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Abstract. Understanding urban mobility is a fundamental question for
institutional organizations (transport authorities, city halls) and it in-
volves many different fields like social sciences, urbanism or geography.
With the increasing number of probes tracking human locations, like
magnetic pass for urban transportation, road sensors, CCTV systems or
cell phones, mobility data are exponentially growing. Mining the activity
logs in order to model and characterize efficiently our mobility patterns
is a challenging task involving large scale noisy datasets.

In this article, we present a robust approach to characterize activity pat-
terns from the activity logs of a urban transportation network. Our study
focuses on the Paris subway network. Our dataset includes more than
80 millions travels by 600k users. The proposed approach is based on a
multi-scale representation of the user activities, coupled to a nonnegative
matrix factorization algorithm. The latter is used to learn dictionaries
of usages that can be exploited in order to characterize user mobility
and station visits patterns. The relevance of the extracted dictionaries
is then assessed by using them to cluster users and stations. This analy-
sis shows that public transportation usage patterns are tightly linked to
sociological patterns.

1 Introduction

The literature on urban mobility is vast and diverse but until recently,
it has mainly focused on explanatory statistics of global behaviors. With
the development of tracking techniques such as mobile phone networks,
the last decade has seen a multiplication of quantitative statistical stud-
ies. For example, frequency scales of travels are analyzed in [3] and mul-
tiple studies have shown that it is possible to predict most daily travels
[19]. For public transports, some early studies focused on opinion pool
data to analyze the modification of user behaviors after the creation of
new lines [6]. In this domain, quantitative data are recent and linked to
the adoption of smart cards to authenticate users in most cities, like e.g.
in London, Lisbon or Paris. Up to now, they have been exploited for
problems like bottleneck detection [4] or frequent pattern prediction [5]
(which turns out to determine the time and location of the next trip for
a given user).
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However, up to now, no study has focused on mining the temporal and
spatial profiles of individual users. Some analysis have been performed on
Shanghai taxis [16] and Parisian public bicycle sharing system [17] for ex-
ample, but the have been mainly focused on extracting global statistics
and none of them has analyzed individual user traces across multiple
travels during multiple days. Discovering latent usage of public trans-
portation is a crucial need for institutional authorities: lot of efforts are
spent on conducting ground surveys to achieve a partial understanding of
the habits of their clients. Such knowledge is important for pricing poli-
cies, load management and planning. We propose to exploit the mass
of user to extract regularities in usage patterns in order to identify the
hidden activities that causes each individual event, which would be hard
otherwise if only querying the raw user logs.
Our analysis focuses on data provided by the STIF (Syndicat des Trans-
ports en le de France, Paris area transport authority) and contains
around 80 millions authentications overs 91 days, with an explicit iden-
tifier for both the station (300 locations) and the user (600k id). The
noise inherent to the individual activity traces and the size of the logs
explain why ticketing data has hardly been used. We propose here an
experimental study to show the potential of machine learning to exploit
transport data. We introduce a user centered multi-scale representation
of the data and we use a constrained nonnegative matrix factorization
to extract latent activity patterns. Based on this extracted representa-
tion, we build station profiles that we cluster and analyze the obtained
segmentation.
The paper is organized as follows. We briefly review literature on related
work in section 2. To face the challenge of data size and sparsity, we pro-
pose in section 3 a model to aggregate ticketing logs per user and station
on three frequency and two temporal scales. In section 4 we present the
nonnegative matrix factorization model used to extract the usages and
latent activities from user events. Analysis of the results on our dataset
is presented in section 5. As an application case, in section 6 we illustrate
how to use this model for clustering stations and extracting correlations
between temporal habit and sociological realities.

2 Related work

We present below a synthesis on the related work both on urban mobility
understanding and on nonnegative matrix factorization algorithms.

2.1 Urban mobility

The problem of understating urban mobility has been studied at dif-
ferent levels. [2] studied city planning policies in order to promote the
use of performance indicators for sustainable public transports. Many
studies [3, 8] have focused on private vehicle travels, using mobile phone
networks to track a population and to characterize the time scales of
these travels. In [19], the authors showed that most private vehicle trav-
els are predictable and in [22] they also linked travel behaviors and social
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network behaviors. Still using mobile phone networks, the recent study
[15] extracted hot spots from week day travels in the 31 biggest Spanish
cities while [10] focused on car traffic analysis and anomaly detection.
[14] used 6 months of GPS data coming from the 33000 taxis in Beijing,
covering an impressive 800 million kilometers, to analyze the causes of
possible anomalies. Also with GPS data but on 2000 Shanghai taxis, [16]
used nonnegative matrix factorization to characterize the behavior of
taxi drivers. Finally, recent work has focused on new way to track users.
For example [13] describe the use of Bluetooth scanners to track pedestri-
ans visiting Duisburg zoo. Similarly in Paris, [17] mined spatio-temporal
clusters using Paris Velib’ data (city bicycle service), but without having
access to the user identifier, they could not track individual users.

The creation of smart cards to authenticate users [6] allows for wider scale
and finer analysis. One important target has been the identification of
bottlenecks in the network. For instance [4] studied spatio-temporal dis-
tribution of users in the subway of London. In the same way, [5] focused
on itinerary prediction, during week days for buses, so as to inform users
in case of problems in the network, mining a dataset of 24 million travels
of 800000 users over 61 days.

In contrast with previous work focused retrieving global traffic informa-
tion, the analysis presented here focuses on discovering a dictionary of
usages that can be used to describe users. As in [16], our model relies
on a modified nonnegative matrix factorization, described in section 4,
to extract behavioral atoms. We also exploit the user identification to
characterize travels through the notion of periodicity.

2.2 Nonnegative matrix factorization

Matrix factorization approaches have long been used in data mining and
are well described in [7]. Nonnegative matrix factorizations [1] extract
constructive representations over a set of extracted basic components
out of nonnegative data. It has shown interesting performances as a
feature extractor when the nonnegativity is a sensible part of the data
either to obtain a composition percentage over a dictionary like in face
detection [24] or when a negative coding does not make sense like in topic
extractions from document application [18].

Matrix factorizations solve two problems at once: learning the dictio-
nary and the associated code. Constraints are generally added during
the learning algorithm as regularization terms. Nonnegativity [12] and
sparseness [11] are two common constraints. As no subtraction is al-
lowed with the nonnegativity constraint, Nonnegative Matrix Factoriza-
tion (NMF) is more likely to obtain part-based representation with atoms
being parts of the initial signals and the code being the proportion of
each atom in the signal. Sparseness forces the model to reconstruct initial
data using only a few atoms.

While a completely different field, our task might be linked to the sep-
aration of musical sources [21] or note identification in a music track
[20]. The log of a user corresponds to frequent and multiple activities,
it can be seen as a stream of pulses generated by multiple sources [9].
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However the variability of the time of authentication, which is our refer-
ence event, hinders the approaches based frequency representation used
in most signal applications. In [23], nonnegative matrix factorization has
been adapted to time event detection to identify time-shift invariant pat-
terns. It cannot be used as such to detect temporal behaviors as they are
typically time dependent: our idea is to characterize activities based on
event occurrence.

3 Subway data analysis and modeling

In this study, we aim at discovering patterns in the subway usage of any
user in order to characterize each log by a corresponding activity: an
event which occurs every working day around 7 a.m. may be categorized
as going to work, an event which occurs some Friday night as nightlife,
etc. Tagging authentication events with a social activity allows us to
characterize both the user (workplace, home, friends’ home, recreational
habits) and the station at the same time. We propose a model extracting
meaningful activity temporal patterns and allowing a categorization of
the subway traffic according to different usages. In this section, we first
describe the data and then our modeling.

3.1 Ticketing logs

We use a dataset collected by the Syndicat des Transports en Île-de-
France (STIF), the transport organization authority in charge of Paris
public transport. More than seven millions of Paris transport users have
subscribed to a pass managed by the STIF. The ticketing logs record
every authentication of any pass with its location and precise time. This
dataset provides an accurate real-time picture of the use of a public trans-
portation system. The analysis is challenging for two reasons: the size of
the data (5GB/month) coupled to the sparsity of individual user data
hinders the mining of frequent behavioral patterns; secondly, the dataset
contains only a subset of the urban network activity. The STIF estimates
that 20% to 30% of logs are missing, either due to the malfunctioning of
a turnstile or to the user voluntary not authenticating itself. Moreover,
the logs correspond mostly to a check-in action, as pass checkpoints are
generally positioned at entry points in metro stations and buses, and not
at exit points. Thus the user’s itineraries are not explicitly present in the
dataset, only a (large) part of their check-ins are recorded.

3.2 Modeling

In the following, u will refer to a user, s to a station and t to a time.
An authentication at time t is thus a triplet ` = (u, s, t). The mobility of
a user is partially described by the log of its authentications, L = {` =
(u, s, t)}. Each authentication is related to a latent activity of the user.
We propose in this section a latent model using a multi-scale aggregation
of events by day and by week.
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A first difficulty for identifying latent activities lies in the wide frequency
scale of the events. Non-frequent events are hidden by frequent ones,
any approximation will catch frequent day-to-day activities and miss the
less frequent patterns. We propose to dispatch user activities in three
frequency bands: high frequency for events occurring more than twice a
week, medium frequency for events occurring at least once each 10 days
and less than twice a week, and low frequency for unusual events. We
use the spatial information to filter events in the frequency bands: for
a given user, each event is associated to a frequency band based on the
number of times the event station appears in the user log.

We make the assumption that within a frequency band activities are more
characterized by their occurrence time than by their location. On the one
hand, this assumption correctly interprets regular activities occurring at
the same place (like leaving for work, going back home); on the other
hand, it allows us to capture recreational activities that occur in wide
areas (like going out to restaurant, visiting friends).

Within a frequency band, an event is represented by the couple (u, t).
The user behavior can be modeled by the probability function of the au-
thentication time for this user in the three frequency bands: pb(t|u), b ∈
{low,medium, high}. Our goal is to discover a set of activities A over
which the user log can be decomposed as: pb(t|u) =

∑
a∈A p(t|a)∗p(a|u).

Our approach relies on a multi-scale representation of authentication
events, by day and by week. We chose to characterize an activity, that
we denote a, by the probability function of the ticketing event during the
day fd,a(t) = p(t|a) and during the week fw,a(t) = p(t|a) with t respec-
tively a day time and a week time variable. As we are more interested
on the discovery of widespread usages, our objective is to infer a small
set of activities A sensible for all users.

This formalism supposes a weekly pattern and does not allow to model
explicitly the localization information. However, the station information
can still be decoded from the individual user data knowing the activity
decomposition for a user.

3.3 Notations and data representation

We first filter authentication triplets (u, s, t) in three frequencies bands:
low for couples (u, s) occurring only a few times, high for frequent cou-
ples (u, s) and medium for everything in between. On figure 1 is rep-
resented the authentication set of a single user with stations sorted by
frequency, from low to high. The two most frequent stations for this
user are likely to be its home and workplace. For all frequency bands
f in {low,medium, high}, we build a multi-scale vector representation
of a user as the concatenation of the two probability functions of the
authentication time during the day and the week. Both are empirically
estimated using a time step of 15 minutes for the day and 2 hours for
the week. Thus each user is represented by a n dimensional vector with
60/15 ∗ 24 = 96 dimensions for the day and 24/2 ∗ 7 = 84 for the week.
We denote m the number of users. As a result, data are represented by
a set of 3 matrices: {X(b) ∈ Rmu×n|∀b ∈ {low,medium, high}}.



6

week00
week01

week02
week03

week04
week05

week06
week07

week08
week09

week10
week11

week12
week13

Fig. 1: A user of the Parisian network authenticated at 10 stations over 91 days.
Stations are ordered by decreasing frequency from bottom to top. The most
frequent stations are relative to the residence and the workplace. Less frequent
ones are likely to correspond to recreational activities.

Figure 2 shows a subset of user profiles aggregated without the frequency
filtering. The data is noisy reflecting users’ individual variance. Still this
representation extracts peaks of activities. As argued above, without the
frequency filtering most of the density is used by recurrent commuting
patterns. User profiles after frequency filtering are represented in figure
3, where low, medium and high are respectively the bottom, middle and
top. Typically, commuting patterns are present in the high frequency
band and week-end and evening events are present in the other two
bands. Some users have no event in a particular band, which is a strong
characterization of their behaviors.

4 Learning usage atoms with NMF

The previously extracted matrices from authentication data represent the
averaged daily and weekly user profiles. We aim at extracting the latent
behavioral patterns which compose these profiles. Our goal is to achieve a
granular identification of behavioral patterns, allowing us to characterize
heavy and light traffic periods, during evening, nights and week-end.
Thus the challenge here is to extract generic patterns reflecting the most
common patterns like commuting but also less frequent ones happening
during evenings and week-ends without over-fitting and learning patterns
specific to only of small set of users.
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Fig. 2: Aggregated user profiles over time ordered by time of their highest peak.
Concatenation of the day and week scales.

We propose to use a nonnegative matrix factorization algorithm to ex-
tract the pattern dictionary with a mono-modal constraint on dictionary
rows. As nonnegative matrix factorization decomposes each sample as a
positive linear combination of atoms, it is well-suited to our problem: we
seek to approximate a user by a set of complementary behaviors.
Formally, the goal is to approximate each matrix X by the product of
two positive matrices, D the pattern dictionary and A the code matrix:
a row of D, named atom, represents the time profile p(t|a) of a particular
activity a and a row of A contains the coordinates of a user in this usage
space, that is the repartition p(a|u), for the user u, of the activities in A.
These coordinates can be viewed as the usage probabilities for the user.
We want to take into account the following constraints:

– normalization: each dictionary atom is the concatenation of the daily
and the weekly information representing the probability density func-
tion of the ticketing event; thus both parts of the dictionary atom
has to sum up to 1;

– mono-modal atoms: an atom is supposed to explain a unique activity
in the day, localized at a precise time window;

– sparsity of the reconstruction: a user has naturally few activities,
thus only a small set of dictionary atoms should have a non-zero
weight in each row of A.

The dictionaries for the three frequency bands are distinct: they can be
learned separately. For each frequency band, the problem can be formal-
ized as the minimization of a loss function L under the constraint C(D)
on the dictionary D:

L(X,A,D) =
1

m
‖X −A.D‖2 + λ|A| (1)

C(D) : D ≥ 0,∀i,
∑

j<tday

Dij = 1,
∑

tday≤j<tweek

Dij = 1 (2)
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The NMF optimization is done using a projected gradient (with projec-
tion φ on the constraints) for the dictionary and multiplicative update
rules for the codes (see algorithm 1).

D,A← rand ;
while not converged do

D = D − µ(AT (X −AD);
D = φ(D) ;

A = A� XDT

λ+ADDT ;

end
Algorithm 1: NMF update rules: projected gradient on D and multiplicative
update rules on A

To force the mono-modal property of dictionary atoms, an additional
projection is used every 100 iterations, by applying a Gaussian filter to
each atom in order to capture only the highest peak of the daily part:

∀i, di,day ← di,day � exp(− (tday − tpeak)2

2σ2
) (3)

where � is the element-wise multiplication, tday ranges over the day
dimensions of the atom, tpeak is the time corresponding to the peak day
time in the atom and σ a fixed parameter defining the granularity of
the time window and di,day is the part of i-th row of the dictionary D
accounting for daily patterns.

5 Analysis of extracted representation

We focus our analysis on the subway traffic, excluding buses, trains and
trams. As we are looking for mobility usages. Users were filtered to retain
only those with enough travels to have a significant activity and subscrib-
ing a monthly pass. Our dataset is composed of around 80 million user
authentications at one of the 300 stations over 91 days for the subway
network of the city of Paris, concerning around 600k unique users.
The k = 100 atoms were extracted with 180 features of m = 600000
users, using a 8 cores (3.07 GHz) and 16 GB of RAM PC. It takes
approximately 10 hours to complete the 1k iterations of the nonnegative
matrix factorization algorithm.
Extracted atoms are represented in figure 4 where they are sorted by their
occurrence of highest peak. In the high frequency band, where commut-
ing patterns are the most frequent ones, the mono-modality allows the
discovery of joint leaving-for-work and going-back-home patterns. The
extraction is mainly focused on working days since only a small part of
the density occurs during week-ends. With most atoms occurring in the
morning the high frequency band has a fine granularity on the leaving-
for-work usage. In the medium frequency band more atoms are devoted
to lunch activities and they typically are active during working days too.
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Fig. 3: Aggregated user profiles overtime with frequency filtering. Events with
high, medium and low frequencies are in top, middle and bottom charts respec-
tively. Concatenation of the day and week scales.

Still some atoms, bottom ones, are catching evening and week-end ac-
tivities. In the low frequency band, density of the week is more evenly
distributed through the seven days. A vast majority of the atoms are
representing evening and nightly activities. Note that the working hours
of the subway are 5:30 am to 2 am, with a slight variance over days,
which explains why there is no activity corresponding to the 2 am to
5:30 am period.
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Fig. 4: Activity atoms extracted from the profiles per frequency band. Concate-
nation of day and week scales. Blue values are zeros, red values are peaks.

Quality measures of the nonnegative matrix factorizations are presented
in table 1. The data sparseness is the average percentage of nonzero
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entries per user. The dictionary sparseness is the average percentage of
nonzero entries per dictionary atom. The code sparseness is the average
percentage of nonzero entries per user code (a row of α). The important
activities row counts the average number of activities responsible of 90%
of a user’s profile. It is interesting to see that the factorization on the
low frequency band scatters the density over more activities than the
medium and high band. It is coherent with the fact that infrequent
validations correspond to more diverse usages (visiting friends, hiking in
the city, going to a restaurant,...). This value has to be put in perspective
with the bar plots and histograms of figure 5. The bar plots of the top row
of figure 5 represents, per frequency band, the percentage of users that
have a non-zero weight attributed to each dictionary atom. The shape of
the curves indicates that all dictionary atoms are evenly used to describe
users. This is the sign that the model did not over-fit the dataset and it is
one of the property we were looking for: the extracted behavior pattern,
the dictionary atoms, are not to specific to one particular user. The
bottom row histograms count the number of dictionary atoms per user.
The first noticeable effect of the frequency filter is that in the medium
and high frequency bands a great proportion of users are characterized
by a lack of events. It also confirms the good sparsity of the extracted
representation: the NMF uses few dictionary atoms to reconstruct each
user profile. NMF appears as a robust solution to extract latent activity
patterns from noisy temporal data.

NMF low medium high

Data sparsity (std) 16.98 (0.38) 7.97 (0.27) 16.88 (0.37)
Dictionary sparsity (std) 51.15 (0.50) 52.41 (0.50) 51.93 (0.50)
Code sparsity (std) 9.23 (0.29) 4.33 (0.20) 5.46 (0.23)
Important activities (std) 4.38 (0.20) 1.94 (0.14) 1.68 (0.13)

Table 1: NMF sparsity measures on the low, medium and high frequency bands

6 From users to stations

Using NMF, each user is now represented as a vector of usage weights. In
this section we analyze the distribution of the individual usage patterns
according to the metro station geographical position. Formally, we want
to estimate the probability function p(a|s) of activities over subway sta-
tions. We will use the following decomposition: p(a|s) =

∑
u p(a|u)p(u|s).

To simplify the estimation of p(u|s), we consider that it is uniform over
the stations visited by the user in the frequency band of the activity.
We build the representation of each station for each frequency band as
the sum of all the activities of all the users authentication at this station
weighted by the overall usage in this frequency band. This gives us a set
of three representation matrices for the station, one per frequency band,
a row of which representing a particular station. As we extract 100 atoms
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Fig. 5: Top row represents usage of each dictionary atom over the set of users per
frequency band. Bottom row contains the histogram of the number of dictionary
atoms having non-zero weights per user per frequency band.

per frequency band and there are around 300 stations in our problem,
these matrices have small dimensions.

We use a multi-scale clustering algorithm, similar to what [25], to cluster
together stations into coherent groups of behaviors. Since the matrices
are small (300 × 100), the clustering is fast (a couple of seconds) on
a typical computer. It is stable with respect to the initialization. For
simplicity, we present the result using 5 clusters to capture macroscopic
groups of behaviors in the network.

Figure 6 represents the map of the subway stations in Paris where each
station is colored (and shaped) according to its cluster. Some geograph-
ical patterns clearly emerge. There are two inner clusters in the center,
one belt-like cluster around this center and the separation of the western
and eastern sub-urban regions around Paris. It is interesting to compare
this clustering to the sociological geography of the city.

First the touristic center of Paris with Champs Élysées and Concorde, the
Louvre Museum, the Garnier Opera, Notre Dame and the Sacré Cœur
are in the same cluster. Second, the belt-shaped cluster, here in yellow
squares, corresponds to the limits between Paris and the surrounding
cities. The city limits are marked by Porte (gates in French) as a reminder
of the gates piercing the old fortified walls of the medieval Paris.

And last but not least, the clustering opposes the posh western sub-urban
regions of Paris to the relatively poorer eastern sub-urban regions: the
distinction, based on temporal patterns, is interesting as the users might
have the same patterns since they are at the same distance from the city
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center. So the distinction goes beyond the simple geographic explanation
and touches a sociological repartition of work hours.

The multi-instance ks-means has provided centroids composed of one
pattern per frequency band. For any given cluster, the high frequency
band comes from the usage pattern of people that frequently check-in in
one of the stations meaning they either live or work there. The low fre-
quency band corresponds to people that hardly use the station (less than
once every ten days) and is basically composed of evening events, meals
or sleepovers. The medium band corresponds to everything in between.
The difference between the patterns of the centroids and the average net-
work load are represented in figure 7, with each centroid being colored
as the corresponding cluster in figure 6. A positive spike means more
users authenticating themselves at any station of the cluster than in av-
erage over the network. A negative spike is the opposite: a deficit of users
compared to average load.

As only the check-in authentications are available to us, the high fre-
quency band corresponds to the habit of the people living or working
near the stations of the cluster while the medium and low frequency
bands correspond to people check-in to travel elsewhere, meaning that
they came to the stations of the cluster for some periodical activity like
pubs, restaurants, theaters and so on and are now leaving.

The last line is the belt cluster that corresponds to the average behavior
of standard Paris dwellers which is coherent with the fact that stations
composing this cluster are at the limit of the city. The first line and third
lines are close one to another. The former corresponds to the touristic
center of Paris which is sensible as it is characterized by a lack of check-
ins in the morning for no working class is living there. Once again the
temporal pattern is linked to a sociological repartition. The latter con-
tains the big clusters corresponding to train stations. People working in
sub-urban regions where the subway network is not present typically take
the train to one hub and then finish their journey with the subway. This
explains the main difference in the high frequency band between the two
clusters: the peak around nine in the morning. It is also noticeable that
these two clusters are the only ones having people departing after infre-
quent activities, as can be seen on the low frequency band. The second
and fourth lines correspond respectively to the western and eastern sub-
urban regions around Paris. As said earlier they are mainly residential
areas with the western part being wealthier than the eastern one. This
is confirmed by the night part of the medium and low frequency bands:
in contrast to the center clusters, few people are leaving these clusters
after some episodic activities. The phenomenon of a peak in the medium
band correspond to the activity of leaving for work from a station that
is not the main home of a user and is typical of sleepovers. Finally the
commuting patterns of the two clusters is different. The model is able to
extract fine grained representations and distinguish the clusters as they
do not commute at the same time. Stations in poorer regions see a peak
early in the morning followed by a deficit of users at the same time as
the affluence peak in stations of posh neighborhoods.
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high day high week medium day medium week low day low week

Fig. 7: Difference to the average behavior per multi-instance centroids. Juxtapo-
sition of the day and week scales for the high, medium and low frequency bands
respectively.

7 Conclusion

In this work, we have proposed a new approach to urban mobility analysis
introducing a machine learned based modeling that fully exploits the
data available thanks to smart transit passes in public transportation.
We gave proposed a multi-scale modeling of event logs of users in order
to retrieve latent activities of users. A nonnegative matrix factorization
algorithm with sparsity, mono-modality and normalization constraints is
used to build the set of dictionary atoms representing these activities. We
have analyzed and exploited the extracted representations of the users
to build stations profiles and to cluster them.
The study of these clusters has revealed that temporal patterns are able
to capture fine grained representations of behaviors from roughly aggre-
gated noisy ticketing logs. We used here the extracted latent activities in
a qualitative study. From a machine learning point of view, the extracted
dictionary atoms contains meaningful high-level information that can be
exploited further to jointly characterize users and locations.
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