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1. Introduction. Our goal is to study the internal asymptotic stability of an infinite-dimensional linear model, namely a wave equation in a 1-D bounded domain. A classical undamped wave equation is known to be a conservative system, which can be described by a group of operators. On our more realistic model, there are two physical causes of dissipation: the damping at the boundaries and the internal damping.

First note that usual boundary conditions at the two ends of the pipe, either Dirichlet or Neumann boundary conditions are reflecting and account for a conservation of the wave energy; on the contrary, boundary conditions of impedance type are absorbing, and translate into dissipation of the wave energy, localized at the boundaries only. Most models of impedance are formulated in the frequency domain, and not the time domain; hence, since the impedances at stake, seen as transfer functions, happen to be positive real, one can apply the celebrated Kalman-Yakubovich-Popov lemma to build a realization, at least in finite dimension, see e.g. [START_REF] Curtain | Old and new perspectives on the positive-real lemma in systems and control theory[END_REF][START_REF] Rantzer | On the Kalman-Yakubovich-Popov lemma[END_REF] among other references. The latter realization happens to be of major help in deriving an energy balance, which will prove useful in the stability analysis of the coupled system.

Second, there are different types of internal damping models for waves, corresponding to losses during the propagation; the most common ones are fluid or viscous damping, and Kelvin-Voigt or Rayleigh damping. Both these models are local in time, and allow for a straightforward semigroup formulation. Fluid damping corresponds to a uniform shift of the poles in the spectral domain, or to an exponential window in the time domain: the stability analysis of the system is quite elementary, see e.g. [START_REF] Luo | Stability and stabilization of infinite dimensional systems with applications[END_REF]Theorem 5.38]. With Kelvin-Voigt damping, the high-frequency modes are more heavily damped than the low-frequency ones, a situation which does occur in applications, making this model more realistic; the stability analysis can be performed by various methods, see e.g. [START_REF] Luo | Stability and stabilization of infinite dimensional systems with applications[END_REF]Section 4.3].

We are concerned here with a more complex damping model, known as damping of fractional order in time: causal fractional integrals or derivatives are non-local operators in time, which require an infinite-dimensional diagonal realization of diffusive type (see e.g. [START_REF] Staffans | Well-posedness and stabilizability of a viscoelastic equation in energy space[END_REF] and [START_REF] Montseny | Diffusive representation of pseudo-differential time-operators[END_REF] independently, see also [START_REF] Matignon | Energy decay for wave equations with damping of fractional order[END_REF]) in order to get a semigroup formulation. An energy inequality is associated to this formulation, and a natural way to proceed to analyze stability would then be to use LaSalle's invariance principle; in infinite dimension though, the use of this principle requires to check the precompactness of the trajectories in the extended energy space. Unfortunately there is no simple way to check this property a priori, since the diffusive realization is made on an unbounded domain. This is the reason why we resort to some more sophisticated stability theorem, which requires the analysis of the spectrum of the generator of the extended semigroup, see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] and [START_REF] Yu | Asymptotic stability of linear differential equations in Banach spaces[END_REF].

The Lokshin equation has been introduced in [START_REF] Lokshin | Wave equation with singular retarded time[END_REF][START_REF] Lokshin | Fundamental solutions of the wave equation with retarded time[END_REF], and referred to in [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF]. It has been established in [START_REF] Bruneau | General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries[END_REF] in the frequency domain and formulated in the time domain with fractional derivatives in [START_REF] Polack | Time domain solution of Kirchhoff's equation for sound propagation in viscothermal gases: a diffusion process[END_REF]. For refined models of axi-symmetric pipes with varying cross-section, one can refer to [START_REF] Th | Unidimensional models of the acoustic propagation in axisymmetric waveguides[END_REF] to understand what the best choice of variable z is for the Webster wave equation.

For the Lokshin model, there is a natural decay of the wave energy, as observed in [START_REF] Matignon | Energy decay for wave equations with damping of fractional order[END_REF], based on a spectral analysis first carried out in [START_REF] Matignon | Spectral and time-domain consequences of an integrodifferential perturbation of the wave PDE[END_REF]. For the proof of stability, applying LaSalle's invariance principle requires a precompactness property (see e.g. [START_REF] Conrad | Stabilization of second order evolution equations by unbounded nonlinear feedback[END_REF][START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF][START_REF] Andréa-Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF]), which is not easy to get a priori.

Use of LaSalle invariance principle is possible when ε = η = 0, i.e. when there are no internal damping terms in the wave equation [START_REF] Andréa-Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF]. More precisely, when ε = η = 0, the infinitesimal generator of the semigroup realizing the PDE under consideration in this paper has a compact resolvent. Therefore, in that case, LaSalle invariance principle can be applied, as in [START_REF] Andréa-Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF], [22, §.2], to prove asymptotic stability.

However, in presence of a diffusive realization either of standard or extended type, lack of precompactness is to be found, and we have to resort on [2, Stability theorem] and spectrum techniques (in our framework, it is equivalent to [START_REF] Yu | Asymptotic stability of linear differential equations in Banach spaces[END_REF]).

See [START_REF] Matignon | Asymptotic stability of linear conservative systems when coupled with diffusive systems[END_REF] for the stability proof of an ordinary differential equation coupled with a infinite dimension system coming from a diffusive representation. The paper [START_REF] Matignon | Asymptotic stability of linear conservative systems when coupled with diffusive systems[END_REF] can be seen as the behavior of one mode of the wave equation coupled with an infinite dimensional system representing the fractional integrals and derivatives. The present paper can be seen as a generalization of [START_REF] Matignon | Asymptotic stability of linear conservative systems when coupled with diffusive systems[END_REF] since the model under consideration is described by two coupled partial differential equations. This work has also a strong connection with the study of well-posedness of the Webster-Lokshin equation, as carried out in [START_REF] Haddar | Theoretical and numerical analysis of the Webster-Lokshin model[END_REF] and [START_REF] Haddar | Efficient solution of a wave equation with fractional order dissipative terms[END_REF]. Some of the stability results proved here have been announced in [START_REF] Matignon | Asymptotic stability of the Webster-Lokshin model[END_REF].

The paper is organized as follows: in Section 2, the acoustic model is presented, together with the physical motivations; especially the notion of impedance is detailed. Then, in Section 3 realizations in the sense of systems theory are recalled: first, dissipative realizations for positive-real impedances are presented in § 3.1, and second dissipative realizations for positive pseudo-differential time-operators of diffusive type (such as fractional integral and derivatives) are given in § 3.2. Both these realizations enable to give an abstract formulation of the wave equation as a first order system in § 3.3. Its well-posedness is finally analyzed in § 3.4.

The core of the paper is Section 4, devoted to the study of asymptotic stability of the above model, once formulated as a first-order system. Since no compactness property can be found a priori, thus forbidding the use of LaSalle's invariance principle, then a refined analysis of the spectrum of the generator of the semigroup is carried out. The main result is Theorem 2, the proof of which heavily relies on Proposition 1, which is technical and will be proved in five steps.

Finally, Section 5 is devoted to conclusions on the problems treated in this paper and future works, including some possible generalizations and interesting open questions.

Notation: Given z ∈ C, we denote its real part and its imaginary part by ℜ(z) and ℑ(z) respectively, and its complex conjugate by z. Symbol R + denotes the set of positive values. Finally x ′ or M ′ denotes the transpose of a vector or a matrix respectively, either real or complex.

2. Acoustic model and physical motivations. Consider an axi-symmetric duct between z = 0 and z = 1 with cross section radius r(z) (satisfying 0 < r 0 ≤ r ≤ R 0 < ∞ a. e.), where r : [0, 1] → R is a function which is both bounded from below and essentially bounded (it does not need to be continuous), then the velocity potential φ (with appropriate scaling) satisfies the following equation:

∂ 2 t φ + (η(z) ∂ α t + ε(z) ∂ -β t ) ∂ t φ - 1 r 2 (z) ∂ z (r 2 (z) ∂ z φ) = 0, (1) 
for some α, β ∈ (0, 1) and ε, η ∈ L ∞ (0, 1; R + ). The terms in ∂ α t and ∂ -β t model the effect of viscous and thermal losses at the lateral walls. The symbol ∂ -β t stands for the Riemann-Liouville fractional integral of order β, whereas ∂ α t stands for the Riemann-Liouville fractional derivative of order α: both these operators are causal convolution products 1 with slowly decaying kernels, and their precise meaning will be given in Section 3.2 below when writing a realization.

We can reformulate (1) as a first order system in the (p, v) variables, where p = ∂ t φ is the pressure, and v = -r 2 ∂ z φ is the volume velocity:

∂ t p = - 1 r 2 ∂ z v -ε ∂ -β t p -η ∂ α t p , (2) 
∂ t v = -r 2 ∂ z p , (3) 
To take into account the interaction with the exterior domain, one can add dynamical boundary conditions at z = 0, 1 that are of impedance type:

p i (t) = ℓ i (h i ⋆ v i )(t) (4) 
1 Let us recall that the causal convolution product of two locally integrable functions h and v is defined by

(h ⋆ v)(t) = R t 0 h(t -τ ) v(τ ) dτ for almost every t ≥ 0.
where ⋆ stands for the causal convolution product with respect to the time variable, ℓ 0 = -1, and ℓ 1 = 1, and where it is used the shorthand notation p i (t) = p(z = i, t) and v i (t) = v(z = i, t) for i = 0, 1. In (4), h i are causal functions of time, and let us denote their Laplace transforms by Z i (s) which are usually called acoustic impedances. Conditions (4) are formulated in the Laplace domain as

pi (s) = ℓ i Z i (s) vi (s) for i = 0, 1 , (5) 
Such boundary conditions model very various absorbing boundary conditions. As an example, let us select h 1 = Z 1 δ 0 , where Z 1 is a given strictly positive and finite value in R and δ 0 is the Dirac function at t = 0: the limit case when Z 1 = 0, ε = 0, η = 0 would give, with (2) and (3), the Dirichlet boundary condition for the p-variable and the Neumann boundary condition for the v-variable; similarly, the other limit case when Z 1 = ∞, ε = 0, η = 0 would give the Neumann condition for the p-variable and the Dirichlet condition for the v-variable. Therefore, boundary condition (4) models time-varying Robin-type boundary conditions for the p and the v-variables: it does indeed interpolate between classical homogeneous Dirichlet and Neumann conditions (which are not addressed in this work), while preserving passivity.

The assumptions on the boundary conditions that will be needed in this work are collected in Assumption 1. The acoustic impedances Z i in the boundary conditions [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups Mathematische[END_REF], satisfy, for each i = 0, 1, 1. Z i is a rational function without any pole at s = 0; 2. ℜ(Z i (s)) > 0, ∀s ∈ C, ℜ(s) ≥ 0; Under this assumption, item 1 will allow us to consider a realization of the boundary conditions in finite dimension. Item 2 means that Z i (s) are strictly positive real in the sense of [19, ch. 5]. This latter item exludes both Dirichlet and Neumann boundary conditions; indeed, it imposes some dissipation of the energy, as will be seen from an energy balance law.

Assumption 1 holds as soon as h i are real-valued functions of positive type, the algebraic structure of which are sums of Dirac measures and of causal polynomialexponential functions (see e.g. [START_REF] Nohel | Frequency domain methods for Volterra equations[END_REF]).

System (2)-( 3)-( 5) can be transformed into a first order system in time, using appropriate realizations for the pseudo-differential operators involved in this model:

• dissipative realizations for the boundary conditions written in terms of the positive-real impedances. This is done using Kalman-Yakubovich-Popov lemma in finite dimension, are recalled in § 3.1; • dissipative realizations for the internal dynamics, more precisely for positive pseudo-differential time-operators of diffusive type, such as

∂ -β t and ∂ α t , as presented in § 3.2.
This is the aim of next section together with the well-posedness of the model.

3.

Realization and well-posedness.

Dissipative realizations for positive-real impedances. Under item 1 of Assumption 1, there exists a minimal realization (

A i , B i , C i , d i ) with state x i of finite dimension n i (A i ∈ R ni×ni , B i ∈ R ni×1 , C i ∈ R 1×ni and d i ∈ R), such that, for all i = 0, 1, d dt x i (t) = A i x i + B i v i (t), x i (0) = 0 ( 6 
)
ℓ i p i (t) = C i x i (t) + d i v i (t). (7) 
Moreover, with item 2 of Assumption 1, using the Kalman-Yakubovich-Popov lemma (see e.g. [6, page 35] or [START_REF] Rantzer | On the Kalman-Yakubovich-Popov lemma[END_REF]), there exists P i ∈ R ni×ni , P i = P ′ i > 0, such that the following energy balance holds, for each T > 0, and for any

v i ∈ L 2 ([0, T ); R), ℓ i T 0 p i (t) v i (t) dt = 1 2 x ′ i (T ) P i x i (T ) + 1 2 T 0 x ′ i (t) v i (t) M i x i (t) v i (t) dt, (8) 
with

M i := -A ′ i P i -P i A i C ′ i -P i B i C i -B ′ i P i 2d i = M ′ i ≥ 0.
The right-hand side of ( 8) is split into two terms, a storage function evaluated at time T only, proportional to x ′ i (T )P i x i (T ), and a dissipated energy on the time interval (0, T ), which involves the non-negative symmetric matrix

M i ∈ R (ni+1)×(ni+1) . We denote, for all x = (x 0 , x 1 ) ∈ R n0 × R n1 , E x := 1 2 x ′ 0 P 0 x 0 + 1 2 x ′ 1 P 1 x 1 .
Thus, when ε = η = 0, the global system ( 2)-( 3)-( 5) can be put in the abstract form d dt X = A X, where:

A     x 0 x 1 p v     =     A 0 x 0 + B 0 v(z = 0) A 1 x 1 + B 1 v(z = 1) -r -2 ∂ z v -r 2 ∂ z p     ; (9) 
together with the boundary conditions

p(z = 0) = -C 0 x 0 -d 0 v(z = 0) and p(z = 1) = C 1 x 1 + d 1 v(z = 1
). In the sequel, we shall analyze the well-posedness of this system. Let us introduce the following spaces of complex-valued functions:

L 2 p := {p, 1 0 |p| 2 r 2 (z) dz < +∞} , L 2 v := {v, 1 0 |v| 2 r -2 (z) dz < +∞} , H 1 p := {p ∈ L 2 p , 1 0 (|p| 2 + |∂ z p| 2 ) r 2 dz < +∞} , H 1 v := {v ∈ L 2 v , 1 0 (|v| 2 + |∂ z v| 2 ) r -2 dz < +∞} , H := C n0 × C n1 × L 2 p × L 2 v , and 
V := C n0 × C n1 × H 1 p × H 1 v .
For i = 0, 1, we equip C ni with the norm x → x ′ P i x, and we consider the L 2 -norm on L 2 p (resp. on L 2 v ) with the weight r 2 (resp. r -2 ). The hermitian product on H is thus written as, for all X = (x 0 , x 1 , p, v) and Y = (y 0 , y 1 , q, w) in H

(X, Y ) H = i=0,1 x ′ i P i y i + 1 0 p(z)q(z) r 2 dz + 1 0 v(z)w(z) r -2 dz.
The norm on H is denoted

H , i.e. for all X = (x ′ 0 , x ′ 1 , p, v) ′ ∈ H, X 2 H = i=0,1 x ′ i P i x i + 1 0 |p| 2 r 2 dz + 1 0 |v| 2 r -2
dz. The domain of operator A reads:

D(A) = (x ′ 0 , x ′ 1 , p, v) ′ ∈ V, p(z = 0) = -C 0 x 0 -d 0 v(z = 0) p(z = 1) = C 1 x 1 + d 1 v(z = 1
) .

Note that D(A) is densely embedded in H.

Lemma 1.

Operator -A is monotone. More precisely, the following equality holds, for all

X = (x ′ 0 , x ′ 1 , p, v) ′ ∈ D(A): ℜ(-AX, X) H = 1 2 x ′ 0 v(0) M 0 x 0 v(0) + 1 2 x ′ 1 v(1) M 1 x 1 v(1) . ( 10 
)
Proof. Let us recall that, for all (X, Y )

∈ H × H, ℜ(X, Y ) H = 1 4 X + Y 2 H - 1 4 X -Y 2 H . Thus, for all (X, Y ) = ((x ′ 0 , x ′ 1 , p, v) ′ , (y ′ 0 , y ′ 1 , q, w) ′ ) ∈ H × H, we have ℜ(X, Y ) H = i=0,1 ℜ(x ′ i P i y i ) + ℜ( 1 0 pq r 2 dz) + ℜ( 1 0 vw r -2 dz) .
We compute, for all

X = (x ′ 0 , x ′ 1 , p, v) ′ in D(A), ℜ(AX, X) H = i=0,1 ℜ(x ′ i P i (A i x i + B i v(z = i))) -ℜ( 1 0 p∂ z v dz) -ℜ( 1 0 v∂ z p dz) = i=0,1 ℜ(x ′ i P i (A i x i + B i v(z = i))) -ℜ( 1 0 ∂ z (pv) dz) = i=0,1 ℜ(x ′ i P i (A i x i + B i v(z = i))) -ℜ(p(z = 1)v(z = 1)) + ℜ(p(z = 0)v(z = 0)) = i=0,1 ℜ(x ′ i P i (A i x i + B i v(z = i))) -C 1 x 1 v(z = 1) -d 1 |v(z = 1)| 2 -C 0 x 0 v(z = 0) -d 0 |v(0)| 2
using the definition of D(A).

Then, recalling that M

i := -A ′ i P i -P i A i C ′ i -P i B i C i -B ′ i P i 2d i
, we can deduce that equation [START_REF] Coron | Control and nonlinearity[END_REF] holds. Now, since M i ≥ 0 for i = 0, 1, we get that for all X in D(A), (-AX, X) H ≥ 0, which prove that -A is a monotone operator.

3.2.

Dissipative realizations for positive pseudo-differential time-operators of diffusive type. For all γ ∈ (0, 1), let us introduce the following kernel function h γ : R + → R + , for all t > 0,

h γ (t) := ∞ 0 e -ξt dM γ (ξ) (11) 
where dM γ (ξ) = µ γ (ξ) dξ with density µ γ (ξ) := sin(γπ) π ξ -γ . Following e.g. [START_REF] Matignon | An introduction to fractional calculus[END_REF], we can compute h γ (t) := 1 Γ(γ) t γ-1 , for t > 0, where Γ is the Euler gamma function. The definition of the Riemann-Liouville fractional integral of order γ of a locally integrable function v reads I γ v := h γ ⋆ v, a causal convolution; it enjoys the nice property

I γ1 • I γ2 = I γ1+γ2 , ∀γ 1 , γ 2 > 0. Since I 1 v(t) := t 0 v(τ ) dτ is the integral of function v, it is convenient to denote it also by ∂ -1
t v; whence for any γ ∈ (0, 1) the notation ∂ -γ t v will be used preferably throughout the paper for the fractional integral I γ .

The following functional spaces will be of interest in the sequel,

H γ = L 2 (R + ; C; dM γ ) , V γ = L 2 R + ; C; (1 + ξ) dM γ , H γ = L 2 (R + ; C; ξ dM γ ) .
We also introduce the notations

c γ := ∞ 0 dMγ (ξ) 1+ξ
< ∞. The condition c γ < ∞ will be useful for the well-posedness condition.

3.2.1. Standard diffusive representations for fractional integrals. Let us define θ : R + → C by, for all t > 0, θ(t) = h β ⋆p (t), where ⋆ is the causal convolution product (the definition of which has been recalled after ( 4)). Note that since h β ∈ L 1 (0, T ) and p ∈ L 2 (0, T ), we have θ ∈ L 2 (0, T ). Let us consider the realization of the input-output system p ∈ L 2 (0, T ) → θ ∈ L 2 (0, T ) (which will help us in yielding a representation of the fractional integral operator ∂ -β t introduced in (1), as done in Section 3.3 below, see e.g., [START_REF] Matignon | Stability properties for generalized fractional differential systems[END_REF][START_REF] Montseny | Diffusive representation of pseudo-differential time-operators[END_REF][START_REF] Matignon | Asymptotic stability of linear conservative systems when coupled with diffusive systems[END_REF])

∂ t ϕ(ξ, t) = -ξ ϕ(ξ, t) + p(t) , (12) 
ϕ(ξ, 0) = 0 , ∀ ξ ∈ R + , (13) 
θ(t) = +∞ 0 ϕ(ξ, t) dM β (ξ) . (14) 
Using h β ⋆ p ∈ L 2 (0, T ), we have |h β ⋆ p(t)| < ∞ for a.e. t ∈ (0, T ). Then using integral representation [START_REF] Curtain | Old and new perspectives on the positive-real lemma in systems and control theory[END_REF] of h β and Fubini theorem, we get

∞ 0 t 0 e -ξ(t-τ ) p(τ ) dτ dM β (ξ) = t 0 ∞ 0 e -ξ(t-τ ) dM β (ξ)p(τ ) dτ ,
and thus θ(t) = ∂ -β t p(t) for a.e. t ∈ (0, T ). The following energy balance can be formally obtained:

ℜ( T 0 p(t) θ(t) dt) = 1 2 ∞ 0 |ϕ(ξ, T )| 2 dM β (ξ) + T 0 ∞ 0 ξ |ϕ(ξ, t)| 2 dM β (ξ) dt .
(15) Similarly to [START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF], the right-hand side of ( 15) is split into two terms, a storage function evaluated at time T only, the following energy

E ϕ (T ) := 1 2 ϕ(T ) 2 H β = 1 2 ∞ 0 |ϕ(ξ, T )| 2 dM β (ξ),
and a dissipated energy on the time interval (0, T ). 

∂ α1 t • ∂ α2 t = ∂ α1+α2 t holds ∀α 1 , α 2 > 0 such that α 1 + α 2 < 1.
Consider now the dynamical system with input p ∈ H 1 (0, T ) and output θ ∈ L 2 (0, T ):

∂ t ϕ(ξ, t) = -ξ ϕ(ξ, t) + p(t) , (16) 
ϕ(ξ, 0) = 0 , ∀ ξ ∈ R + , (17) 
θ(t) = ∞ 0 ∂ t ϕ(ξ, t) dM 1-α (ξ) = ∞ 0 [p(t) -ξ ϕ(ξ, t)] dM 1-α (ξ) . ( 18 
)
Then it can be checked that θ(t) = ∂ α t p(t) for a.e. t ∈ (0, T ). The following energy balance can be formally computed:

ℜ( T 0 p(t) θ(t) dt) = 1 2 ∞ 0 | ϕ(ξ, T )| 2 ξ dM 1-α (ξ) + T 0 ∞ 0 |p -ξ ϕ| 2 dM 1-α dt . (19) 
Again the right-hand side of ( 19) is split into two terms, a storage function evaluated at time T only

E e ϕ (T ) := 1 2 ϕ(T ) 2 e H1-α = 1 2 ∞ 0 | φ(ξ, T )| 2 ξ dM 1-α (ξ),
and a dissipated energy on the time interval (0, T ).

3.

3. An abstract formulation. Now, using representations ( 6)-( 7), ( 12)-( 14), and ( 16)- [START_REF] Lokshin | Fundamental solutions of the wave equation with retarded time[END_REF], when ε = 0 and η = 0, the global system (2)-( 3)-( 5) can be realized into the first order differential equation in time

d dt X = A X , (20) 
where

X := (x ′ 0 , x ′ 1 , p, v, ϕ, ϕ) ′ and A         x 0 x 1 p v ϕ ϕ         :=         A 0 x 0 + B 0 v(z = 0) A 1 x 1 + B 1 v(z = 1) -r -2 ∂ z v -ε +∞ 0 ϕ dM β -η +∞ 0 [p -ξ ϕ] dM 1-α -r 2 ∂ z p -ξϕ + p -ξ ϕ + p         . ( 21 
)
The boundary conditions are, for each i ∈ {0, 1},

p(i) = ℓ i (C i x i + d i v(i)) (22) 
must be taken into account in the functional spaces of the solutions. In the sequel, we shall analyze the well-posedness of this system. Let us compute, at least formally, the following energy balance

d dt 1 2 1 0 |p(z, t)| 2 r 2 (z) dz + 1 2 1 0 |v(z, t)| 2 r -2 (z) dz + d dt E x (t) + 1 0 ε(z)E ϕ (z, t) r 2 (z) dz + 1 0 η(z) E e ϕ (z, t) r 2 (z) dz = - 1 2 x ′ 0 v(0) M 0 x 0 v(0) - 1 2 x ′ 1 v(1) M 1 x 1 v (1) 
- 1 0 ϕ 2 e H β ε(z) r 2 (z) dz - 1 0 p -ξ ϕ 2 H1-α η(z) r 2 (z) dz, (23) 
that will be proved in Theorem 1 below.

3.4.

Well-posedness of the global system. We shall apply Lümer-Phillips theorem in order to show existence and uniqueness of solutions to [START_REF] Yu | Asymptotic stability of linear differential equations in Banach spaces[END_REF].

According to identity [START_REF] Matignon | An introduction to fractional calculus[END_REF], the natural energy space for the solution X would be the following Hilbert space:

H := C n0 × C n1 × L 2 p × L 2 v × L 2 (0, 1; H β ; ε r 2 dz) × L 2 (0, 1; H 1-α ; η r 2 dz
) , with norm, the square of which is equal to

X 2 H = i=0,1 x ′ i P i x i + 1 0 |p| 2 r 2 dz + 1 0 |v| 2 r -2 dz + 1 0 ∞ 0 |ϕ(ξ)| 2 dM β (ξ) ε(z) r 2 (z) dz + 1 0 ∞ 0 ξ| φ(ξ)| 2 dM 1-α (ξ) η(z) r 2 (z) dz .
It is such that its hermitian product for X = (x ′ 0 , x ′ 1 , p, v, ϕ, ϕ) ′ and Y = (y ′ 0 , y ′ 1 , q, w, ψ, ψ) ′ satisfies:

ℜ(X , Y) H = i=0,1 ℜ(x ′ i P i y i ) + ℜ(p, q) L 2 p + ℜ(v, w) L 2 v + 1 0 ℜ(ϕ, ψ) H β ε(z) r 2 (z) dz + 1 0 ℜ( ϕ, ψ) e H1-α η(z) r 2 (z) dz .
We define the Hilbert space V as:

V := C n0 × C n1 × H 1 p × H 1 v × L 2 (0, 1; V β ; ε r 2 dz) × L 2 (0, 1; H 1-α ; η r 2 dz)
, where L 2 (0, 1; V β ; ε r 2 dz) and L 2 (0, 1; H 1-α ; η r 2 dz) are respectively the sets of functions ϕ and ϕ such that

1 0 ϕ 2 V β ε(z) r 2 (z) dz < ∞ and 1 0 ϕ 2 e H1-α η(z) r 2 (z) dz < ∞.
We set as domain of the operator A, the space defined by:

D(A) :=        (x ′ 0 , x ′ 1 , p, v, ϕ, ϕ) ′ ∈ V, p(z = 0) = -C 0 x 0 -d 0 v(z = 0) p(z = 1) = C 1 x 1 + d 1 v(z = 1) (p -ξϕ) ∈ L 2 (0, 1; H β ; ε r 2 dz) (p -ξ ϕ) ∈ L 2 (0, 1; V 1-α ; η r 2 dz)        . (24) 
Note that D(A) is densely embedded in H.

Lemma 2. The operator A : D(A) ⊂ H → H is well-defined.

The proof of this lemma is postponed to Appendix A. The well-posedness of the global system is established in the following result.

Theorem 1. Operator A generates a C 0 -semigroup of contractions and, for each initial condition X 0 ∈ H, there exists a unique weak solution X ∈ C 0 ([0, +∞);

H) ∩ C 1 ([0, +∞); D(A * ) ′ ) to d dt X (t) = A X (t) , ∀t > 0, X (0) = X 0 ; ( 25 
)
where D(A * ) ′ is the topological dual of D(A * ) with respect to the pivot space H. Moreover, for each initial condition X 0 ∈ D(A), there exists a unique strong solution X ∈ C 0 ([0, +∞); D(A)) ∩ C 1 ([0, +∞); H) to ( 25) and it satisfies

d dt 1 2 X (t) 2 H = ℜ(AX (t), X (t)) H ≤ 0 . ( 26 
)
Proof. We shall first prove the monotonicity of the operator -A :

D(A) ⊂ H → H. Let X = (x ′ 0 , x ′ 1 , p, v, ϕ, ϕ) ′ ∈ D(A). Using (10), we have ℜ(-AX, X) H = 1 2 x ′ 0 v(0) M 0 x 0 v(0) + 1 2 x ′ 1 v(1) M 1 x 1 v (1) 
+ℜ 1 0 +∞ 0 ϕ dM β p ε r 2 dz +ℜ 1 0 +∞ 0 [p -ξ φ] dM 1-α p η r 2 dz + 1 0 ℜ(ξϕ -p, ϕ) H β ε r 2 dz + 1 0 ℜ(ξ φ -p, φ) H1-α η r 2 dz = 1 2 x ′ 0 v(0) M 0 x 0 v(0) + 1 2 x ′ 1 v(1) M 1 x 1 v (1) 
+ 1 0 +∞ 0 ξϕϕ dM β ε r 2 dz + 1 0 +∞ 0 [p -ξ φ] [p -ξ φ] dM 1-α η r 2 dz = 1 2 x ′ 0 v(0) M 0 x 0 v(0) + 1 2 x ′ 1 v(1) M 1 x 1 v(1)
+ 1 0 ϕ 2 e H β ε r 2 dz + 1 0 p -ξ ϕ 2 H1-α η r 2 dz .
therefore ℜ(-AX , X ) H ≥ 0, for all X in D(A) and the inequality in equation ( 26) will be fulfilled.

The maximality of -A has been already proved in [START_REF] Haddar | Efficient solution of a wave equation with fractional order dissipative terms[END_REF] and [14, Theorem 2.2.1], by applying Lax-Milgram theorem: in this latter reference however, only strong solutions were examined (i.e. when X 0 lies in D(A)); moreover, only real-valued functional spaces were considered, whereas here, complex-valued functional spaces are allowed, and their study proves necessary for the spectral consideration of section 4 below.

An alternative and new proof provided here is to note that the maximality of -A is a special case of Proposition 1 below, with λ = 1.

From the monotonicity and maximality of the operator -A, and applying Lümer-Phillips theorem (see e.g. [START_REF] Luo | Stability and stabilization of infinite dimensional systems with applications[END_REF]Theorem 2.27]), one concludes that A generates a C 0 -semigroup of contraction, and that (26) holds. The existence and uniqueness of weak or strong solution can be found in e.g. [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF]Chapter 3]. Concerning the regularity of the weak solutions, we refer to [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]Theorem 4.1.6], where the space X -1 is defined and identified as D(A * ) ′ in [32, Proposition 2.10.2].

4. Asymptotic stability. The aim of this section is to prove the following: Theorem 2. Under Assumption 1, we have the asymptotic stability property for (1) with the boundary conditions [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups Mathematische[END_REF]. It means that both the following properties hold:

• (Stability) for each initial condition X 0 ∈ H, the unique (weak) solution X ∈ C 0 ([0, +∞); H) to ( 25) satisfies

X (t) H ≤ X 0 H ;
• (Attractivity) for each initial condition X 0 ∈ H, the unique (weak) solution X ∈ C 0 ([0, +∞); H) to (25) satisfies

X (t) H -→ t→∞ 0 .
Let us first make a comment of physical nature on the above attractivity result: as soon as ε > 0 or η > 0, even with homogenous Dirichlet or Neumann boundary conditions instead of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups Mathematische[END_REF], this result would be true, as already proved in [22, §3.]. In the opposite case, when both ε = 0 and η = 0, Robin-type boundary conditions [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups Mathematische[END_REF] with item 2 of Assumption 1 are required to prove the attractivity result, as already done in [22, §2.].

The proof of the stability part of Theorem 2 follows from the fact that A generates a semigroup of contractions, as claimed in Theorem 1. Now, to prove the attractivity part of Theorem 2, let us apply [2, Stability theorem], that is recalled here: Theorem 3. [2, Stability theorem] Let us consider the infinitesimal generator A of a bounded C 0 -semigroup on a reflexive Banach space. Assume that no eigenvalue of A lies on the imaginary axis. If σ(A) ∩ iR is countable, then the semigroup generated by A is attractive, which means that the solutions X of the differential

equation d dt X (t) = AX (t) tend to 0 with t → ∞.
The attractivity part of Theorem 2 follows from this result, Theorem 1 and both the following lemmas: Lemma 3. We have

σ(A) ∩ {iα, α ∈ R, α = 0} = ∅ . Lemma 4. λ = 0 is not an eigenvalue of A.
Let us first prove Lemma 4.

Proof. From ( 21) we get that (x 0 , x 1 , p, q, ϕ, φ) ∈ Ker(A) ∩ D(A) if and only if

               -A 0 x 0 -B 0 v(0) = 0 -A 1 x 1 -B 1 v(1) = 0 1 r 2 ∂ z v + ε ∞ 0 ϕ dM β (ξ) + η ∞ 0 (p -ξ φ) dM 1-α (ξ) = 0 ∂ z p = 0 ξϕ = p ξ φ = p (27) 
First note that, in the special case ε = η = 0 when there is no internal damping, system [START_REF] Montseny | Diffusive representation of pseudo-differential time-operators[END_REF] simplifies into four equations only, the two differential equations on v, p imply that they are constant functions, and the two algebraic equations on x 0 , x 1 impose the boundary conditions on v, p; as in the general case below, these functions are found to be 0 thanks to item 2 of Assumption 1.

In the general case, the fourth equation of ( 27) implies that p is a constant function. Now the third and the fifth equation of ( 27) imply that 1

r 2 ∂ z v + ε ∞ 0 p ξ dM β (ξ) = 0. Since dM γ (ξ) = sin(γπ) π ξ -γ dξ, the integral 1 0 p ξ dM β (ξ)
converges if and only if p = 0. Thus p is identically equal to zero. This implies with the third equation of ( 27) that v is a constant function.

Let us recall the boundary conditions 6)-( 7) is a minimal realization of Z i and with item 1 of Assumption 1, s = 0 is not a pole of Z i and thus A i is invertible for each i = 0, 1. This gives x 0 = -A -1 0 B 0 v(0) and thus p(0) = (-C 0 A -1 0 B 0d 0 ))v(0) = -Z 0 (s = 0)v(0). Similarly, we have p(1) = Z 1 (s = 0)v(1). Recall that, under item 2 of Assumption 1, the acoustic impedances Z i (s) are strictly positive real, thus p = v = 0. Now ξϕ = 0 and ξ φ = 0 are equivalent to ϕ(ξ) = 0 and φ(ξ) = 0, for all ξ > 0. This concludes the proof of Lemma 4.

p(z = 0) = -C 0 x 0 -d 0 v(z = 0) and p(z = 1) = C 1 x 1 + d 1 v(z = 1). Since (
Thus to complete the proof of Theorem 2, it remains to prove Lemma 3; it is a special case of the Proposition 1 below with λ = iω = 0.

Proposition 1. For λ ∈ {iω, ω = 0} ∪ {λ ∈ R, λ > 0}, the resolvent operator (λI -A) -1 is a bounded operator from H to H. Proof of Proposition 1. Let λ ∈ {iω, ω = 0} ∪ {λ ∈ R, λ > 0}. Let us first note that, for all (x ′ 0 , x ′ 1 , p, v, ϕ, φ) ′ ∈ D(A), (λI -A)         x 0 x 1 p v ϕ φ         =         λx 0 -A 0 x 0 -B 0 v(z = 0) λx 1 -A 1 x 1 -B 1 v(z = 1) λp + r -2 ∂ z v + ε ∞ 0 ϕdM β + η ∞ 0 (p -ξ φ) dM 1-α λv + r 2 ∂ z p λϕ + ξϕ -p λ φ + ξ φ -p         (28) 
Let us consider the following resolvent equation, for all (y ′ 0 , y ′ 1 , f, g, χ, χ) ′ ∈ H, we look for some

(x ′ 0 , x ′ 1 , p, v, ϕ, φ) ′ ∈ D(A) such that         y 0 y 1 f g χ χ         = (λI -A)         x 0 x 1 p v ϕ φ         . ( 29 
)
We divide the proof into five steps, as follows:

Step 1: solving (29) with respect to (x 0 , x 1 );

Step 2: solving (29) with respect to p;

Step 3: solving (29) with respect to v;

Step 4: solving (29) with respect to (ϕ, φ);

Step 5: checking that the solution (x 0 , x 1 , p, v, ϕ, φ) belongs to D(A).

Step 1: solving (29) with respect to (x 0 , x 1 ). Recall that, under item 2 of Assumption 1,

Z i (s) = d i + C i (s I ni -A i ) -1 B i
is strictly positive real and the realization is minimal: thus, all eigenvalues of A i are poles of Z i (s), with strictly negative real parts. Thus λ ∈ σ(A i ) and one can solve the first two algebraic equations with respect to x 0 , x 1 ,

x i = (λI ni -A i ) -1 (y i + B i v(i)) (30) 
for i = 0, 1. At this stage the function v is still to be determined.

Imposing from now on that we look for solutions belonging to D(A), we have p(z = i) = ℓ i (C i x i + d i v(z = i)) for each i = 0, 1, and thus, with [START_REF] Rantzer | On the Kalman-Yakubovich-Popov lemma[END_REF] 

p(i) = ℓ i Z i (λ)v(i) + C i (λI ni -A i ) -1 y i , (31) 
and

v(i) = 1 Z i (λ) ℓ i p(i) -C i (λI ni -A) -1 y i . (32) 
Note that Z i (λ) = 0, since the acoustic impedances are strictly positive real, and λ > 0 or λ = iω with ω = 0.

Step 2: solving (29) with respect to p. With the last two equations of (29), we get

ϕ = χ + p λ + ξ , (33) and φ 
= χ + p λ + ξ . ( 34 
)
Both equations imply

ϕ = 1 λ + ξ p + 1 λ + ξ χ , (35) 
and

p -ξ φ = λ λ + ξ p - ξ λ + ξ χ . (36) 
Together with [START_REF] Nohel | Frequency domain methods for Volterra equations[END_REF], the third equation of ( 29) yields

λ + ε ∞ 0 1 λ + ξ dM β (ξ) + η ∞ 0 λ λ + ξ dM 1-α (ξ) p + r -2 ∂ z v = h ( 37 
)
where h is defined by

h := f -ε ∞ 0 χ(ξ) λ + ξ dM β (ξ) + η ∞ 0 ξ χ(ξ) λ + ξ dM 1-α (ξ) .
Using Cauchy-Schwarz inequality (with χ ∈ H β locally, and χ ∈ H 1-α locally) and using the boundness of ε and η, one can easily check that h ∈ L 2 p . We choose to solve (37) in the unknown variables (p, v) in a weak sense, in order to recover the regularity that is needed. To do that, we introduce q ∈ H 1 p . We have r 2 ∂ z q ∈ L 2 v and, with the fourth equation of ( 29),

g = λv + r 2 ∂ z p ∈ L 2 v . Thus -λ 1 0 v∂ z q dz = - 1 0 g∂ z q dz + 1 0 r 2 ∂ z p∂ z q dz .
By integrating in part in the first integral, we get

λ 1 0 ∂ z vq dz = - 1 0 g∂ z q dz + λ(v(1)q(1) -v(0)q(0)) + 1 0 r 2 ∂ z p∂ z q dz . ( 38 
)
Taking the hermitian product of (37) with λqr 2 , and using (38), we get

λ 2 1 0 pqr 2 dz + λ ∞ 0 1 λ+ξ dM β (ξ) 1 0 pqεr 2 dz + λ 2 ∞ 0 1 λ+ξ dM 1-α (ξ)
1 0 ηpqr 2 dz +λ(v(1)q(1)v(0)q(0)) - With [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF], we compute

v(1)q(1) -v(0)q(0) = 1 Z 1 (λ) p(1)q(1) + 1 Z 0 (λ) p(0)q(0) - 1 Z 1 (λ) C 1 (λI n1 -A 1 ) -1 y 1 q(1) (40) 
+ 1 Z 0 (λ) C 0 (λI n0 -A 0 ) -1 y 0 q(0)
Thus, using (40), we can rewrite (39) as an equation in the unknown p ∈ H 1 p , such that a(p, q) = l(q) holds ∀q ∈ H 1 p , for some appropriate sesquilinear form a and anti-linear form l. In the case λ > 0, the complex version of Lax-Milgram applies, the coercivity of the underlying sesquilinear form a being garanteed thanks to ℜ(a(p, p)) ≥ min(1, λ 2 ) p H 1 p , the positivity of Z i (λ) for i = 0, 1 when λ > 0, and the fact that λ > 0. This case is being used in Theorem 1, when proving the maximality of A. But it is not general when λ = iω with ω = 0. The coercivity of a is certainly lost in that case. This is the reason why we resort to the Fredholm alternative, which is the proof that is presented here, which holds true in both cases.

With (40) at hand, we can rewrite (39) as

-(K λ p, q) H 1 p + (p, q) H 1 p = l(q)
where (K λ p, q) H 1 p := (-λ 2 + 1) 1)q(1) -λ Z0(λ) p(0)q(0), l(q) := λ 1 0 h q r 2 dz + 1 0 g ∂ z q dz + µ 1 q(1)µ 0 q(0) with

1 0 pq r 2 dz -λ ∞ 0 1 λ+ξ dM β (ξ) 1 0 pq ε r 2 dz -λ 2 ∞ 0 1 λ+ξ dM 1-α (ξ) 1 0 pq η r 2 dz -λ Z1(λ) p(
µ i := λ Z i (λ) C i (λI ni -A i ) -1 y i .
Note that l is anti-linear in H 1 p . The continuity of l follows from trace theorem and the definition of the hermitian product in H 1 p . Thus, by Riesz representation theorem, there exists an L ∈ H 1 p such that we have, for all q ∈ H 1 p , l(q) = (L, q) H 1 p . Lemma 5. Operator K λ : H

1 p → H 1 p is compact in H 1 p . The proof of this lemma is postponed to Appendix B.
with the Fredholm alternative, only two cases may occur:

• either 1 is an eigenvalue of K λ :

• or 1 is not an eigenvalue of K λ and then (K λ -I) -1 does exist and is continuous on H 1 p . We may prove the following Lemma 6. The value 1 is not an eigenvalue of K λ . Proof. To prove Lemma 6, we assume the converse and show a contradiction. If 1 is an eigenvalue, then there exists p ∈ H 1 p , p = 0, such that (K λ p, p) H 1 p = (p, p) H 1 p . By definition of the operator K λ , we get

λ 2 1 0 |p| 2 r 2 dz + 1 0 |∂ z p| 2 r 2 dz + ∞ 0 λ(λ+ξ) |λ+ξ| 2 dM β (ξ) 1 0 |p| 2 ε r 2 dz (41) + ∞ 0 λ 2 (λ+ξ) |λ+ξ| 2 dM 1-α (ξ) 1 0 |p| 2 ηr 2 dz + λ Z1(λ) |p(1)| 2 + λ Z0(λ) |p(0)| 2 = 0 .

Two cases may been inspected:

• if λ > 0, then, due to item 2 of Assumption 1, by inspecting the real part of the left-hand side of (41), a strictly positive value is obtained: this is a contradiction; • else if λ = iω, with ω = 0, then, by inspecting the imaginary part of (41) we get

ℑ(λ) ∞ 0 ξ |λ+ξ| 2 dM β (ξ) 1 0 |p| 2 ε r 2 dz + ∞ 0 |λ| 3 |λ+ξ| 2 dM 1-α (ξ) 1 0 |p| 2 η r 2 dz + ℜ(Z 1 (λ)) |p(1)| 2 |Z1(λ)| 2 +ℜ(Z 0 (λ)) |p(1)| 2 |Z0(λ)| 2 =
0 which is a contradiction with ℜ(Z i (iω)) > 0 (which follows from item 2 of Assumption 1), ε(z) ≥ 0, and η(z) ≥ 0, for all z ∈ [0, 1]. This concludes the proof of Lemma 6.

Combining the Fredholm alternative and Lemma 6, the map H → H 1 p , (y 0 , y 1 , f, g, χ, χ) → p exists and is continuous.

Step 3: solving (29) with respect to v. With the fourth equation of ( 29) we can define

v = 1 λ (g -r 2 ∂ z p). It only belongs to L 2 v a priori. But with (37), p ∈ H 1 p ⊂ L 2 p and h ∈ L 2 p , we have ∂ z v ∈ L 2 p hence v ∈ H 1 p . Therefore the map H → H 1
v , (y 0 , y 1 , f, g, χ, χ) → v is well-defined and continuous.

Step 4: solving (29) with respect to (ϕ, φ). In order to check that the unique solution X belongs to V, we need to prove that ϕ ∈ L 2 (0, 1;

V β ; ε r 2 dz) and ϕ ∈ L 2 (0, 1; H 1-α ; η r 2 dz), using p ∈ H 1 p ⊂ L 2 p , χ ∈ L 2 (0, 1; H β ; ε r 2 dz) and χ ∈ L 2 1; H 1-α ; η r 2 dz).
Note that, for all ξ > 0,

1 |λ + ξ| ≤ max 1, 1 |λ| √ 2 1 + ξ . ( 42 
)
and let M λ := √ 2 max 1, 1 |λ| . Recall (35). On the first hand, due to (42), since 1 1+ξ 2

V β = c β one has 1 λ+ξ p 2 L 2 (0,1;V β ;ε r 2 dz) ≤ M λ 1 1+ξ p 2 L 2 (0,1;V β ;ε r 2 dz) ≤ M λ c β ε ∞ p 2 L 2 p ; on the other hand, since 1 1+ξ χ 2 V β = 1 √ 1+ξ χ 2 H β , then one has 1 λ+ξ χ 2 L 2 (0,1;V β ;ε r 2 dz) ≤ M λ 1 1+ξ χ 2 L 2 (0,1;V β ;ε r 2 dz) ≤ M λ χ 2 L 2 (0,1;H β ;ε r 2 dz) .
Similar considerations apply to ϕ = 1 λ+ξ p + 1 λ+ξ χ; indeed

1 1+ξ 2 e H1-α ≤ c 1-α implies 1 λ+ξ p 2 L 2 (0,1; e H1-α;η r 2 dz) ≤ M λ 1 1+ξ p 2 L 2 (0,1; e H1-α;η r 2 dz) ≤ M λ c 1-α η ∞ p 2 L 2 p ; whereas we have 1 λ + ξ χ 2 L 2 (0,1; e H1-α;η r 2 dz) ≤ M λ χ 2 L 2 (0,1; e H1-α;η r 2 dz) .
Thus, with (37), the map H → L 2 (0, 1; V β ; ε r 2 dz) × L 2 (0, 1; H 1-α ; η r 2 dz) (y 0 , y 1 , f, g, χ, χ) → (ϕ, φ) is also well-defined and continuous.

Step 5: checking that the solution (x 0 , x 1 , p, v, ϕ, φ) belongs to D(A). At the end of Step 4, it is proved that there exists a unique (x 0 , x 1 , p, v, ϕ, φ) in V solving [START_REF] Polack | Time domain solution of Kirchhoff's equation for sound propagation in viscothermal gases: a diffusion process[END_REF]. It remains to show that this solution belongs to D(A).

It has already been taken explicitely into account that p(z = 0) = -C 0 x 0d 0 v(z = 0), p(z = 1) = C 1 x 1 + d 1 v(z = 1) in Step 1 of this proof.

What remains to be proved is that pξϕ ∈ L 2 (0, 1; H β ; ε r 2 dz) and pξ ϕ ∈ L 2 (0, 1; V 1-α ; η r 2 dz). Let us check that successively. • One checks that ξ ϕp = -λ a+ξ p + ξ λ+ξ χ ∈ L 2 (0, 1; V 1-α ; η r 2 dz) by firstly noting that This concludes the proof of Proposition 1.

Conclusion.

In this paper, the stability of Webster-Lokshin equation has been proven, under physically relevant assumptions. This equation models the sound propagation in a bounded acoustic domain. A representation in an infinite dimensional space has been used to represent the fractional integrals and fractional derivatives, whereas the boundary conditions of the partial differential equation are given by a finite dimensional dynamics. Exploiting the energy decay is not sufficient to prove the stability since the LaSalle invariance principle did not apply. However a study of the resolvent equation is fruitful when using the Arendt-Batty stability condition. This work leaves many questions open. In particular it could be interesting to study the speed of convergence as the time goes to the infinity. More precisely, even if it is known that exponential stability does not hold (see e.g. [START_REF] Matignon | Asymptotic stability of linear conservative systems when coupled with diffusive systems[END_REF]Remark 2.7] for the one-dimensional case, or [START_REF] Matignon | Stability properties for generalized fractional differential systems[END_REF] for fractional differential equations), employing the resolvent equation approach and applying [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF][START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups Mathematische[END_REF], we might be able to characterize the speed of decay.

As a possible illustration of previous research line, designing a numerical scheme as in [START_REF] Haddar | Theoretical and numerical analysis of the Webster-Lokshin model[END_REF]Chapter 3] may me fruitful to check the convergence speed of the energy.

Another question is to relax item 1 of Assumption 1, and make use of a dissipative realization in an infinite-dimensional space, as in [START_REF] Arov | The infinite-dimensional continuous time Kalman-Yakubovich-Popov inequality[END_REF], for a passive non-rational impedance.

More difficult questions of theoretical nature then arise when dealing with nonlinear PDE models, such as the Burgers-Lokshin model, which is being used in musical acoustics to model brassy effects in wind instruments: both nonlinearity and fractional derivatives are to be found in this wave equation. But different techniques to study asymptotic stability, if any, will have to be used, following e.g. [START_REF] Coron | Control and nonlinearity[END_REF] and references therein. Again an energy balance can be fruitful to compute candidate Lyapunov functions.

1 0 g∂ z q dz + 1 0 1 0

 111 ∂ z p∂ z qr 2 dz = λ hqr 2 dz . (39)

λ λ + ξ p 2 L 2 2 L 2 p , and secondly using ξ λ+ξ χ 2 V1-α ≤ M λ ξ 1+ξ χ 2 eV1-α ≤ M λ χ 2 eV1-α to deduce ξ λ + ξ χ 2 L 2 2 L 2

 22222222222 (0,1;V1-α;η r 2 dz) ≤ |λ|M λ c 1-α η ∞ p (0,1;V1-α;η r 2 dz) ≤ M λ χ (0,1; e V1-α;η r 2 dz) .

•

  From ξ ϕp = -λ λ+ξ p + ξ λ+ξ χ and (42), one easily deduces that (pξϕ) ∈ L 2 (0, 1; H β ; ε r 2 dz), sinceλ λ + ξ p 2 L 2 (0,1;H β ;ε r 2 dz) ≤ |λ|M λ c β ε ∞ p 2 (0,1;H β ;ε r 2 dz) ≤ M λ χ 2 L 2 (0,1;H β ;ε r 2 dz) .

		L 2 p ,
	and using ξ 1+ξ ≤ 1,	
	ξ λ + ξ	χ 2 L 2
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Appendix A. Proof of Lemma 2. To prove that A : D(A) ⊂ H → H is welldefined, let us consider each term of [START_REF] Matignon | Stability properties for generalized fractional differential systems[END_REF] separately.

• for the first two components of equation [START_REF] Matignon | Stability properties for generalized fractional differential systems[END_REF], due to the trace theorem

for some positive constant c 0 , therefore |v(z

• for the third component, on the one hand we have

One the other hand, using Schwarz inequality

Finally, using again Schwarz inequality, we have

Hence, there exists a C > 0, such that for all X ∈ D(A), AX H ≤ C X V . This concludes the proof of Lemma 2.

Appendix B. Proof of Lemma 5. We have

and K λ 2 are three operators on H 1 p respectively defined by, for all (p, q) ∈ H

The continuity K λ i , for i = 0, 1, is due to the continuity of the trace function. Moreover, by Riesz representation theorem, (K λ i p, q)

i is of rank one, hence compact. Now we note that, for all (p, q) ∈ H

First, using Riesz representation theorem, it can easily be proved that K λ 2 is defined as a bounded operator on H 1 p . Second, taking q = K λ 2 p in the definition, and using Cauchy-Schwarz inequality, we prove the following: This concludes the proof of Lemma 5.