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Let M be a complete non-compact Riemannian manifold satisfying the doubling volume property. Let -→ ∆ be the Hodge-de Rham Laplacian acting on 1-differential forms. According to the Bochner formula, -→ ∆ = ∇ * ∇ + R + -R -where R + and R - are respectively the positive and negative part of the Ricci curvature and ∇ is the Levi-Civita connection. We study the boundedness of the Riesz transform

We prove that, if the heat kernel on functions p t (x, y) satisfies a Gaussian upper bound and if the negative part R -of the Ricci curvature is ǫ-subcritical for some ǫ ∈ [0, 1), then

where p 0 > 2 depends on ǫ and on a constant appearing in the doubling volume property. A duality argument gives the boundedness of the Riesz transform d(∆) -1 2 from L p (M) to L p (Λ 1 T * M) for p ∈ [2, p 0 ) where ∆ is the non-negative Laplace-Beltrami operator. We also give a condition on R -to be ǫ-sub-critical under both analytic and geometric assumptions.

Introduction and main results

Let (M, g) be a complete non-compact Riemannian manifold of dimension N, where g denotes a Riemannian metric on M ; that is, g is a family of smoothly varying positive definite inner products g x on the tangent space T x M for each x ∈ M. Let ρ and µ be the Riemannian distance and measure associated with g respectively. We suppose that M satisfies the doubling volume property, that is, there exists constants C, D > 0 such that v(x, λr) ≤ Cλ D v(x, r), ∀x ∈ M, ∀r ≥ 0, ∀λ ≥ 1, (D)

where v(x, r) = µ(B(x, r)) denotes the volume of the ball B(x, r) of center x and radius r. We also say that M is of homogeneous type. This property is equivalent to the existence of a constant C > 0 such that v(x, 2r) ≤ Cv(x, r), ∀x ∈ M, ∀r ≥ 0.

Let ∆ be the non-negative Laplace-Beltrami operator and let p t (x, y) be the heat kernel of M, that is, the kernel of the semigroup (e -t∆ ) t≥0 acting on L 2 (M). We say that the heat kernel p t (x, y) satisfies a Gaussian upper bound if there exist constants c, C > 0 such that

p t (x, y) ≤ C v(x, √ t) exp(-c ρ 2 (x, y) t ), ∀t > 0, ∀x, y ∈ M. (G)
Let d(∆) -1 2 be the Riesz transform of the operator ∆ where d denotes the exterior derivative on M. Since we have by integration by parts

d f 2 = ∆ 1 2 f 2 , ∀f ∈ C ∞ 0 (M),
the Riesz transform d(∆) -1 2 extends to a bounded operator from L 2 (M) to L 2 (Λ 1 T * M), where Λ 1 T * M denotes the space of 1-forms on M. An interesting question is whether d(∆) -1 2 can be extended to a bounded operator from L p (M) to L p (Λ 1 T * M) for p = 2. This problem has attracted attention in recent years. We recall some known results.

It was proved by Coulhon and Duong [START_REF] Coulhon | Riesz transforms for 1 ≤ p ≤ 2[END_REF] that under the assumptions (D) and (G), the Riesz transform d(∆) -1 2 is of weak-type (1, 1) and then bounded from L p (M) to L p (Λ 1 T * M) for all p ∈ [START_REF] Assaad | Riesz transforms associated to Schrödinger operators with negative potentials[END_REF][START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF]. In addition, they gave an example of a complete noncompact Riemannian manifold satisfying (D) and (G) for which d(∆) -1 2 is unbounded from L p (M) to L p (Λ 1 T * M) for p > 2. This manifold consists into two copies of R 2 glued together around the unit circle. See also the article of Carron, Coulhon and Hassell [START_REF] Carron | Riesz transform and L pcohomology for manifolds with Euclidean ends[END_REF] for further results on manifolds with Euclidean ends or the article of Guillarmou and Hassell [START_REF] Guillarmou | Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds I[END_REF] for complete non-compact and asymptotically conic Riemannian manifolds.

The counter-example in [START_REF] Coulhon | Riesz transforms for 1 ≤ p ≤ 2[END_REF] shows that additional assumptions are needed to treat the case p > 2. In 2003, Coulhon and Duong [START_REF] Coulhon | Riesz transform and related inequalities on noncompact Riemannian manifolds[END_REF] proved that if the manifold M satisfies (D), (G) and the heat kernel -→ p t (x, y) associated with the Hodge-de Rham Laplacian -→ ∆ acting on 1-forms satisfies a Gaussian upper bound, then the Riesz transform d(∆) -1 2 is bounded from L p (M) to L p (Λ 1 T * M) for all p ∈ (1, ∞). The proof is based on duality arguments and on the following estimate of the gradient of the heat kernel of M

|∇ x p t (x, y)| ≤ C √ t v(x, √ t) e -c ρ 2 (x,y) t , ∀x, y ∈ M, ∀t > 0,
which is a consequence of the relative Faber-Krahn inequalities satisfied by M and the Gaussian estimates satisfied by e -t - → ∆ .

In 1987, Bakry [START_REF] Bakry | Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée[END_REF] proved that if the Ricci curvature is non-negative on M, then the Riesz transform d(∆) -1 2 is bounded from L p (M) to L p (Λ 1 T * M) for all p ∈ (1, ∞). The proof uses probabilistic techniques and the domination

|e -t - → ∆ ω| ≤ e -t∆ |ω|, ∀t > 0, ∀ω ∈ C ∞ 0 (Λ 1 T * M).
In this particular setting, (G) is satisfied, and hence the heat kernel -→ p t (x, y) satisfies a Gaussian upper bound too. Thus the result of Bakry can be recovered using the arguments of Coulhon and Duong [START_REF] Coulhon | Riesz transform and related inequalities on noncompact Riemannian manifolds[END_REF]. Note that the result of Bakry does not contredict the counter-example of Coulhon and Duong since the gluing of two copies of R 2 creates some negative curvature.

In 2004, Sikora [START_REF] Sikora | Riesz transform, Gaussian bounds and the method of wave equation[END_REF] improved the previous result of Coulhon and Duong showing that if the manifold M satisfies (D) and the estimate

-→ p t (x, .) 2 L 2 ≤ c v(x, √ t) , ∀t > 0, ∀x ∈ M,
then the Riesz transform d(∆) -1 2 is bounded from L p (M) to L p (Λ 1 T * M) for all p ∈ [2, ∞). The proof is based on the method of the wave equation.

Auscher, Coulhon, Duong and Hofmann [START_REF] Auscher | Riesz transform on manifolds and heat kernel regularity[END_REF] characterized the boundedness of the Riesz transform d(∆) -1 2 from L p (M) to L p (Λ 1 T * M) for p > 2 in terms of L p -L p estimates of the gradient of the heat semigroup when the Riemannian manifold M satisfies Li-Yau estimates. More precisely, they proved that if p t (x, y) satisfies both Gaussian upper and lower bounds, then

d(∆) -1 2 is bounded from L p (M) to L p (Λ 1 T * M) for p ∈ [2, p 0 ) if and only if d e -t∆ p-p ≤ C √ t
for p in the same interval. Inspired by [START_REF] Coulhon | Riesz transform and related inequalities on noncompact Riemannian manifolds[END_REF], Devyver [START_REF] Devyver | A Gaussian estimate for the heat kernel on differential forms and application to the Riesz transform[END_REF] proved a boundedness result for the Riesz transform d(∆) -1 2 in the setting of Riemannian manifolds satisfying a global Sobolev inequality of dimension N with an additional assumption that balls of great radius have a polynomial volume growth. It is known in this setting that both (D) and (G) are satisfied. He assumed that the negative part R -of the Ricci curvature satisfies the

3 condition R -∈ L N 2 -η ∩ L ∞
for some η > 0 and that there is no harmonic 1-form on M. Under these assumptions, he showed that -→ p t (x, y) satisfies a Gaussian upper bound which implies the boundedness of the Riesz transform d(∆) -1 2 from L p (M) to L p (Λ 1 T * M) for all p ∈ (1, ∞). Without the assumption on harmonic 1-forms, it is also proved in [START_REF] Devyver | A Gaussian estimate for the heat kernel on differential forms and application to the Riesz transform[END_REF] 

that d(∆) -1 2 is bounded from L p (M) to L p (Λ 1 T * M) for all p ∈ (1, N).
In this article, we study the boundedness of the Riesz transform d(∆) -1 2 from L p (M) to L p (Λ 1 T * M) for p > 2 assuming M satisfies the doubling volume property (D) and p t (x, y) satisfies a Gaussian upper bound (G). Before stating our results, we recall the Bochner formula

-→ ∆ = ∇ * ∇ + R + -R -=: H -R -, where R + (resp. R -)
is the positive part (resp. negative part) of the Ricci curvature and ∇ denotes the Levi-Civita connection on M. This formula allows us to consider the Hodge-de Rham Laplacian as a "generalized" Schrödinger operator acting on 1-forms. We then make a standard assumption on the negative part R -; namely, we suppose that R -is ǫ-sub critical, which means that for a certain ǫ ∈ [0, 1)

0 ≤ (R -ω, ω) ≤ ǫ (Hω, ω), ∀ω ∈ C ∞ 0 (Λ 1 T * M). (S-C)
For further information on condition (S-C), see the article of Coulhon and Zhang [START_REF] Coulhon | Large time behavior of heat kernels on forms[END_REF] and the references therein. Under these assumptions, we prove the following results. 

( -→ ∆) -1 2 is bounded from L p (Λ 1 T * M) to L p (M) and the Riesz trans- form d( -→ ∆) -1 2 is bounded from L p (Λ 1 T * M) to L p (Λ 2 T * M) for all p ∈ (p ′ 0 , 2] where, p ′ 0 = 2D (D-2)(1- √ 1-ǫ) ′ if D > 2 and p ′ 0 = 1 if D ≤ 2.
Here and throughout this paper, p ′ 0 denotes the conjugate of p 0 . Concerning the Riesz transform on functions, we have the following result.

Corollary 1.2. Assume that (D), (G) and (S-C) are satisfied. Then the Riesz transform

d(∆) -1 2 is bounded from L p (M) to L p (Λ 1 T * M) for all p ∈ (1, p 0 ) where, p 0 = 2D (D-2)(1- √ 1-ǫ) if D > 2 and p 0 = +∞ if D ≤ 2. In particular, the Riesz transform d(∆) -1 2 is bounded from L p (M) to L p (Λ 1 T * M) for all p ∈ (1, 2D D-2 ) if D > 2 and all p ∈ (1, +∞) if D ≤ 2.
In these results, the constant D is as in (D) and ǫ is as in (S-C). Of course, we take the smallest possible D and ǫ for which (D) and (S-C) are satisfied. The operator d denotes the exterior derivative acting from the space of 1-forms to the space of 2forms or from the space of functions to the space of 1-forms according to the context. The operator d * denotes the L 2 -adjoint of the exterior derivative d, the latter acting from the space of functions to the space of 1-forms.

Proof of Corollary 1.2. According to the commutation formula -→ ∆d = d∆, we see that the adjoint operator of

d * ( -→ ∆) -1 2 is exactly d(∆) -1 2 .
Then Corollary 1.2 is an immediate consequence of Theorem 1.1.

Before stating our next result, we set

Ker D( - → h ) ( -→ ∆) := {ω ∈ D( -→ h ) : ∀η ∈ C ∞ 0 (Λ 1 T * M), (ω, - → ∆η) = 0},
where D( -→ h ) is the domain of the closed sesquilinear form h whose associated operator is H (see the next section for the definition of h). We prove the following. Theorem 1.3. Assume that both (D) and (G) are satisfied. In addition, suppose that for some r 1 , r 2 > 2

1 0 R 1 2 - v(., √ t) 1 r 1 r 1 dt √ t + ∞ 1 R 1 2 - v(., √ t) 1 r 2 r 2 dt √ t < +∞ (1) 
and

Ker D( - → h ) ( -→ ∆) = {0}. ( 2 
)
Then there exists ǫ ∈ [0, 1) such that the Riesz transform d(∆) -1 2 is bounded from

L p (M) to L p (Λ 1 T * M) for all p ∈ (1, p 0 ) where, p 0 = 2D (D-2)(1- √ 1-ǫ) if D > 2 and p 0 = +∞ if D ≤ 2. In particular, the Riesz transform d(∆) -1 2 is bounded from L p (M) to L p (Λ 1 T * M) for all p ∈ (1, 2D D-2 ) if D > 2 and all p ∈ (1, +∞) if D ≤ 2.
We emphasize that in Theorem 1.1, Corollary 1.2 and Theorem 1.3, neither a global Sobolev-type inequality nor any estimates on ∇ x p t (x, y) or -→ p t (x, y) are assumed.

Condition (1) was introduced by Assaad and Ouhabaz [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF]. Note that if v(x, r) ≃ r N , then [START_REF] Assaad | Riesz transforms associated to Schrödinger operators with negative potentials[END_REF] 

means that R -∈ L N 2 -η ∩ L N 2 +η
for some η > 0. In addition, we show that if the quantity

R 1 2 -vol := 1 0 R 1 2 - v(., √ t) 1 r 1 r 1 dt √ t + ∞ 1 R 1 2 - v(., √ t) 1 r 2 r 2 dt √ t is small enough, then R -is ǫ-sub-critical for some ǫ ∈ [0, 1) depending on R 1 2
vol and on the constants appearing in (D) and (G).

Condition [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF] was also considered by Devyver [START_REF] Devyver | A Gaussian estimate for the heat kernel on differential forms and application to the Riesz transform[END_REF]. Under our assumptions, the space

Ker D( - → h ) ( -→ ∆)
is precisely the space of L 2 harmonic 1-forms. See the last section for more details.

The proof of Theorem 1.1 uses similar technics as in Assaad and Ouhabaz [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF] where the Riesz transforms of Schrödinger operators -∆ + V are studied for signed potentials. In our setting, -→ ∆ = ∇ * ∇ + R + -R -can be seen as a "generalized" Schrödinger operator. However the arguments from [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF] need substantial modifications, since our Schrödinger operator is a vector-valued operator. In particular we cannot use any sub-Markovian property, as is used in [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF].

In Section 2, we discuss some preliminaries which are necessary for the main proofs. In Section 3, we prove that under the assumptions (D), (G) and (S-C), the operator -→ ∆ generates a uniformly bounded C 0 -semigroup on L p (Λ 1 T * M) for all p ∈ (p ′ 0 , p 0 ) where p 0 is as in Theorem 1.1. Section 4 is devoted to the proof of Theorem 1.1.

Here we use the results of Section 3. In the last section we prove Theorem 1.3 ; one of the main ingredient is to prove that if the manifold M satisfies condition (1), then R -satisfies (S-C) if and only if condition (2) is satisfied. Here the constant ǫ appearing in (S-C) is the

L 2 -L 2 norm of the operator H -1 2 R -H -1 2 .

Preliminaries

For all x ∈ M we denote by < ., . > x the inner product in the tangent space T x M, in the cotangent space T * x M or in the tensor product T * x M ⊗ T * x M. By (., .) we denote the inner product in the Lebesgue space L 2 (M) of functions, in the Lebesgue space L 2 (Λ 1 T * M) of 1-forms or in the Lebesgue space L 2 (Λ 2 T * M) of 2-forms. By . p we denote the usual norm in L p (M), L p (Λ 1 T * M) or L p (Λ 2 T * M) and by . p-q the norm of operators from L p to L q (according to the context). The spaces C ∞ 0 (M) and C ∞ 0 (Λ 1 T * M) denote respectively the space of smooth functions and smooth 1-forms with compact support on M. We denote by d the exterior derivative on M and d * its L 2 -adjoint operator. According to the context, the operator d acts from the space of functions on

M to Λ 1 T * M or from Λ 1 T * M to Λ 2 T * M. If E is a subset of M, χ E denotes the indicator function of E.
For ω, η ∈ Λ 1 T * M and for x ∈ M, we denote by ω(x) ⊗ η(x) the tensor product of the linear forms ω(x) and η(x). The inner product on the cotangent space T *

x M induces an inner product on each tensor product

T * x M ⊗ T * x M given by < ω 1 (x) ⊗ η 1 (x), ω 2 (x) ⊗ η 2 (x) > x = < ω 1 (x), ω 2 (x) > x < η 1 (x), η 2 (x) > x , for all ω 1 , ω 2 , η 1 , η 2 ∈ Λ 1 T * M and x ∈ M.
We consider ∆ the non-negative Laplace-Beltrami operator acting on L 2 (M) and p t (x, y) the heat kernel of M, that is, the integral kernel of the semigroup e -t∆ .

We consider the Hodge-de Rham Laplacian

-→ ∆ = d * d + dd * acting on L 2 (Λ 1 T * M). The Bochner formula says that -→ ∆ = ∇ * ∇ + R + -R -, where R + (resp. R -)
is the positive part (resp. negative part) of the Ricci curvature and ∇ denotes the Levi-Civita connection on M. It allows us to look at -→ ∆ as a "generalized" Schrödinger operator with signed vector potential R + -R -.

We define the self-adjoint operator

H = ∇ * ∇ + R + on L 2 (Λ 1 T * M) using the method of sesquilinear forms. That is, for all ω, η ∈ C ∞ 0 (Λ 1 T * M), we set -→ h (ω, η) = M < ∇ω(x), ∇η(x) > x dµ + M < R + (x)ω(x), η(x) > x dµ, and D( -→ h ) = C ∞ 0 (Λ 1 T * M) . - → h ,
where

ω - → h = -→ h (ω, ω) + ω 2 2 . We say that R -is ǫ-sub-critical if for a certain constant 0 ≤ ǫ < 1 0 ≤ (R -ω, ω) ≤ ǫ (Hω, ω), ∀ω ∈ C ∞ 0 (Λ 1 T * M). (S-C)
Under the assumption (S-C), we define the self-adjoint operator

-→ ∆ = ∇ * ∇+R + -R - on L 2 (Λ 1 T * M) as the operator associated with the form -→ a (ω, η) = -→ h (ω, η) - M < R -(x)ω(x), η(x) > x dµ, D( -→ a ) = D( -→ h ).
It is well known by the KLMN theorem (see [START_REF] Maati | Analysis of heat equations on domains[END_REF], Theorem 1.19, p.12) that -→ a is a closed form, bounded from below. Therefore it has an associated self-adjoint operator which is H -R -.

In order to use the technics in [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF], we need first to prove that the semigroup (e -t - →

∆ ) t≥0 is uniformly bounded on L p (Λ 1 T * M) for all p ∈ (p ′ 0 , 2].

L p theory of the heat semigroup on forms

To study the boundedness of the semigroup (e -t - → ∆ ) t≥0 on L p (Λ 1 T * M) for p = 2, we use perturbation arguments as in [START_REF] Liskevich | Some problems on Markov semigroups[END_REF], where Liskevich and Semenov studied semigroups associated with Schrödinger operators with negative potentials. The main result of this section is the following. Theorem 3.1. Suppose that the assumptions (D), (G) and (S-C) are satisfied. Then the operator

-→ ∆ = ∇ * ∇ + R + -R -generates a uniformly bounded C 0 -semigroup on L p (Λ 1 T * M) for all p ∈ (p ′ 0 , p 0 ) where p 0 = 2D (D-2)(1- √ 1-ǫ) if D > 2 and p 0 = +∞ if D ≤ 2.
To demonstrate Theorem 3.1 we proceed in two steps. The first step consists in proving the result for p in the smaller range [p ′ 1 , p 1 ] where

p 1 = 2 1- √ 1-ǫ ;
we do this in Proposition 3.3, with the help of Lemma 3.2 below. The second step consists in extending this interval using interpolation between the estimates of Proposition 3.5 and Proposition 3.6.

We begin with the following lemma.

Lemma 3.2. Let p ≥ 1. For any suitable ω ∈ Λ 1 T * M and for every x ∈ M < ∇(ω|ω| p-2 )(x), ∇ω(x) > x ≥ 4(p -1) p 2 < ∇(ω|ω| p 2 -1 )(x), ∇(ω|ω| p 2 -1 )(x) > x . ( 3 
)
Remark 1. In the previous statement, "suitable" means that the calculations make sense with such a ω. For instance, a form ω ∈ C ∞ 0 (Λ 1 T * M) is suitable. Proof. To make the calculations simpler, for every x ∈ M, we work in a synchronous frame. That is we choose an orthonormal frame {X i } i to have the Christoffel symbols Γ k ij (x) = 0 at x (see for instance [START_REF] Gallot | Riemannian geometry. Universitext[END_REF] p.93 or [START_REF] Rosenberg | of London Mathematical Society Student Texts[END_REF] p.70,73 for more details). In what follows, we use properties satisfied by the Levi-Civita connection ∇, which can be found in [START_REF] Rosenberg | of London Mathematical Society Student Texts[END_REF] p.64-66. 2 and ∇θ i = 0 for all i.

Considering {θ i } i the orthonormal frame of 1-forms dual to {X i } i , we write for a 1-form ω, ω(y) = i f i (y)θ i = i ω i (y) for all y in a neighborhood of x. With this choice of local coordinates we have at x, |ω(x)| x = i f i (x)
Then, when ω(x) = 0, we obtain

∇(|ω|)(x) = i f i (x)df i (x) |ω(x)| x . ( 4 
)
We recall that we have an inner product in each tensor product

T * x M ⊗T * x M satisfying < ω 1 (x) ⊗ η 1 (x), ω 2 (x) ⊗ η 2 (x) > x = < ω 1 (x), ω 2 (x) > x < η 1 (x), η 2 (x) > x , ( 5 
)
for all ω 1 , ω 2 , η 1 , η 2 ∈ Λ 1 T * M and x ∈ M. In particular for all ω, η ∈ Λ 1 T * M and x ∈ M |ω(x) ⊗ η(x)| x = |ω(x)| x |η(x)| x . ( 6 
)
To avoid dividing by 0, one can replace |ω(x)| x by |ω(x)| x,ǫ := i f i (x) 2 + ǫ for some ǫ > 0, make the calculations and let ǫ tend to 0. For simplicity, we ignore this step and make the calculations formally. We first deal with the RHS of (3). Using ( 4) and ( 6), we have

< ∇(ω|ω| p 2 -1 )(x), ∇(ω|ω| p 2 -1 )(x) > x = |ω(x)| p 2 -1 x ∇ω(x) + ( p 2 -1)|ω(x)| p 2 -3 x ( i f i (x)df i (x)) ⊗ ω(x) 2 x = |ω(x)| p-2 x |∇ω(x)| 2 x + ( p 2 -1) 2 |ω(x)| p-6 x | i f i (x)df i (x)| 2 x |ω(x)| 2 x + (p -2)|ω(x)| p-4 x < ∇ω(x), ( i f i (x)df i (x)) ⊗ ω(x) > x .
Now noticing that (θ i ) i is an orthonormal basis of T * x M and using (5) yield < ∇ω(x), (

i f i (x)df i (x)) ⊗ ω(x) > x = < j df j (x) ⊗ θ j , ( i f i (x)df i (x)) ⊗ ω(x) > x = i,k f i (x)f k (x) < df i (x), df k (x) > x = | i f i (x)df i (x)| 2
x .

Then we obtain

< ∇(ω|ω| p 2 -1 )(x), ∇(ω|ω| p 2 -1 )(x) > x = |ω(x)| p-2 x |∇ω(x)| 2 x + ( p 2 4 -1)|ω(x)| p-4 x | i f i (x)df i (x)| 2 x .
Using the equality |∇ω(x)

| x = i |df i (x)| 2
x at x, a simple calculation gives for all i

| i f i (x)df i (x)| 2 x = i f i (x) 2 |df i (x)| 2 x + 2 i<j f i (x)f j (x) < df i (x), df j (x) > x = |ω(x)| 2 x |∇ω(x)| 2 x - i j =i f j (x) 2 |df i (x)| 2 x + 2 i<j f i (x)f j (x) < df i (x), df j (x) > x .
Thus for all i

| i f i (x)df i (x)| 2 x = |ω(x)| 2 x |∇ω(x)| 2 x - i<j |f i (x)df j (x) -f j (x)df i (x)| 2 x . ( 7 
)
Finally we obtain

< ∇(ω|ω| p 2 -1 )(x), ∇(ω|ω| p 2 -1 )(x) > x = p 2 4 |ω(x)| 2 x |∇ω(x)| 2 x -( p 2 4 -1)|ω(x)| p-4
x i<j

|f i (x)df j (x) -f j (x)df i (x)| 2 x .
Let us deal with the LHS of (3) now. We write

< ∇(ω|ω| p-2 )(x), ∇ω(x) > x = i < ∇(ω i |ω| p-2 )(x), ∇ω(x) > x .
Using again (5), we observe that for all i, j with i = j, < ∇ω i (x), ∇ω j (x) > x = 0. Thus, using (4), we obtain that for all i

< ∇(ω i |ω| p-2 )(x), ∇ω(x) > x = |ω(x)| p-2 x |∇ω i (x)| 2 x + (p -2)|ω(x)| p-4 x j f j (x) < df j (x) ⊗ ω i (x), ∇ω(x) > x .
From (5) again, we deduce that for all i, j

< df j (x) ⊗ ω i (x), ∇ω(x) > x = f i (x) < df j (x) ⊗ θ i , k df k (x) ⊗ θ k > x = f i (x) < df i (x), df j (x) > x .
Hence for all i

< ∇(ω i |ω| p-2 )(x), ∇ω(x) > x = |ω(x)| p-2 x |∇ω i (x)| 2 x + (p -2)|ω(x)| p-4 x j f i (x)f j (x) < df i (x), df j (x) > x .
As we did before to obtain (7), we find

< ∇(ω|ω| p-2 )(x), ∇ω(x) > x = i < ∇(ω i |ω| p-2 )(x), ∇ω(x) > x = (p -1)|ω(x)| p-2 x |∇ω(x)| 2 x -(p -2)|ω(x)| p-4 x i<j |f i (x)df j (x) -f j (x)df i (x)| 2 x .
To conclude we calculate

1 p -1 < ∇(ω|ω| p-2 )(x), ∇ω(x) > x - 4 p 2 < ∇(ω|ω| p 2 -1 )(x), ∇(ω|ω| p 2 -1 )(x) > x = 4 p 2 ( p 2 4 -1) - p -2 p -1 |ω(x)| p-4 x i<j |f i (x)df j (x) -f j (x)df i (x)| 2 x = (p -2) 2 (p -1)p 2 |ω(x)| p-4
x i<j

|f i (x)df j (x) -f j (x)df i (x)| 2 x ≥ 0.
This proves the lemma.

We are now able to prove that the semigroup (e -t - → ∆ ) t≥0 is uniformly bounded on L p (Λ 1 T * M) for some p = 2 under the assumption (S-C). 

Proposition 3.3. Suppose that the negative part R -of the Ricci curvature satisfies the assumption (S-C). Then the operator

-→ ∆ generates a C 0 -semigroup of contractions on L p (Λ 1 T * M) for all p ∈ [p ′ 1 , p 1 ] where p 1 = 2 1- √ 1-ǫ . Proof. We consider η ∈ C ∞ 0 (Λ 1 T * M) and set ω t = e -t - → ∆ η
= ( -→ ∆ω t , |ω t | p-2 ω t ) = M < ∇ω t (x), ∇(|ω t | p-2 ω t )(x) > x dµ + (R + -R -)ω t , |ω t | p-2 ω t .
Since we have by linearity of R + (x) and

R -(x) (R + -R -)ω t , |ω t | p-2 ω = (R + -R -)(|ω t | p 2 -1 ω t ), |ω t | p 2 -1 ω t ,
the previous lemma and the the assumption (S-C) yield

- 1 p d dt ω t p p ≥ 4(p -1) p 2 -ε H 1 2 (|ω t | p 2 -1 ω t ) 2 2 .
Then for all p ∈ [ 2

1+ √ 1-ε , 2 1- √ 1-ǫ ] - 1 p d dt ω t p p ≥ 0.
Therefore ω t p ≤ ω 0 p , that is,

e -t - → ∆ η p ≤ η p , ∀η ∈ C ∞ 0 (Λ 1 T * M
), and we conclude by a usual density argument.

Actually, as in [START_REF] Liskevich | Some problems on Markov semigroups[END_REF] and [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF], we can obtain a better interval than [p ′ 1 , p 1 ] by interpolation arguments and prove Theorem 3.1 . The ideas of this proof are the same as in [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF]. However we give some details which we adapt to our setting. Lemma 3.4. Let q be such that 2 < q ≤ ∞ and q-2 q D < 2. Then for all x ∈ M, t > 0 and ω ∈ D( -→ a )

χ B(x, √ t) ω q ≤ C v(x, √ t) 1 2 -1 q ω 2 + √ t -→ ∆ 1 2 ω 2 .
Proof. We recall that H denotes the operator ∇ * ∇ + R + and that we have the domination |e -tH ω| ≤ e -t∆ |ω| for any ω ∈ C ∞ 0 (Λ 1 T * M) (see [START_REF] Bérard | Spectral geometry: direct and inverse problems[END_REF] p.171,172). Since we assume (G), the heat kernel p H t (x, y) associated to the semigroup (e -tH ) t≥0 satisfies a Gaussian upper bound

p H t (x, y) ≤ C v(x, √ t) exp(-c ρ 2 (x, y) t ), ∀t > 0, ∀x, y ∈ M. (8) 
From ( 8) and the doubling volume property (D), it is not difficult to show that for all x ∈ M and 0

< s ≤ t χ B(x, √ t) e -sH 2-∞ ≤ C v(x, √ t) 1 2 t s D 4 . ( 9 
)
Indeed for x ∈ M, y ∈ B(x, √ t) and 0 < s ≤ t, the inclusion of balls

B(x, √ t) ⊂ B(y, √ t + ρ(x, y)) ⊂ B(y, 2 √ t)
and the doubling volume property yield

v(x, √ t) ≤ C t s D 2 v(y, √ s). ( 10 
)
In addition [START_REF] Blunck | Calderón-Zygmund theory for non-integral operators and the H ∞ functional calculus[END_REF] implies that for all x ∈ M, y

∈ B(x, √ t), ω ∈ L 2 (Λ 1 T * M) and 0 < s ≤ t |χ B(x, √ t) (y)e -sH ω(y)| ≤ M C v(y, √ s) exp(-c ρ 2 (y, z) s )|ω(z)| z dµ(z). Writing v(y, √ s) = v(y, √ s) 1 2 v(y, √ s) 1 2
, then using [START_REF] Boutayeb | A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces[END_REF] and the Hölder inequality, leads to

|χ B(x, √ t) (y)e -sH ω(y)| ≤ C v(x, √ t) 1 2 t s D 4   M exp(-2c ρ 2 (y,z) s ) v(y, √ s) dµ(z)   1 2 ω 2 . ( 11 
)
We use a standard decomposition of M into annuli to obtain

M exp(-2c ρ 2 (y, z) s )dµ(z) ≤ ∞ k=0 k √ s≤ρ(y,z)≤(k+1) √ s exp(-2ck 2 )dµ(z) ≤ ∞ k=0 exp(-2ck 2 )v(y, (k + 1) √ s).
Then the doubling volume property (D) implies

M exp(-2c ρ 2 (y, z) s )dµ(z) ≤ Cv(y, √ s). ( 12 
)
We deduce ( 9) from ( 11) and [START_REF] Carron | Riesz transform and L pcohomology for manifolds with Euclidean ends[END_REF]. Now since the semigroup (e -tH ) t≥0 is bounded on L 2 (Λ 1 T * M), it follows by interpolation that

χ B(x, √ t) e -sH 2-q ≤ C v(x, √ t) 1 2 -1 q t s D 2 ( 1 2 -1 q ) , ( 13 
)
for all 2 < q ≤ ∞. Note that since the semigroup (e -tH ) t≥0 is analytic on L 2 (Λ 1 T * M), we have for all ω ∈ L 2 (Λ 1 T * M) and all s ≥ 0

H 1 2 e -sH ω 2 ≤ C √ s ω 2 . ( 14 
)
Then writing for all ω ∈ D( -→ a )

ω = e -tH ω + t 0 He -sH ω ds = e -tH ω + t 0 e -s 2 H H 1 2 e -s 2 H H 1 2 ω ds,
and using ( 13) and ( 14), we obtain

χ B(x, √ t) ω q ≤ C v(x, √ t) 1 2 -1 q ω 2 + t D 2 ( 1 2 -1 q ) H 1 2 ω 2 t 0 s -1 2 -D 2 ( 1 2 -1 q ) ds .
The convergence of the last integral is ensured for q such that q-2 q D < 2 and we then have for such q χ B(x,

√ t) ω q ≤ C v(x, √ t) 1 2 -1 q ω 2 + √ t H 1 2 ω 2 . ( 15 
)
To conclude the proof, we need to have the estimate [START_REF] Coulhon | Large time behavior of heat kernels on forms[END_REF] with the operator -→ ∆ instead of H. This is a consequence of the assumption (S-C) since we have for all

ω ∈ C ∞ 0 (Λ 1 T * M), H 1 2 ω 2 2 ≤ 1 1 -ǫ -→ ∆ 1 2 ω 2 2 .
Remark 2. Lemma 3.4 also follows from [START_REF] Boutayeb | A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces[END_REF], Proposition 2.3.1 since the heat kernel of H satisfies a Gaussian estimate.

A key result to obtain Theorem 3.1 is the following proposition.

Proposition 3.5. We consider 2 ≤ p < p 1 and q such that 1 ≤ q ≤ ∞ and q-1 q D < 2. Then for all x ∈ M and t > 0

χ B(x, √ t) e -s - → ∆ p-pq ≤ C v(x, √ t) 1 p -1 pq   max   1, t s     2 p
.

Proof. Combining Lemma 3.4, Proposition 3.3 and following the proof of Proposition 2.2 from [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF] lead to the desired result.

Following the ideas in [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF], the last property we need to check is that the semigroup (e -t - → ∆ ) t≥0 satisfies the Davies-Gaffney estimates (also called L 2 -L 2 off-diagonal estimates in [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF]). This is the purpose of the next proposition. Its proof is based on the well-known Davies' perturbation method. Another proof can be found in [START_REF] Sikora | Riesz transform, Gaussian bounds and the method of wave equation[END_REF], Theorem 6.

Proposition 3.6. Let E, F be two closed subsets of M. For any

η ∈ L 2 (Λ 1 T * M) with support in E e -t - → ∆ η L 2 (F ) ≤ e -ρ 2 (E,F ) 2t η 2 .
Proof. We choose a constant α > 0 and a bounded Lipschitz function φ such that |∇φ(x)| x ≤ 1 for almost every x ∈ M. We define the operator -→ ∆ α = e αφ -→ ∆e -αφ with the sesquilinear form

-→ a α (u, v) = -→ a (e -αφ u, e αφ v), D( -→ a α ) = D( -→ a ).
Note that since φ is bounded then e ±αφ u ∈ D( -→ a ) for all u ∈ D( -→ a ).

For ω ∈ D( -→ a ), we have

( -→ ∆ α + α 2 )ω, ω = M < ∇(e -αφ ω)(x), ∇(e αφ ω)(x) > x dµ + ((R + -R -)ω, ω) + α 2 ω 2 2 = M < e -αφ(x) ∇ω(x) -αe -αφ(x) ∇φ(x) ⊗ ω(x), e αφ(x) ∇ω(x) + αe αφ(x) ∇φ(x) ⊗ ω(x) > x dµ + ((R + -R -)ω, ω) + α 2 ω 2 2 = H 1 2 ω 2 2 -α 2 M |∇φ(x)| 2 x |ω(x)| 2 x dµ -(R -ω, ω) + α 2 ω 2 x ≥ 0.
The last inequality follows from the fact that the operator -→ ∆ is non-negative and |∇φ(x)| ≤ 1 for almost every x ∈ M. As a consequence, the operator To end the proof, let k tends to infinity and set α = ρ(E,F ) 2t .

-→ ∆ α + α 2 is positive and self-adjoint on L 2 (Λ 1 T * M) and then -( -→ ∆ α + α 2 ) generates a C 0 - semigroup of contractions on L 2 (Λ 1 T * M). Therefore for all η ∈ L 2 (Λ 1 T * M) e -t - → ∆α η 2 ≤ e tα 2
Finally we give the proof of Theorem 3.1.

Proof of Theorem 3.1. For x ∈ M, t ≥ 0 and k ∈ N, we denote by

A(x, √ t, k) the annulus B(x, (k + 1) √ t) \ B(x, k √ t). Noticing that χ B(x, √ t) e -t - → ∆ χ A(x, √ t,k) p-pq ≤ χ B(x, √ t) e -t - → ∆
p-pq , and using Proposition 3.5, we obtain the estimate

χ B(x, √ t) e -t - → ∆ χ A(x, √ t,k) p-pq ≤ C v(x, √ t) 1 p -1 pq , ( 16 
)
for all p ∈ [2, p 1 ) and q such that 1 ≤ q ≤ ∞ and q-1 q D < 2. Interpolating ( 16) with the Davies-Gaffney estimate of Proposition 3.6 yields

χ B(x, √ t) e -t - → ∆ χ A(x, √ t,k) r-s ≤ C v(x, √ t) 1 r -1 s e -ck 2 ,
for all r ∈ [2, p 1 ) and all s ∈ (2, p 1 q 0 ) where q 0 = +∞ if D ≤ 2 and q 0 = D D-2 if D > 2. Since the semigroup (e -t - → ∆ ) t≥0 is analytic on L 2 (Λ 1 T * M) and uniformly bounded on L p (Λ 1 T * M) for all p ∈ [p ′ 1 , p 1 ], Proposition 3.12 in [START_REF] Maati | Analysis of heat equations on domains[END_REF] ensures that it is analytic on L p (Λ 1 T * M) for all p ∈ (p ′ 1 , p 1 ). Therefore applying [START_REF] Blunck | Weighted norm estimates and maximal regularity[END_REF] Theorem 1.1, we deduce that (e -t - → ∆ ) t≥0 is bounded analytic on L p (Λ 1 T * M) for all p ∈ [2, p 1 q 0 ) = [2, p 0 ). The case p ∈ (p ′ 0 , 2] is obtained by a usual duality argument.

Proof of Theorem 1.1

We start with the following L p -L q off-diagonal estimates for the semigroup (e -t - → ∆ ) t≥0 , which are consequences of the results of the previous section. Theorem 4.1. Suppose that (D), (G) and (S-C) are satisfied. Then for all r, t > 0, x, y ∈ M and all p ∈ (p ′ 0 , p 0 ), q ∈ [p, p 0 )

(i) χ B(x,r) e -t - → ∆ χ B(y,r) p-q ≤ C v(x, r) 1 p -1 q max( r √ t , √ t r ) β e -c ρ 2 (B(x,r),B(y,r)) t , (ii) χ C j (x,r) e -t - → ∆ χ B(x,r) p-q ≤ Ce -c 4 j r 2 t v(x, r) 1 p -1 q max( 2 j+1 r √ t , √ t 2 j+1 r ) β ,
where C j (x, r) = B(x, 2 j+1 r) \ B(x, 2 j r) and β ≥ 0 depends on p and q.

Proof. We first treat the case p ≥ 2.

We recall that from Proposition 3.6, we have for E and F two closed subsets of

M χ F e -t - → ∆ χ E 2-2 ≤ e -ρ 2 (E,F ) 2t , ( 17 
)
and from Theorem 3.1, we have for all p ∈ (p ′ 0 , p 0 )

e -t - → ∆ p-p ≤ C. ( 18 
)
Using the Riesz-Thorin interpolation theorem from ( 17) and ( 18) implies the L p -L p off-diagonal estimate

χ F e -t - → ∆ χ E p-p ≤ Ce -c ρ 2 (E,F ) t , ( 19 
)
for all t ≥ 0 and p ∈ (p ′ 0 , p 0 ). Taking p ∈ [2, p 1 ) and using interpolation from ( 19) and Proposition 3.5 yield

χ B(x,r) e -t - → ∆ χ B(y,r) p-pu ≤ C v(x, r) 1 p -1 q max(1, r √ t ) β e -c ρ 2 (B(x,r),B(y,r)) t , for p ∈ [2, p 1 ) and u ∈ [1, ∞) if D ≤ 2 or u ∈ [1, D D-2 ) if D > 2.
Here β is a non-negative constant depending on p and u. If D ≤ 2, we have the L 2 -L q off-diagonal estimate for all q ∈ [2, +∞). If D > 2, we can deduce, by a composition argument, L 2 -L q off-diagonal estimates for q ∈ [2, p 0 ) from L 2 -L p and L p -L pu off-diagonal estimates with p ∈ [2, p 1 ) and u ∈ [1, D D-2 ). More precisely, we obtain

χ B(x,r) e -t - → ∆ χ B(y,r) p-pu ≤ C v(x, r) 1 p -1 q max( r √ t , √ t r ) β e -c ρ 2 (B(x,r),B(y,r)) t ,
for all 2 ≤ p ≤ q < p 0 . The case p ′ 0 < p ≤ q ≤ 2 is obtained by duality and composition arguments. More precisely, we obtain

χ B(x,r) e -t - → ∆ χ B(y,r) p-pu ≤ C v(x, r) 1 p -1 q max( r √ t , √ t r ) β e -c ρ 2 (B(x,r),B(y,r)) t ,
for all p ′ 0 < p ≤ q < p 0 , which is (i). The reader can find more details in [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF] Theorem 2.6.

Now we prove (ii). Writing

χ C j (x,r) e -t - → ∆ χ B(x,r) = χ C j (x,r) χ B(x,2 j+1 r) e -t - → ∆ χ B(x,2 j+1 r) χ B(x,r) , it is obvious that χ C j (x,r) e -t - → ∆ χ B(x,r) p-q ≤ χ B(x,2 j+1 r) e -t - → ∆ χ B(x,2 j+1 r) p-q . ( 20 
)
Then (i) implies

χ C j (x,r) e -t - → ∆ χ B(x,r) p-q ≤ C v(x, r) 1 p -1 q max( 2 j+1 r √ t , √ t 2 j+1 r ) β . ( 21 
)
Using interpolation from ( 19) and ( 21), we deduce that

χ C j (x,r) e -t - → ∆ χ B(x,r) p-q ≤ C v(x, r) 1 p -1 q max( 2 j+1 r √ t , √ t 2 j+1 r ) β e -c ρ 2 (C j (x,r),B(x,r)) t ,
and (ii) follows.

In the sequel we prove that the operators d * e -t - → ∆ and d e -t - → ∆ satisfies L p -L 2 offdiagonal estimates for all p ∈ (p ′ 0 , 2]. We need the following lemma. Lemma 4.2. For any suitable ω and for every x ∈ M

(i) |dω(x)| x ≤ 2|∇ω(x)| x , (ii) |d * ω(x)| x ≤ √ N|∇ω(x)| x .
Proof. As we did in the proof of Lemma 3.2, for every x ∈ M, we work in a synchronous frame to have an orthonormal basis (θ i ) i of T * x M such that ∇θ i = 0 at x. We recall that we have an inner product in each tensor product

T * x M ⊗ T * x M satisfying < ω 1 (x) ⊗ η 1 (x), ω 2 (x) ⊗ η 2 (x) > x = < ω 1 (x), ω 2 (x) > x < η 1 (x), η 2 (x) > x , (22) 
for all ω 1 , ω 2 , η 1 , η 2 ∈ Λ 1 T * M and x ∈ M.

If ω(x) = f (x)θ i for a certain i, using [START_REF] Liskevich | Some problems on Markov semigroups[END_REF], we have

|dω(x)| 2 x = |df (x) ∧ θ i | 2 x = | n j=1 ∂ j f (x)θ j ∧ θ i | 2 x = j,k ∂ j f (x)∂ k f (x) < θ j ⊗ θ i -θ i ⊗ θ j , θ k ⊗ θ i -θ i ⊗ θ k > x = 2 j (∂ j f (x)) 2 -2(∂ i f (x)) 2 . Since j (∂ j f (x)) 2 = |df (x)| 2 x at x, we obtain for ω(x) = f (x)θ i |dω(x)| 2 x = 2(|df (x)| 2 x -(∂ i f (x)) 2 ). ( 23 
)
Now taking η(x) = g(x)θ j for j = i, we have

< dω(x), dη(x) > x = k,l ∂ k f (x)∂ l g(x) < θ k ⊗ θ i -θ i ⊗ θ k , θ l ⊗ θ j -θ j ⊗ θ l > x ,
which, by [START_REF] Liskevich | Some problems on Markov semigroups[END_REF], yields

< dω(x), dη(x) > x = -2∂ j f (x)∂ i g(x). ( 24 
)
Thus, in the general case, writing ω(x)

= i f i (x)θ i = i ω i (x)
and using ( 23) and ( 24), we obtain

|dω(x)| 2 x = i |dω i (x)| 2 x + i =j < dω i (x), dω j (x) > x = 2 i (|df i (x)| 2 x -(∂ i f i (x)) 2 ) -2 i =j ∂ j f i (x)∂ i f j (x) = 2|∇ω(x)| 2 x - i,j (∂ j f i (x) + ∂ i f j (x)) 2 + 2 i,j (∂ i f j (x)) 2 = 2|∇ω(x)| 2 x - i,j (∂ j f i (x) + ∂ i f j (x)) 2 + 2|∇ω(x)| 2 x ≤ 4|∇ω(x)| 2 x ,
which gives i). To prove ii), we notice that

d * ω(x) = - i ∂ i f i (x) at x (see for
instance [START_REF] Rosenberg | of London Mathematical Society Student Texts[END_REF] p.19). Hence using the Cauchy-Schwarz inequality and the previous calculations, we have

|d * ω(x)| 2 x ≤ N i (∂ i f i (x)) 2 = N   |∇ω(x)| 2 x - 1 4 |dω(x)| 2 x - 1 4 i =j (∂ j f i (x) + ∂ i f j (x)) 2   ≤ N|∇ω(x)| 2 x .
We will need the following L 2 -L 2 off-diagonal estimate.

Proposition 4.3. Assume that (S-C) is satisfied. Let E, F be two closed subsets of M. For any η ∈ L 2 (Λ 1 T * M) with support in E we have ∇e -t - → ∆ η L 2 (F ) ≤ C √ t e -c ρ 2 (E,F ) t η 2 .
Proof. As in the proof of Proposition 3.6, we set -→ ∆ α = e αφ -→ ∆e -αφ where α > 0 is a constant and φ is a bounded Lipschitz function such that |∇φ(x)| x ≤ 1 for almost every x ∈ M. Using the assumption (S-C), we obtain for ω ∈ D( -→ a )

( -→ ∆ α + α 2 )ω, ω = H 1 2 ω 2 2 -α 2 M |∇φ(x)| 2 x |ω(x)| 2 x dµ -(R -ω, ω) + α 2 ω 2 x ≥ H 1 2 ω 2 2 -α 2 ω 2 2 -(R -ω, ω) + α 2 ω 2 2 ≥ (1 -ǫ) H 1 2 ω 2 2 ≥ (1 -ǫ) ∇ω 2 2 .
We recall that from the proof of Proposition 3.6, one has for η

∈ L 2 (Λ 1 T * M) e -t - → ∆α η 2 ≤ e tα 2 η 2 . ( 25 
)
Lemma 4.4 below ensures that the operator

-→ ∆ α + 2α 2 is sectorial. As a conse- quence the semigroup (e -z( - → ∆α+2α 2 ) ) t≥0 is analytic on the sector Σ = {z ∈ C, z = 0, |arg(z)| ≤ π 2 -Arctan(γ)} (
where γ is the constant appearing in (29) below) and e -z( - → ∆α+2α 2 ) 2,2 ≤ 1 for all z ∈ Σ (see [START_REF] Maati | Analysis of heat equations on domains[END_REF] Theorem 1.53, 1.54). A classical argument using the Cauchy formula implies that for all t ≥ 0

( -→ ∆ α + 2α 2 )e -t( - → ∆ α+2α 2 ) 2-2 ≤ C t , ( 26 
)
where the constant C does not depend on α. We notice that for every ω ∈ D( -→ a )

( -→ ∆ α + 2α 2 )ω, ω ≥ ( -→ ∆ α + α 2 )ω, ω ≥ (1 -ǫ) ∇ω 2 2 . ( 27 
)
Then setting ω = e -t( - → ∆ α+2α 2 ) η for η ∈ L 2 (Λ 1 T * M) and t ≥ 0, we deduce from ( 25), ( 26) and (27) that

∇e -t( - → ∆ α+2α 2 ) η 2 ≤ C √ t e -t( - → ∆ α+2α 2 ) η 2 ≤ C √ t η 2 , ∀t > 0. ( 28 
)
As we did in the proof of Proposition 3.6 let E and

F two closed subsets of M, η ∈ L 2 (Λ 1 T * M) with support in E and φ k (x) := min(ρ(x, E), k) for k ∈ N. Since e αφ k η = η, we have e -t - → ∆ η = e -αφ k e -t - → ∆ α η. Then we obtain ∇e -t - → ∆ η = -αe -αφ k ∇φ k ⊗ e -t - → ∆ α η + e -αφ k ∇e -t - → ∆ α η.
Since |∇φ k (x)| x ≤ 1 for almost every x ∈ M, we deduce from ( 25) and (28) that

χ F ∇e -t - → ∆ η 2 ≤ αe -α min(ρ(E,F ),k) e tα 2 η 2 + C √ t e -α min(ρ(E,F ),k) e 2tα 2 η 2 .
Now letting k tends to infinity and setting α = ρ(E,F ) 4t , we finally obtain

χ F ∇e -t - → ∆ η 2 ≤ C √ t (1 + ρ(E, F ) 4 √ t )e -ρ 2 (E,F ) 8t η 2 ≤ C √ t e -c ρ 2 (E,F ) t η 2 ,
which is the desired result.

In the following lemma, we study sectoriality. Then we need to work with complex valued 1-forms. This is achieved as usual by introducing the complex Hilbert spaces

L 2 (Λ 1 T * M) ⊕ iL 2 (Λ 1 T * M) and D( -→ a ) ⊕ iD( -→ a ).

Lemma 4.4. Under the assumption (S-C), the operator

-→ ∆ α + 2α 2 is sectorial. That is there exists a constant γ ≥ 0 such that for all ω ∈ D( -→ ∆ α + 2α 2 ) |Im(( -→ ∆ α + 2α 2 )ω, ω)| ≤ γ Re(( -→ ∆ α + 2α 2 )ω, ω) (29) 
Proof. We consider ω ∈ D( -→ a )⊕iD( -→ a ). Since |∇φ(x)| x ≤ 1 for almost every x ∈ M, we have

-→ a α (ω, ω) = -→ a (ω, ω) + α M < ∇ω(x), ∇φ(x) ⊗ ω(x) > x dµ -α M < ∇φ(x) ⊗ ω(x), ∇ω(x) > x dµ -α 2 M |∇φ(x) 2 | x |ω(x)| 2 x dµ ≥ -→ a (ω, ω) + 2iαIm M < ∇φ(x) ⊗ ω(x), ∇ω(x) > x dµ -α 2 ω 2 2 .
Therefore we deduce that

Re( -→ a α (ω, ω) + 2α 2 ω 2 2 ) ≥ -→ a (ω, ω) (30) Re( -→ a α (ω, ω) + 2α 2 ω 2 2 ) ≥ α 2 ω 2 2 . ( 31 
)
Furthermore, the Cauchy-Schwarz inequality and the assumption (S-C) yield

|Im( -→ a α (ω, ω) + 2α 2 ω 2 2 )| = 2αIm M < ∇φ(x) ⊗ ω(x), ∇ω(x) > x dµ ≤ 2α M |ω(x)| x |∇φ(x)| x |∇ω(x)| x dµ ≤ 2α ω 2 ∇ω 2 ≤ 2α ω 2 H 1 2 ω 2 ≤ 2α 1 1 -ǫ ω 2 -→ a 1 2 (ω, ω) ≤ 1 1 -ǫ -→ a (ω, ω) + α 2 ω 2 2 .
Using (30) and (31), we deduce that there exists a constant C ǫ such that 

|Im( -→ a α (ω, ω) + 2α 2 ω 2 2 )| ≤ C ǫ Re( -→ a α (ω, ω) + 2α 2 ω 2 2 ), which means that -→ ∆ α + 2α
∈ L 2 (Λ 1 T * M) with support in E (i) de -t - → ∆ η L 2 (F ) ≤ C √ t e -c ρ 2 (E,F ) t η 2 , (ii) d * e -t - → ∆ η L 2 (F ) ≤ C √ t e -c ρ 2 (E,F ) t η 2 .
We are now able to prove L p -L 2 off-diagonal estimates for the operators d * e -t - → ∆ and d e -t - → ∆ .

Theorem 4.6. Suppose that (D), (G) and (S-C) are satisfied. Then for all r, t > 0, x, y ∈ M and all p ∈ (p ′ 0 , 2]

χ C j (x,r) d e -t - → ∆ χ B(x,r) p-2 ≤ Ce -c 4 j r 2 t √ t v(x, r) 1 p -1 2 max( r √ t , √ t r ) β 2 jβ , ( 32 
)
χ C j (x,r) d * e -t - → ∆ χ B(x,r) p-2 ≤ Ce -c 4 j r 2 t √ t v(x, r) 1 p -1 2 max( r √ t , √ t r ) β 2 jβ , ( 33 
)
where C j (x, r) = B(x, 2 j+1 r) \ B(x, 2 j r) and β ≥ 0 depends on p.

Proof. We only prove (32) since (33) can be obtained in the same manner. By Corollary 4.5, we have for all x, z ∈ M and r, t ≥ 0

χ B(x,r) d e -t - → ∆ χ B(z,r) 2-2 ≤ C √ t e -c ρ 2 (B(x,r),B(z,r)) t .
In addition by Theorem 4.1, we have for all y, z ∈ M, r, t ≥ 0 and p ∈ (p ′ 0 , 2]

χ B(z,r) e -t - → ∆ χ B(y,r) p-2 ≤ C v(z, r) 1 p -1 2 e -c ρ 2 (B(y,r),B(z,r)) t .
Then writing d e -t -

→ ∆ = d e -t 2 - → ∆ e -t 2 - →
∆ and using a composition argument, we obtain

χ B(x,r) d e -t - → ∆ χ B(y,r) p-2 ≤ C √ t v(y, r) 1 p -1 2 max( r √ t , √ t r ) β e -c ρ 2 (B(x,r),B(y,r)) t . ( 34 
)
For more details on the composition argument see [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF] Theorem 3.5.

Writing

χ C j (x,r) d e -t - → ∆ χ B(x,r) = χ C j (x,r) χ B(x,2 j+1 r) d e -t - → ∆ χ B(x,2 j+1 r) χ B(x,r) , we notice that χ C j (x,r) d e -t - → ∆ χ B(x,r) p-2 ≤ χ B(x,2 j+1 r) d e -t - → ∆ χ B(x,2 j+1 r) p-2
Then (34) yields

χ C j (x,r) d e -t - → ∆ χ B(x,r) p-2 ≤ C √ t v(y, r) 1 p -1 2 max( 2 j+1 r √ t , √ t 2 j+1 r ) β ≤ C2 jβ √ t v(y, r) 1 p -1 2 max( r √ t , √ t r ) β .
Using Corollary 4.5, we have

χ C j (x,r) d e -t - → ∆ χ B(x,r) 2-2 ≤ C √ t e -c 4 j r 2 t . ( 35 
)
Therefore applying the Riesz-Thorin interpolation theorem from (34) and (35), we deduce the result.

A key result to prove the boundedness of the Riesz transforms d * ( -→ ∆) - 

1 v(x, 2 j+1 r) C j (x,r) |T (I -A r )f | 2 1 2 ≤ g(j) 1 v(x, r) B |f | p 1 p , ( 36 
)
and for j ≥ 1 Proof of Theorem 1.1. We argue as in [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF] Theorem 3.6. We set T = d * ( -→ ∆) -1 2 and consider the operators A r = I -(Ie -r 2 - → ∆ ) m for some sufficiently large integer m. The estimate (37) can be obtained using the estimate

1 v(x, 2 j+1 r) C j (x,r) |A r f | 2 1 2 ≤ g(j) 1 v(x, r) B |f | p 1 p , ( 37 
)
for all f supported in B. If Σ := j g(j)2 Dj < ∞,
χ C j (x,r) e -t - → ∆ χ B(x,r) p-q ≤ Ce -c 4 j r 2 t v(x, r) 1 p -1 q max( 2 j+1 r √ t , √ t 2 j+1 r ) β ,
which we proved in Theorem 4.1 (see [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF] Theorem 3.6).

The estimate (36) can be obtained using the estimate

χ C j (x,r) d * e -t - → ∆ χ B(x,r) p-2 ≤ Ce -c 4 j r 2 t √ t v(x, r) 1 p -1 q max( r √ t , √ t r ) β 2 jβ ,
which we proved in Theorem 4.6 (see [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF] Theorem 3.6).

The proof is the same for

T = d( -→ ∆) -1 2 .
5 Sub-criticality and proof of Theorem 1.3

The assumption (S-C) can be understood as a "smallness" condition on the negative part R -of the Ricci curvature. But since R -is a geometric component of the manifold M, it would be interesting to have analytic or geometric conditions which lead to this assumption. This is the purpose of this section.

We recall that Devyver [START_REF] Devyver | A Gaussian estimate for the heat kernel on differential forms and application to the Riesz transform[END_REF] studied the boundedness of the Riesz transform d

(∆) -1 2 from L p (M) to L p (Λ 1 T * M)
where M is a complete non-compact Riemannian manifold satisfying a global Sobolev type inequality

f 2N N-2 ≤ C df 2 , ∀f ∈ C ∞ 0 (M). Assuming R -∈ L N 2
, he proved that R -satisfies the assumption (S-C) if and only if the space

Ker D( - → h ) ( -→ ∆) := {ω ∈ D( -→ h ) : ∀η ∈ C ∞ 0 (Λ 1 T * M), (ω, -→ ∆η) = 0}
is trivial. Here h denotes the sesquilinear form defined for all ω, η ∈ C

∞ 0 (Λ 1 T * M) by -→ h (ω, η) = M < ∇ω(x), ∇η(x) > x dµ + M < R + (x)ω(x), η(x) > x dµ, and D( -→ h ) = C ∞ 0 (Λ 1 T * M) . - → h , where ω - → h = -→ h (ω, ω) + ω 2 2 .
We recall that H denotes its associated operator, that is, H = ∇ * ∇ + R + .

Assaad and Ouhabaz introduced in [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF] the following quantities

α 1 = 1 0 R 1 2 - v(., √ t) 1 r 1 r 1 dt √ t , α 2 = ∞ 1 R 1 2 - v(., √ t) 1 r 2 r 2 dt √ t ,
for some r 1 , r 2 > 2. We set R 1 2

-vol := α 1 + α 2 . We are interested in the finiteness of this norm. It is clear that if the volume is polynomial, that is, c r

N ≤ v(x, r) ≤ Cr N , then R 1 2 -vol < ∞ if and only if R -∈ L N 2 -η ∩ L N 2 +η
for some η > 0. The latter condition is usually assumed to study the boundedness of Riesz transforms of Schrödinger operators on L p for p > 2.

We state the main result of this section. 

2 -vol < ∞. Then R -satisfies (S-C) if and only if Ker D( - → h ) ( -→ ∆) = {0}.
We can observe that this result is similar to the one of Devyver. However, we do not assume any global Sobolev inequality. In this context, with the additional assumption that the balls of great radius has polynomial volume growth, Definition 2.2.2 in [START_REF] Devyver | A Gaussian estimate for the heat kernel on differential forms and application to the Riesz transform[END_REF] allows R -∈ L 

Let us make a comment on the space Ker

D( - → h ) ( -→ ∆). We consider ω ∈ D( -→ h ). Since -→ ∆ is essentially self-adjoint on C ∞ 0 (Λ 1 T * M) (see [26] Section 2), the condition (ω, - → ∆η) = 0, ∀η ∈ C ∞ 0 (Λ 1 T * M) implies (ω, - → ∆η) = 0, ∀η ∈ D( -→ ∆). Then ω ∈ D( -→ ∆) and -→ ∆ω = 0. Therefore Ker D( - → h ) ( -→ ∆) is the space of harmonic L 2 forms.
The following proposition proves the first part of Theorem 5.1. Proposition 5.2. Assume that M satisfies (D), (G) and that R -satisfies (S-C).

Then Ker D( - → h ) ( -→ ∆) = {0}. Proof. Any ω in Ker D( - → h ) ( -→ ∆) satisfies for all η ∈ C ∞ 0 (Λ 1 T * M), ( -→ ∆ω, η) = 0, hence, by a density argument ( -→ ∆ω, ω) = 0. If R -satisfies (S-C), we have (Hω, ω) ≤ 1 1-ǫ ( -→ ∆ω, ω) = 0, which yields ω ∈ Ker(H 1 2
). According to Lemma 5.3 below, we deduce that ω = 0. Thus Ker

D( - → h ) ( -→ ∆) = {0}.
The following result is well-known but we have decided to give its proof for the sake of completeness. Proof. We consider ω ∈ Ker(H), that is ω ∈ D(H) and Hω = 0. We then have for all t ≥ 0 e -tH ω = ω.

(38)

Noticing that we have the domination |e -tH ω| ≤ e -t∆ |ω| and using ( 38) and (G), we obtain for all x ∈ M and t ≥ 0

|ω(x)| x ≤ C v(x, √ t) M exp(-c ρ 2 (x, y) t )|ω(y)| y dµ.
The Hölder inequality yields

|ω(x)| x ≤ C v(x, √ t) M exp(-2c ρ 2 (x, y) t )dµ 1 2 ω 2 . ( 39 
)
Using ( 12) in (39) leads to

|ω(x)| x ≤ C v(x, √ t) ω 2 . ( 40 
)
Since the manifold M is connected, complete, non-compact and satisfies the doubling volume property (D), it follows from [START_REF] Grigor | Heat kernel and analysis on manifolds[END_REF] p.412 that there a constant D ′ > 0 such that for all x ∈ M and 0 < r ≤ R v(x, R) v(x, r) ≥ c R r

D ′ . ( 41 
)
We obtain from (40) and (41) that for all t ≥ 1

|ω(x)| x ≤ C t D ′ 4 v(x, 1) ω 2 .
Letting t tend to infinity, we deduce that for all x ∈ M, |ω(x)| x = 0 and then that Ker(H) = {0}.

Note that the assumption R

1 2
-vol < ∞ is not necessary in the proof of Proposition 5.2 but will be used to prove the converse of Theorem 5.1.

Before giving the other half of the proof of Theorem 5.1, we need the following two results.

Lemma 5.4. Assume that (D) and (G) are satisfied. Then there exists a constant C ≥ 0 such that R

1 2 -H -1 2 2-2 ≤ C R 1 2
vol and

H -1 2 R 1 2 -2-2 ≤ C R 1 2
-vol .

Proof. Writing H - The assumptions (D) and (G) allow us to use Proposition 2.9 in [START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF] for ∆. Then noticing we have the domination |e -tH ω| ≤ e -t∆ |ω|, for all ω ∈ C ∞ 0 (Λ 1 T * M) leads to the following estimates v(., √ t)

1 p -1
q e -tH p-q ≤ C, ∀ 1 < p ≤ q < ∞, where C is a non-negative constant depending on p, q, (D) and (G). By duality e -tH v(., √ t)

1 p -1 q p-q ≤ C, ∀ 1 < p ≤ q < ∞.

Since for i = 1, 2 we have 1 r i = 1 2 -r i -2 2r i and 1 r i = r i +2 2r i -1 2 , we obtain the desired result.

As a consequence

Corollary 5.5. The L 2 -adjoint of the operator R

1 2 -H -1 2 is H -1 2 R 1 2
-. We now follow the ideas of Devyver to prove Theorem 5.1. Even if the two lemmas below are known, we give their proofs for the sake of completeness. The following lemma is similar to Lemma 1 in [START_REF] Devyver | A Gaussian estimate for the heat kernel on differential forms and application to the Riesz transform[END_REF].

Lemma 5.6. Let Λ denote the self -adjoint operator

H -1 2 R -H -1 2 = (R 1 2 -H -1 2 ) * (R 1 2 
-H -1 2 ) acting on L 2 (Λ 1 T * M). Assume that (D) and (G) are satisfied. Then the operator H We claim that H Then for all w ∈ C ∞ 0 (Λ 1 T * M), we have -→ h (v, w) = 0. Therefore v ∈ D(H) and Hv = 0, that is v ∈ Ker(H). Since Ker(H) = {0} (see Lemma 5.3 below), we obtain v = 0 in D(H) and then u = 0 in Im(H 1 2 ). This shows that H 
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 11 Assume that (D), (G) and (S-C) are satisfied. Then the Riesz transform d *
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 2 Now we consider E and F two closed subsets of M, η ∈ L 2 (Λ 1 T * M) with support in E and φ k (x) := min(ρ(x, E), k) for k ∈ N. Since e αφ k η = η, we have e -t - → ∆ η = e -αφ k e -t - → ∆α η. Thus we obtain e -t - → ∆ η L 2 (F ) ≤ e -α min(ρ(E,F ),k) e tα 2 η 2 .

  then T is of weak type (p, p), with a bound depending only on the strong type (2, 2) bound of T , p and Σ. Finally we prove Theorem 1.1.
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 51 Assume that the manifold M satisfies (D), (G) and R

1

 1 

N 2 ; whereas in Theorem 5 . 1 ,N 2 -η ∩ L N 2 3 .

 251223 one needs R -∈ L +η for some η > 0 with the same condition on the volume. Assuming Theorem 5.1, we are now able to prove Theorem 1.Proof of Theorem 1.3. According to the commutation formula -→ ∆d = d∆, we see that the adjoint operator of d * ( -→ ∆) -1 2 is exactly d(∆) -1 2 . Then Theorem 1.3 is an immediate consequence of Theorem 5.1 and Theorem 1.1.
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 53 Assume that (D) and (G) are satisfied. Then Ker(H) = {0}.

1 2

 1 is an isomorphism from Ker D( - → h ) ( -→ ∆) to Ker L 2 (I -Λ). Proof. We consider ω ∈ Ker D( - → h ) ( -→ ∆), that is, ω ∈ D( -→ h ) such that for all η ∈ C ∞ 0 (Λ 1 T * M) (ω, -→ ∆η) = 0. Let η ∈ C ∞ 0 (Λ 1 T * M).We write -

1 2 1 2 1 2 1 2

 1111 (C ∞ 0 (Λ 1 T * M)) is dense in L 2 (Λ 1 T * M). Assuming the claim, we obtain ω ∈ Ker D( (I -Λ)η) = 0, ∀η ∈ L 2 (Λ 1 T * M). Noticing that I -Λ is self-adjoint on L 2 (Λ 1 T * M), we deduce that ω ∈ Ker D( - → h ) ( -→ ∆) ⇐⇒ H ω ∈ Ker L 2 (I -Λ).Now we prove the claim. We consider u = H w) = 0, ∀w ∈ C ∞ 0 (Λ 1 T * M).

1 2 1 2 1 2 2 1 2 1 2

 111211 (C ∞ 0 (Λ 1 T * M)) is dense in Im(H ). Furthermore, Im(H ) is dense in L 2 (Λ 1 T * M) because H 1 is self-adjoint and Ker(H ) = {0}. Hence we deduce that H (C ∞ 0 (Λ 1 T * M)) is dense in L 2 (Λ 1 T * M).

  2 is sectorial. (see[START_REF] Maati | Analysis of heat equations on domains[END_REF] Proposition 1.27)

	An immediate consequence of Lemma 4.2 and Proposition 4.3 is the following
	result.
	Corollary 4.5. Assume that (S-C) is satisfied. Let E, F be two closed subsets of M.
	For any η

  Let p ∈[START_REF] Assaad | Riesz transforms associated to Schrödinger operators with negative potentials[END_REF][START_REF] Assaad | Riesz transforms of Schrödinger operators on manifolds[END_REF]. Suppose that T is a sublinear operator of strong type (2, 2), and let (A r ) r>0 be a family of linear operators acting on L 2 . Assume that for j ≥ 2 and every ball B = B(x, r)

	Theorem 4.7.	
	1 2 and d(	-→ ∆) -1

is a result in[START_REF] Blunck | Calderón-Zygmund theory for non-integral operators and the H ∞ functional calculus[END_REF] which we state as it is formulated in[START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF], Theorem 2.1.

The following lemma is similar to Proposition 1.4 and Theorem 1.5 in [START_REF] Carron | L 2 -cohomology and Sobolev inequalities[END_REF].

Lemma 5.7. Assume that the manifold M satisfies (D), (G) and R 1 2

-vol < ∞. Then Λ is a compact operator on L 2 (Λ 1 T * M).

Proof. It follows from the same proof as in Lemma 5.4, applied to χ B(x,r) C R 1 2

-rather than R 1 2 -, that we have for all x ∈ M and r ≥ 0

where B(x, r) C denotes M \ B(x, r). In addition the dominated convergence theorem applied twice ensures that for all x ∈ M

-vol = 0.

Therefore we deduce that

where the limit is the operator limit in L(L 2 (Λ 1 T * M)). We recall that the operator limit in the uniform sense of compact operators is compact. Then to prove the lemma, it suffices to show that the operator χ B(x,r) R

and then there exists φ ∈ C ∞ 0 (M) such that φ = 1 on B(x, r), φ ≤ 1 on B(x, r) C and

where

-(x) . It suffices then to prove that the operator φH -1 2 is compact on L 2 (Λ 1 T * M). We recall that we have a compact embedding between the Sobolev space W 1,2 (Λ 1 T * K) and the space L 2 (Λ 1 T * M) for all compact subsets K of M (see [START_REF] Rosenberg | of London Mathematical Society Student Texts[END_REF] p. [START_REF] Rosenberg | of London Mathematical Society Student Texts[END_REF]27,34). Since φ has compact support and Im(H

We are now able to end the proof of Theorem 5.1.

Proof of Theorem 5.1. First we notice that

Then for all ω ∈ L 2 (Λ 1 T * M)

According to the self-adjointness and the positivity of Λ, we have

Furthermore, Lemma 5.7 and the Fredholm alternative imply

whereas Lemma 5.6 ensures that

Therefore we deduce from (42), ( 43), ( 44) and (45) that

result follows.

The following results aim at removing the assumption Ker D( -

However we need to strengthen the assumption on R -vol < ∞.

Then there exists a non-negative constant C depending on the constants appearing in (D) and (G) such that for any

Using Lemma 5.4, we obtain the desired result.

An immediate consequence of Proposition 5.8 is the following.

Proposition 5.9. Suppose that the assumptions (D) and (G) are satisfied and that

-vol is small enough. Then R -satisfies (S-C).

In the particular case of polynomial volume growth, we then ask R -N 2 -η and R -N 2 +η to be small enough for some η > 0 to have R -satisfying (S-C). Note that if M satisfies a global Sobolev inequality, it is easy to prove that R -satisfies (S-C) if R -N 2 is small enough (without any assumption on the volume growth).

Note also that we recover Ker D( - → h ) ( -→ ∆) = {0} with the assumptions of Proposition 5.9 but we did not need to assume it to prove subcriticality.
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