
HAL Id: hal-01070264
https://hal.science/hal-01070264

Submitted on 2 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quasi-local multi-trace boundary integral formulations
Xavier Claeys

To cite this version:
Xavier Claeys. Quasi-local multi-trace boundary integral formulations. Numerical Methods for Partial
Differential Equations, 2015, 31 (6), pp.2043-2062. �hal-01070264�

https://hal.science/hal-01070264
https://hal.archives-ouvertes.fr


Quasi-local multi-trace

boundary integral formulations

X.Claeys∗†‡

Abstract

In the context of time harmonic wave scattering by piecewise homogeneous penetrable
objects, we present a new variant of the multi-trace boundary integral formulation, that
differs from the local multi-trace approach of [Jerez-Hanckes & Hiptmair, 2012] by the
presence of regularisation terms involving boundary integral operators and localised at
junctions i.e. points where at least three subdomains abut. We prove well-posedness and
quasi-optimal convergence of conforming Galerkin discretisations for this new formulation,
and present numerical results.

Introduction

Due to its potentially large scope of application, the analysis of boundary integral formulation
for wave scattering by piecewise homogeneous objects has received a lot of attention in past
decades. Several approaches, such as PMCHWT [20, 3, 15, 23, 2] or the BETI method
[18, 21, 22], have been derived rather early for treating scattering by geometrically complex
structures by means of boundary integral operators. However, the existing approaches did
not lend themselves (at least as local solvers) to some of the most popular preconditioning
techniques such as Calderón’s preconditioner [4, 5, 26].

This was the main motivation for the recent development of the so-called multi-trace for-
mulations that were prone to Calderón preconditioning and, at the same time, adapted to
boundary integral formulation of wave propagation in piecewise homogeneous media admit-
ting points where three or more subdomains could be adjacent to each other. The so-called
local multi-trace formulation, first proposed in [17], consists in writing wave equations sep-
arately in each subdomain of the propagation medium by means integral operators, and to
couple subdomain together by means of a local transmission operator coming into play via a
relaxation term of the equation. This formulation has been dubbed local because no integral
operator is required to enforce transmission conditions.

As regards effective numerical performance, this formulation looks appealing. But few
theory could be established. This is mostly due to the transmission operator that acts on
Sobolev trace spaces, and involves at the same time restrictions and extensions by zero which
are not continuous operations in natural trace norms. So far this formulation has been proved
to admit a unique solution for general multi-dimensional cases, but no Garding’s inequality
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has been established, and discrete inf-sup conditions for conformal discretisations of this
formulation has been studied only in a 2-D case.

In the present article we introduce a regularised version of the local multi-trace formu-
lation. The regularisation terms are localised at the junction points, and this new variant
of the multi-trace formulation of [17] lends itself to much more standard analysis: all oper-
ators are continuous in standard Sobolev trace spaces, a Garding inequality can be proved,
which implies quasi-optimal approximation property for conformal Galerkin discretisations.
As regards numerical performances, this new formulation also appears slightly more accurate
compared to the original local multi-trace formulation. On the other hand, iterative solvers
may be a little bit slower.

The outline of this article is as follows. In section 1 and 2, we set some notations and
describe precisely the problem under consideration: a standard scalar wave scattering by an
arrangement of homogeneous objects. In section 3 and 4 we recall well established results
of potential theory and provide a brief review of the derivation of the local multi-trace for-
mulation considered in [17]. In Section 5 we introduce a new way of enforcing transmission
conditions and, in Section 6, we deduce from this a regularised local multi-trace formulation.
In the last section we present numerical results. We conclude in Section 7 with numerical
experiments.

1 Setting of the problem

We first present in detail the problem that we will consider in this document. For d =
1, 2, 3, . . . , consider a partition of the free space as Rd := ∪n

j=0Ωj where the Ωj ’s are Lipschitz
domains. We assume that each Ωj is bounded except Ω0. In the sequel we shall refer to the
boundary of each subdomain by Γj := ∂Ωj, and also set Γj,k := Γj ∩ Γk = ∂Ωj ∩ ∂Ωk for
reference to interfaces. The union of all interfaces will be denoted

Σ :=
n
∪
j=0

Γj = ∪
0≤j<k≤n

Γj,k .

Following the standard terminology of domain decomposition, this set will be called the
skeleton of the partition. As regards function spaces we follow the usual notations; given
some open subset ω ⊂ R

d, we define H1(ω) := {v ∈ L2(ω) | ∇v ∈ L2(ω)} with ‖v‖2L2(ω) :=

‖v‖2L2(ω)+ ‖∇v‖2L2(ω), and H1(∆, ω) := {v ∈ H1(ω) | ∆v ∈ L2(ω)}. If H(ω) is any one of these

spaces, Hloc(ω) := {v | ϕv ∈ H(ω) ∀ϕ ∈ C∞
K (Rd)}, where C∞

K (Rd) refers to the space of C∞

function with compact support.

We consider a very standard wave scattering problem (so-called transmission problem), im-
posing Hemlholtz equation in each subdomain, as well as transmission conditions across in-
terfaces: find u ∈ H1

loc(R
d) such that





−∆u− κ2ju = 0 in Ωj ∀j = 0 . . . n

u− uinc is κ0-outgoing in Ω0

u|Γj − u|Γk = 0

∂nju|Γj + ∂nku|Γk = 0 on Γj,k = Γj ∩ Γk, ∀j, k = 0 . . . n

(1)
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where ∂nj refers to the outgoing normal derivative on ∂Ωj. In the equation above uinc ∈
H1

loc(R
d) is a known source term of the problem satisfying −∆uinc − κ20uinc = 0 in R

d. In
addition, we assume that κj > 0 for all j = 0 . . . n. The outgoing radiation condition refers
to Sommerfeld’s condition i.e. we say that v is κ-outgoing if

lim
r→∞

ˆ

∂Br

|∂rv − ıκv|2dσr = 0,

where Br is the ball of centre 0 and radius r, and ∂r is the radial derivative. Problem (1) is
known to admit a unique solution, see [23] for example.

As this problem involves transmission conditions, and since we are interested in boundary in-
tegral formulations of it, we need to introduce corresponding trace spaces and trace operators.
Given any Lipschitz open subset ω ⊂ R

d with bounded boundary, recall (see e.g. [25, Thm.
2.6.8]) that the map ϕ 7→ ϕ|∂ω can be extended as a continuous map from H1

loc(ω) to L2(∂ω).
The set of Dirichlet traces on ∂ω, denoted H1/2(∂ω), is the range of this map. It is a Banach
space when equipped with the norm ‖v‖H1/2(∂ω) := inf{‖ϕ‖H1(ω), ϕ ∈ H1(ω) and ϕ|∂ω = v}.

The set of Neumann traces on ∂ω, denoted H−1/2(∂ω), is the topological dual to this space,
equipped with the canonical dual norm

‖q‖H−1/2(∂ω) := sup
v∈H1/2(∂ω)

|〈q, v〉|

‖v‖H1/2(∂ω)

.

Recall also (see e.g. [25, Thm 2.7.7]) that the normal derivative ϕ 7→ n · ∇ϕ|∂ω can be
extended by continuity as an operator mapping H1

loc(∆, ω) onto H−1/2(∂ω).

As an application of the preceding remarks, every subdomain Ωj gives rise to continuous

boundary trace operators γj
d
: H1

loc(Ωj) → H1/2(∂Ωj) and γj
n
: H1

loc(∆,Ωj) → H−1/2(∂Ωj)
(so-called Dirichlet and Neumann traces) uniquely defined by

γjd(ϕ) := ϕ|∂Ωj and γjn(ϕ) := nj · ∇ϕ|∂Ωj ∀ϕ ∈ C∞(Ωj).

In the definition above nj refers to the vector field normal to ∂Ωj pointing toward the exterior
of Ωj. We will also need a notation to refer to an operator gathering both traces in a single
array

γj(u) := (γj
d
(v), γj

n
(v)).

Define γj
d,c, γ

j
n,c in the same manner as γj

d
, γj

n
with traces taken from the exterior of Ωj , and

set in addition γjc (v) := (γjd,c(v), γ
j
n,c(v)). We will also need to refer to mean values and jumps

to these trace operators, so we set

{γj(u)} :=
1

2

(
γj(u) + γjc (u)

)
and [γj(u)] := γj(u)− γjc(u).

2 Trace spaces

We want to recast Problem (1) into variational boundary integral equations. We aim for
boundary integral equations set in natural trace spaces. The most fundamental trace space
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we can introduce consists in the multi-trace space [8, Sect. 2.1], the Cartesian product of local
traces:

H(Σ) := H(Γ0)× · · · ×H(Γn) where H(Γj) := H+ 1

2 (Γj)×H− 1

2 (Γj) . (2)

We endow each H(Γj) with the norm ‖(v, q)‖
H(Γj)

:= (‖v‖2
H1/2(Γj)

+‖q‖2
H−1/2(Γj)

)1/2, and equip

H(Σ) with the norm naturally associated with the cartesian product

‖u‖
H(Σ) :=

(
‖u0‖

2
H(Γ0)

+ · · ·+ ‖un‖
2
H(Γn)

) 1

2

for u = (u0, . . . , un) ∈ H(Σ)1. We write 〈 , 〉Γj for the duality pairing between H1/2(Γj)

and H−1/2(Γj). In the sequel we shall repeatedly refer to the continuous operator γ :
Πn

j=0H
1
loc(∆,Ωj)→ H(Σ) defined by γ(u) := (γ0(u), . . . , γn(u)), where Π

n
j=0H

1
loc(∆,Ωj) should

be understood as the set of u ∈ L2
loc(R

d) such that u|Ωj ∈ H1
loc(∆,Ωj) for all j. We also need

a bilinear duality pairing for H(Γj) and H(Σ); we opt for the skew-symmetric version

Ju, vK :=

n∑

j=0

[uj , vj]Γj where
[( uj

pj

)
,

(
vj
qj

)]
Γj

:= 〈uj , qj〉Γj − 〈vj, pj〉Γj . (3)

This particular choice is well adapted to the forthcoming analysis. Note that under the pairing
J , K, the space H(Σ) is its own topological dual, and it is easy to show, using the duality
between H1/2(Γj) and H−1/2(Γj), that the pairing J , K induces an isometric isomorphism
between H(Σ) and its dual H(Σ)′, equivalent to the inf-sup condition

inf
v∈H(Σ)

sup
u∈H(Σ)

|Ju, vK|

‖u‖H(Σ)‖v‖H(Σ)
= 1. (4)

Next, as in [8, Sect. 2.2], [10, Sect. 3.1], we introduce the so-called single-trace space that
consists in collections of traces that comply with transmission conditions. This space can be
defined by

X(Σ) := closH(Σ){ γ(u) = (γj(u))nj=0 | u ∈ C∞(Rd) } (5)

where closH(Σ) refers to the closure with respect to the norm of H(Σ). By construction, this

is a closed subspace of H(Σ). Note also that a function u ∈ H1
loc(∆,Ω0) × · · · × H1

loc(∆,Ωn)
satisfies the transmission conditions of (1), if and only if γ(u) = (γj(u))nj=0 ∈ X(Σ). In

particular, if u ∈ H1(∆,Rd) then γ(u) = (γj(u))nj=0 ∈ X(Γ), see [8, §2.2] and [7, Lemma 7.4].
In the sequel, we will use this space to enforce transmission conditions. The single-trace space
admits a simple weak characterisation, see [8, Prop.2.1].

Lemma 2.1.

For any u ∈ H(Σ) we have: u ∈ X(Σ) ⇐⇒ Ju, vK = 0 ∀v ∈ X(Σ).

1Functions in Dirichlet trace spaces like H1/2(∂Ωj) will be denoted by u, v, w, whereas we use p, q, r for
Neumann traces. Small fraktur font symbols u, v, w are reserved for Cauchy traces, with an integer subscript
indicating restriction to a subdomain boundary.
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3 Summary of potential theory

In this paragraph, we shall remind the reader of well established results concerning the inte-
gral representation of solutions to homogeneous Helmholtz equation in Lipshitz domains. A
detailed proof of the statements contained in the present paragraph can be found for example
in [25, Chap.3].

Let the function Gκ(x) refer to the outgoing Green’s kernel associated to the Helmholtz
operator −∆−κ2. For each subdomain Ωj, for any (v, q) ∈ H(Γj) and any x ∈ R

d \Γj , define
the potential operator

Gj
κ(v, q)(x) :=

ˆ

Γj

q(y)Gκ(x− y) + v(y)nj(y) · (∇Gκ)(x− y)dσ(y) . (6)

The operator Gj
κ maps continuously H(Γj) into H1(∆,Ωj) × H1(∆,Rd \ Ωj), see [25, Thm

3.1.16]. In particular Gj
κ can be applied to a pair of traces of the form u = γj(v). This

potential operator can be used to write a representation formula for solutions to homogeneous
Helmholtz equations, see [25, Thm 3.1.6].

Proposition 3.1.

Let u ∈ H1
loc(Ωj) satisfy ∆u + κ2ju = 0 in Ωj. Assume in addition that u is κj-outgoing if

j = 0. We have the representation formula

Gj
κj(γ

j(u))(x) =

{
u(x) for x ∈ Ωj

0 for x ∈ R
d \Ωj .

Similarly, if v ∈ H1
loc(R

d \ Ωj) satisfies ∆v + κ2jv = 0 in R
d \ Ωj , as well as a radiation

condition in the case j 6= 0, then we have Gj
κj(γ

j
c (v))(x) = −v(x) for x ∈ R

d \ Ωj, and

Gj
κj (γ

j
c (v))(x) = 0 for x ∈ Ωj.

The potential operator (6) also satisfies a remarkable identity, known as jump formula, de-
scribing the behaviour of Gj

κj (v)(x) as x crosses Γj = ∂Ωj. The notations that we have
introduced allow to write it in a very condensed manner, namely

[γj ] ·Gj
κj (v) = v ∀v ∈ H(Γj) . (7)

This can also be rewritten [γj ] · Gj
κj = Id. We refer the reader to [25, Thm.3.3.1] (the

jump formula are more commonly written in the form of four equations in the literature).
Proposition 3.1 shows that, if u is solution to a homogeneous Helmholtz equation in Ωj

(and is outgoing if j = 0) then γj · Gj
κj (γ

j(u)) = γj(u). This actually turns out to be a
characterisation of solution to homogeneous Helmholtz equation.

Proposition 3.2.

Define C
in
κ (Γj) := {γj(u) | u ∈ H1

loc(Ωj), ∆u+ κ2u = 0 in Ωj, u κ-outgoing if j = 0 }. Then

γj · Gj
κ : H(Γj) → H(Γj) is a continuous projector, called Calderón projector interior to Ωj,

whose range coincides with C
in
κ (Γj) i.e. for any v ∈ H(Γj)

γj ·Gj
κ(v) = v ⇐⇒ v ∈ C

in
κ (Γj) .

Similarly, defining Cout
κ (Γj) := {γjc (u) | u ∈ H1

loc(Ωj), ∆u+κ
2u = 0 in R

d\Ωj , u outgoing if j 6= 0 },

we have γj ·Gj
κ(v) = 0 if and only if v ∈ C

out
κ (Γj).
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For a detailed proof of this proposition, see [25, Prop.3.6.2]. A direct consequence of this is
the so-called Calderón identity ({γj} ·Gj

κ)2 = Id/4. We shall repeatedly use this characteri-
sation as a convenient way to express wave equations in the subdomains Ωj. Here is another
characterisation of the space of Cauchy data which was established in [8, Lemma 6.2].

Lemma 3.1.

Consider any j = 0, . . . n, and any κ ∈ C \ {0} such that ℜe{κ} ≥ 0, ℑm{κ} ≥ 0. Then
for any u ∈ H(Γj) we have: u ∈ C

in
κ (Γj) ⇐⇒ [u, v]Γj = 0 ∀v ∈ C

in
κ (Γj). Similarly we have

u ∈ C
out
κ (Γj) ⇐⇒ [u, v]Γj = 0 ∀v ∈ C

out
κ (Γj).

The results that we have stated above hold for any j = 0 . . . n. They can be re-expressed in a
matrix form, which will help reducing notations. First we introduce the continuous operator
A : H(Σ) → H(Σ) defined by

1

2
JAu, vK :=

n∑

j=0

[
{γj} ·Gj

κj(uj), vj

]
Γj
.

for all u = (uj)
n
j=0, v = (vj)

n
j=0 ∈ H(Σ). We also set C

α(Σ) := C
α
κ0
(Γ0) × · · · × C

α
κn(Γn)

for α = in, out. Observe that (Id ± A)/2 are projectors, according to Proposition 3.2, with
Ker(A − Id) = Range(A + Id) = C

in(Σ) and Ker(A + Id) = Range(A − Id) = C
out(Σ).

The notations we have just introduced lead to the following compact reformulation of the
well-posedness of (1), see [8, Prop.6.1] for a detailed proof.

Lemma 3.2.

X(Σ)⊕ C
in(Σ) = H(Σ).

4 Local multi-trace formulation

Now we would like to recall the derivation of the local multi-trace formulation, that was
first introduced in [17]. In the present section we will only recall already established results
concerning local multi-trace formulation, not giving a complete overview, and refer the reader
to [17] for detailed proof of these results.

A key ingredient of the local multi-trace theory is an operator yielding a characterisation
of transmission conditions of (1). Let us denote L

2(Σ) := Πn
j=0(L

2(Γj) × L2(Γj)). For u =

(uj , pj)
n
j=0 ∈ L

2(Σ), and v = (vj , qj)
n
j=0 ∈ L

2(Σ), we define the transmission operator Π :

L
2(Σ) → L

2(Σ) by

v = Π(u) ⇐⇒

{
vj = +uk

qj = − pk
on Γj,k ∀j, k = 0 . . . n. (8)

Clearly, for any function u ∈ H2
loc(R

d) we have γ(u) := (γj(u))nj=0 ∈ L
2(Σ) and γ(u) =

Π(γ(u)). Conversely, considering any function u ∈ L2
loc(R

d) such that u|Ωj ∈ H2
loc(Ωj) for

all j = 0 . . . n, then γ(u) ∈ L
2(Σ) is well defined, and if γ(u) = Π(γ(u)) then we have

u ∈ H2
loc(R

d). Routine calculus shows that the transmission operator satisfies the following
remarkable identities

Π2 = Id , Π(v) = Π(v) and JΠ(u), vK = JΠ(v), uK ∀u, v ∈ L
2(Σ). (9)
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As is readily checked, the operator Π maps continuously H(Σ) onto H(Σ) under the assump-
tion that Γj,k is a Lipschitz manifold without boundary for any j, k, which corresponds to
situations where there is no junction point i.e. points where at least three subdomains abut.
Without this assumption, Π does not map H(Σ) into itself. We actually have the continuous
mapping Π : H(Σ) → H̃(Σ)′ where H̃(Σ)′ is the topological dual to the space

H̃(Σ) := { v = (vj , qj)
n
j=0 ∈ H(Σ) | vj |Γj,k ∈ H̃+ 1

2 (Γj,k) ,

qj|Γj,k ∈ H̃− 1

2 (Γj,k) ∀j, k = 0 . . . n }

equipped with

‖v‖
H̃(Σ)

:=
( n∑

j=0

n∑

k=0
k 6=j

‖vj‖
2
H̃1/2(Γj,k)

+ ‖qj‖
2
H̃−1/2(Γj,k)

)1/2

where, following [19, Chap.3], for σ = ±1/2 we adopt the standard definitions Hσ(Γj,k) =

{ϕ|Γj,k ϕ ∈ Hσ(Γj)} and H̃σ(Γj,k) := H−σ(Γj,k)
′.

The space H̃(Σ) equipped with the norm above is a Banach space. We have H̃(Σ) ⊂
H(Σ) = H(Σ)′ ⊂ H̃(Σ)′. Besides, H̃(Σ) is dense in H(Σ) in the sense of ‖ ‖H(Σ), and
the norm ‖ ‖

H̃(Σ) is strictly stronger than the norm ‖ ‖H(Σ), see [17, §2.2.2]. Elementary

arguments on trace spaces show that, for any u ∈ H(Σ), we have u ∈ X(Σ) ⇐⇒ u = Π(u).
Since Π2 = Id, this can be simply rewritten in the following manner.

Lemma 4.1.

range(Π + Id) = X(Σ).

Now consider u = (γj(u))nj=0 the traces of the unique solution u to Problem (1), and denote

uinc := (γ0(uinc), 0, . . . , 0). The homogeneous wave equation satisfied by u in each subdomain
can be reformulated by means of Calderón projectors (A−Id)(u−uinc) = 0. Moreover we must
have u = Π(u) since u satisfies the transmission conditions of (1). Setting f := (A − Id)uinc,
this implies {

u ∈ H(Σ) and

J(A−Π)u, vK = Jf, vK ∀v ∈ H̃(Σ).
(10)

For this variational formulation, there is existence [17, Thm.11] and uniqueness [17, Thm.9]
to its solution.

Lemma 4.2.

For any f ∈ H(Σ), the formulation (10) admits a unique solution u ∈ H(Σ) that depends
continuously on f. In particular Ker(A−Π) = {0}.

Whether this formulation satisfies a Garding inequality remains an open question though. For
this reason, so far, uniform discrete inf-sup conditions (and hence quasi-uniform approxima-
tion property) for Galerkin discretisations of (10) could only be established in the particular
case of 2-D scalar problems.
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5 Reformulation of transmission conditions

The difficulties arising in the analysis of (10) are mainly due to the presence of junction points.
Indeed, with such points, the operator Π is no more continuous in H(Σ) that, at the same
time, appears as a natural functional setting for the boundary integral formulations of the
transmission problem (1). In the present paper, we propose a specific additional treatment
of junction points that leads to a regularised operator Π̃ for which continuity in the norm of
H(Σ) is restored.

5.1 Treatment of junction points

The particular treatment that we propose will rely on integral operators. In this paragraph,
K0 will refer to a Green kernel of an Helmholtz equation i.e. we will assume that it satisfies
−∆K0 − λ2K0 = δ0 in R

d in the sense of distributions, for some λ ∈ C. The choice of λ can
be decorrelated from the wave numbers κj coming into play in (1). So the Green kernels K0

and G are independent.

We also consider a function K ∈ C∞(Rd \ {0}) such that K coincides with K0 in a neigh-
bourhood of 0. It is important to note that, the kernel K (x) shares the same singularity
at x = 0 as K0(x). Except in a neighbourhood of 0, we do not impose that K (x) satisfies
any particular equation. It does not a priori need to be the Green kernel of any equation.
In addition, the K may be chosen so as to admit a bounded support located closely around
x = 0. For any (v, q) ∈ H(Γj), set

Kj(v, q)(x) :=

ˆ

∂Ωj

K (x− y) q(y) + nj(y) · (∇K )(x− y) v(y) dσ(y) (11)

Because the kernel K only differs from a Green’s kernel up to a smooth factor, the operators
Kj satisfy many remarkable properties inherited from standard potential operators. For
example, they satisfy a symmetry property, and jump formula.

Lemma 5.1.

The operator Kj maps continuously H(Γj) into H1(∆,Ωj) ×H1
loc(∆,R

d \ Ωj). Moreover, for
any u, v ∈ H(Γj),w ∈ H(Γk) with k 6= j, we have the following elementary properties:

i) [γj ] ·Kj(u) = u,

ii) [{γj} ·Kj(u), v]Γj = [{γj} ·Kj(v), u]Γj ,

iii) [γj ·Kk(w), u]Γj = [γk ·Kj(u),w]Γk .

Proof:

Let Kj
0 refer to the same operator as Kj but constructed with the Green kernel K0 instead

of K , and set Kj
∗ := Kj −Kj

0. The properties announced above already hold with Kj
0 instead

of Kj , see for example [13]. Besides the kernel of Kj
∗ is C∞ since K and K0 coincide in a

neighbourhood of 0. This proves the continuity properties announced for Kj , and shows in
addition that [γj ] ·Kj

∗ = 0. Moreover, it is a straightforward consequence of Fubini’s theorem,
that ii) and iii) are verified with Kj replaced by Kj

∗. Since we also know that ii) and iii) are
verified with Kj

0 (see lemmas 3.6 and 3.7 in [9] for example), this concludes the proof. �
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We may rely on combinations of all operators Kj for reformulating transmission conditions
across interfaces. Indeed consider the sum of the Kj over all subdomains i.e. for any u =
(uj)

n
j=0 ∈ H(Σ), set

K(u)(x) :=

n∑

j=0

Kj(uj)(x), for x ∈ R
d \ Σ. (12)

This operator is close to the multi-potential operator introduced in [6, 11]. It maps continu-
ously H(Σ) into Πn

j=0H
1
loc(∆,Ωj). It is important to note, though, that the same kernel has

been considered for all terms in the sum (12).

Recall that we have introduced a global trace operator defined by γ(v) := (γ0(v), . . . , γn(v)) ∈
H(Σ). We can combine this global trace with the operator (12) which yields a continuous
map γ ·K : H(Σ) → H(Σ). This operator satisfies several remarkable properties.

Lemma 5.2.

Jγ ·K(u), vK = Jγ ·K(v), uK + Ju, vK

This result is obtained straightforwardly by expanding K according to (12), and then applying
the properties stated in Lemma 5.1, together with the simple identity γj = {γj}+ 1

2 [γ
j ].

Lemma 5.3.

K(u)(x) = 0 ∀u ∈ X(Σ), ∀x ∈ R
d.

Proof:

Choose an arbitrary x ∈ R
d \Σ, and let χ ∈ C∞(Rd) refer to a cut-off function such that

χ(y) = 1 for y in a neighbourhood of Σ, χ(y) = 0 for y in a neighbourhood of x and supp(χ)
is bounded. Denote K x(y) := χ(y)K (x− y) so that K x ∈ C∞(Rd) and K x has compact
support. Take an arbitrary u ∈ C∞(Rd). Using the explicit definitions (11) and (12) we
obtain

K(γ(u))(x) =

n∑

j=0

ˆ

∂Ωj

γjd(K
x)γjn(u)− γjn(K

x)γjd(u)dσ

=

n∑

j=0

ˆ

Ωj

K x∆u− u∆K xdy =

ˆ

Rd

K x∆u− u∆K xdy = 0.

Since this holds for any x ∈ R
d \ Σ, we conclude that K(γ(u)) for any u ∈ C∞(Rd). In

addition, since the elements of the form γ(u) for u ∈ C∞(Rd) are dense in X(Σ), according
to (5), this concludes the proof. �

Lemma 5.4.

u− γ ·K(u) ∈ X(Σ) ∀u ∈ H(Σ).

Proof:

Take u ∈ H(Σ). According to Lemma 5.2 and Lemma 5.3, for any v ∈ X(Σ) we have
Ju− γ ·K(u), vK = Ju, vK− Jγ ·K(u), vK = −Jγ ·K(v), uK = 0. Now there only remains to apply
Lemma 2.1 which characterises the elements of X(Σ). �
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Corollary 5.1.

The operator γ ·K : H(Σ) → H(Σ) is a continuous projector with Ker(γ ·K) = X(Σ).

Proof:

Lemma 5.3 clearly shows that X(Σ) ⊂ Ker(γ · K). On the other hand, take any u ∈
Ker(γ · K). Applying Lemma 5.4, we obtain directly u = u − γ · K(u) ∈ X(Σ). We conclude
that Ker(γ ·K) = X(Σ). This, combined with Lemma 5.4, proves that γ ·K · (Id− γ ·K) = 0.
We deduce that (γ ·K)2 = γ ·K · (γ ·K− Id) + γ ·K = γ ·K. �

This last result shows that the operator γ · K can be used to characterise the elements of
X(Σ), and to propose alternatives to operator Π. The following proposition yields definition
to possible alternative operators. The proof is a direct consequence of Lemma 5.2 to 5.4 and
Corollary 5.1.

Proposition 5.1.

Consider the operator K given by (12), and define the continuous operator Q := Id− 2γ ·K.
We have Q2 = Id and JQ(u), vK = JQ(v), uK for all u, v ∈ H(Σ). Moreover for any u ∈ H(Σ),
we have u ∈ X(Σ) ⇐⇒ u = Q(u).

Clearly the operator Q introduced above is an isomorphism since Q2 = Id. It actually satisfies
in addition a generalised Garding inequality.

Proposition 5.2.

Define Θ : H(Σ) → H(Σ) by Θ(u) = (−uj , pj)
n
j=0 for any u = (uj , pj) ∈ H(Σ). Then there

exists a compact operator R : H(Σ) → H(Σ) and a constant C > 0 such that

ℜe
{
J(−Q+R)u,Θ(u)K

}
≥ C‖u‖2

H(Σ) ∀u ∈ H(Σ). (13)

Proof:

Let K• refer to the unique distributional solution of −∆K• + K• = δ0 in R
d and

lim|x|→∞ K•(x) = 0. Denote K• and Q• the operator defined by (11)-(12) and Proposition
5.1 constructed with this kernel. The operator K − K• is compact, as it involves smoother
kernels of the form K (x) − K•(x), see [25, Lemma 3.9.8] for example. This implies that
Q−Q• is compact. Finally, since the operator Q• satisfies a Garding inequality such as (13)
according to [8, Prop.10.3], this concludes the proof. �

5.2 Quasi-local transmission operator

In the case where the skeleton Σ does not involve any junction point (i.e. points where three
or more subdomains abut), the local multi-trace operator A−Π maps H(Σ) onto itself, and
satisfies a Garding inequality. Hence, the main motivation for considering Q, is the treatment
of junction points. A fortiori, for writing transmission conditions, it would seem desirable to
use Q only at junction points, and use the operator Π anywhere else on Σ. In this section,
we present the construction of an operator Π̃ similar to Π, but involving the operator Q in
fixed arbitrarily small neighbourhoods of junction points. Define

J =
⋃

0≤i<j<k≤n

∂Ωi ∩ ∂Ωj ∩ ∂Ωk.

By definition, these are the points adjacent to at least three subdomains. For R
d = R

2 it
consists in a finite set of points, and for R

d = R
3 it consists in a finite union of Lipschitz

10



curves. For ǫ > 0 define Vǫ := {x ∈ R
d | dist(x,J ) < ǫ}. We suppose that ǫ is chosen small

enough to guarantee that
Γj,k \ V2ǫ 6= ∅ ∀j, k = 0 . . . n.

We consider a C∞ cut-off function ψ : Rd → R such that ψ(x) = 1 for x ∈ Vǫ and ψ(x) = 0
for x ∈ R

d \ V2ǫ, and define χ := 1 − ψ2. In particular χ vanishes over a neighbourhood of
junctions points. In a two dimensional geometrical context, the situation looks as depicted in
Figure 1 below.

In the sequel, for any u = (uj , pj)
n
j=0 ∈ H(Σ), we will denote χu := (χuj, χpj)

n
j=0. And

we adopt a similar notation with ψ. This implies that Jχu, vK = Ju, χvK, and also Ju, vK =
Jχu, vK + Jψu, ψvK. Next we define the continuous operator Π̃ : H(Σ) → H(Σ) by

J Π̃(u), v K := JΠ(χu), v K + JQ(ψu), ψvK ∀u, v ∈ H(Σ). (14)

.

V2ǫ

Vǫ

Ω1

Ω2

Ω3

Ω0

Figure 1: Support of cut-off functions localized at junction points in a typical 2-D multi-subdomain
geometry.

Clearly Π̃ : H(Σ) → H(Σ) is continuous since χ vanishes at junction points. It coincides
with Π except in V2ǫ, where it admits a non-local expression given by the operator Q. This
is the reason why Π̃ may be considered ”quasi-local”. The operator Π̃ is constructed as an
interpolation between Π and Q. As such, it shares several properties with these operators.

Proposition 5.3.

We have u+ Π̃(u) ∈ X(Σ) for all u ∈ H(Σ), and Ker(Id− Π̃) = X(Σ).

Proof:

To prove the first property pick any u ∈ H(Σ), and take an arbitrary v ∈ X(Σ). From
Lemma 2.1 and Lemma 4.1 we conclude that Jχu + Π(χu), vK = 0. Note in addition that
ψv ∈ X(Σ). As a consequence, since (−Id + Q)w = 0 ∀w ∈ X(Σ) according to Proposition
5.1, we obtain

Ju+ Π̃(u), vK = Jχu+Π(χu), vK + Jψu+Q(ψu), ψvK

= J−ψv+Q(ψv), ψuK = 0

Since v ∈ X(Σ) was chosen arbitrarily, we conclude from Lemma 2.1 that u + Π̃(u) ∈ X(Σ).
As this holds for any u ∈ H(Σ), this proves the first statement.
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Now let us prove the second property of the proposition. Pick any u ∈ X(Σ), and take
an arbitrary v ∈ H(Σ). Note that χu ∈ X(Σ) and χu vanishes in the neighbourhood of
junction points, so that Π(χu) = χu which implies Jχu − Π(χu), vK = 0. Similarly we have
(−Id +Q)(ψu) = 0 since ψu ∈ X(Σ), so Jψu−Q(ψu), ψvK = 0. The definition (14) of Π̃ then
yields

Ju− Π̃(u), vK = Jχu−Π(χu), vK + Jψu−Q(ψu), ψvK = 0 ∀v ∈ H(Σ).

This shows that X(Σ) ⊂ Ker(Id− Π̃). Now let us take u ∈ Ker(Id− Π̃) which can be written
2u = u+ Π̃(u). The first part of the proof then shows that u ∈ X(Σ). �

Proposition 5.4.

We have (Π̃)2 = Id, and JΠ̃(u), vK = JΠ̃(v), uK ∀u, v ∈ H(Σ). Moreover for any u ∈ H(Σ), we
have u ∈ X(Σ) ⇐⇒ u = Π̃(u).

Proof:

It is a direct consequence of the previous proposition that (Id−Π̃)(Id+Π̃) = 0 = Id−(Π̃)2.
To prove the second property, observe directly from the definition (8) of Π that χΠ = Πχ.
Moreover we know from (9) and Proposition 5.1 that JΠ(u), vK = JΠ(v), uK and JQ(u), vK =
JQ(v), uK for any u, v ∈ H(Σ). Thanks to these remarks, the second property is obtained by
direct calculus from (14). Finally Ker(Id − Π̃) = X(Σ) according to Proposition 5.3, which
can be rewritten u ∈ X(Σ) ⇐⇒ u = Π̃(u) . �

6 Quasi-local multi-trace formulation

The operator Π̃ satisfies the same elementary properties as Π. It involves non-local contri-
butions but maps continuously H(Σ) onto itself. As a consequence we can derive a new (so
called ”quasi-local”) multi-trace formulation from it, mimicking the derivation of the local
multi-trace formulation presented in [17].

Assume that u = (γj(u))nj=0 are the traces of the unique solution u to Problem (1). Then
the wave equations in each subdomain can be rewritten (A − Id)(u − uinc) = 0, and the
transmission conditions can be written u = Π̃(u). So it satisfies

{
u ∈ H(Σ) and

J(A− Π̃)u, vK = Jf, vK ∀v ∈ H(Σ).
(15)

where f := (A − Id)uinc. A striking point of the preceding construction is that it leads to a
(generalised) Garding inequality for the formulation above.

Theorem 6.1.

Define Θ : H(Σ) → H(Σ) by Θ(u) = (−uj , pj)
n
j=0 for any u = (uj , pj) ∈ H(Σ). Then there

exists a constant C > 0 and a compact operator R : H(Σ) → H(Σ) such that

ℜe
{
J(A− Π̃ + R)u,Θ(u)K

}
≥ C‖u‖2

H(Σ) ∀u ∈ H(Σ).

Proof:

12



We already know that such an inequality is satisfied by A, see [23, §4.1] for example. Thus
it suffices to study u 7→ ℜe{JΠ̃(u),Θ(u)K}. Note that ψΘ(v) = Θ(ψv) and χΘ(v) = Θ(χv) for
any v ∈ H(Σ). Applying the definition of Π̃ yields

JΠ̃(u),Θ(u)K = JχΠ(u),Θ(u)K + JQ(v),Θ(v)K. (16)

with v = ψu. Elementary calculus on the definition (8) of Π shows that ΘΠ = ΠΘ. More-
over we have JΘ(w),wK = −Jw,Θ(w)K. So we obtain JχΠ(u),Θ(u)K = JχΠ(Θu), uK =
JΘ(χΠ(u)), uK = −JχΠ(u),Θ(u)K. As a consequence ℜe{JχΠ(u),Θ(u)K} = 0. Using this
to evaluate the real part of (16), and according to Proposition 5.2, we see that there exists a
compact operator R′ : H(Σ) → H(Σ) such that ℜe

{
J(−Π̃ +R′)u,Θ(u)K

}
≥ 0 which concludes

that proof. �

As a first consequence of the previous result, the operator associated to the quasi-local multi-
trace formulation (15) is Fredholm of index 0. In particular, it is an isomorphism if and only
if it is one-to-one. We now prove injectivity.

Theorem 6.2.

Assume that the kernel K coming into play in (11) is real valued. Then, for κ0, . . . , κn taking
any real values, the operator A− Π̃ : H(Σ) → H(Σ) is a continuous isomorphism.

Proof:

As mentioned before, we only need to prove injectivity. So take any u = (uj)
n
j=0 ∈ H(Σ)

satisfying (A− Π̃)u = 0. Thus we have w := (Π̃ + Id)u = (A + Id)u ∈ range(A + Id) ∩ X(Σ).
Since Cin(Σ) = range(A+ Id) and C

in(Σ)∩X(Σ) = {0} according to Lemma 3.2, we conclude
that w = 0. Set ψj(x) := Gj

κj(uj)(x). We have (Id + A)u = 0 which implies ψj(x) = 0 for
x ∈ Ωj. So if we can prove that ψj(x) = 0 for x ∈ R

d \ Ωj, this will show that [γj(ψj)] =

[γj ] ·Gj
κj (uj) = uj = 0.

Since the kernel K coming into play in (11) is real valued, we have Π̃(u) = Π̃(u). In addition
we have Π̃2 = Id and Π̃(u) = −u. As a consequence 2u = u− Π̃(u), and u+ Π̃(u) = 0. From
this and (9), we obtain 2Ju, uK = Ju−Π̃(u), uK = −Ju+Π̃(u), uK = 0. Since uj = [γj ]·Gj

κj (uj) =

−γjc ·G
j
κj (uj), this can be rewritten

n∑

j=0

ℑm
{ ˆ

Γj

γjd,c(ψj)γ
j
n,c(ψj)dσ

}
= 0. (17)

Take r > 0 sufficiently large to guarantee that Rd \Ω0 ⊂ Br where Br ⊂ R
d refers to the ball

centred at 0 with radius r. Since −∆ψj − κ2jψj = 0 in R
d \ Ωj , applying Green’s formula in

each Br \ Ωj yields
ˆ

∂Br

ψj∂rψjdσ =

ˆ

Br\Ωj

|∇ψj |
2 − κ2j |ψj |

2dx+

ˆ

∂Ωj

γj
d,c(ψj)γ

j
n,c(ψj)dσ

0 =

ˆ

Br\Ω0

|∇ψ0|
2 − κ20|ψ0|

2dx+

ˆ

∂Ω0

γ0
d,c(ψ0)γ

0
n,c(ψ0)dσ

In the equations above ”∂r” refer to the radial derivative. Take the imaginary part of the
identities above, and sum over j = 0 . . . n, taking account of (17). This leads to

n∑

j=0

ℑm
{ˆ

∂Br

ψj∂rψjdσ
}
= ℑm

{ n∑

j=0

ˆ

∂Ωj

γjd,c(ψj)γ
j
n,c(ψj)dσ

}
=

1

2ı
Ju, uK = 0
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where ı refers to the imaginary unit. By construction, the functions ψj are outgoing radiating,
so that 0 = limr→∞

´

∂Br
|∂rψj − ıκjψj|

2dσ = 0. As a consequence, we finally obtain

n∑

j=0

1

κj

ˆ

∂Br

|∂rψj |
2 + κ2j |ψj |

2dσ

=

n∑

j=1

1

κj

ˆ

∂Br

|∂rψj − ıκjψj |
2dσ − 2

n∑

j=1

ℑm
{ˆ

∂Br

ψj∂rψjdσ
}

=
n∑

j=1

1

κj

ˆ

∂Br

|∂rψj − ıκjψj |
2dσ −→

r→∞
0

This shows in particular that limr→∞

´

∂Br
|ψj |

2dσ = 0 for all j = 1 . . . n. As a consequence we
can apply Rellich’s lemma, see [12, Lemma 3.11], which implies that ψj = 0 in the unbounded
connected component of each R

d \ Ωj.
Let us prove that ψj also vanishes in bounded connected components of Rd \Ωj. First of

all we have u = −Π̃(u). Besides, according to the definition (14) of Π̃, we have Π̃(v) = Π(v)
for all v ∈ H(Σ) supported on Σ \ V2ǫ. Since uj = −γjc(ψj), this implies in particular

γjd,c(ψj) = −γk
d,c(ψk)

γjn,c(ψj) = γk
n,c(ψk) on Γj,k \ V2ǫ 6= ∅

(18)

Take an arbitrary j, and let O be a bounded connected component of Rd \ Ωj. We have
∂Ωj ∩ ∂Ωk = Γj,k ⊂ ∂O for some k = 0 . . . n, k 6= j. Let O

′ be the unbounded connected
component of Rd \ Ωk. Then we have Ωj ⊂ O

′, and ∂O′ ∩ ∂O = ∂Ωj ∩ ∂Ωk = Γj,k. Since

ψk = 0 in O
′, we have γj

d,c(ψj)|Γj,k = −γk
d,c(ψk) = 0 and γj

n,c(ψj)|Γj,k = γk
n,c(ψk) = 0 on

Γj,k \ V2ǫ 6= ∅ according to (18). Finally we have −∆ψj − κ2jψj = 0 in O with γjc(ψj) = 0 on
Γj,k \ V2ǫ. We conclude by unique continuation principle (see [12, Thm.3.5]) that ψj = 0 in
O. We have just proved that

ψj = 0 in R
d \ Ωj ∀j = 0 . . . n.

�

Another important consequence of Theorem 6.1 concerns the solvability of Formulation (15)
by means of a Galerkin approach: it guarantees a quasi-optimal convergence of the numerical
solution toward the exact solution. Hence the following proposition is a direct application to
Formulation (15) of Theorem 4.2.9 in [25].

Proposition 6.1.

Let (Hh(Σ))0<h<1 be any dense sequence of finite dimensional subspaces in H(Σ) satisfying
Θ(Hh(Σ)) ⊂ Hh(Σ). For any f ∈ H(Σ) there exists h0 > 0 such that the following formulation
admits a unique solution for any h ∈ (0, h0),

Find uh ∈ Hh(Σ) such that

J(A− Π̃)uh, vhK = Jf, vhK ∀vh ∈ Hh(Σ)
(19)

In addition there exists a constant C > 0 independent of h such that, if u ∈ H(Σ) refers to
the unique solution to (15), we have

‖u− uh‖H(Σ) ≤ C inf
vh∈Hh(Σ)

‖u− vh‖H(Σ) ∀h ∈ (0, h0).
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To conclude this section, since the operator A− Π̃ maps H(Σ) onto itself, it perfectly fits the
operator preconditioning methodology described in [16], provided that the Galerkin discreti-
sation under consideration induces stable discrete inf-sup conditions for the duality pairing
J·, ·K i.e. satisfies assumption (2.3) in [16].

7 Numerical experiments

This section is dedicated to describing numerical results related to the quasi-local multi-trace
formulation (15). We consider a 2-D problem with a scatterer corresponding to the geometry
depicted in the figure below. This situation is similar to the one considered in [8, 11, 17],
which makes comparisons with the results of these references easier.

aaΩ1

κ1 = 5
aaΩ2

κ2 = 0.5

aaΩ0

κ0 = 1

Figure 2: Geometry considered for the numerical experiments and corresponding meshes

With this geometry, we consider Problem (1) with the incident field uinc(x) = exp(ıκ0e1 ·x),
and the wave numbers κ0 = 1, κ1 = 5, κ2 = 0.5. As regards discretisation, we consider a
uniform panelling Σh ≃ Σ which induces a mesh for each of the subdomains Γh

j ≃ Γj , Γ
h
j ⊂ Σh.

The discrete spaces Hh(Σ) are constructed on these meshes by means of P1-Lagrange shape
functions for both Dirichlet and Neumann traces

Hh(Σ) = { (uhj , p
h
j )j=0,1,2 such that

∀j = 0, 1, 2, for all panel e ⊂ Γh
j , uhj |e, p

h
j |e ∈ P1(e) }.

(20)

To obtain a reference solution in this experiment, we rely on the Poggio-Miller-Chang-
Harrington-Wu-Tsai (PMCHWT) formulation. This is a widespread formulation (see [3,
15, 20, 27]) that is known to yield quasi-optimal convergence rate under conforming Galerkin
discretisations, which justifies considering it for obtaining reference discrete solution. In the
present situation (continuous) PMCHWT formulation writes

Find u ∈ X(Σ), JAu, vK = Jf, vK ∀v ∈ X(Σ). (21)

We refer the reader to [8, 23] for further details on the analysis of PMCHWT. The results
presented in this section will then involve the discrete solutions to three different boundary
integral formulations namely

• uLh solves the local multi-trace formulation (10)

• u
QL
h solves the quasi-local multi-trace formulation (19)

• uSTF
h solves the PMCHWT formulation (21)
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All computations have been achieved on a laptop equipped with a 2-core Intel i7-3520M pro-
cessor at 2.9GHz with 4 GB of RAM. Meshes have been generated using Gmsh [14] (see also
the website http://geuz.org/gmsh/) and, for linear algebra including GMRes routines, we
relied on the Gmm++ library (see http://download.gna.org/getfem/html/homepage/gmm/
index.html). When assembling the matrix associated to the transmission operator Π̃ we con-
sidered the following choice of cut-off function,

ψ(x) := ψα(x− x+) + ψα(x− x−)

with ψα(y) = exp(−α|y|2) exp
( 1

1− 1/(2|y|)2
)
12|y|<1

(22)

 0

 0.2
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 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ψ500

ψ40

ψ10

Figure 3: Shape of ψα for different values of α

where x± := (0,±1) are the junction points, and α > 0 is some fitting parameter allowing to
control how much the function ψ is concentrated around junction points. For the first results
we consider the value α = 40. As regards the kernel coming into play in (11), we chose the
Laplace kernel

K (x) =
1

4π|x|

which guarantees that Theorem 6.2 holds. The table below presents the relative error between
u
QL
h and uSTF

h on the one hand, and the relative error between uLh and uSTF
h on the other hand.

These results are summarised graphically in Figure 4.

h ‖uQL
h − uSTF

h ‖H ‖uLh − uSTF
h ‖H

0.0981353 0.00563797 0.010623

0.0490825 0.00127879 0.00237613

0.0253347 0.000310327 0.000574992

0.00994171 4.77015e-05 8.70664e-05

0.00500253 1.18548e-05 2.15064e-05

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.001  0.01  0.1

quasi-local MTF
local MTF

Figure 4: Errors of solutions to local/quasi-local formulation with respect to the PMCHWT solution
versus h = meshwidth
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These results show that uLh and u
QL
h approximate uSTF

h with a comparable level of consis-
tency, although the approximation provided by the quasi-local formulation seems slightly
more precise (about twice more precise for the same mesh width).

Denote Mh,B
L
h ,B

QL
h the matrices obtain by Galerkin discretisation of the bilinear forms J·, ·K,

J(A − Π)·, ·K, J(A − Π̃)·, ·K. Figure 5 below represents the spectrum of the matrices M−1
h BL

h

and M−1
h BQL

h that may be considered as approximations of the spectrum of the continuous

operators A−Π and A− Π̃ (see e.g. [1] for further details on the numerical analysis of eigen-
value problems in the context Galerkin discretisation). The eigenvalues have been computed
by means of the Arpack++ library (see http://www.caam.rice.edu/software/ARPACK/

arpack++.html), using a mesh with 167 nodes corresponding to 672 unknowns for both local
and quasi-local multi-trace discrete formulations. In both cases, eigenvalues clearly cluster in
two packets symmetric to each other with respect to the origin.

-1
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 0

 0.5

 1

-1.5 -1 -0.5  0  0.5  1  1.5
-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5  0  0.5  1  1.5

Figure 5: Spectrum of the operator M−1
h

BQL
h

(on the left) and M−1
h

BL
h
(on the right).

In Figure 6 we have represented the convergence history of GMRes iterations when applied to
the matrices M−1

h BQL
h and M−1

h BL
h corresponding respectively to quasi-local and local multi-

trace. We used a restart of 20 iterations and a threshold of 10−8. For a complete description
of the GMRes iterative solver see e.g. [24]. Convergence of GMRes is stable with respect to
the mesh width in both cases, and both formulations converge at a comparable speed.
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Figure 6: Convergence history of GMRes iterations (norm of the residual vs. number of iterations)
for quasi-local multi-trace (left) and local multi-trace (right) for three values of the mesh width.
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It is natural to ask about the influence of the choice of the cut-off function ψ on the per-
formances of the quasi-local multi-trace formulation. Let us first examine the impact of the
parameter α coming into play in Formula (22) on the consistency. In the table below, we
compare the errors ‖uQL

h − uSTF
h ‖H associated to different values of the mesh width and for

α = 10, 40, 100, 1000. The value of this parameter seems to have very little impact on the
accuracy.

Error ‖uQL
h − uSTF

h ‖H with

h α = 10 α = 40 α = 100 α = 1000

0.0981353 0.00572272 0.00563797 0.0054629 0.00505463

0.0490825 0.00128214 0.00127879 0.00127138 0.00115966

0.0253347 0.000310538 0.000310327 0.000309988 0.000303461

0.00994171 4.77078e-05 4.77015e-05 4.7693e-05 4.75972e-05

0.00500253 1.18553e-05 1.18548e-05 1.18541e-05 1.18484e-05

Finally, in Figure 7 below we examine the impact of a variation of the parameter α on the
convergence of GMRes solver (with a restart of 20 iterations) applied to quasi-local multi-
trace formulation at a fixed mesh width h = 0.05. We can see that convergence deteriorates
as α→ 0.
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Figure 7: Convergence history of GMRes iterations (norm of the residual vs. number of iterations)
for quasi-local multi-trace with h = 0.05 and α = 10, 40, 100, 1000.
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ETH Zürich, Switzerland, 2014.

[10] X. Claeys, R. Hiptmair, and C. Jerez-Hanckes. Multi-trace boundary integral equations.
In Direct and Inverse Problems in Wave Propagation and Applications. I. Graham, U.
Langer, M. Sini, M. Melenk, 2012.

[11] X. Claeys, R. Hiptmair, and E. Spindler. A second-kind galerkin boundary element
method for scattering at composite objects. Technical Report 2013-13 (revised), Seminar
for Applied Mathematics, ETH Zürich, Switzerland, 2013.
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