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PROPERTIES OF GAUSS DIGITIZED SHAPES AND DIGITAL SURFACE

INTEGRATION
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Abstract. This paper presents new topological and geometric properties of Gauss digitizations of
Euclidean shapes, most of them holding in arbitrary dimension d. We focus on r-regular shapes sam-

pled by Gauss digitization at gridstep h. The digitized boundary is shown to be close to the Euclidean

boundary in the Hausdorff sense, the minimum distance
√
d
2
h being achieved by the projection map

ξ induced by the Euclidean distance. Although it is known that Gauss digitized boundaries may not

be manifold when d ≥ 3, we show that non-manifoldness may only occur in places where the normal
vector is almost aligned with some digitization axis, and the limit angle decreases with h. We then

have a closer look at the projection of the digitized boundary onto the continuous boundary by ξ.

We show that the size of its non-injective part tends to zero with h. This leads us to study the
classical digital surface integration scheme, which allocates a measure to each surface element that

is proportional to the cosine of the angle between an estimated normal vector and the trivial surface

element normal vector. We show that digital integration is convergent whenever the normal estimator
is multigrid convergent, and we explicit the convergence speed. Since convergent estimators are now

available in the literature, digital integration provides a convergent measure for digitized objects.
KeywordsGauss digitization and geometric inference and digital integral and multigrid convergence

and set with positive reach.

1. Introduction

Understanding what are the properties of real objects that can be extracted from their digital
representation is a crucial task in knowledge representation and processing. In most applications, a
real object or a scene is known only through some discrete finite representation, generally a digital image
produced by some complex system, involving acquisition, sampling, quantization, and processing. This
process is often called digitization or sampling and is realized by devices like CCD or CMOS cameras,
document scanners, CT or MRI scanners. Since the digitization process aims to be as faithful as
possible to the real data, it is very natural to look at topological and geometric properties that can
be inferred from digital data for rather elementary digitization processes and classes of real Euclidean
objects.

This paper focuses on several global and local topological and geometric properties that are preserved
by Gauss digitization.

Definition 1 (Gauss digitization). Let h > 0 be a sampling grid step. The Gauss digitization of an
Euclidean shape X ⊂ Rd is defined as Dh(X) := X ∩ (hZ)d (see Fig. 1).

It is thus one of the simplest conceivable digitization scheme. We study here more specifically
the local connections between the boundary ∂X of the Euclidean shape and the boundary ∂hX of
its digitization (as an union of d − 1-dimensional cubic faces, see below). It is clear that one cannot
expect that many properties of real shapes be preserved by digitization for arbitrary digitization step
h, just by some combinatorial argument. However one can expect that, as the grid step gets finer (h
converges to 0), we can recover most of the properties of the real shape from its digitization. Indeed,
the literature shows that topological properties may be preserved for fine enough digitization grids
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Figure 1. Illustration of the main definitions used troughout the paper: a shape X,
its boundary ∂X, its Gauss digitization DhX, its h-cube embedding QhDhX and its
h-boundary ∂hX.

for specific class of shapes, at least in dimension 2. For geometric properties, their “preservation” is
rephrased in terms of accuracy of estimation. Thus, given some geometric estimator, the estimated
quantity should tend towards the geometric quantity of the Euclidean shape as the digitization gridstep
gets finer. The estimator is then said to be multigrid convergent with a speed depending on how the
estimation error approaches zero. The objective of many works in the literature is to define geometric
estimators and to prove their multigrid convergence. We review first previous works on topological
and geometric properties inferred from digital data before describing our contributions in more details.
Topological properties of digitizations. The inference of topological properties has been extensively
studied especially in the 2D case, mainly with morphological tools. We may quote the seminal works
of Pavlidis [34] and Serra [37] who established the first homeomorphism theorems for sufficiently
smooth shapes digitized on a square or hexagonal grid with Gauss digitization, provided the grid step
is fine enough. A key ingredient for topology preservation independently discovered in their works
was the R-regularity, later called par(R)-regularity. These results were extended to several other
digitization schemes (square subset, intersection, v-area) by Latecki et al. [17, 26]. Along the same
lines, a global digitization scheme called Hausdorff discretization was proposed in [36, 42]. It was
shown that connectivity is preserved by this scheme. Finally, Stelldinger and Köthe [40] achieves
very general topology preservation theorems for arbitrary sampling grids, that applies not only to
Gauss digitization but also to convolutions by a point spread function. It is worthy to note that their
theorems are general enough to include most previously known homeomorphisms results [34, 37, 17, 26].
Extending previous results to non R-regular shapes appears quite challenging. Giraldo et al. showed
that finite polyhedra can be digitized such that the homotopy type is preserved [16]. The more flexible
R-stability property (a shape and its R-offset have same homotopy type) was proposed in [30]. This
approach allows topological stability even for plane partitions.

Fewer works address the case of d-dimensional images, for d ≥ 3. One underlying reason is that
topology preservation cannot be achieved in general already for d = 3. It is indeed easy to construct
smooth sets, but with bad digitization at some arbitrary small step h. For instance, Stelldinger and
Köthe ([40], Theorem 3) exhibits a cylinder of radius R, the axis of which is aligned with the straight
line z = 0 and x = y, and it contains the point (0, 0, ε′ − R), where 0 < ε′ � h. The cylinder
extremities are smoothed as spheres. Even for small h, its Gauss digitization induces a non-manifold
digitized boundary. Worse, this issue arises for all classical digitization schemes. However, they show
that objects keep identical homotopy tree through Gauss digitization ([40], Theorem 1).
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Several routes for solving the homeomorphism issue were proposed by Stelldinger et al. [41]. A
first idea is to refine the digitized object on a twice finer grid by majority interpolation, and this
leads to a manifold digital surface close to the real object boundary (Theorem 19). They also propose
to recontruct from the digitized object an approximate surface based either on a union of ball, a
modification of a marching-cubes algorithm, or a smoothing of the latter surface. Homeomorphism is
achieved in all cases for fine enough grids.
The projection map. Another path to handle topological or geometric inference problems is a more
functional approach: the distance function to a shape and the associated projection map. It is a key
tool since it encodes information on the shape and it is Hausdorff stable, whatever the dimension. The
distance function of a compact set K is defined on Rd by dK(x) := min{‖x− y‖, y ∈ K}. The R-offset
of K, denoted by KR, is the set whose points x satisfy dK(x) ≤ R. The medial axis MA(K) of K is
the subset of Rd whose points have at least two closest points on K.

Definition 2 (Projection map). The projection map of a compact set K is the map

ξK : Rd \MA(K)→ K

that associates to any point x of Rd \MA(K) its unique closest point onto K.

The reach of K, denoted by reach(K), is the infimum of {dK(y), y ∈ MA(K)} [14]. The projection
map ξK of a compact set K with positive reach is a useful tool because it allows to compare K with
another shape lying in its neighborhood.

Note that the R-offsets allow to recover stable topological (and geometric) properties. If the shape
K has positive reach and if a point cloud P is dense enough around K, then for some suitable values
of R, the R-offsets of P are homotopy equivalent to K [5, 33]. This result has been extended for
digitizations close to K in the Hausdorff sense. They are shown to be homotopy equivalent to K, for
suitable values of digitization step size [1].
Global geometric properties of digitizations. Infering geometric properties of Euclidean object from
their digitization has a long history. Until recently, most research efforts focused on global geometric
properties. For instance, The area (in 2D) or volume (in 3D) may indeed be estimated just by counting
the number of digital samples and this fact was known by Gauss and Dirichlet as reported for instance
in [20]. Further results show that volumes and also moments may be estimated by appropriate counting
with even superlinear convergence for smooth enough classes of shapes [18, 22].

It is harder to define length/perimeter estimators in 2D or area estimators in 3D with proven
convergence. For length/perimeter, for specific classes of shapes, several approaches offer guarantees
like segmentation into digital straight segments [22], ε-sausage approach [20], and minimum length
polygon [39]. A more local approach based on tangent estimation and integration leads also to multigrid

convergence with speed O(h
1
3 ) [24, 23]. Few results exist for 3D area estimation. Most approaches

try to assign weights to local configurations in order to minimize the maximal error [28, 44], but such
approaches cannot achieve multigrid convergence [19]. Polyhedrization with digital planes for area
estimation [21] is an interesting extension of 2D methods, but no theoretical guarantees have been
established.

Finally three methods offer (some) theoretical guarantees. Area estimation by integration of nor-
mals, first proposed in [27] and more formalized in [6], has the advantage of defining an elementary
area measure, which in turn can provide the global area measure but may also be used for integration
of other quantities. However their results rely on assumptions that are not satisfied by the Gauss
digitization boundary. A second approach estimates the volume of an appropriate thickened version of
the surface, and deduced the area [41]. Their algorithm is not applicable as is on data since it requires
to loop over finer and finer digitizations of the continuous object. Besides it is in fact very similar to
Steiner tube formula dating from 1840. A third approach relies on Cauchy-Crofton integral formula
and estimates area by statistical intersection of the volume with lines [29]. It it important to note that
all three methods do not provide an error bound. The speed of convergence of these estimators is thus
unknown, even for specific classes of shapes.
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Local geometric properties. It is often interesting to estimate more local geometric quantities like
normal vector or tangent planes, curvatures or principal directions. Since accuracy is ambiguous at
a given sampling, the definition of multigrid convergence is adapted to local geometric quantities
(e.g., see [9]). Several estimators are multigrid convergent: (i) digital straight segment recognition
defines parameter-free convergent estimators of normal/tangent in 2D [11, 24, 23], (ii) polynomial
fitting induces convergent estimators of derivatives of any order in 2D [35], (iii) binomial convolution
leads also to convergent estimators of derivatives in 2D [12, 13]; (iv) the recently introduced integral
invariants define multigrid convergent estimators of normals, 2D curvature, mean curvature [7], and
also 3D principal curvatures and principal directions [8].

Note that the distance function to a shape and its projection map also encode information on the
normals and on the curvatures. If K is a shape with positive µ-reach (a much less restrictive condition
than positive reach), then the offset of point cloud approximating K provides estimation of the normals
[2] and of the curvature measures [3, 4] of K at a given scale. Voronoi covariance measure [31] may also
be adapted to digital data to define multigrid convergent normal estimators in arbitrary dimension
[10].
Contributions. We establish both topological preservation and multigrid convergence results. After
recalling useful notations and definitions in Section 2, Section 3 establishes elementary results on
Gauss digitized sets. We connect in Lemma 1 two notions: the R-regularity of shapes known in
digital geometry [17, 26, 34, 37] and the reach of compact sets known in geometric measure theory [14]
and computational geometry. Such shapes have a good behaviour with respect to digitization. Then
we establish that ∂X and ∂hX are close to each other whatever the dimension (Theorem 1). This
proximity is realized by the projection ξ of ∂hX onto ∂X induced by the Euclidean distance.

We then address the homeomorphism problem between these two sets, which is caused by the
possible non-manifoldness of the digitized boundary [40]. Although this problem is unavoidable starting
from dimension 3, it is worth studying where non-manifoldness arises and if it is likely to arise often.
With this information, it is then easier to take them into account, for instance to correct the digital
dataset [38]. In Section 4, we show local sufficient conditions which guarantee that the digitized
boundary is a manifold at this location (Theorem 2). They indicate that both sets ∂X and ∂hX
are “almost” homeomorphic, and that the area of non-homeomorphic places reduces generally toward
0 as the gridstep h gets finer and is reduced to 0. Furthermore, only places of ∂X with a normal
very close to some axis direction may induce a non-manifold place in ∂hX. This fact is illustrated
on Fig. 2 as parts painted in dark grey on digitized boundary. Hence our approach is very different
from the one of Stelldinger et al. [41]. Instead of building a digitized surface different from the Gauss
digitized boundary to get a homeomorphism, we characterize the rare places where the Gauss digitized
boundary may not be a manifold.

Afterwards we establish in Section 5 several results related to the projection map between ∂X
and ∂hX. Even for smooth convex shapes, the projection map is not everywhere injective. However
Theorem 3 shows that the size of the non-injective part on ∂X decreases linearly in h. Fig. 2 shows in
light grey places where projection ξ might not be injective. Obviously, it includes zones in dark grey
where the digitized boundary is not even a manifold.

Finally, using results from geometric measure theory, Section 6 shows the conditions under which
digital integration on ∂hX is multigrid convergent toward integration on ∂X, for an arbitrary inte-
grable function from Rd to R. Given some digital normal estimator, digital integration is defined as
proposed in [27, 6] by summation over digital d − 1-cells of the function value weighted by the inner
product between trivial and estimated normal (see Definition 6). Theorem 4 demonstrates that digital
integration is multigrid convergent toward usual integration as long as the normal estimator is multi-
grid convergent. The convergence speed is also fully explicited and is upper bounded on the one hand
by the convergence speed of the normal estimator and on the other hand by the gridstep h. Since
multigrid convergent normal estimators exist in arbitrary dimension [24, 8, 10], our theorem proves
that both local and global area estimation by digital integration is multigrid convergent, and it gives
a well-defined measure on digitized boundary.
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(a) h = 0.1 (b) h = 0.05 (c) h = 0.025
Aξ = 58.40%, Anm = 1.57% Aξ = 30.71%, Anm = 0.38% Aξ = 15.88%, Anm = 0.09%

(a) h = 0.04 (b) h = 0.02 (c) h = 0.01
Aξ = 62.22%, Anm = 0.88% Aξ = 30.54%, Anm = 0.12% Aξ = 16.67%, Anm = 0.03%

Figure 2. Illustration of Theorem 2 and Theorem 3 on several Gauss digitizations
of two polynomial surfaces (top row displays a Goursat’s smooth cube and bottom
row displays Goursat’s smooth icosahedron). Zones in dark grey indicates the surface
parts where the Gauss digitization might be non manifold (Theorem 2); their relative
area is denoted by Anm. Zones in light grey (and dark grey) indicates the surface
parts where projection ξ might not be an homeomorphism (Theorem 3); their relative
area is denoted by Aξ. Clearly, both zones tends to area zero as the gridstep gets finer
and finer, while parts where digitization might not be manifold are much smaller than
parts where ξ might not be homeomorphic.

2. Preliminary notions and definitions

Given a compact shape X ⊂ Rd, we wish to compare the topological boundary of X, denoted by ∂X,
with the boundary of its Gauss digitization. As defined in the introduction, the Gauss digitization of
X is a regular sampling of the characteristic function of X, with a parameterized sampling density
h. Digitized sets are defined as subsets of (hZ)d. Since they have peculiar coordinates (multiple of
h), points of such subsets will be called digital points. In order to define a digitized boundary, we
have to see the digitized set as a union of cubes with edge length h. For some z ∈ (hZ)d, the closed
d-dimensional axis-aligned cube of Rd centered on z with edge length h is denoted by Qhz and called
h-cube. The h-cube embedding of a digital set Z is naturally defined as QhZ := ∪z∈ZQhz .
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Figure 3. Illustration of (left) the primal cubical grid Fh in gray, (middle) the

dual cubical grid F̃h in cyan, (right) the Gauss digitization DhX in black and the
h-boundary of X in red, seen as a subcomplex of Fh. Note that some cells and their
dual are shown between the two grids.

Definition 3 (h-boundary of X). The h-boundary of X, denoted by ∂hX, is the topological boundary
of the h-cube embedding of the Gauss digitization of X:

(1) ∂hX := ∂
(
∪z∈DhXQ

h
z

)
,

where DhX is given in Definition 1.

The h-boundary of X is a d − 1-dimensional staircase surface. This is the natural digital surface
associated to ∂X at step h. We show in Theorem 1, Section 3.2, that ∂hX gets closer to ∂X as h tends
toward 0, whatever the dimension of the space.
Primal cubical grid at step h. For several proofs, we need to consider the space as a cubical complex.
Therefore, we subdivide the space into h-cubes. We need to distinguish cubes, faces, edges and so
on. This is why we assign coordinates in (h2Z)d to each cell of the space. To do so, we proceed in

a standard manner by cartesian product. Let us associate to each t ∈ h
2Z the set Ih(t), such that

for t ∈ hZ, Ih(t) := [t − h
2 ; t + h

2 ], and Ih(t) := {t} otherwise. Now, for arbitrary z ∈ (h2Z)d, we set
Ih(z) := Ih(z1)× . . .× Ih(zd), where zi is the i-th coordinate of z.

Definition 4 (primal cubical grid). The set Fh := {Ih(z)}z∈( h
2 Z)d tiles the Euclidean space Rd with

hypercubes and its faces. It is called the primal cubical grid at step h. Elements of Fh are called cells.

The grid Fh is a cell complex of dimension d, illustrated on Fig. 3, left. The partial order relation
� is defined as c1 � c2 whenever c1 ⊂ c2. The dimension of each cell c is the number of axes where
the cell is not reduced to a point, and the set of k-dimensional cells is denoted by Fkh. By construction,

for any cell c of Fh, there is exactly one z ∈ (h2Z)d such that Ih(z) is equal to c: the vector z forms
the digital coordinates of the cell c. We also use the notation ċ to designate the centroid of the cell c.
It is easily checked that they coincide, i.e. z = ċ.

By construction, the h-boundary of X is decomposable as a pure subcomplex of Fh of dimension
d− 1 (see Fig. 3, right). Any one of its d− 1-cell is bordered by two incident d-cells c, c′ in Fdh. Their
digital coordinates z and z′ are such that one is in DhX and the other not.
Dual cubical grid at step h. It is obvious that we could have obtained a shifted cellular grid by inverting
the role of multiples of h and half-multiples of h. Let us associate to each t ∈ h

2Z the set Ĩh(t), such

that for t ∈ hZ, Ĩh(t) := {t}, and Ĩh(t) := [t− h
2 ; t+ h

2 ] otherwise. Similarly, we extend Ĩh to arbitrary

z ∈ (h2Z)d.

Definition 5 (dual cubical grid). The set of sets F̃h := {Ĩh(z)}z∈( h
2 Z)d is then called the dual cubical

grid at step h, whose elements are called dual cells.
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It is clearly a cell complex, with the same definitions of partial order � and dimension. Digital
coordinates and centroids are also defined similarly.

The sets Fkh and F̃d−kh have a natural duality isomorphism induced between cells and dual cells with
identical coordinates. If we denote the duality operator on cells with the ·̃ operator, we clearly have
for c1, c2 ∈ Fh, c1 � c2 ⇔ c̃2 � c̃1. The dual cubical grid and its duality with the primal cubical grid
are illustrated on Fig. 3, left and middle.
Sets with positive reach and properties of projection map. The projection map ξ is continuous on
Rd \MA(K), and more precisely

Proposition 1 (Theorem 4.8 of [14]). Let K be a compact set with positive reach. Then for every
p ∈ K and every α ∈ [0, 1[, the projection ξK is 1

1−α Lipschitz in the ball centered on p with radius

α · reach(K).

In the particular case where K = ∂X is the boundary of a compact domain of Rd, we have the
following equivalence:

Proposition 2 ([14]). Let X be a compact domain of Rd. The reach of ∂X is strictly positive iff ∂X
is a hyper surface of class C1,1, which means that it is of class C1 and that the function that assigns
the normal to ∂X to each point x on ∂X is Lipschitz.

Remark that in Section 5 below, we will provide an explicit upper bound of the Lipschitz constant
of the normal map (Lemma 5). Remark also that a manifold ∂X with strictly positive reach is thus
of class C2 almost everywhere. This is a consequence of Rademacher Theorem (3.1.6 in [15]). In the
following, we will denote by ξ = ξ∂X the projection map on ∂X.
R-regularity or par(R)-regularity. The R-regularity property was independently proposed by Pavlidis
[34] and Serra [37]. Gross and Latecki introduced the similar definition of par(R)-regularity in [17],
that is the shapes whose normal vectors do not intersect each other, when they are embedded as
segments of length 2R. We prefer here to present the definition given in [26] with inside and outside
osculating balls. A closed ball iob(x,R) of radius R is an inside osculating ball of radius R to ∂X at
point x ∈ ∂X if ∂X ∩ ∂iob(x,R) = {x} and iob(x,R) ⊆ X◦ ∪ {x}. A closed ball oob(x,R) of radius
R is an outside osculating ball of radius R to ∂X at point x ∈ ∂X if ∂X ∩ ∂oob(x,R) = {x} and
oob(x,R) ⊆ (Rd \ X) ∪ {x}. A set X is then par(R,+)-regular if there exists an outside osculating
ball of radius R at each x ∈ ∂X. A set X is par(R,−)-regular if there exists an inside osculating ball
of radius R at each x ∈ ∂X. The par(R)-regularity is the conjunction of these two properties. This
definition implies the other definition.

3. First properties of the boundary of Gauss digitized sets

In this section, we show that the notion of reach, which is classical in geometric measure theory,
and the notion of par(R)-regularity, which is known in digital geometry, are related (Lemma 1). We
then show that the boundary of X is close to its h-boundary in the Hausdorff sense, and we give tight
bounds on the distance (Theorem 1) for arbitrary dimensions. Hence, digitized surfaces tends to the
original surface in the Hausdorff sense. Furthermore, the closest point is given by the projection map.

3.1. About R-regularity and positive reach. In the case where X is a d-dimensional object, the
reach of ∂X and the R-regularity of X are related as follows.

Lemma 1. Let X be a d-dimensional compact domain of Rd. Then

reach(∂X) ≥ R ⇔ ∀R′ < R, X is par(R′)−regular.

Proof. Suppose that the reach of ∂X is strictly less than R. We want to show that there exists R′ < R,
such that X is not par(R′)−regular. Since reach(∂X) < R, there exists a point x that has two closest
points y1 and y2 on ∂X and such that d(x, ∂X) = R′′ < R. For simplicity, we assume that x ∈ X.
(If x is outside X, then the proof is similar.) Let R′ be such that R′′ < R′ < R. We now proceed
by contradiction: we assume that X is par(R′)−regular and we are going to show that there does not
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Figure 4. Illustration of the fact that the boundary of X and the h-boundary of X

are Hausdorff close, with distance no greater than
√
d

2 h. On the left, ∂hX lies in the
√
d

2 h-offset of ∂X (in gray). On the right, ∂X lies in the
√
d

2 h-offset of ∂hX (in gray).

exist any inside osculating ball to ∂X with center at x and radius R′, contradicting the hypothesis
that X is par(R′)−regular.

Note that the interior of the closed ball Bx(R′′) of center x and of radius R′′ = ‖x− y1‖ = ‖x− y2‖
does not intersect ∂X, but Bx(R′′) intersects ∂X in at least the two points y1 and y2. Then, the ball
Bx̃(R′) of center x̃ = y1 +R′ · (x− y1)/‖x− y1‖ and of radius R′ contains the point y2 in its interior,
thus cannot be an inside osculating ball to ∂X at y1.

Consider now any other ball Bx̄(R′) of radius R′ whose center x̄ does not belong to the straight
line going through y1 and x and such that y1 ∈ ∂Bx̄(R′). We want to prove that Bx̄(R′) cannot be
an inside osculating ball to ∂X at y1 either. Since X is assumed to be par(R′)-regular, there exists an
outside osculating ball Bx′(R

′) whose center x′ belongs to the straight line going through y1 and x, as
the two balls Bx(R′) and Bx′(R

′) are tangent at y1. But then the interior of the two balls Bx̄(R′) and
Bx′(R

′) must intersect, which implies that Bx̄(R′) does not belong entirely to the interior of X, since
Bx′(R

′) is an outside ball. So Bx̄(R′) cannot be an inside osculating ball to ∂X at y1. This contradicts
the fact that X is par(R′)-regular.

Let us show the reverse. We suppose that the reach of ∂X is larger than R and are going to show
that X is par(R′)-regular for every R′ < R. Since reach(∂X) ≥ R, we know that ∂X is a (d − 1)-
manifold of class C1. Let y ∈ ∂X. There exists a unit normal ny to ∂X at y. Furthermore, for any
R′ < R, the point y+R′ ·ny is at a distance R′ from ∂X. Hence the ball By+R′·ny

(R′) only intersects
∂X at the point y. Similarly, the ball By−R′·ny

(R′) also only intersects ∂X at the point y, which
implies that X is par(R′)-regular. �

Remark 1. If X is a d-dimensional compact domain of Rd whose boundary ∂X has a reach greater
than R, then for R′ < R, any point x ∈ ∂X has an inside osculating ball of radius R′ and an outside
osculating ball of radius R′.

3.2. Hausdorff distance between ∂X and its digital counterpart. We show in Theorem 1,
below, that the boundary of X (in blue) and its digital counterpart ∂hX (in red) are close in the
Hausdorff sense, and this property is valid for arbitrary dimensions. This is illustrated on Fig. 4. Note
that a 2D version of this theorem was given in [23], Lemma B.9. For x ∈ ∂X, we denote by n(x, l) the
segment of length 2l, centered on x and aligned with the normal vector to ∂X at x.

Theorem 1. Let X be a compact domain of Rd such that the reach of ∂X is greater than R. Then,
for any digitization step 0 < h < 2R/

√
d, the Hausdorff distance between sets ∂X and ∂hX is less than
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√
dh/2. More precisely:

∀x ∈ ∂X,∃y ∈ ∂hX, ‖x− y‖ ≤
√
d

2 h and y ∈ n(x,
√
d

2 h),(2)

∀y ∈ ∂hX, ‖y − ξ(y)‖ ≤
√
d

2 h.(3)

Remark that this bound is tight.

Proof. We first prove (2). Let x ∈ ∂X. Since ∂X has reach greater than R, there is an inside osculating

ball of radius
√
d

2 h at x (from Remark 1 and h < 2R√
d
). There is also an outside osculating ball of same

radius at x. Let us denote by ci and ce their respective centers. Point ci (resp. ce) belongs to at least

one h-cube of center pi (resp. pe), i.e. some Qh. Since pi is at a distance less than or equal to
√
d

2 h
from ci (half-diameter of h-cube), point pi belongs to the inside osculating ball at x and is thus a point
inside X◦ or is equal to x. Similarly point pe belongs to the complementary set of X or is equal to x.
In the latter case, point ce is exactly in a corner of the h-cube Qhx and we choose for pe another h-cube
containing ce, hence pe 6= x and pe ∈ Rd \X.

The straight segment [cice] is by definition the segment n(x,
√
d

2 h). We show by contradiction that
this segment intersects ∂hX. Let D be the subset of h-cubes that intersect [cice]. We already know
that D contains at least two h-cubes, one of center pi that is in X, one of center pe that is outside
X. By connectedness of segment [cice], there is a covering sequence (Pj)j=0..l of h-cubes included in
D so that: (i) P0 has center pi, (ii) Pl has center pe, (iii) ∀j, with 0 ≤ j < l and Pj ∩ Pj+1 6= ∅. Since
h-cubes are closed, it is easy to derive from (Pi) an enriched covering sequence (P ′j)j=0..l′ of same
extremeties such that any two consecutive h-cubes have a d− 1-dimensional intersection. Since P ′0 has
center in X and P ′l′ has center outside X, there is an index k so that P ′k has center in X, and P ′k+1

has center outside X. By definition, P ′k ∩ P ′k+1 ⊂ ∂hX. Now, [cice] intersects both P ′k and P ′k+1 and,
by convexity, their intersection. Let us denote by y this intersection. We have y ∈ P ′k ∩ P ′k+1 ⊂ ∂hX.

Since y ∈ [cice] = n(x,
√
d

2 h), y is at distance to x less than
√
d

2 h.
We now prove (3). Let y ∈ ∂hX. By the definition of h-boundary (cf. (1)), there must exist two

h-cubes of center p1 and p2 such that p1 ∈ X and p2 6∈ X and they share a face (i.e. ‖p1 − p2‖1 = h).
The closed straight segment [p1p2] thus intersects ∂X at least once, say at x′. By Pythagora’s theorem,

point x′ is at a distance less than
√
d

2 h from y. Since this distance is smaller than the reach of ∂X,

there is a unique point x onto ∂X that is closest to y. This implies that ‖y − x‖ ≤ ‖y − x′‖ ≤
√
d

2 h.

Furthermore, since ∂X is of class C1, the point y belongs to the line-segment normal to ∂X at x.

Putting these two facts together gives y ∈ n(x,
√
d

2 h). Clearly, this implies x = ξ(y) and (3). �

4. Manifoldness of the boundary of Gauss digitized sets

In the whole section, the set X is a compact domain of Rd, such that reach(∂X) is greater than some
positive constant R. Hence, X is par(R′)-regular for any 0 < R′ ≤ R (Lemma 1). Although Theorem 1
states that the h-boundary of X tends to the boundary of X in the Hausdorff sense, starting from
d = 3 and as said in the introduction, the h-boundary of X may however not be a manifold. Focusing
on d = 3, we thus exhibit local sufficient conditions which guarantee that the h-boundary is locally a
2-manifold (see Theorem 2 below). These conditions indicates that only places of ∂X with a normal
very close to some axis direction may induce a non-manifold place in the h-boundary (dark grey zones
in Fig. 2). Even better, if the shape is not flat at these places, these zones tend to area zero with finer
digitization gridsteps.

Theorem 2 (Manifoldness sufficient condition). Let X be some compact domain of R3, with reach(∂X)
greater than some positive constant R and h < 0.198R. Let y be a point of ∂hX.

i) If y does not belong to some 1-cell of ∂hX that intersect ∂X, then ∂hX is homeomorphic to a
2-disk around y.

ii) If y belongs to some 1-cell s of ∂hX such that ∂X ∩ s contains a point P and if the angle αy
between s and the normal to ∂X at P satisfies αy ≥ 1.260h/R, then ∂hX is homeomorphic to
a 2-disk around y.
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The proof relies on the determination of necessary conditions for the presence of crossed configu-
rations in the digitized set Dh(X). A digital set without crossed configuration has the property to
be well-composed [25]. And a well-composed set has a boundary that is a 2-manifold. The following
subsections detail the steps of the proof of Theorem 2.

4.1. Terminology. Let 1X be the indicator function of X. Hence, for any z ∈ (hZ)3, z ∈ Dh(X) ⇔
1X(z) = 1. Any dual 3-cell ṽ of F̃3

h is a cube of side h and whose eight vertices (ṽi)0≤i≤7 are
points of (hZ)3, numbered according to the lexicographic ordering of their z, y, x coordinates. The 8-
configuration of X at ṽ is the 8-tuple 1X(ṽ) := (1X(ṽ0), . . . , 1X(ṽ7)). Let s̃ be a dual 2-cell that is a face
of ṽ. It is a square of side h whose four vertices s̃0, s̃1, s̃2, s̃3 are points of (hZ)3, numbered counterclock-
wise when standing at the tip of the 1-cell s with maximal coordinate and looking at s̃. They form a sub-
set of (ṽi)0≤i≤7. The 4-configuration of X at s̃ is the 4-tuple 1X(s̃) := (1X(s̃0), 1X(s̃1), 1X(s̃2), 1X(s̃3)).

A crossed 8-configuration is any rotation or complementation of (1, 0, 0, 0, 0, 0, 0, 1) (there are 8 such
configurations). A crossed 8-configuration at a dual 3-cell ṽ induces a non-manifold vertex in the h-
boundary of X, precisely at the primal 0-cell v. It corresponds locally to two cubes glued together only
at one vertex. A crossed 4-configuration is either the 4-configuration (1, 0, 1, 0) or the 4-configuration
(0, 1, 0, 1). It is obvious that a crossed 4-configuration at a dual 2-cell s̃ induce a non-manifold edge
in the h-boundary of X, precisely at the primal 1-cell s. It corresponds locally to two cubes glued
together only along one edge. We recall (and adapt with our notations) Proposition 2.1 of [25].

Proposition 3 ([25]). The h-boundary of X is a 2-dimensional manifold if and only if X has no

crossed configurations in any dual 2-cell or 3-cell of F̃h. (In this case, DhX is called a well-composed
picture.)

Non-manifoldness is thus determined by the presence of crossed configurations. We will thus exhibit
sufficient conditions that prevent them to appear.

4.2. Relations between crossed configurations and grid step. We study the presence of crossed
configurations depending on whether the boundary ∂X intersects or not cells of the cubical grid sampled
at step h. The first lemma is straightforward.

Lemma 2. If ∂X does not intersect a dual 2-cell s̃ of F̃2
h, then the 4-configuration of X at s̃ is not

crossed.

Proof. Then s̃ ⊂ R3 \ ∂X = X◦ ∪ (R3 \X). Since s̃ is connected while the previous union is disjoint,
we have two cases, either s̃ ⊂ X◦ and the 4-configuration is (1, 1, 1, 1), or s̃ ⊂ R3 \ X and the 4-
configuration is (0, 0, 0, 0). �

The second case tackled below is more involved. The idea is to look at how inner or outer osculating
balls contains vertices of s or s̃. It appears that crossed 4-configurations cannot arise when h is small
enough.

Lemma 3. Let h ≤ 0.198R. If ∂X intersects a dual 2-cell s̃ of F̃2
h but does not intersect the corre-

sponding primal 1-cell s, then the 4-configuration of X at s̃ is not crossed.

Proof. This lemma is illustrated on Fig. 5. If all vertices of s̃ are in X, or all vertices of s̃ are outside
X, then the 4-configuration of X at s̃ is clearly not crossed and we are done. Hence at least one vertex
of s̃, say s̃0, is in X (but may be on ∂X) and at least one other vertex of s̃ is outside X. We assume
here that the primal 1-cell s (a segment of length h whose extremities are denoted by s0 and s1) lies
outside X. Should the 1-cell s be completely inside X◦, then we would reason on the vertex of s̃
that lies outside X, and the reasonning would be symetrical. Without loss of generality, let s̃0 be this
vertex in X, and let Q be the center of s̃0s̃2. The segment [s̃0Q] is a connected set that joins a point
in X to a point in R3 \X (since Q ∈ s). Hence, there exists a point P ∈ [s̃0Q] ∩ ∂X. According to
Remark 1, there is thus an inside osculating ball Bin and an outside osculating ball Bout of radius R
at P . Let α be the angle between the normal n to ∂X at P and the segment s (oriented in the same

direction). Let ñ be the projection of n onto the plane Π̃ supporting s̃. The angle between ñ and the
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QPs̃0 s̃2

s0

s1

x

z

α0

α

QPs̃0

s̃1

s̃2

s̃3

x

y

β

Figure 5. Illustration of Lemma 3. Left. The point s̃0 in black belongs to X◦ while
the segment s in green lies in R3 \X. Point P in blue belongs to ∂X and its normal
vector is also in blue. The angle between the normal at P and the axis of s is denoted
by α. The inside osculating ball of radius R at P is drawn in orange. Middle. In
this cross-section view (plane containing s̃0 and s), the projection of the normal at P
makes an angle α0 ≤ α with the the segment s. The trace of the inside osculating
ball at P is drawn in orange. Right. In this transverse view (plane containing s̃), the
trace of the outside osculating ball at P is also drawn in an orange dashed line. The
angle β of the normal at P projected onto this plane is drawn in magenta.

oriented segment s̃0s̃2 is denoted by β. The angle α can be taken in [0, π2 ], while β can be taken in
[0, π] (negative β implies a reasonning on s̃3 instead of s̃1). We center the frame on Q, with x-axis
aligned with [s̃0s̃2], z-axis aligned with segment s, y-axis aligned with [s̃1s̃3].

The idea of the proof is that, since the inside osculating ball Bin at P does not touch s, the angle
α may not be too small, which in turn prevents crossed configurations to occur. Indeed, this situation
is depicted on Fig. 5. Setting the coordinates of P to be (−ε, 0, 0), the center Cin of Bin lies at
(−ε−R cosβ sinα,−R sinβ sinα,−R cosα). The vertex s0 has coordinates (0, 0,−h2 ). Since s0 6∈ Bin,
we have

R2 ≤ ‖Cins0‖2 ⇔ hR cosα− 2εR cosβ sinα ≤ h2

4
+ ε2.

⇒ R(cosα− 2
ε

h
cosβ sinα) ≤ 3h

4
(4)

(since 0 < ε <

√
2

2
h and h > 0)

Since h > 0, cosβ ≤ 1 and ε ≤
√

2
2 h, we deduce that:

cosα−
√

2 sinα ≤ 3h

4R
.(5)

Remark that the function g : [0, π2 ]→ R defined by g(α) := cosα−
√

2 sinα is decreasing and satisfies
g(0) = 1. It follows that if h < cR, where c ≤ 4/3, then the angle α is greater than α′, where
g(α′) = 3c/4. The angle α may thus not be too small as the grid step gets finer.

To prove that the configuration at s̃ is not crossed, it is sufficient to prove either that s̃1 ∈ Bin or

that s̃2 ∈ Bout. Considering that s̃1 = (0,−
√

2
2 h, 0) and s̃2 = (

√
2

2 h, 0, 0), we derive in a similar manner
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the following relations:

s̃1 ∈ Bin ⇔ ‖Cins̃1‖2 < R2

⇐ h

R sinα
< (
√

2 sinβ − 2
ε

h
cosβ)

⇐ h

R sinα
<
√

2 sinβ −
√

2 cosβ,(6)

since ε < h/
√

2, and

s̃2 ∈ Bout ⇔ ‖Couts̃2‖2 < R2

⇐ h

R sinα
< (

√
2

2
cosβ +

ε

h
cosβ)

⇐ h

R sinα
<

√
2

2
cosβ,(7)

since 0 ≤ ε. It is thus enough for h/(R sinα) to be lower than the maximum of both bounds

a(β) :=
√

2 sinβ−
√

2 cosβ and b(β) :=
√

2
2 cosβ of (6) and (7). One can show that there is a unique

value β′ ∈ [0, π] such that a(β′) = b(β′). This value is given by β′ = tan−1(3/2). It is easily seen that

for every β ∈ [0, π], one has a(β′) = b(β′) ≤ max(a(β), b(β)). Since a(β′) =
√

26
13 , it follows

h

R sinα
<

√
26

13
=⇒ s̃1 ∈ Bin or s̃2 ∈ Bout.(8)

We now wish to find the best constant c such that, when h < cR, either s̃1 ∈ Bin or s̃2 ∈ Bout, and thus

the configuration is not crossed. We choose c such that 4
3c = g(α′) and α′ is given by c

sinα′ =
√

26
13 .

In that case, it follows from (5) that g(α) ≤ g(α′). Since g is decreasing, one has α ≥ α′, and thus
c

sinα ≤
c

sinα′ =
√

26
13 . This implies by (8) that either s̃1 ∈ Bin or s̃2 ∈ Bout. A simple computation

gives

tanα′ =
52

3
√

26 + 52
√

2
.

which implies that

c =
4
√

26√
2704 + (52

√
2 + 3

√
26)2

Numerical approximation gives c ≈ 0.198. �

We turn ourselves to the last case, where we show that the direction of the normal to ∂X plays a
role in the manifoldness of its digitized counterpart.

Lemma 4. Assume ∂X intersects a primal 1-cell s of F1
h at some point P . Let α be the angle between

the normal n at P and the vector u aligned with direction s. Then the 4-configuration of X at s̃ is not
crossed whenever 1.260 hR < α.

Proof. The idea is to measure the distance between vertices s̃i (for i ∈ {0, 1, 2, 3}) and the center of
the inside (resp. outside) osculating ball at P . Such osculating balls of radius R exist according to
Remark 1. If this distance is smaller than R then we know that the value of 1X(s̃i) is 1 (resp. 0).
Indices i are taken modulo 4. The distance of P to s̃ is denoted by ε. Without loss of generality,
the angle α is taken in [0, π2 ]. Otherwise, a symmetric reasonning can be applied with the outside
osculating ball. The frame denoted Πi is centered on P with x-axis directed as [s̃is̃i+2] and with z-axis
directed as s, and oriented such that s̃i has non positive z-coordinate. As in the proof of the previous
lemma, let ñ be the projection of the outer normal at P onto the plane Π̃ supporting s̃. The angle
between ñ and the oriented segment [s̃is̃i+2] is denoted by βi.
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Since α and βi represents the latitude and longitude of vector n, the center Cin of the inside
osculating ball has coordinates −R (sinα cosβi, sinα sinβi, cosα) in frame Πi. Furthermore, point s̃i
has coordinates (−

√
2

2 h, 0,−ε). Since the inside osculating ball is in X◦, we deduce

1X(s̃i) = 1⇐ ‖Cins̃i‖2 < R2

⇔ h2

2
+ ε2 <

√
2Rh sinα cosβi + 2εR cosα

⇐ 3

4

h

R
<
√

2 sinα cosβi + 2
ε

h
cosα,(9)

since ε ≤ h
2 . When angle βi ∈ [−π4 ,

π
4 ], we have cosβi ≥

√
2

2 . Inserting also ε ≥ 0 into (9) gives

1X(s̃i) = 1⇐ 3

4

h

R
< sinα

⇐ 1.179
h

R
< α,(10)

using α
π/2 ≤ sinα and 3π

8 ≈ 1.1781.

Clearly there is at least one βj ∈ [−π4 ,
π
4 ]. Hence 1X(s̃j) = 1 for 1.179 hR < α. We prove either that

the opposite vertex to s̃j on s̃ is outside X, i.e. 1X(s̃j+2) = 0, or that one of the neighboring vertex of
s̃j is inside X, i.e. 1X(s̃j+1) = 1 or 1X(s̃j−1) = 1. We prove the case βj ∈ [0, π4 ], hence we determine
the bounds for which either 1X(s̃j+2) = 0 or 1X(s̃j+1) = 1. Negative values of βj are tackled similarly
with 1X(s̃j−1) = 1.

One easily checks that, in the frame Πj , s̃j+1 = (0,−
√

2
2 h,−ε), s̃j+2 = (

√
2

2 h, 0,−ε) and the cen-
ter Cout of the outside osculating ball has symmetric coordinates to Cin, i.e. Cout = −Cin. With
computations similar to (10), we derive

1X(s̃j+2) = 0⇐ ‖Couts̃j+2‖2 < R2

⇐ 3

4

h

R
<
√

2 sinα cosβj − 2
ε

h
cosα.(11)

1X(s̃j+1) = 1⇐ ‖Cins̃j+1‖2 < R2

⇐ 3

4

h

R
<
√

2 sinα sinβj + 2
ε

h
cosα.(12)

It is sufficient to have either (11) or (12) to get a non crossed configuration. We look therefore at the

maximum of both values. Denoting f(α, ν) :=
√

2 sinα cosβj−2ν cosα and g(α, ν) :=
√

2 sinα sinβj+
2ν cosα, we rewrite those equations as:

1X(s̃j+2) = 0 or 1X(s̃j+1) = 1⇐ 3

4

h

R
< max

(
f
(
α,
ε

h

)
, g
(
α,
ε

h

))
⇐ 3

4

h

R
<

√
2

2

√
f2
(
α,
ε

h

)
+ g2

(
α,
ε

h

)
.(13)

The last implication comes from the property that
√
a2 + b2/

√
2 ≤ max(a, b) holds not only for

positive values a and b but in the more general case where −min(a, b) ≤ max(a, b). Here f may take
negative values but, when negative, it is always smaller in absolute value than g. Simple calculations
give:

f2(α, ν) + g2(α, ν) = 8 cos2 αν2 − 2
√

2 sinα cosα(cosβj − sinβj)ν + 2 sin2 α

≥ 8 cos2 αν2 − 2
√

2 sinα cosαν + 2 sin2 α,(14)
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since βj ∈ [0, π4 ]. The last term is a degree 2 polynomial in ν that we denote hα(ν). It has discriminant

−56 sin2 α cos2 α, which is non positive for arbitrary α ≥ 0. Hence, hα(ν) takes minimum value at

να =
√

2
8 tanα. Simple calculations lead to

f2(α, ν) + g2(α, ν) > hα(να) =
7

4
sin2 α >

7

π2
α2,(15)

since sinα ≥ α/(π/2). Inserting inequality (15) into (13) implies:

1X(s̃j+2) = 0 or 1X(s̃j+1) = 1⇐ 3

4

h

R
<

√
2

2

√
7

π
α

⇐ 1.260
h

R
< α,(16)

since 3
√

14π
28 ≈ 1.2594. If both (10) and (16) hold, then the configuration at s̃ is one of (1, 1, ?, ?),

(1, ?, 0, ?) and circular permutations. Hence the configuration is not crossed when 1.260 hR < α. �

To get an idea of the practical implication of previous Lemma, if one consider a shape with reach
1, then there might be a non-manifold zone on its digitization at gridstep 1

10 only at places where the
normal makes an angle smaller than 7.5◦ with one axis. For instance, this is less than 2.57% of the
area on a sphere. We have now all the pieces to finish the proof of Theorem 2.

of Theorem 2. According to Proposition 3, the manifoldness of ∂hX is determined by the absence of
crossed configurations. Non manifoldness at a primal vertex v occurs only if the 8-configuration of X
at ṽ is crossed. Theorem 13 of [41] together with the equivalence of par-regularity and reach given by
Lemma 1 show that h < 0.5R implies that the the 8-configuration is not crossed. Non manifoldness
at a primal edge s occurs only if the 4-configuration of X at s̃ is crossed. This case is fully studied in
Lemma 2, Lemma 3 and Lemma 4. Non manifoldness at a primal 2-cell is impossible by construction.
This concludes the proof. �

5. Size of the non injective part

Here, the set X is a compact domain of Rd, whose boundary ∂X has reach strictly greater than R.
We assume that h ≤ R/

√
d, which implies by Theorem 1 that the Hausdorff distance between ∂X and

∂hX is less than R/2. Therefore the projection map ξ on ∂X is well defined on ∂hX. However, this
map is not one-to-one in general.

The aim of this section is to show that the subset of ∂X for which ξ is not injective from ∂hX,
otherwise said the part of ∂X with multiplicity greater than one through projection, is small. We
define the following set

mult(∂X) := {x ∈ ∂X, s.t. ∃y1, y2 ∈ ∂hX, y1 6= y2 and ξ(y1) = ξ(y2) = x}.

Theorem 3. If h ≤ R/
√
d, then one has

Area (mult(∂X)) ≤ K1(h) Area (∂X) h,

where

K1(h) =
4
√

3 d2

R
+O(h) ≤ 2

√
3 d2 4d

R
.

Here and in the sequel, the constant appearing in O(h) only involves the dimension d and the reach
R. Furthermore, the (d− 1)-dimensional Hausdorff measure is denoted by Area and the d-dimensional
Hausdorff measure is denoted by Vol.
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5.1. Sketch of proof. The assumption h ≤ R/
√
d implies by Theorem 1 that the Hausdorff distance

between ∂hX and ∂X is less than
√
dh/2. In particular, one has for every y ∈ ∂hX, ‖y−ξ(y)‖ ≤

√
dh/2.

Furthermore, Theorem 1 also implies that the restriction of the projection map to ∂hX is surjective.
However, it may not be injective in general. We introduce the set mult(∂hX) = ξ−1(mult(∂X)).
Clearly, the map

ξ : ∂hX \mult(∂hX)→ ∂X \mult(∂X)

is one-to-one. For any point x ∈ ∂X, we denote by n(x) the outward unit normal vector to ∂X at
x and by nh(y) the outward unit normal vector to ∂hX at y. Remark that nh(y) is defined almost
everywhere for the (d− 1) Hausdorff measure. If y belongs to the intersection of two or more (d− 1)-
dual cells, then we can choose for nh(y) the outward unit normal to any of those cells. The outline of
the proof is the following:

i) We show that the scalar products between normals of ∂hX and ∂X is always greater than

−2
√
dh/R.

ii) We show that mult(∂X) ⊂ ξ(P (h)), where

P (h) := {y ∈ ∂hX, n(ξ(y)) · nh(y) ≤ 0}.

iii) We show that the jacobian of ξ at y is approximately |n(ξ(y)) · nh(y)|, hence the jacobian of
its restriction to P (h) is in O(h).

iv) We conclude that Area (mult(∂X)) is in O(h).

5.2. Angle relation between object boundary and its digitization. Let X be a compact domain
of Rd, whose boundary ∂X has reach strictly greater than R. By Proposition 2, we know that ∂X is
of class C1,1, meaning that the normal to ∂X is Lipschitz. We provide below an explicit upper bound
of this Lipschitz constant.

Lemma 5. For any x1, x2 ∈ ∂X, one has

(17) ‖n(x1)− n(x2)‖ ≤
√

3

R
‖x1 − x2‖.

Proof. For i = 1, 2 we denote by ci the center of the outside osculating ball of radius R to ∂X at the
point xi, by c′i the center of the inside osculating ball to ∂X at the point xi. Since the ball Bc1(R) is
included in X and Bc′2(R) is included in the closure of Rd \X, their interior do not intersect and thus
‖c1 − c′2‖ ≥ 2R. From the fact that ci − xi = R n(xi), one has

c1 − c′2 = (c1 − x1) + (x1 − x2) + (x2 − c′2)

= R n(x1) + (x1 − x2) +R n(x2),

which implies that

‖c1 − c′2‖2 = 2R2 + ‖x1 − x2‖2 + 2R2 n(x1) · n(x2)

+ 2R(x1 − x2) · [n(x1) + n(x2)] .

The condition ‖c1 − c′2‖2 ≥ 4R2 thus implies that

R2‖n(x1)− n(x2)‖2 = 2R2 [1− n(x1) · n(x2)]

≤ ‖x1 − x2‖2 + 2R (x1 − x2) · [n(x1) + n(x2)] .(18)

It remains to show that 2R (x1 − x2) · [n(x1) + n(x2)] is bounded by 2‖x1 − x2‖2, which will allow
to conclude. Remark that the two points x1 and x1 + 2Rn(x1) belong to the sphere ∂Bc1(R) and are
diametrally opposed. Thus, since x2 does not belong to the ball Bc1(R), one has

(x2 − x1) · (x2 − (x1 + 2R n(x1))) ≥ 0

⇔ (x2 − x1) · ((x2 − x1)− 2R n(x1)) ≥ 0

⇔ 2R (x2 − x1) · n(x1) ≤ ‖x2 − x1‖2
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Similarly, since x2 does not belong to the ball Bc′1(R), the same inequality holds by replacing n(x1)
with −n(x1) and thus

|2R (x2 − x1) · n(x1)| ≤ ‖x2 − x1‖2.
Similarly, x1 does not belong to Bc2(R) ∪Bc′2(R), which implies

|2R (x2 − x1) · n(x2)| ≤ ‖x2 − x1‖2.
Plugging these last two equations into (18) leads to

R2 ‖n(x1)− n(x2)‖2 ≤ 3 ‖x2 − x1‖2,
which allows to conclude. �

Lemma 6. Let p ∈ X and q 6∈ X, then there exists x ∈ ∂X ∩ [pq] such that n(x) · −→pq ≥ 0.

Proof. First of all, X ∩ [pq] is not empty (it contains at least p) and is compact. In this compact set,
we define x as the closest point to q. It is also clear that x ∈ ∂X. Assume that n(x) · −→pq < 0, then the
inside osculating ball at x of radius R intersect of (xq]. This is a contradiction since x was the closest
point of X to q along this segment. �

Lemma 7. For any y ∈ ∂hX, the angle between the normal nh(y) of any (d-1)-cell of ∂hX containing
y and the normal of its projection x = ξ(y) onto ∂X satisfies:

n(x) · nh(y) ≥ −
√

3d

R
h.

Proof. Let x = ξ(y). If n(x)·nh(y) is positive, the result is obvious. We suppose now that n(x)·nh(y) <
0. Since y ∈ ∂hX, it belongs to a primal 2-cell c, whose dual 1-cell c̃ is a segment [pq], where p ∈ X and
q 6∈ X. Note that the normal nh(y) at y on ∂hX points in the same direction as the vector −→pq. Then we
apply Lemma 6 for segment [pq], and we denote by x2 the point of ∂X∩[pq] such that n(x2)·nh(y) ≥ 0.

By Theorem 1, equation (3), we have that ‖x− y‖ ≤
√
d

2 h. Since y ∈ c and x2 ∈ [pq] = c̃, we also have

‖y− x2‖ ≤
√
d

2 h. We conclude by the triangle inequality that ‖x− x2‖ ≤
√
dh. Since h < R√

d
, one has

‖x− x2‖ ≤ R, and one can apply Lemma 5

|n(x) · nh(y)| ≤ |(n(x)− n(x2)) · nh(y)|

≤ ‖n(x)− n(x2)‖ ≤
√

3

R

√
dh.

�

5.3. Parameterization of mult(∂X).

Lemma 8. For every x ∈ mult(∂X), there exists y ∈ ∂hX and a 2-cell c containing y, such that

ξ(y) = x and n(x) · nh(ċ) ≤ 0.

Proof. Let x ∈ mult(∂X) and [ab] = n(x,
√
dh/2) the segment centered in x of length

√
dh and aligned

with the normal n(x). We suppose that this segment touches several (d− 1)-faces of ∂hX and is not
in the tangent plane of one of these faces (otherwise, the conclusions holds directly). To get the proof,
it is sufficient to show that there is an orthonormal axis-aligned frame (−→ej )j=1,...,d such that: (i) ∀j,
with 1 ≤ j ≤ d,

−→
ab · −→ej ≥ 0, (ii) some intersected face of ∂hX has a normal −−→ej2 .

Let σ1, σ2 be two d− 1-faces of ∂hX intersected by [ab]. We may consider the vector
−→
ab to be in the

first orthant of the space, with some choice of the reference frame (−→ej )j=1,...,d. The segment [ab] crosses
several cubes of Fdh, from which one can extract a covering face-adjacent subsequence of cubes (ci)i=1..m.

Because
−→
ab is in the first orthant, we have that ∀i, with 1 ≤ i < m, ∃ki ∈ {1, . . . , d},

−−−−→
ċiċi+1

‖−−−−→ċiċi+1‖
= +−→eki .

The faces σ1 and σ2, being intersected by the segment, are the faces of some cubes ci1 and ci2 . Fur-
thermore, the segment being not in their tangent planes, these faces are the intersection of consecutive
cubes in the sequence (ci), and we have σ1 = ci1 ∩ ci1+1 and σ2 = ci2 ∩ ci2+1. We choose first i1 < i2.



PROPERTIES OF GAUSS DIGITIZED SHAPES AND DIGITAL SURFACE INTEGRATION 17

Two cases arise, either ċi1 ∈ X or not. In the first case, necessarily ċi1+1 6∈ X and the normal at
σ1 is then +−−→eki1 . Now since σ2 ⊂ ∂hX, either ċi2 or ċi2+1 belongs to X. Since i1 < i2, there must be
some i3, i1 + 1 ≤ i3 ≤ i2, with ċi3 6∈ X and ċi3+1 ∈ X. The face ci3 ∩ ci3+1, which may be σ2, thus
belongs to ∂hX. Its normal vector is −−−→eki3 , which concludes this case.

The other cases are solved identically. �

5.4. Jacobian of the projection. We consider here the restriction ξ′ := ξ|∂hX of ξ to ∂hX. Recall
that the (d− 1)-jacobian Jξ′(y) of ξ′ at a point y measures the distortion of area induced by the map
ξ′ near y, that is

Jξ′(y) := lim
ε→0

Area (ξ′(B(y, ε)))

Area (B(y, ε))
,

where B(y, ε) denotes the (d− 1)-dimensional ball of radius ε centered at y on ∂hX.

Lemma 9. For almost every y ∈ ∂hX (for the (d − 1)-Hausdorff measure), the (d − 1)-jacobian of
ξ′ = ξ|∂hX is given by

Jξ′(y) = |n(ξ(y)) · nh(y)| K2(h)

where

K2(h) = 1 +O(h) ≤

(
1

1−
√
d

2R h

)d−1

≤ 2d−1.

Proof. First remark that if n(ξ(y)) ·nh(y) = 0, then Jξ′(y) = 0 and the result holds. If y ∈ ∂hX is such
that n(ξ(y)) ·nh(y) 6= 0, then the map ξ′ is injective in a neighborhood of y. Furthermore, since ∂X is
of class C2 almost everywhere, we know that for almost every y ∈ ∂hX such that n(ξ(y)) · nh(y) 6= 0,
∂X is of class C2 at the point ξ(y). Let us take such a point y. It is known that ξ is differentiable at
y and one has [32, Lemma 3, section 13.2.2]

Dξ(y) = (Idξ(y) − ‖y − ξ(y)‖Dn(ξ(y)))−1 ◦ πξ(y),

where πξ(y) is the orthogonal projection onto the plane tangent to ∂X at the point ξ(y), Idξ(y) is the
identity on the plane tangent to ∂X at the point ξ(y), and Dn is the differential of the normal map
to ∂X. The same formula still holds if we replace ξ by its restriction ξ′. The absolute value of the
determinant of the restriction of πξ(y) to the cell containing y is equal to |n(ξ(y)) ·nh(y)|. Furthermore,

since the curvatures (that are the eigenvalues of Dn) are bounded by 1/R and ‖y − ξ(y)‖ ≤
√
dh/2,

one has (
1

1 +
√
dh

2R

)d−1

≤ |det((Idξ(y) − ‖y − ξ(y)‖Dn(ξ(y)))−1)| ≤

(
1

1−
√
dh

2R

)d−1

.

Hence, knowing that Jξ′(y) = |det(Dξ′(y))|, we get

|n(ξ(y)) · nh(y)|

(
1

1 +
√
dh

2R

)d−1

≤ Jξ′(y) ≤ |n(ξ(y)) · nh(y)|

(
1

1−
√
dh

2R

)d−1

.

�

5.5. Relating areas of continuous and digitized boundaries. We determine an explicit upper
bound for the area of the digitized boundary ∂hX with respect to the area of the continuous boundary
∂X. We denote by ∂Xε the ε-offset of ∂X (i.e., the Minkowski sum of ∂X with the ball of radius ε),
or equivalently

∂Xε :=
{
x ∈ Rd, ‖x− ξ(x)‖ ≤ ε

}
.

Lemma 10. Area (∂hX) ≤ Area (∂X) K3(h), where

K3(h) = 4d
3
2 +O(h) ≤ 2d+2d

3
2 .
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Proof. By Theorem 1, Equation (3), any point on ∂hX is at distance lower than
√
d

2 h from ∂X.

Therefore, all faces of ∂hX are included in the
√
d

2 h-offset of ∂X. To get a set of cubes that contains all
these faces, it suffices to take an offset twice bigger. Let us denote by F (h) the subset of the cellular

grid Fdh that lies in this offset ∂X
√
dh, and by N(h) the number of (hyper)cubes of F (h).

Every face of ∂hX is some face of a cube of F (h). Hence, you may not have more faces in ∂hX than
they are faces of cubes of F (h). Since each cube has 2d faces, it follows that:

Area (∂hX) ≤ 2d× hd−1 ×N(h)

From the fact that F (h) ⊂ ∂X
√
dh, one has

hdN(h) = Vol (F (h)) ≤ Vol
(
∂X
√
dh
)
,

which implies with the previous equation that

Area (∂hX) ≤ 2d× hd−1 ×
Vol

(
∂X
√
dh
)

hd

≤ 2d

h
Vol

(
∂X
√
dh
)
.

We put ε =
√
dh. We are now going to bound the volume of ∂Xε. Weyl’s tube formula expresses

this volume as a polynomial in ε of degree d [43]. Since ∂X is of class C2 almost everywhere, the
coefficients are related to the principal curvatures but, here, every one of them can be upper bounded
by 1/R. Hence, the volume is upper bounded as:

Vol (∂Xε) ≤ 2Area (∂X)

(
ε+

(
d

1

)
1

R
ε2 +

(
d

2

)
1

R2
ε3 + . . .+

(
d

d

)
1

Rd
εd+1

)
.

From this, we get that Vol (∂Xε) ≤ Area (∂X)× 2(ε+O(ε2)) and thus

Area (∂hX) ≤ 2d

h
×
[
2×
√
dh+O(h2)

]
Area (∂X)

≤
[
4d

3
2 +O(h)

]
Area (∂X) .

One may also remark that since ε ≤ R, then we have an explicit upper bound Vol (∂Xε) ≤ 2d+1Area (∂X) ε,
which implies

Area (∂hX) ≤ 2d

h
2d+1Area (∂X)

√
dh

≤ 2d+2d
3
2 Area (∂X) .

�

5.6. End of proof of Theorem 3. From Lemma 8, one has mult(∂X) ⊂ ξ(P (h)), where

P (h) := {y ∈ ∂hX, n(ξ(y)) · nh(y) ≤ 0}.

Therefore Area (mult(∂X)) ≤ Area (ξ(P (h))). Let y ∈ P (h). By Lemma 7, one has

|n(ξ(y)) · nh(y)| ≤
√

3d

R
h,

which implies by Lemma 9 that for almost every y ∈ P (h)

Jξ′(y) ≤
√

3d

R
h K2(h).

Hence

Area (mult(∂X)) ≤
√

3d

R
h K2(h) Area (P (h)) .
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Now, since P (h) ⊂ ∂hX, one has by Lemma 10

Area (P (h)) ≤ Area (∂hX) ≤ K3(h) Area (∂X) .

Putting this all together, one gets

Area (mult(∂X)) ≤
√

3d

R
h K2(h) K3(h) Area (∂X) .

We conclude by letting

K1(h) =

√
3d

R
K2(h) K3(h).

6. Digital surface integration

In this section, we prove the convergence of a digital surface integral. Given a function f : Rd → R,
we let ‖f‖∞ := maxx∈Rd |f(x)| and denote Lipf := maxx 6=y |f(x)−f(y)|/‖x−y‖ its Lipschitz constant,
which can be infinite. We define the bounded-Lipschitz norm by ‖f‖BL := ‖f‖∞ + Lip(f). Given a
normal estimator n̂ defined on ∂hX, we define the error of the normal estimation by

‖n̂− n‖est := sup
y∈∂hX

‖n(ξ(y))− n̂(y)‖.

We introduce the following digital surface integral.

Definition 6. Let Z ⊂ (hZ)d be a digital set, with gridstep h > 0 between samples. Let f : Rd → R
be an integrable function and n̂ be a digital normal estimator. We define the digital surface integral
by

DIh(f, Z, n̂) :=
∑

c∈Fd−1
h ∩∂QhZ

hd−1f(ċ)|n̂(ċ) · n(ċ)|,

where ċ is the centroid of the (d− 1)-cell c and n(ċ) is its trivial normal as a point on the h-boundary
∂hX. The latter notation is valid only for cells of the primal cubical grid belonging to ∂hX.

We prove the multigrid convergence of the digital surface integral toward the surface integral.

Theorem 4. Let X be a compact domain whose boundary has positive reach R. For h ≤ R√
d

, the

digital integral is multigrid convergent toward the integral over ∂X. More precisely, for any integrable
function f : Rd → R, one gets∣∣∣∣∫

∂X

f(x)dx−DIh(f,Dh(X), n̂)

∣∣∣∣ ≤ Area (∂X) ‖f‖BL

(
O(h) +O(‖n̂− n‖est)

)
.

Note that as before, the constant involved in the notation O(.) only depends on the dimension d
and the reach R.

6.1. Multiplicity of the projection. We show in the section that the multiplicity of ξ′ is bounded
almost everywhere for the (d− 1)-Hausdorff measure. One introduces the subset C of ∂X as

C := {ξ(y), s.t. y ∈ ∂hX, n(ξ(y)) · nh(y) = 0}.

Lemma 11. One has the following properties

• For every x ∈ ∂X \ C, the multiplicity µx is less than µ := db
√
d+ 1c.

• For almost every point y ∈ ξ′−1(C) one has Jξ′(y) = 0.
• The area of C is equal to 0.

Proof. Let x ∈ ∂X \C and y ∈ ξ′−1(x). Then y belongs to the segment n(x,
√
dh/2) centered in x, of

length
√
dh and aligned with the normal to ∂X at x. Since x /∈ C, this segment is not contained in a

plane orthogonal to nh(y). Since its length is less than
√
dh, it cannot cross more than b

√
d+ 1c cells

of Fd−1
h orthogonal to nh(y). The same bound holds for (d − 1) other directions of the cells of Fd−1

h .

Hence µx ≤ db
√
d+ 1c.
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Let now x ∈ C. Then there exists y ∈ ξ′−1(x) such that the segment n(x,
√
dh/2) is contained in a

hyperplane Py orthogonal to nh(y). The number of intersections of n(x,
√
dh/2) with the cells of Fd−1

h

that are not parallel to Py are bounded as previously by (d− 1)b
√
d+ 1c. For every y′ ∈ Py ∩ ξ′−1(x),

one has n(ξ(y′)) · nh(y′) = 0, hence the jacobian of ξ′ vanishes. Furthermore, in a neighborhood of x,
C is included in ∂X ∩ Py which is a curve. Hence the area of C is equal to 0. �

6.2. Proof of Theorem 4.
Step 1. We first show that∫

∂X

f(x)dx =

∫
∂X\mult(∂X)

f(x)dx+K1(h)Area (∂X) ‖f‖∞h.(19)

We start by writing the integral of f as the sum of two other integrals:∫
∂X

f(x)dx =

∫
∂X\mult(∂X)

f(x)dx+

∫
mult(∂X)

f(x)dx.

According to Theorem 3 (Section 5), the second term is bounded by∣∣∣∣∣
∫

mult(∂X)

f(x)dx

∣∣∣∣∣ ≤ Area (mult(∂X)) ‖f‖∞

≤ K1(h)Area (∂X) ‖f‖∞h.

Step 2. The map ξ induces a bijection from ∂hX \ mult(∂hX) to ∂X \ mult(∂X). It is also a
diffeomorphism since ∂hX is within the reach of ∂X by Theorem 1. By the change of variable formula,
one obtains:

(20)

∫
∂X\mult(∂X)

f(x)dx =

∫
∂hX\mult(∂hX)

f(ξ(y))Jξ(y)dy.

Step 3. We now want to show that∫
∂hX\mult(∂hX)

f(ξ(y))Jξ(y)dy =

∫
∂hX

f(ξ(y))Jξ(y)dy + Area (∂X) µ ‖f‖∞O(h).(21)

By Lemma 11 and the general coarea formula, one gets∣∣∣∣∣
∫

mult(∂hX)

f(ξ(y))Jξ(y)dy

∣∣∣∣∣ =

∣∣∣∣∣
∫

mult(∂hX)\ξ′−1(C)

f(ξ(y))Jξ(y)dy

∣∣∣∣∣
=

∣∣∣∣∣
∫

mult(∂X)\C
µxf(x)dx

∣∣∣∣∣
≤ Area (mult(∂X)) µ ‖f‖∞
≤ K1(h)Area (∂X) µ ‖f‖∞h.

Step 4. We now show that∫
∂hX

f(ξ(y))Jξ(y)dy =

∫
∂hX

f(ξ(y))|n(ξ(y)) · nh(y)|dy + ‖f‖∞Area (∂X)O(h).(22)

Lemma 9 implies that

|Jξ′(y)− |n(ξ(y)) · nh(y)| | = O(h).

We then have (with Lemma 10)∫
∂hX

|f(ξ(y))| |Jξ′(y)− |n(ξ(y)) · nh(y)| | dy ≤ ‖f‖∞Area (∂hX) O(h)

≤ ‖f‖∞K3(h)Area (∂X) O(h).
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Step 5. We now show that∫
∂hX

f(ξ(y))|n(ξ(y)) · nh(y)|dy −DIh(f,Dh(X), n̂)

= Area (∂X)
(

Lip(f)O(h) + ‖f‖∞O(‖n̂− n‖est)
)
.(23)

We write the integral as a sum of integrals on each face of ∂hX.∫
∂hX

f(ξ(y))|n(ξ(y)) · nh(y)|dy =
∑

c∈Fd−1
h ∩∂hX

∫
c

f(ξ(y))|n(ξ(y)) · nh(y)|dy.

For every square face c of ∂hX (a d− 1-cell of Fd−1
h ), one has

hd−1f(ċ)|n(ċ) · n̂(ċ)| =
∫
c

f(ċ)|n(ċ) · n̂(ċ)|dy.

For every y ∈ c, one has nh(y) = n(ċ), and then

f(ξ(y))|n(ξ(y)) · nh(y)| − f(ċ)|n(ċ) · n̂(ċ)|
= f(ξ(y))|n(ξ(y)) · n(ċ)| − f(ċ)|n(ξ(y)) · n(ċ)|

+ f(ċ)|n(ξ(y)) · n(ċ)| − f(ċ)|n(ċ) · n̂(ċ)|

≤
∣∣∣f(ξ(y))− f(ċ)

∣∣∣∣∣∣n(ξ(y)) · n(ċ)
∣∣∣

+
∣∣∣f(ċ)

∣∣∣∣∣∣|n(ξ(y)) · n(ċ)| − |n(ċ) · n̂(ċ)|
∣∣∣

≤
∣∣∣f(ξ(y))− f(ċ)

∣∣∣+
∣∣∣f(ċ)

∣∣∣∥∥∥n(ξ(y))− n̂(ċ)
∥∥∥

≤ Lip(f)‖ξ(y)− ċ‖+ ‖f‖∞‖n− n̂‖est

≤ Lip(f)
√
dh+ ‖f‖∞‖n− n̂‖est.

Above, we use the relation that, for vectors a,b,u, ||a ·u| − |b ·u|| ≤ |(a−b) ·u|. This relation comes
from triangle inequalities. We deduce that (using also Lemma 10)∣∣∣∣∫

∂hX

f(ξ(y))|n(ξ(y)) · nh(y)|dy −DIh(f,Dh(X), n̂)

∣∣∣∣
≤ Area (∂hX)

(
Lip(f)

√
dh+ ‖f‖∞‖n− n̂‖∞

)
≤ Area (∂X) K3(h)

(
Lip(f)

√
dh+ ‖f‖∞‖n− n̂‖est

)
.

End of proof. Putting together the equations (19), (20), (21), (22), (23) of Steps 1-5, one gets∣∣∣∣∫
∂X

f(x)dx−DIh(f,Dh(X), n̂)

∣∣∣∣ ≤ Area (∂X)
(

(Lip(f) + ‖f‖∞)O(h) + ‖f‖∞O(‖n̂− n‖est)
)
.

Experimental evaluation. We briefly evaluate numerically the digital surface integral formula for the
purpose of area estimation of a 3D digital shape. Fig. 6 illustrates the area estimation error of digital
surface integration for several digital normal estimators. Of course, the naive summation of the areas
of each 2-cell leads to a non-convergent estimation that overestimates the true area by almost 45%
(naive digital area). If the normal is estimated by averaging the trivial cell normals of cells at distance
at most t (called trivial normal of radius t), then better area estimations are obtained (around 1% for
t = 2). Still they are not convergent. If we use the exact ellipsoid normals (true normal) or convergent
normal estimators like integral invariants (II, [7, 8]) or Voronoi Covariance Measure (VCM, [10]),
then the digital surface integral appears convergent toward the true area. Even better, experimental
convergence speed looks like O(h2).
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Figure 6. Area estimation error of the digital surface integral (Definition 6) with
several digital normal estimators. The shape of interest is 3D ellipsoid of half-axes 10,
10 and 5, for which the area has an analytical formula giving A ≈ 867.188270334505.
The abscissa is the gridstep h at which the ellipsoid is sampled by Gauss digitization.
For each normal estimator, the digital surface integral Â is computed with f = 1, and

the relative area estimation error |Â−A|A is displayed in logscale.

Discussion. We have presented numerous properties of Gauss digitized sets in arbitrary dimension,
with a special focus on the relations between the continuous boundary of the shape and the boundary
of its digitization at some gridstep h. Although these sets are close in the Hausdorff sense through
the projection map, they are not related by an homeomorphism starting from dimension 3. We have
characterized precisely places where the digitized boundary is not a manifold in dimension 3. Their area
is rapidly decreasing with the grid step (O(h2) on non-flat parts). Furthermore, we have determined
where the projection map is not a homeomorphism in arbitrary dimension, and it appears also that the
problematic places on the shape boundary have an area that decreases toward zero in O(h). Thanks to
this result, we have proven the validity of the digital surface integral as a multigrid convergent integral
estimator, as long as the digital normal estimator is also multigrid convergent. Bounds have been made
explicit and justify a posteriori previous papers using digital surface integration for area estimation
[27, 6]. Experimental evaluations confirm this result. It remains to be understood why the convergence
speed is better than expected. This observation seems related to the fact that places likely to induce
a non homeomorphic projection are probably overestimated, and thus introduce a larger error on the
integration. We are currently examining this issue. However, we cannot expect to achieve better than
O(h2) error since even true normals induce this error.
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[22] R. Klette and J. Žunić. Multigrid convergence of calculated features in image analysis. Journal of Mathematical

Imaging and Vision, 13(3):173–191, 2000.
[23] J.-O. Lachaud. Espaces non-euclidiens et analyse d’image : modèles déformables riemanniens et discrets, topologie
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Laboratoire Jean Kuntzmann (LJK), Université de Grenoble, France
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