the optimisation of the average level of satisfaction

provided by the allocation.

In Table 7 is shown the lower bound of the global possibility

distribution of satisfaction (result of Eq. (10)) for each candidate

and for each -cut, regarding the position of Branch Manager, with-

out interaction. It can be seen in Table 7 that all the candidates

have a null satisfaction for ‘‘Directing’’. All candidates have a min-

imum satisfaction equal to 0 for Authorising/delegating (even if it

is only for = 1 for C1). C1, C3 and C4 have a full satisfaction for

Integrity and Fixing objectives while only C4 has a full satisfaction

for Strategic vision; among the others, only C1 has satisfaction lev-

els different from 0 for the same competence. The difference

between C1 and C3 comes from a better satisfaction of Authoris-

ing/delegating and Strategic vision by C1.

The matching between each individual and each job, without

interactions, is provided in Table 8.

The problem is then to find the best allocation of candidates to

positions. Using the optimisation of the average satisfaction, the

optimal assignment provided by a solver is:

� Branch manager: C4 (satisfaction: 0.7).

� Supervisor: C3 (satisfaction: 0.737).

� Admin. Officer: C2 (satisfaction: 0.312).

� Admin. Clerk: C1 (satisfaction: 0.5).

The robust assignment provided by the suggested method (see

5.2) is:

� Branch manager: C3 (satisfaction: 0.4).

� Supervisor: C2 (satisfaction: 0.4).

� Admin. Officer: C4 (satisfaction: 0.537).

� Admin. Clerk: C1 (satisfaction: 0.5).

The first criterion gives an average satisfaction of 0.487 (0.459

for the robust optimisation) but the worst satisfaction is 0.312 in

the first case, and 0.4 for the robust optimisation: the satisfaction

provided by the worst case has indeed been maximised.

Table 5

Required competences.

Competence/job Branch manager Supervisor Admin. Officer Admin. Clerk

Directing Essential (0.15)

Authorising/delegating Fairly high (0.15)

Integrity Moderate (0.2)

Fixing objectives High (0.2)

Strategic vision Fairly High (0.3)

Collecting information Low (0.2) Very high (0.2)

Analysing problems High (0.3)

Checking on procedures Fairly high (0.1)

Multitasking Very high (0.2) Fairly low (0.2)

Mathematical ability Moderate (0.2) Fairly high (0.2)

Team work Moderate (0.3)

Flexibility High (0.2)

Specialisation Fairly high (0.1)

Commercial orientation Moderate (0.1)

Personal charm Low (0.2)

Spoken communication High (0.3)

Customer orientation Fairly high (0.1)

Table 6

Possessed competences.

Competence Cand. 1 Cand. 2 Cand. 3 Cand. 4

Directing Very high Low High Very high

Authorising Fairly high Moderate Moderate High

Team work Fairly high Moderate High Fairly high

Flexibility High Fairly high Low Moderate

Integrity High Low Fairly high Fairly high

Collecting information Moderate Moderate High Lowest

Analysing problem Fairly high Low Fairly high Very high

Fixing objectives Very high Moderate Very high Fairly high

Checking on procedures High Low Fairly high Low

Multitasking High Moderate Fairly high Fairly high

Strategic vision Fairly high Low High Very high

Commercial orientation Low Low Moderate Moderate

Personal charm Moderate Moderate Very high Low

Spoken communication Fairly high Low High Low

Customer orientation Moderate Moderate Fairy high Very low

Specialisation Moderate Moderate Fairly high Lowest

Mathematical ability Fairly low High Moderate High

Table 7

Lower bound of the global possibility distribution of satisfaction for each candidate –

job ‘‘Branch manager’’ – no interaction.

Competences Directing Author/

Deleg.

Integrity Fixing

obj.

Strat.

vision

C1

0 0 1 1 1 1

0.25 0 0.75 1 1 0.75

0.5 0 0.5 1 1 0.5

0.75 0 0.25 1 1 0.25

1 0 0 1 1 0

C2

0 0 0 0 0 0

0.25 0 0 0 0 0

0.5 0 0 0 0 0

0.75 0 0 0 0 0

1 0 0 0 0 0

C3

0 0 0 1 1 0

0.25 0 0 1 1 0

0.5 0 0 1 1 0

0.75 0 0 1 1 0

1 0 0 1 1 0

C4

0 0 0 1 1 1

0.25 0 0 1 1 1

0.5 0 0 1 1 1

0.75 0 0 1 1 1

1 0 0 1 1 1



Let us now consider the case when the interactions are taken

into account. The minimum of the utility function for each compe-

tence is the same than in the case without interaction (see Table 8).

In Table 9 is shown the result of the application of Eq. (9) (calcula-

tion of the satisfaction of each competence and interaction, then

calculation of the lower bound of the global possibility distribution

of satisfaction, through the value of the Choquet integral (Eqs. (9)

and (10)) (calculation of the worst possible satisfaction under

uncertainty).

In comparison with the case without interaction, it can be seen

that the main difference comes from C3 who is now less compati-

ble with the work of Branch Manager, since the weight of Fixing

objectives alone has considerably decreased (from 0.2 to 0.05)

because of a high interaction with Strategic vision. The matching

between the candidates and all the jobs, with interactions between

competences, is shown in Table 10.

Using the optimisation of the average satisfaction, the optimal

assignment provided by the solver GLPK is:

� Branch manager: C4 (satisfaction: 0.7).

� Supervisor: C3 (satisfaction: 0.737).

� Admin. Officer: C2 (satisfaction: 0.325).

� Admin. Clerk: C1 (satisfaction: 0.65).

The robust assignment provided by the method is:

� Branch manager: C4 (satisfaction: 0.7).

� Supervisor: C2 (satisfaction: 0.4).

� Admin. Officer: C1 (satisfaction: 0.575).

� Admin. Clerk: C3 (satisfaction: 0.518).

The first criterion gives an average satisfaction of 0.603 (0.548

for the robust optimisation) but the worst satisfaction is 0.325

while it is 0.4 for the robust optimisation: again, the satisfaction

provided by the worst case has been maximised.

6. Conclusion

Job assignment using competences is an optimisation problem

that heavily depends on subjective knowledge concerning the

required competences (nature and level) but also on knowledge

pervaded by uncertainty, like the assessment of the competences

possessed by an actor. In that context, two main original proposals

have been made in this article, for taking into account (i) the pos-

sible interactions between competences, and (ii) the uncertainty

on the evaluation of competence levels.

Modelling the competences required by a job is indeed a com-

plex task, becoming rapidly impossible if the user tries to be

exhaustive instead of focusing on critical competences, i.e. those

being at the same time important for performing the job and rare.

Additionally, building a referential of competences may have neg-

ative side effects: indeed, the person who defines the framework

models his own beliefs on the qualities required for performing a

task. This may result in a ‘‘standardised’’ view of competences,

which is always dangerous in the field of Human Resource

Table 8

Degree of satisfaction of each candidate for each job – no interaction.

c/j Branch Manager Supervisor Admin. Officer Admin. Clerk

C1 0.568 0.5 0.575 0.5

C2 0 0.4 0.312 0.2

C3 0.4 0.737 0.537 0.425

C4 0.7 0.5 0.5 0.187

Table 10

Degree of satisfaction of each candidate for each job – with interactions.

c/j Branch Manager Supervisor Admin. Officer Admin. Clerk

C1 0.531 0.5 0.575 0.65

C2 0 0.4 0.325 0.35

C3 0.25 0.737 0.487 0.518

C4 0.7 0.5 0.45 0.243

Table 9

Calculation of the lower bound of the global possibility distribution of satisfaction and the worst possible satisfaction under uncertainty.

{1;2} {1;3} {1;4} {1;5} {2;3} {2;4} {2;5} {3;4} {3;5} {4;5} 1.

Directing

2.

Author/

Deleg.

3.

Integrity

4.

Fixing

obj.

5. Strat.

vision

Choquet Global

sat.

C1 competences

0 0.3 0 0 0 0 0 0 0 0 0.3 0 0 0.2 0.05 0.15 1 0.53125

0,25 0.225 0 0 0 0 0 0 0 0 0.225 0 0 0.2 0.05 0.1125 0.8125

0,5 0.15 0 0 0 0 0 0 0 0 0.15 0 0 0.2 0.05 0.075 0.625

0,75 0.0075 0 0 0 0 0 0 0 0 0.0075 0 0 0.2 0.05 0.0375 0.4375

1 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.05 0 0.25

C2 competences

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0,25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0,75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C3 competences

0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.05 0 0.25 0.25

0,25 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.05 0 0.25

0,5 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.05 0 0.25

0,75 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.05 0 0.25

1 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.05 0 0.25

C1 competences

0 0 0 0 0 0 0 0 0 0 0.3 0 0 0.2 0.05 0.15 0.7 0.7

0,25 0 0 0 0 0 0 0 0 0 0.3 0 0 0.2 0.05 0.15 0.7

0,5 0 0 0 0 0 0 0 0 0 0.3 0 0 0.2 0.05 0.15 0.7

0,75 0 0 0 0 0 0 0 0 0 0.3 0 0 0.2 0.05 0.15 0.7

1 0 0 0 0 0 0 0 0 0 0.3 0 0 0.2 0.05 0.15 0.7



Management. In reality, different competences may lead to similar

results, especially in management tasks. In order to address this

problem, we have suggested the use of the Choquet integral as a

mean to model alternatives between competences using negative

interactions. An additional interest is that positive interactions also

allow to model ‘‘synergies’’ between competences, which are cer-

tainly more rare but deserve to be better studied and modelled.

It has been shown in this article that realistic interactions may sig-

nificantly influence the result of an allocation. Nevertheless, we

only provide here a tool for modelling interactions: identifying rel-

evant interactions in a real context remains a complex problem,

which deserves attention. Especially, it has been shown that choos-

ing the interactions requires a good understanding of their mathe-

matical processing (e.g. because of the influence between

interactions and weight of each competence). This is certainly a

difficulty in real applications. Therefore, a method allowing an

end-user to empirically define interactions on the base of observa-

tions on the field is certainly required, similar to AHP for choosing

weights between criteria (Saaty, 1980).

The point linked to the uncertainty of the assessments is seldom

taken into account in previous studies, and has brought us to sug-

gest a ‘‘robust optimisation’’ approach aiming at optimising the

worst satisfaction provided by the assignment, in order to mini-

mise the risk taken. In real applications, we think that classical

and robust optimisation could be combined for providing a more

relevant decision support to the decision maker: the results of

robust optimisation could be used as a measure of the risk taken

if the ‘‘optimal’’ allocation is adopted. In that purpose, it would

be interesting to provide not only the minimum satisfaction but

also a distribution of possibility attached to each level of

satisfaction.

Another perspective is in the transposition of this framework to

other domains, like supplier selection in the context of supply

chain management: in that case, various types of collective compe-

tences should be formalised, e.g. competences linked to the manu-

facturing of the products but also to the service to the customer or

to flow management capabilities. This induces new problems both

at the modelling level and on the type of ‘‘optimisation’’ needed.
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