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ABSTRACT
Different important studies in Web search results clustering have
recently shown increasing performances motivated by the use of
external resources. Following this trend, we present a new algo-
rithm called Dual C-Means, which provides a theoretical back-
ground for clustering in different representation spaces. Its origi-
nality relies on the fact that external resources can drive the cluster-
ing process as well as the labeling task in a single step. To validate
our hypotheses, a series of experiments are conducted over differ-
ent standard datasets and in particular over a new dataset built from
the TREC Web Track 2012 to take into account query logs infor-
mation. The comprehensive empirical evaluation of the proposed
approach demonstrates its significant advantages over traditional
clustering and labeling techniques.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information search
and retrieval—clustering

General Terms
Algorithms, Experimentation

Keywords
Web Search Results Clustering, Dual C-means, Automatic Label-
ing, Evaluation

1. INTRODUCTION
Web search results clustering (SRC), also known as post-retrieval

clustering, multifaceted clustering or ephemeral clustering has re-
ceived much attention for the past twenty years. SRC systems
return meaningful labeled clusters from a set of Web snippets re-
trieved from any Web search engine for a given user’s query. So
far, most works have focused on the study of topical clustering [9]
although some studies have been appearing in temporal clustering
[1] and geospatial clustering [39]. As a consequence, SRC systems
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can be particularly useful to understand query intents (topical clus-
tering) and query diversity (temporal/geospatial clustering). In this
paper, we particularly focus on topical SRC.

As opposed to classical text clustering, SRC must deal with small
text fragments (Web snippets) and be processed in run-time. As a
consequence, it is hard to implement efficiently and effectively [9].
So, most successful methodologies follow a monothetic approach
[40, 10, 12, 35]. The underlying idea is to discover the most dis-
criminant topical words in the collection and group together Web
snippets containing these relevant terms. On the other hand, the
polythetic approach, in which the main idea is to represent Web
snippets based on the Vector Space Model (VSM) has received less
attention [18, 22, 41, 30]. The main reason is the fact that the la-
beling process is a surprisingly hard extra task [9].

Our research is motivated by the fact that the adequate combi-
nation of the polythetic and monothetic approaches in a single al-
gorithm should lead to improved performance over three important
factors in SRC: clustering accuracy, labeling quality and partition-
ning shape. For that purpose, we present a new algorithm called
Dual C-Means, which provides a theoretical background for dual-
representation clustering. Its originality relies on the fact that dif-
ferent representation spaces can drive the clustering process as well
as the labeling task in a single step.

We evaluated the proposed algorithm over different metrics (e.g.
FN

1 [13], Fb3 [2], ARI [37], D#-nDCG [34]), well-studied datasets
(e.g. ODP-239 [10], SEMEVAL [28]) and different representation
spaces (e.g. text and query logs). The results show that the com-
bination of the VSM representation of Web snippets and a query-
log-based representation of cluster centroids achieves the best con-
figuration for the SRC task. In particular, increased performance is
shown against most SRC solutions (e.g. STC [40], LINGO [30],
TOPICAL [35], LDA [7]). Our main contributions are :

• A new algorithm (Dual C-Means), which can be seen as an
extension of K-means [21] for dual-representation spaces;

• An instantiation of the Dual C-Means for SRC, which takes
advantage of external resources such as query logs to im-
prove clustering accuracy, labeling quality and partitioning
shape;

• A new annotated dataset (WEBSRC401) based on the TREC
Web Track 2012 for full SRC evaluation over the Web.

In the next section, we present the most important recent stud-
ies for SRC. In the third section, we present the general model of
the Dual C-Means algorithm and its instantiation in the context
of SRC. In the fourth section, we explain the construction of the
WEBSRC401 dataset. In the fifth and sixth sections, we present
the experimental setups and show the results obatined for different
strategies over an exhaustive set of well-known evaluation metrics,



datasets and state-of-the-art algorithms. Finally, we draw some
conclusions about our experiments and propose new perspectives.

2. RELATED WORK
A good survey of SRC methodologies can be found in [9]. As

a consequence, we give a brief overview of older methodologies
and focus on more recent works. The first important work in SRC
is certainly proposed by [18]. They define a polythetic approach
based on the VSM representation where similarity between docu-
ments is computed with cosine similarity measure. Then, a non-
hierarchical partitioning strategy called fractionation is performed
to discover the number of clusters suggested by the user. Initial re-
sults show that their “approach to document clustering is one which
can produce significant improvements over similarity search rank-
ing alone”. Although they present the foundations of SRC, labeling
is not tackled and evaluation is based on a small dataset and a lim-
ited user study.

In order to propose a more realistic solution, which includes la-
beling, [40] defined the Suffix Tree Clustering (STC) algorithm.
They propose a monothetic clustering technique, which merges
base clusters with high string overlap. Instead of using the VSM
representation, they propose to represent Web snippets as compact
tries. Their evaluation over a small set of 10 queries shows that STC
outperforms group-average agglomerative hierarchical clustering,
K-Means, buckshot, fractionation and single-pass algorithms. STC
is still considered as a hard baseline to compete with.

Later, [30] proposed a polythetic approach called LINGO, which
takes into account the string representation proposed by [40]. They
first extract frequent phrases based on suffix-arrays. Then, they re-
duce the term-document matrix (defined as a VSM) using Single
Value Decomposition to discover latent structures. Finally, they
match group descriptions with the extracted topics and assign rel-
evant documents to them. LINGO is evaluated with 7 users over
a set of 4 search results and as such, no conclusive remarks can
be drawn. However, their publicly available implementations of
LINGO, STC and BiKM (Bi-section K-means) provide researchers
with useful tools to build SRC systems.

More recently, [10] showed that the characteristics of the out-
puts of SRC algorithms suggest the adoption of a meta clustering
approach. For that purpose, they introduce a novel criterion to mea-
sure the concordance of two partitions of Web snippets into differ-
ent clusters based on the information content associated with the
decisions made by the partitions on single pairs of Web snippets.
A meta clustering phase is then casted to an optimization prob-
lem of the concordance between the clustering combination and
the given set of clusterings. The results of their OPTIMSRC sys-
tem demonstrate that meta clustering is superior over individual
clustering techniques. In particular, they propose a dataset called
ODP-239, which is widely used in the community.

Another polythetic methodology is proposed in [26]. Their un-
derlying idea is that informative text similarity measures can im-
prove SRC by adequately capturing the latent semantics conveyed
by Web snippets. They propose a K-means based algorithm called
GK-means within which a new objective function defined for a
third-order similarity measure must be maximized. As different
partitions are possible depending on the K value, they propose an
automatic stopping criterion to retrieve one “optimal” clustering so-
lution. Their main contribution is the fact that labels are built during
the clustering process thus avoiding an extra processing step. Their
results show improvements for ODP-239 in terms of Fb3 over all
text-based SRC algorithms.

While all studies mentioned so far treat the task of SRC as a text-
based problem, some other works propose to introduce external re-

sources. The first relevant work is presented in [16] where Web
snippets are enriched with anchor text information and high qual-
ity indexes extracted from DMOZ. The underlying idea of their
monothetic approach called SNAKET is that better labeling and
clustering can be obtained from these external resources. Results
over a non-standard dataset show that the introduction of external
information improves Precision at different clustering levels. [16]
certainly proposed a new trend in SRC.

Following the same idea, [35] proposed TOPICAL, a top per-
forming SRC system over ODP-239 dataset. They propose to move
away from the bag of words representation towards a graph of top-
ics paradigm derived from TAGME, a wikification algorithm [38].
Each Web snippet is annotated with a set of topics, which are rep-
resented by Wikipedia articles. A bipartite-like graph structure is
built where nodes are either Web snippets or topics and edges are
either topic-to-topic or topic-to-snippet. Then, a spectral-like clus-
tering algorithm is run over the graph to discover relevant clus-
ters and meaningful labels. TOPICAL is an interesting approach
as clustering is driven by the presence of Wikipedia titles in Web
snippets and inderectly assures the quality of the labeling.

Another idea has recently been proposed in [13], which relies
on Web n-grams. In order to better capture the similarity between
Web snippets, a first step consists in building a co-occurence graph
based on Dice coefficient calculated over the Google Web1T cor-
pus [8] from which senses are discovered by word sense induction
algorithms. Each Web snippet is represented as a bag-of-words
(polythetic approach) but Similarity is computed over discovered
word senses. Their experiments show that enhanced diversification
and clustering performance results can be obtained based on the
adjusted RandIndex [37] for a specific dataset built for ambiguous
queries (MORESQUE). Recently, researchers from the same team
proposed a new dataset within the context of the SEMEVAL task
11 [28], in which the goal is to provide an evaluation framework
for the objective comparison of word sense disambiguation and in-
duction algorithms in SRC for ambiguous queries.

All works propose interesting issues for SRC. On one hand, the
monothetic approach mainly focuses on the identification of strong
meaningful labels. The underlying idea is that good labels are a
key factor for the success of user experience in Web search. On
the other hand, the polythetic approach concentrates on discover-
ing high quality clusters and the labeling task is usually treated as
a separate process. The subjacent motivation is that good cluster-
ing should be provided to improve user experience in search for
information. Moreover, recent studies show that the introduction
of external resources improves overall results.

In this paper, we propose that both monothetic and polythetic
approaches should be combined in a single algorithm capable of
accepting external resources. For that purpose, we present the Dual
C-Means algorithm, which extends the well-known K-Means for
dual representation spaces. It particularity relies on the fact that dif-
ferent representation spaces compete to reach high clustering qual-
ity and meaningful labeling. In particular, we propose that query
logs are introduced as external information to ensure quality label-
ing and drive the clustering process. The main characteritics of our
proposal are as follows:

• New combination of polythetic and monothetic approaches
in one single algorithm;

• Introduction of dual representations for Web snippets allow-
ing the introduction of external resources;

• Theoretical framework based on an extension of K-means;

• First proposal with query logs as external resource for SRC.



3. DUAL C-MEANS ALGORITHM
This section is devoted to the presentation of the Dual C-Means

algorithm that extends the classical K-means [21] for dual represen-
tation spaces. In the first subsection, we present the general model
and in the second one we propose its instantiation for the specific
task of SRC.

3.1 General Model
Let S be a dataset to partition where each data si ∈ S is described

on a representation space E1 and additionally, E2 denotes another
space supporting cluster representation. We hypothesize the exis-
tence of a function d : E1 ×E2 →R+ quantifying the dissimilarity
between any data from E1 and any cluster representative (cluster
centroid) from E2. The new proposed clustering model (Dual C-
Means) is driven by the objective criterion defined in Equation 1,
which must be minimized.

Jdcm(Π,M) =
c

∑
k=1

∑
si∈πk

d(si,mk) (1)

As illustrated in Figure 1, the aim of the minimization of Jdcm(Π,M)
is to find a partition of S into c clusters (Π = {π1, . . . ,πc}) such that
in each cluster πk any object is as closed as possible to a common
cluster representative mk (M = {m1, . . . ,mc}).

E1

d(si,mk)

E2

si

mk

πk

Figure 1: Dual C-Means aims to discover clusters of objects in
E1 closed to a common cluster representative in E2.

The optimization process can be achieved by an usual dynamic
reallocation algorithm starting with a random initial clustering Π0

and then iterating the following two steps (Update and Assignment)
until convergence:

1. Update: compute new optimal cluster representatives Mt+1

considering a fixed partition Πt ,

2. Assignment: compute new optimal assignments Πt+1 con-
sidering fixed cluster representatives Mt+1 and use the fol-
lowing rule to assign each object to its closest representative:

∀si, si ∈ πk ⇔ k = arg minl=1,...,c d(si,ml).

Note that the update of cluster representatives has to be defined
depending on both the dissimilarity measure d(., .) and the repre-
sentative space E2 in order to ensure that the objective criterion
Jdcm(., .) decreases. Let us also notice that in the specific case
where E1 = E2 = Rn and the squared euclidean distance is chosen

as dissimilarity d(., .), the Dual C-Means algorithm comes down
exactly to the usual K-means algorithm (mt+1

k = ∑si∈π t
k
si/|πt

k|).
Finally, such as K-means, Dual C-Means is sensitive to random
initialization and requires the number of expected clusters (C) as
parameter1.

3.2 Instantiation in the SRC Context
In the context of SRC, objects are naturally Web snippets repre-

sented in the E1 space (si ∈ S) and cluster representatives are labels
represented in the E2 space (mk ∈ M).

The crucial hypothesis of the Dual C-Means algorithm is the ex-
istence of a dissimilarity metric d(., .) capable of comparing objects
from different feature spaces. For that purpose, a matching process
between the two feature sets is required that can be formalized as a
transition matrix P (p1 × p2) quantifying this matching for each of
the p1 features defined in E1 with each of the p2 features from E2.

Without loss of generality, we define a generic dissimilarity mea-
sure considering such a transition matrix in Equation 2 where mT

k is
the transposed label vector, siPmT

k quantifies a similarity between a
Web snippet si and a label mk, and α is a constant to adjust in order
to ensure dissimilarity values in R+.

d(si,mk) = α − siPmT
k (2)

Such a dissimilarity form allows us to rewrite the Dual C-Means
algorithm as a maximization problem defined in Equation 3.

min
Π,M

c

∑
k=1

∑
si∈πk

d(si,mk)⇔ max
Π,M

c

∑
k=1

∑
si∈πk

siPmT
k (3)

Let us notice that when the label space E2 is unconstrained (e.g.
E2 = Rp2 ), the resolution of Equation 3 has no sense (M = +∞).
But in the SRC context, a small set of words (i.e. the labels)
are usually chosen to help the user in his search for information.
Thus, we consider two vocabularies V1 and V2 defining the two
feature spaces E1 and E2 respectively. We constrain Web snip-
pet descriptions to be word distributions over V1 (si, j ∈ [0,1] ∀i, j
and ∑p1

j=1 si, j = 1) and cluster labels to subsets of p words from V2

(E2 = {mk ∈ {0,1}p2 |∑p2
l=1 mk,l = p}).

Within that context, the computation of optimal cluster labels is
a discrete optimization process solved for each cluster πk indepen-
dently, by first sorting the vocabulary V2 from the most relevant
word (lk

1) to the less relevant one (lk
p2

) using the relevance function
defined in Equation 4

∀l,k λk(l) = ∑
si∈πk

siP.,l (4)

and then defining a cluster label vector mk as the combination of the
p most relevant words from V2 for the snippets in πk as proposed in
Equation 5.

mk,l =

{
1 if l ≥ lk

p
0 otherwise

(5)

It is interesting to notice that the GK-means, recently proposed
by [26], falls into such an SRC instantiation of the Dual C-Means
algorithm if the following constraints are true:

• Web snippet and label representation spaces are not dissoci-
ated (i.e. V1 =V2) thus not taking benefit from the duality of
the clustering algorithm;

1These issues will be tackled in the Evaluation section.



• The transition matrix P is computed with the Symmetric Con-
ditional Probability (SCP [36]) or the Pointwise Mutual In-
formation (PMI [11]) on the unique vocabulary V1 =V2.

To make use of the duality concept from the new proposed algo-
rithm in the SRC context, we suggest differentiating the two vocab-
ularies V1 and V2. First, V1 is defined as the bag of words occurring
in all Web snippets retrieved for a given query. Second, if we con-
sider a set Y of query logs, the vocabulary V2 is defined by the bag
of words occurring in Y and E2 is restricted to the set of query logs
defined as distributions in the vector space model induced by V2.
This situation is formalized in Equation 6 with βi denoting the size
of the query log yi.

E2 = {yi ∈ {0,
1
βi
}p2 |

p2

∑
j=1

yi, j = 1 and yi ∈ Y} (6)

As such clustering is polythetic but query log driven. Figure 2
illustrates the instantiation of the Dual C-Means algorithm in the
SRC context where the restricted set of available query logs guides
the cluster formation process.

E1 = {snippets}

E2 = {query − logs}

y2 = (jaguar, car)

y1 = (jaguar, animal, black)

s1 = ”The black jaguar is one of three
called panther...”

Figure 2: Example of the Dual C-Means instantiated for the
SRC context with query logs as cluster label space.

4. THE WEBSRC401 DATASET
Different gold standards have been used for the evaluation of

SRC algorithms among which the most cited are: AMBIENT [6],
ODP-239 [10], MORESQUE [27] and SEMEVAL [28]. As ODP-
239 is an evolution of AMBIENT and SEMEVAL is the next gen-
eration of MORESQUE, we will only give an overview of the most
recent datasets.

In ODP-239, each document is represented by a title and a Web
snippet and the subtopics are chosen from the top levels of DMOZ2.
However, this dataset does not represent the typical kind of results
obtained through querying a given search engine as the number
of possible subtopics is always equal to 10. It is clear that this
structure clearly differs from a typical Web results set. Moreover,
queries are not extracted from query logs but rather chosen based on
the categories present in DMOZ. However, it is a publicly available
dataset that allows us to conduct experiments to evaluate clustering
accuracy.
2http://www.dmoz.org [Last access: 27/01/2014].

On the other hand, the subtopics in SEMEVAL follow a more
natural distribution as they are defined based on the disambigua-
tion pages of Wikipedia. As such, these subtopics are likely to
cover most of the senses present in the Web for the 100 evaluated
queries. However, SEMEVAL is built to specifically deal with am-
biguous queries, which are self-contained in Wikipedia. But, it is
clear that not all queries in general are Wikipedia articles or am-
biguous. For example, many queries are multifaceted but not am-
biguous [19]. Let us take “Olympic Games”. Its Wikipedia entry is
not ambiguous but it presents many different facets such as History,
Logos, Year dates or Cities, to name but a few.

As a consequence, it is clear that different results can be obtained
from one dataset to another. A quick summary of both datasets is
presented in Table 1.

# of # of Subtopics # of
Dataset queries Avg / Min / Max Web snippets

ODP-239 239 10 / 10 / 10 25580
SEMEVAL 100 7.7 / 2 / 19 6400

WEBSRC401 50 3.9 / 3 / 6 5560

Table 1: Description of the SRC gold standard datasets.

To afford a more realistic situation in the context of Web search
results, we propose a new SRC dataset based on the ClueWeb09
Category B text collection (CCB)3, which comprises about 50 mil-
lion English-language pages, including the entirety of the English-
language Wikipedia and task descriptions of the TREC Web Track
2012. The goal of TREC Web Track 2012 is to return a ranked list
of Web pages that together provide complete topical coverage of a
given query, while avoiding excessive redundancy of the subtopics
in the result list. In particular, each topic contains a query field, a
description field and several subtopic fields which can be ambigu-
ous or multifaceted. And for each topic, a judgement file (i.e. qrel)
includes the list of relevant Web pages from CCB and the manually
attributed grade of the Web page subtopic.

Instead of retrieving relevant Web pages, we are interested in
obtaining relevant clusters (i.e. Web pages with the same subtopic)
with high coverage of all the subtopics. So, we propose transform-
ing the data available in the TREC Web Track 2012 in a typical
SRC format [10], which result in the WEBSRC401 dataset4. First,
for each Web page considered as query-relevant, its Web snippet
is retrieved using the SnippetGenerator function of ChatNoir5. By
default, a Web snippet composed of a maximum of 500 characters
found around the query words is provided.

Secondly, for each query, its subtopics are defined as in the TREC
Web Track 2012 and each qrel is encoded in a new format, which
contains the Web page id, the subtopic id and the query6. Addi-
tionally, it is important to notice that the WEBSRC401 dataset fa-
cilitates the evaluation of new techniques based on more complex
resources provided by researchers as it is based on the well-studied
ClueWeb09. For example, cluster ranking or spam cluster filter-
ing studies could be endeavored with the PageRank scores and the
spam rankings of ClueWeb09 dataset which are publicly available.

5. CLUSTERING EVALUATION
As mentioned in [9], evaluating SRC systems is a hard task. In-

deed, the evaluation process is three-fold. A successful SRC sys-
3http://lemurproject.org/clueweb09/ [Last access: 27/01/2014]
4http://websrc401.greyc.fr/ [Last access: 10/05/2014].
5http://chatnoir.webis.de/ [Last access: 27/01/2014].
6Note that these steps could be used to extend the dataset with the
TREC Web tracks of the years 2009, 2010 and 2011.



tem must discover relevant topical clusters (clustering accuracy)
and propose meaningful labels at the same time (labeling quality).
We will also see in our experiments that partition shape is also an
important factor to study.

5.1 Evaluation of SRC
Firstly, a successful SRC system must evidence high quality level

clustering. Ideally, each query subtopic should be represented by a
unique cluster containing all the relevant Web pages inside. How-
ever, this task is far from being achievable. As such, this constraint
can be reformulated as for the TREC Web Track 2012: the task of
SRC systems is to provide complete topical cluster coverage of a
given query, while avoiding excessive redundancy of the subtopics
in the result list of clusters.

Secondly, SRC systems should present meaningful labels to the
user to ease their search for information. As such, the evaluation of
the labeling task is of the utmost importance. As far as we know,
only [10, 35] propose the evaluation of both dimensions. However,
their experiments are not reproducible as they rely on manually
annotated datasets, which are not publicly available.

Thirdly, SRC differs from classical text clustering as the parti-
tioning shape, more precisely the distribution of the Web snippets
into clusters, shows evidence of some particularity. Indeed, it is
well-known that subtopics on the Web are not equally distributed.
For example, for the query “Apple”, it is much more likely to find
Web snippets related to the company than the concept of fruit. In
particular, we will see in our experiments that not all evaluation
metrics cover this situation.

In the next sections, we propose a complete set of repeatable
experiments to give an exhaustive overview of the SRC field. We
start by focusing on the experimental setups.

5.2 Experimental Setups
In this section, we propose the comparison of different configu-

rations of the Dual C-Means to several state-of-the-art algorithms
using well-studied evaluation metrics.

Dual C-Means Configurations.
The originality of the Dual C-Means is to embody a great number

of possible configurations due to the expressiveness of its model.
In this paper, we will particularly focus on two main issues. The
first one deals with using different similarity measures to compute
the transition matrix P. The underlying idea is supported by the
fact that different word similarity measures produce different re-
sults [31]. As a consequence, we aim to understand their impact
on the SRC task. The second one aims to test our initial hypothesis
stating that the introduction of external resources can improve SRC.
As a consequence, we propose two different space representations:
text-text (i.e. V1 =V2) and text-query logs (i.e. V1 6=V2).

Word Similarity Measures.
The use of word similarity metrics is an important and inter-

changeable component of our algorithm encoded in the transition
matrix. In this study, we propose the comparison of a total of five
collocation metrics7. In particular, we used the Symmetric Con-
ditional Probability (SCP) [36], the Pointwise Mutual Information
(PMI) [11], the Dice coefficient [14], the LogLikelihood ratio (Log-
Like) [15] and Φ2 [17]. Each metric is defined in Table 2. The
expressiveness of the Dual C-means permits the definition of dif-
ferent types of word similarity measures. As a consequence, we
7It is clear that a great deal of association measures that could be
tested exist. However, we selected the ones which best complement
themselves.

also compute word-word similarity based on the VSM representa-
tion. In particular, for each snippet si ∈ S, a simple word-word sim-
ilarity measure is ST S where ST is the transposed of the snippet-
term matrix S. In this case, P = ST S. Another interesting simi-
larity measure is LSA [20], which can be formulated as follows:
P = U Λe UT where U Λ UT is the eigen decomposition of ST S,
and e is the number of highest eigen values selected to represent
the latent space8.

SRC Algorithms.
We aim to compare our algorithm to the most competitive strate-

gies proposed so far in the SRC literature. For that purpose, we
show the results of STC [40], LINGO [30], TOPICAL [35] and
LDA [7]. It is worth noticing that for evaluation purposes, we de-
veloped an open source implementation9 of TOPICAL using the
Wikipedia Miner API proposed by [24] and the spectral algorithm
proposed by [29] included in SCIKit learning tool10. For LINGO
and STC algorithms, we used the Carrot2 API11. And for LDA,
we used the topic modeling package included in MALLET toolkit
[23]. The parameters were set following the toolkit instructions (i.e.
stop-words removal, αt = 0.01, βw = 0.01 and limited to 1000 iter-
ations) and the cluster membership is assigned taken the maximum
topic probability value.

Evaluation Metrics.
Different metrics have been proposed to evaluate text clustering.

Within this paper, we present the results for the most relevant met-
rics. The first complete study in terms of evaluation has certainly
been proposed by [10]. In the specific case of SRC, the authors pro-
pose the FC

1 metric, which is a specific implementation of the more
general Fβ measure. Other metrics have also been proposed. For
example, the Fb3 measure [2] addresses many important problems
in clustering such as cluster homogeneity, completeness, rag-bag
and size-vs-quantity constraints, and has shown interesting proper-
ties for the SRC task as formulated in [26]. Two other important
metrics have been studied in [13]: FN

1 and the Adjusted RandIn-
dex (ARI) [37]. In particular, FN

1 can be seen as a complementary
metric of FC

1 as it is also based on the classical Fβ measure but
computed in a different manner12, while ARI evidences an inter-
esting property for SRC. While it measures clustering accuracy, it
also takes into account the fact that a given partition shows a sim-
ilar partitioning shape compared with the reference gold standard.
The underlying idea is that the number of clusters and the average
number of Web snippets in each cluster approximate as much as
possible the reference clustering. An illustration of this situation
can be seen in [25] although the authors do not refer to this issue as
an important one for SRC. In terms of implementation, we used the
Java evaluator13 to compute both FN

1 and ARI evaluation metrics,
and the implementation provided by [3]14 to compute Fb3 . In Table
3, we defined all the metrics used for our experiments.

8In our experiments, this value was set to the minimum which guar-
antees that ∑e

i=1 Λi ≥ 0.9∑p1
i=1 Λi.

9This implementation is publicly available upon request.
10http://scikit-learn.org/stable/ [Last access: 27/01/2014].
11http://search.carrot2.org/stable/search [Last access: 27/01/2014].
12Let us notice that these are two F1 measures, which computation
is defined differently in [10] and [13].

13http://www.cs.york.ac.uk/semeval-
2013/task11/index.php?id=data [Last access: 27/01/2014].

14http://nlp.uned.es/˜enrique/software/RS.zip [Last access:
27/01/2014].



Collocation Metric Formula

SCP(wi,w j)
P(wi,w j)

2

P(wi)∗P(w j)

PMI(wi,w j) log2
P(wi,w j)

P(wi)∗P(w j)

DICE(wi,w j)
2∗ f (wi,w j)

f (wi)+ f (w j)

LogLike(wi,w j)

−2∗ logLike( f (wi,w j), f (wi),
f (w j)

N )+ logLike( f (w j)− f (wi,w j),N − f (wi),
f (w j)

N )

−logLike( f (wi,w j), f (wi),
f (wi,w j)

f (wi)
)− logLike( f (w j)− f (wi,w j),N − f (wi),

f (w j)− f (wi,w j)
N− f (wi))

where logLike(a,b,c) = (a∗Log(c))+((b−a)∗Log(1− c))

Φ2(wi,w j)
P(wi,w j)−P(wi)∗P(w j)

P(wi)∗P(w j)∗(1−P(wi))∗(1−P(w j))

Table 2: Collocation metrics used in our framework where P(wi,w j) is the joint probability of words wi and w j, P(wi) is the marginal
probability of the word wi, f (wi,w j) is the frequency of word pairs (wi,w j), f (wi) is the frequency of the word wi and N is the number
of retrieved Web snippets.

Evaluation Metric where

FC
1 = 2∗P∗R

P+R
P = T P

T P+FP ,R = T P
T P+FN ,T P =

k∗

∑
z=1

∑
x j∈π∗

z

∑
xl∈π∗

z ,l 6= j
g0(x j,xl),FP =

k
∑

i=1
∑

x j∈πi
∑

xl∈πi,l 6= j
(1−g∗0(x j,xl)),

FN =
k∗

∑
z=1

∑
x j∈π∗

z

∑
xl∈π∗

z ,l 6= j
(1−g0(x j,xl))

Fb3 =
2∗Pb3∗Rb3
Pb3+Rb3

Pb3 = 1
N

k
∑

i=1

1
|πi| ∑

x j∈πi
∑

xl∈πi

g∗0(x j,xl),Rb3 = 1
N

k∗

∑
z=1

1
|π∗

z | ∑
x j∈π∗

z

∑
xl∈π∗

z

g0(x j,xl)

FN
1 = 2∗P∗R

P+R
P = 1

∑k
i=1 |πi|

k
∑

i=1
maxπ∗

z
( f (π∗

z ,πi)),R = 1
∑k∗

z=1 |π∗
z |

k∗

∑
z=1

f (π∗
z , ∪

πi∈Πz
πi)

πb ∈ Πz ⇐⇒ z = arg maxa( f (π∗
a ,πb)), f (π∗

a ,πb) = ∑
x j∈π∗

a

∑
xl∈πb

g1(x j,xl)

ARI(Π,Π∗)
ARI(Π,Π∗) = RI(Π,Π∗)−E(RI(Π,Π∗))

maxRI(Π,Π∗)−E(RI(Π,Π∗))
where

RI(Π,Π∗) = T P+T N
T P+FP+FN+T N ,T N = N −T P−FP−FN

and g0(xi,x j) =

{
1 ⇐⇒∃l : xi ∈ πl ∧ x j ∈ πl

0,otherwise
g∗0(xi,x j) =

{
1 ⇐⇒∃l : xi ∈ π∗

l ∧ x j ∈ π∗
l

0,otherwise
where πi is the cluster solution i (Π = ∪πi) and π∗

i is the gold standard of the category i (Π∗ = ∪π∗
i ).

g1(xi,x j) =

{
1 ⇐⇒ xi = x j

0,otherwise

Table 3: Clustering Evaluation Metrics.

Text Processing and Implementation.
All Web snippets were tokenized with the GATE platform15 but

we did not apply stop-words removal so that we can propose a
language-independent solution. In terms of dynamic reallocation
algorithm, we used the optimized version of K-means++ proposed
in [4] as the intialization process is semi-deterministic16 and there
exists an efficient implementation called Scalable K-means++ [5].

5.3 Clustering Results
A great deal of experiments have been performed to achieve con-

clusive results. We first propose evaluating the clustering accuracy
of the Dual C-Means against different state-of-the-art algorithms.
For that purpose, we propose an exhaustive search as in [35], whose
underlying idea is to evaluate the behavior of a given algorithm
along with the increasing number of output partitions. In this first
set of experiments, we pretend to understand the clustering quality
of our approach when only text information is taken into account

15http://gate.ac.uk/ [Last access: 27/01/2014].
16Note that for our experiments, the first seed Web snippet is se-
lected as the one, which is most similar to all other ones in S.

(i.e. V1 =V2 and the number of p words composing the centroids is
set to 2) and compare it to state-of-the-art algorithms. In particular,
we present the results for 20 runs (K = 2..20) and illustrate the Fb3

values over ODP-239 and WEBSRC401 in Figure 3. Indeed, recent
studies in [2][3] show that Fb3 is a superior metric to the classical
Fβ measures to compute clustering accuracy.

The obtained results show interesting situations. In all cases,
Dual C-means outperforms state-of-the-art algorithms in terms of
clustering accuracy. In particular, SCP, DICE and LogLike show
improved results and outperform other word-word similarity met-
rics. It is interesting to notice that PMI and Φ2, which are known
to give less importance to more frequent events show less relevant
results. As for the state-of-the-art algorithms, best results are ob-
tained by STC improving over TOPICAL and LDA.

These results only give a small idea of the overall phenomena.
In Tables 4, 5 and 6, results for 10 cluster outputs are given for
all metrics and all datasets. These new results show interesting
properties of evaluation metrics. Although Dual C-means shows
improvements over all competitors in terms of Fb3 or FC

1 (except in
one case) for ODP-239, SEMEVAL and WEBSRC401, this situa-
tion does not stand for the other metrics, ARI or FN

1 . For ODP-239,
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Figure 3: Impact of K for Fb3 against ODP-239 (left) and WEBSRC401 (right) datasets.

the best results are obtained by LDA in terms of ARI and LINGO in
terms of FN

1 . For SEMEVAL, the best performances are provided
by STC in terms of ARI and LINGO in terms of FN

1 . Deep analysis
shows that ARI embodies an interesting property for the SRC task
as it is well-known that the sizes of the clusters are not distributed
equally on the Web. Indeed, ARI tends to favor solutions, which
show similar partitioning shapes to the gold standard. As a con-
sequence, a good SRC system should be performant both in terms
of ARI and Fb3 . On the other hand, FN

1 shows inconsistent results
when compared to all other metrics. In particular, it tends to give
high results when the other metrics decrease.

Although different results are obtained for SEMEVAL and ODP-
239, steady results are obtained for WEBSRC401 by the Dual C-
Means configured with the ST S word-word similarity metric. In-
deed, it clearly outperforms all other algorithms in terms of Fb3 ,
FC

1 and ARI. At this stage of our experiements, we can conclude
that this configuration provides the best performance both in terms
of clustering accuracy and partitioning shape.

FN
1 ARI Fb3 FC

1

ODP-239

LDA 0.5978 0.2571 0.4370 0.3900
LINGO 0.6636 0.0920 0.3461 0.2029

STC 0.5499 0.1597 0.4027 0.3238
TOPICAL 0.5760 0.1505 0.3799 0.2839

SEMEVAL

LDA 0.7159 0.1313 0.3966 0.2840
LINGO 0.7742 0.0783 0.3662 0.2072

STC 0.7223 0.1704 0.4632 0.3682
TOPICAL 0.6791 0.0621 0.3998 0.2723

WEBSRC

LDA 0.7020 0.0268 0.3214 0.2613
LINGO 0.7123 0.0247 0.3095 0.2502

STC 0.6779 0.0220 0.4293 0.3905
TOPICAL 0.6932 0.0203 0.3083 0.2522

Table 4: Results of state-of-the-art algorithms for the ODP-239,
SEMEVAL, WEBSRC401. K fixed to 10 Clusters for LDA and
TOPICAL.

The second set of our experiments aims to analyse the behav-
ior of Dual C-Means when external resources are included. In this
case, we use the set of query logs provided by the NTCIR-10 Intent-
2 task [32] and propose to drive the clustering process by this ex-
ternal information. As such, a cluster centroid is represented by
its most representative query log. Results are presented in Table 6
where V1 6=V2 for WEBSRC401. Let us notice that this is the only
dataset for which experiments with query logs can be performed
and easily reproduced.

FN
1 ARI Fb3 FC

1

SEMEVAL

SCP 0.6114 0.0435 0.5632 0.4856
PMI 0.6634 0.1072 0.4198 0.3297

DICE 0.6245 0.0545 0.5763 0.4914
LOGLIKE 0.5753 0.0209 0.5416 0.4934

Φ2 0.6797 0.1055 0.3972 0.2932
ST S 0.6225 0.0319 0.5722 0.4808
LSA 0.6219 0.0240 0.5645 0.4684

ODP239

SCP 0.4961 0.0865 0.4845 0.3785
PMI 0.5671 0.1741 0.4041 0.3231

DICE 0.5181 0.1213 0.4939 0.3885
LOGLIKE 0.5078 0.1388 0.4285 0.3650

Φ2 0.5479 0.1618 0.3759 0.3059
ST S 0.5294 0.1304 0.4852 0.3822
LSA 0.5482 0.1490 0.4712 0.3731

Table 5: Results of the Dual C-Means algorithm for ODP-239
and SEMEVAL. K fixed to 10 Clusters. Let us notice that for all
experiments, the number of p words composing the centroids
was set to 2 and the vocabulary is the set of words appearing in
the retrieved Web snippets.

FN
1 ARI Fb3 FC

1

V1 =V2
(Text)

SCP 0.6698 0.0317 0.6597 0.6217
PMI 0.6788 0.0280 0.3981 0.3514

DICE 0.6718 † 0.0341 0.6575 0.6202
LOGLIKE 0.6566 0.0242 0.5499 0.5131

Φ2 0.6841 0.0213 0.4299 0.3836
ST S 0.6713 0.0343 0.6666 † 0.6260 †
LSA 0.6706 0.0170 0.6327 † 0.5884 †

V1 6=V2
(QL)

SCP 0.6580 0.0418 0.6572 0.6239
PMI 0.6866 0.0366 0.3806 0.3338

DICE 0.6593 0.0320 0.6343 0.6023
LOGLIKE 0.6636 0.0219 0.5728 0.5394

Φ2 0.6783 0.0267 0.4333 0.3926
ST S 0.6645 0.0470 0.6160 0.5847
LSA 0.6719 0.0403 † 0.5577 0.5264

Table 6: Results of the Dual C-Means algorithm for WEB-
SRC401. K fixed to 10 Clusters. Let us notice that for all ex-
periments where V1 = V2, the number of p words composing
the centroids was set to 2 and the vocabulary is the set of words
appearing in the retrieved Web snippets. Note that † means
paired student’s t-test statistical relevance for p− value < 0.05
between a given metric in V1 =V2 and its counterpart in V1 6=V2.



Not surprinsingly, the introduction of external information de-
creases clustering accuracy. But, this is true only for a glimpse
when comparing ST S for V1 = V2 and SCP for V1 6= V2 (statistical
relevance is not true in this case). However, the difference in terms
of ARI is higher in favor of the dual representation space, although
not with statistical relevance. In this case, we can conclude that
while clustering accuracy slightly drops, partitioning shape seems
to be put in advance by the query log driven approach. The other
benefit of this new dual approach may be embodied by the expres-
siveness of the query logs as meaningful labels. This is the objec-
tive of the next section.

6. LABELING EVALUATION
As mentioned in [9], the labeling process plays an important role

in the success of SRC systems. As a consequence, a clear objec-
tive evaluation is needed. However, this has not yet been the case.
Indeed, [18][16] proposed user studies, which are difficult to repli-
cate. In order to solve reproducibility problems, [10][35] proposed
to evaluate the kSSL metric but their datasets are defined in two
different ways and they are not publicly available. So, in order to
propose a conclusive evaluation of the labeling process, we pro-
pose to use a new gold standard dataset provided by the Subtopic
Mining subtask of the NTCIR-10 Intent-2 [32] and apply recent
evaluation metrics proposed by [34]: I-rec@10, D-nDCG@10 and
D#-nDCG@10.

These metrics aim to measure Precision and Recall of the users’
intents. Within our context, we can use the labels provided by the
SRC algorithms as the users’ intents candidates. If so, we can di-
rectly apply the given metrics. In particular, I-rec measures the
number of intents discovered by the algorithm over the total dif-
ferent intents of the query. This metric can simply be viewed as
an intent Recall. Then, D-nDCG is obtained by sorting all relevant
intents by the global gain, which is defined as the sum of all the
individual intent gains. Finally, the D#-nDCG metric is the linear
combination of I-rec and D-nDCG, using γ and 1− γ factors. Note
that defining the probabilities of each intent as well as the relevant
intents can be a hard task. However, as our experiments are re-
alized over WEBSRC401 based on ClueWeb09, these values are
known and publicly available [32]. In particular, the NTCIREVAL
toolkit17 was used for the calculation of these metrics. Let us no-
tice that for the specific task of SRC, we propose to use I-rec@10,
D-nDCG@10 and D#-nDCG@10 as for most queries the number
of intents is limited. These metrics are defined in the Equations 7,
8 and 9.

I-rec@N =
|I′|
|I|

(7)

where I is the set of known intents for a query q and I′ is the set
of intents covered by the returned labels at level N.

D-nDCG@N =
∑N

r=1 ∑i Pr(i|q)gi(r)/log(r+1)

∑N
r=1 ∑i Pr∗(i|q)g∗i (r)/log(r+1)

(8)

where Pr(i|q) (resp. Pr∗(i|q)) denotes the intent probability ob-
tained for the discovered labels (resp. for the reference labels) and
gi(r) (resp. g∗i (r)) is the gain value of the label at rank r with re-
spect to i for the output of the labeling (resp. for the reference
labeling).

17http://research.nii.ac.jp/ntcir/tools/ntcireval-en.html [Last access:
27/01/2014].

D#-nDCG@N = γI-rec@N +(1− γ)D-nDCG@N (9)

where γ was set to 0.5 following the framework evaluation pro-
posed in the Subtopic Mining subtask of the NTCIR-10 Intent-2.

The results provided by [33] for different query completions (BingC,
GoogleC and YahooC), query suggestions (BingS) services and a
simple merging strategy (Merge) are reported in Table 7 as well as
the results of our approach. In particular, we show the results when
clustering is query log driven (V1 6= V2) and when labeling is per-
formed a posteriori (V1 =V2). By a posteriori, we mean that clus-
tering is first performed on the exclusive text representation. Then,
as a usual second step, the label is computed by any heuristic. In
our experiments, the query log that best represents each text-based
cluster is computed using one iteration of the update function de-
fined in section 3, which allows direct comparison results.

I − rec@10 nDCG@10 D#−nDCG@10

V1 =V2

SCP 0.2804 0.3195 0.2959
PMI 0.3136 0.3444 0.3250

DICE 0.2952 0.3242 0.3093
LOGLIKE 0.2269 0.2885 0.2550

Φ2 0.3390 0.3642 0.3523
ST S 0.2837 0.3063 0.2935
LSA 0.3238 0.3694 0.3456

V1 6=V2

SCP 0.3669 † 0.3932 † 0.3793 †
PMI 0.4136 † 0.4257 † 0.4203 †

DICE 0.3761 † 0.3884 † 0.3814 †
LOGLIKE 0.3937 † 0.4146 † 0.4046 †

Φ2 0.4249 † 0.4221 † 0.4225 †
ST S 0.4033 † 0.4273 † 0.4119 †
LSA 0.3946† 0.4197 † 0.4050 †

Baselines

BingS 0.3068 0.2787 0.2928
BingC 0.3231 0.3268 0.3250

GoogleC 0.3735 0.3841 0.3788
YahooC 0.3829 0.3815 0.3822
Merge 0.3365 0.3181 0.3273

Table 7: Evaluation results of the labeling process with query
logs over the NTCIR-10 Intent-2 dataset. Note that † means
paired student’s t-test statistical relevance for p− value < 0.05
between a given metric in V1 =V2 and its counterpart in V1 6=V2.

The results of the query driven Dual C-Means outperform all
baselines and a posteriori labeling. Moreover, all the differences
between a given metric in V1 = V2 and its counterpart in V1 6= V2
are statistically relevant. These results also show interesting be-
haviors. Indeed, while PMI and Φ2 collocation metrics previously
showed worst clustering accuracy results compared to other con-
figurations, they show improved results in terms of labeling. The
fact that these metrics tend to favour less frequent associations is
an interesting characteristic for labeling purposes and a conclusive
remark. Moreover, the ST S word-word similarity measure shows
high nDCG@10 value and competitive overall D#− nDCG@10.
These results clearly point at this last configuration as the best com-
promise for clustering accuracy, labeling quality and partitioning
shape.

7. CONCLUSIONS AND PERSPECTIVES
In this paper, we proposed a new algorithm called Dual C-Means,

which can be seen as an extension of the classical K-Means for
dual representation spaces. Its originality relies in the fact that the
clustering process can be driven by external resources by defin-
ing two distinct representation spaces. In particular, we proposed



that query logs are used as external information to guide clustering
and afford meaningful labels to users in their search for informa-
tion. We also built a new publicly available dataset called WEB-
SRC401 based on ClueWeb09, which affords a more realistic sit-
uation for Web SRC. A complete and reproducible evaluation was
performed over different gold standard datasets (ODP-239 and SE-
MEVAL) based on different publicly available evaluation tools. In
particular, a great deal of evaluation metrics have been applied over
diffferent configurations of the Dual C-Means integrating distinct
word-word similarity measures. Results showed that our approach
steadily outperforms all existing state-of-the-art SRC algorithms in
terms of clustering accuracy (Fb3 ) but is less competitive in terms
of ARI. This situation is handled by the introduction of query logs,
which allows high labeling quality with outperforming values of
I − rec@10, D − nDCG@10 and D# − nDCG@10 and adequate
partitioning shape with high values of ARI.

The final findings that show that collocation metrics sensitive to
high frequency events tend to produce high quality clusters and low
frequency sensitive ones give rise to quality labels, is an interesting
issue. Indeed, like the dual representation space, it suggests a mul-
tiobjective implementation of the dynamic reallocation algorithm
to the problem of SRC. Moreover, the next steps that are being
carried out are the introduction of different resources to drive the
clustering process, the definition of new P transition matices tak-
ing into account recent developments in word-word similarity and
the definition of powerful instantiation functions provided by the
introduced general model.
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