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GRADED LIE ALGEBRAS ASSOCIATED TO A

REPRESENTATION OF A QUADRATIC ALGEBRA

HUBERT RUBENTHALER

Preliminary version

Abstract. Let (g0, B0) be a quadratic Lie algebra (i.e. a Lie alge-

bra g0 with a non degenerate symmetric invariant bilinear form

B0) and let (ρ, V ) be a finite dimensional representation of g0. We

define on Γ(g0, B0, V ) = V ∗
⊕ g0 ⊕ V a structure of local Lie alge-

bra in the sense of Kac ([4]), where the bracket between g0 and V

(resp. V ∗) is given by the representation ρ (resp. ρ∗), and where

the bracket between V and V ∗ depends on B0 and ρ. This im-

plies the existence of two Z-graded Lie algebras gmax(Γ(g0, B0, V ))

and gmin(Γ(g0, B0, V )) whose local part is Γ(g0, B0, V ). We inves-

tigate these graded Lie algebras, more specifically in the case

where g0 is reductive. Roughly speaking, the map (g0, B0, V ) 7−→

gmin(Γ(g0, B0, V )) a bijection between triplets and a class of graded

Lie algebras. We show that the existence of ”associated sl2-triples”

is equivalent to the existence of non trivial relative invariants on

some orbit, and we define the ”graded Lie algebras of symplectic

type” which give rise to some dual pairs.

AMS classification: 17B70(17B20)
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1. Introduction

In this paper all gradings are Z-gradings. If g = ⊕n
i=−ngi is a grading of a

(finite dimensional) complex semi-simple Lie algebra, it is well known that if

B denotes the Killing form of g, then B(gi, gj) = 0 if i + j 6= 0. This allows

us to identify g−1 with the dual g∗1. Moreover as B is invariant the bracket

representation (g0, g−1) can be identified with the dual representation (g0, g
∗
1).

It is then a natural question to ask if any finite dimensional representation

(g0, ρ, V ) of a finite dimensional Lie algebra g0 can be embedded in a graded Lie

algebra g = ⊕+∞
i=−∞gi such that (g0, g1) ≃ (g0, ρ, V ) and (g0, g−1) ≃ (g0, ρ

∗, V ∗),

and such that the bracket between V and V ∗ is non trivial.

The first result of this paper is to give a positive answer to this question for

any representation of a quadratic Lie algebra. A quadratic Lie algebra is a pair

(g0, B0) where g0 is a Lie algebra and B0 a non-degenerate invariant symmetric

bilinear form on g0. Of course the definition of the bracket between V and V ∗

will depend on B0 and ρ.
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We will use a result of V. Kac ([4]) which asserts that in order to construct

a graded Lie algebra g = ⊕i∈Zgi it suffices to construct the local part Γ =

g−1⊕g0⊕g1, which has to be endowed with a partial Lie bracket (see section 2

for details). Therefore once we have build the partial bracket on the local part

Γ(g0, B0, ρ) = V ∗ ⊕ g0 ⊕ V , the existence of the ”global” Lie algebra is just an

application of a result of Kac. In fact Kac theory provides us with two such

graded Lie algebras: a maximal one (denoted here gmax(Γ(g0, B0, ρ))) and a

minimal one (denoted gmin(Γ(g0, B0, ρ))). Any graded Lie algebra with a given

local part is a quotient of the maximal algebra, and has a quotient isomorphic to

the minimal one. Of course, in general, these algebras are infinite dimensional.

Lets us now give a more precise description of the paper.

In section 2.1 we give a brief account of the results of Kac that we will use.

In section 2.2 we prove a general result concerning this construction. Let Γ =

g−1 ⊕ g0 ⊕ g1 be a local Lie algebra and let gmin(Γ) = ⊕+∞
−∞gi be the minimal

graded Lie algebra whith local part Γ. Let |n| ≥ 2. We show that there exists a

universal polynomial Pn defined on the local part Γ such that gn = {0} if and

only if the identity Pn = 0 is satisfied on the local Lie algebra Γ.

In section 3.1 we define the local Lie algebra structure on Γ(g0, B0, ρ) = V ∗ ⊕
g0 ⊕ V (see Theorem 3.1.1) . In section 3.2 we give necessary and sufficient

conditions for the algebras Γ(g10, B
1
0 , ρ1) and Γ(g20, B

2
0 , ρ2) corresponding to two

fundamental data to be isomorphic. We also investigate the dependence of the

local structure on B0 and ρ and show that any isomorphism between the ”fun-

damental triplets” (g10, B
1
0 , (ρ1, V1)) and (g20, B

2
0 , (ρ1, V2)) can be extended to an

isomorphism between Γ(g10, B
1
0 , ρ1) and Γ(g20, B

2
0 , ρ2). In section 3.3 we apply

Kac Theorem to obtain the minimal and maximal Lie algebras associated to

the local Lie algebra Γ(g0, B0, ρ) = V ∗ ⊕ g0 ⊕ V . We also prove, that under

some conditions, the reductive graded Lie algebras are always minimal graded

Lie algebras (Proposition 3.3.3). Section 3.4 deals with another important no-

tion for graded Lie algebras due to Kac, namely the transitivity (see Definition

3.4.1). We give a necessary and sufficient condition for the local Lie alge-

bra Γ(g0, B0, ρ) (or the minimal Lie algebra gmin(Γ(g0, B0, ρ))) to be transitive

(Proposition 3.4.3). We also prove that if g0 is reductive, then under some con-

ditions including the transitivity of Γ(g0, B0, ρ)), the fact that gminΓ(g0, B0, ρ))

is finite dimensional implies that gminΓ(g0, B0, ρ)) is semi-simple (see Propo-

sition 3.4.6). In section 3.5 we show that the form B0 extends uniquely to

an invariant symmetric bilinear form B on gmin(Γ(g0, B0, ρ)). Moreover if the
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local part is transitive then the form B is nondegenerate (Proposition 3.5.2).

This allows us to show that there exists a bijection between some equivalence

classes of fundamental triplets and the equivalence classes of transitive graded

Lie algebras endowed with a non-degenerate symmetric bilinear form B such

that B(gi, gj) = 0 if i 6= −j (Theorem 3.5.5).

In section 4.1 we give a necessary and sufficient condition for the existence of

an sl2-triple (Y,H0,X) where Y ∈ V ∗, X ∈ V and where H0 is the ”grading

element” of the center of g0 defined by the condition ρ(H0)|V = 2IdV (see

Theorem 4.1.2). In section 4.2 we assume that the representation ρ lifts to a

representation of a connected algebraic group G0 with Lie algebra g0. We prove

then that the existence of such an sl2-triple is also equivalent to the existence of

a G0-orbit in V supporting a non trivial rational relative invariant (see Theorem

4.2.3).

Section 5 is devoted to the so-called graded Lie algebras of symplectic type.

These algebras are defined in section 5.1 to be the minimal Lie algebras as-

sociated to g0 = gl(W ) and to the ”natural ” representation of sl(W ) = g′0
on the space V = C

p[W ] of homogeneous polynomials of degree p on W (see

Definition 5.1.1). We classify the finite dimensional Lie algebras of symplectic

type (Proposition 5.1.3) and show that these algebras are always associated to

sl2-triples in the sense of section 4 (Theorem 5.1.4). Finally, in section 5.2 we

show, under some assumptions, that if (A,W ) is an irregular reductive regular

prehomogeneous vector space, then the semi-simple part a′ of the Lie algebra of

A is the member of a dual pair in the Lie algebras of symplectic type associated

to C
p[W ], where p is the degree of the fundamental relative invariant of (A,W )

(Theorem 5.2.4).

Acknowledgment: I would like to thank Michel Brion who communicated me

Lemma 4.2.2.

2. Graded Lie algebras and local Lie algebras

In this paper all the algebras are defined over the field C of complex numbers.

2.1. Maximal and minimal algebras.

Let us first recall various definitions and results from [4].

Definition 2.1.1.
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A Lie algebra g is said to be graded if:

1) g is a direct sum of subspaces: g = ⊕i∈Z gi, such that dim gi < +∞ and such

that [gi, gj ] ⊂ gi+j, for all i, j ∈ Z.

2) g is generated by g−1 ⊕ g0 ⊕ g1.

If g is a graded Lie algebra, the subspace Γ(g) = g−1⊕g0⊕g1 is called the local

part of g.

Definition 2.1.2.

1) A local Lie algebra is a direct sum Γ = g−1 ⊕ g0 ⊕ g1 of finite dimen-

sional subspaces such that if |i + j| ≤ 1 there exists a bilinear anticommu-

tative operation gi × gj → gi+j((x, y) → [x, y]) such that the Jacobi identity

[x, [y, z]] = [[x, y], z] + [y, [x, z]] holds each time the three terms of the identity

are defined.

2) A symmetric bilinear form BΓ on a local Lie algebra Γ is said to be invariant

if the identity

BΓ([x, y], z) = BΓ(x, [y, z])

holds for x, y, z ∈ Γ each time that the brackets are defined.

Definition 2.1.3. Let g1 = ⊕n∈Zg1n and g2 = ⊕n∈Zg2n be two graded Lie alge-

bras. A homomorphism of graded Lie algebras from g1 to g2 is a map Ψ : g1 −→
g2 which is a homomorphism of Lie algebras such that ∀n ∈ N,Ψ(g1n) ⊂ g2n. Ho-

momorphisms of local Lie algebras are defined similarly.

Of course the local part Γ(g) of a graded Lie algebra g, endowed with the

bracket of g is a local Lie algebra. A natural question is to know if, for a given

local Lie algebra Γ, there exists a graded Lie algebra whose local part is Γ. The

answer is ”yes”. More precisely we have:

Theorem 2.1.4. (Kac, [4], Proposition 4)

Let Γ = g−1 ⊕ g0 ⊕ g1 be a local Lie algebra.

1) There exists a unique graded Lie algebra gmax(Γ) whose local part is Γ and

which satisfies the following universal property.

Any morphism of local Lie algebras Γ → Γ(g) from Γ into the local part Γ(g) of

a graded Lie algebra g extends uniquely to a morphism of graded Lie algebras

gmax(Γ) → g. (And hence any graded Lie algebra whose local part is isomorphic

to Γ, is a quotient of gmax(Γ)). Moreover we have

gmax(Γ) = F (g−1)⊕ g0 ⊕ F (g1),

where F (g−1) (resp. F (g1)) is the free Lie algebra generated by g−1 (resp. g1).
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2) There exists a unique graded Lie algebra gmin(Γ) whose local part is Γ and

which satisfies the following universal property.

Any surjective morphism of local Lie algebras Γ(g) → Γ from the local part of

a graded Lie algebra g into Γ extends uniquely to a (surjective) morphism of

graded Lie algebras g → gmin(Γ). (And hence gmin(Γ) is a quotient of any

graded Lie algebra whose local part is isomorphic to Γ).

In fact gmax(Γ) has a unique maximal graded ideal Jmax such that Jmax ∩ Γ =

{0}, and gmax(Γ)/Jmax = gmin(Γ).

2.2. When is dim(gmin(Γ)) < +∞?.

Let Γ be a local Lie algebra. Consider the minimal graded Lie algebra gmin(Γ)

associated to Γ. A natural question is to ask how one can see, only from the

knowledge of the local Lie algebra Γ, wether or not gmin(Γ) is finite dimensional.

For example suppose that Γ is already a (3-graded) Lie algebra, but we do not

know anything about the brackets between two elements of g1 or of g−1. Then

we have surely

P2(Y,X1,X2) = [[Y,X1],X2] + [X1, [Y,X2]] = 0 (2− 2− 1)

for all Y ∈ g−1 and all X1,X2 ∈ g−1. This is because this element is equal to

[Y, [X1,X2]] = 0 (2− 2− 2)

in gmin(Γ). The first equation makes sense in Γ, but not the second. Conversely,

if the relation (2− 2− 1) holds in the local Lie algebra Γ, then Γ = gmin(Γ) is

in fact a 3-graded Lie algebra.

We will show that there exists a ”universal” polynomial identity Pn = 0 in

any local Lie algebra Γ which is a necessary and sufficient condition for having

gn = {0} (see Theorem 2.2.4 below).

Let us denote by Vn = {Y1, . . . , Yn−1,X1, . . . ,Xn} a set of 2n− 1 variables. Let

F (Vn) be the free Lie algebra on Vn.

A Lie monomial of degree one in the variables Vn is an element of Vn. By

induction a Lie monomial of degree k in the variables Vn is an element of F (Vn)

of the form [u, v] where u is a Lie monomial of degree i (1 ≤ i < k) and v is

a Lie monomial of degree k − i . A Lie polynomial P in the variables Vn is a

linear combination of monomials (in other words it is just an element of F (Vn)).

Proposition 2.2.1.
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Let n ≥ 2. The Lie monomial [Y1, [Y2, [. . . , [Yn−1, [X1, [. . . , [Xn−1,Xn] . . . ] is

equal (as elements of the free algebra F (Vn)) to a Lie polynomial of the form

Pn(Y1, . . . , Yn−1,X1, . . . ,Xn) =
∑

α

Uα(Y1, . . . , Yn−1,X1, . . . ,Xn)

where each monomial Uα makes sense in the local Lie algebra Γ when Yi ∈
g−1, i = 1, . . . , n− 1 and when Xj ∈ g1, j = 1, . . . , n.

Proof.

As we have already noticed we have

[Y1, [X1,X2]] = P2(Y1,X1,X2]] = [[Y1,X1],X2]] + [X1, [Y1,X2]]

and the right hand side is defined in the local Lie algebra if Y1 ∈ g−1, and

X1,X2 ∈ g1.

Suppose now that the result is true for n− 1. We start with the monomial

[Y1, [Y2, [. . . , [Yn−1, [X1, [. . . , [Xn−1,Xn] . . . ] (2− 2− 3)

Consider also the sub-monomial

[Yn−1, [X1, [. . . , [Xn−1,Xn] . . . ]

Using the Jacobi identity we get

[Yn−1, [X1, [. . . , [Xn−1,Xn] . . . ]

=
∑n

i=1[X1, [. . . , [[Yn−1,Xi], [Xi+1, [. . . , [Xn−1,Xn] . . . ]

Consider again the sub-monomial [[Yn−1,Xi], [Xi+1, [. . . , [Xn−1,Xn] . . . ], and

set Ui = [Yn−1,Xi] (notice that if Yn−1 ∈ g−1, and Xi ∈ g1, then Ui ∈ g0).

From the Jacobi identity we obtain

[[Yn−1,Xi], [Xi+1, [. . . , [Xn−1,Xn] . . . ]

= [Ui, [Xi+1, [. . . , [Xn−1,Xn] . . . ]

=
∑n

k=i+1[Xi+1, [. . . , [[Ui,Xk], [. . . , [Xn−1,Xn] . . . ]

=
∑n

k=i+1[Xi+1, [. . . , [X̃i
k, [. . . , [Xn−1,Xn] . . . ]

where X̃i
k = [Ui,Xk] = [[Yn−1,Xi],Xk] is again a monomial which makes sense

in Γ. Hence we have obtained

[Yn−1, [X1, [. . . , [Xn−1,Xn] . . . ]

=
∑n

i=1

∑n
k=i+1[X1, [X2, [. . . , [Xi−1, [Xi+1, [. . . , [X̃i

k, [. . . , [Xn−1,Xn] . . . ]

and finally if we report in (2− 2− 3) we get
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[Y1, [Y2, [. . . , [Yn−1, [X1, [. . . , [Xn−1,Xn] . . . ]

=

n∑

i=1

n∑

k=i+1

[Y1, [Y2, . . . [Yn−2, [X1, . . . [Xi−1, [Xi+1, [. . . [X̃
i
k, [. . . [Xn−1,Xn] . . . ]

But this last expression is a sum of monomials of type (2− 2− 3) with one ”Y ”

and one ”X” less and therefore

[Y1, [Y2, [. . . , [Yn−1, [X1, [. . . , [Xn−1,Xn] . . . ]

=

n∑

i=1

n∑

k=i+1

Pn−1(Y1, . . . , Yn−2,X1, . . . ,Xi−1,Xi+1, . . . , X̃
i
k, . . . ,Xn).

As X̃i
k = [[Yn−1,Xi],Xk] we obtain by induction that each

Pn−1(Y1, . . . , Yn−2,X1, . . . ,Xi−1,Xi+1, . . . , X̃
i
k, . . . ,Xn) is a sum of monomials

which make sense in Γ if Xi ∈ g1 and Yj ∈ g−1

�

Denote by gmax(Γ) = ⊕i∈Z(gmax(Γ))i the grading in gmax(Γ). Remember that

(gmax(Γ))i = gi for i = −1, 0, 1

Lemma 2.2.2. Let n ≥ 2. The polynomial identity Pn(Y1, . . . , Yn−1,X1, . . . ,Xn) =

0 is satisfied in Γ for Xi ∈ g1 and Yj ∈ g−1 if and only if the vector space

J+
n =

n−2∑

k=0

(ad g−1)
k(⊕i≥n(gmax(Γ))i)

is a graded ideal of gmax(Γ), contained in ⊕i≥2(gmax(Γ))i

Proof.

Suppose that the identity Pn(Y1, . . . , Yn−1,X1, . . . ,Xn) = 0 is satisfied in Γ.

It is clear from the definition that J+
n is stable under ad(⊕∞

i=0(gmax(Γ))i. It

remains to prove that ad Y (J+
n ) ⊂ J+

n for Y ∈ g−1. We have

[Y, (ad g−1)
k(⊕i≥n(gmax(Γ))i)] ⊂ (ad g−1)

k+1(⊕i≥n(gmax(Γ))i).

Therefore it is enough to show that

(ad g−1)
n−1(gmax(Γ))n = {0} (∗)

From the definition of a graded Lie algebra, gmax(Γ) is generated by its local

part Γ, and this implies that (gmax(Γ))n is the space of linear combinations of

Lie monomials of the form [X1, [X2, . . . [Xn−1,Xn] . . . ] with Xi ∈ g1. As the

identity Pn(Y1, . . . , Yn−1,X1, . . . ,Xn) = [Y1, [Y2, [. . . [Yn−1, [X1, [X2, [. . . [Xn−1,Xn] . . . ]

holds in gmax(Γ), we obtain condition (∗).
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Conversely suppose that J+
n is a graded ideal of gmax(Γ). Then the identity (∗)

above holds. This implies that the identity Pn(Y1, . . . , Yn−1,X1, . . . ,Xn) = 0 is

true.

�

Remark 2.2.3.

Of course, symmetrically, if the identity Pn(X1, . . . ,Xn−1, Y1, . . . , Yn) = 0 is

verified for any elements Xi ∈ g1 and Yj ∈ g−1, then

J−
n =

n−2∑

k=0

(ad g1)
k(⊕i≤−n(gmax(Γ))i)

is a graded ideal of gmax(Γ), contained in ⊕i≤−2(gmax(Γ))i

Theorem 2.2.4.

Let Γ be a local Lie algebra. Denote by gmin(Γ) = ⊕i∈Z(gmin(Γ))i the grading

in gmin(Γ).

1) The following conditions are equivalent:

a) (gmin(Γ))i = {0} for i ≥ n

b) The identity Pn(Y1, . . . , Yn−1,X1, . . . ,Xn) = 0 holds in Γ, for all Xi ∈ Γ1

and all Yj ∈ Γ−1.

2) The following conditions are equivalent:

a) (gmin(Γ))i = {0} for i ≤ −n

b) The identity Pn(X1, . . . ,Xn−1, Y1, . . . , Yn) = 0 holds in Γ, for all Xi ∈ Γ1

and all Yj ∈ Γ−1.

3) dim gmin(Γ) < +∞ if and only there exist m,n ∈ Z such that the identities

Pm(Y1, . . . , Yn−1,X1, . . . ,Xn) = 0 and Pn(X1, . . . ,Xn−1, Y1, . . . , Yn) = 0 hold

in Γ, for all Xi ∈ Γ1 and all Yj ∈ Γ−1.

Proof.

Lets us prove 1).

a) =⇒ b): if (gmin(Γ))n = {0}, then [X1, [. . . , [Xn−1,Xn] = 0. And hence

Pn(Y1, . . . , Yn−1,X1, . . . ,Xn) = [Y1, [Y2, [. . . , [Yn−1, [X1, [. . . , [Xn−1,Xn] = 0.

b) =⇒ a): suppose that the identity Pn(Y1, . . . , Yn−1,X1, . . . ,Xn) = 0 holds in

Γ. Let J+
n =

∑n−2
k=0(ad g−1)

k(⊕i≥ngmax(Γ))i) the ideal that we considered in

Lemma 2.2.2. Obviously J+
n ∩ Γ = {0} and ⊕i≥n(gmax(Γ))i ⊂ J+

n

Let Jmax be the maximal graded ideal of gmax(Γ) which intersects Γ trivially

(see Theorem 2.1.4). As ⊕i≥n(gmax(Γ))i ⊂ J+
n ⊂ Jmax, and as gmin(Γ) =

gmax(Γ)/Jmax, we obtain that (gmin(Γ))i = {0} for i ≥ n.

The proof of 2) is similar, using the ideal J−
n introduced in Remark 2.2.3.
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Assertion 3) is an immediate consequence of 1) and 2).

�

Example 2.2.5. A direct calculus shows that

P3(Y1, Y2,X1,X2,X3) = [[Y1, [[Y2,X1],X2]],X3] + [[[Y2,X1],X2], [Y1,X3]]

+[[Y1,X2], [[Y2,X1],X3]] + [X2, [Y1, [[Y2,X2],X3]]]

+[[Y1,X1], [[Y2,X2],X3]] + [X1, [Y1, [[Y2,X2],X3]]]

+[[Y1,X1], [X2, [Y2,X3]]] + [X1, [Y1, [X2, [Y2,X3]]]].

3. Local and graded Lie algebras associated to (g0, B0, ρ)

3.1. The local Lie algebra Γ(g0, B0, ρ).

Remind that a quadratic Lie algebra is a pair (g0, B0) where g0 is finite di-

mensional Lie algebra and where B0 is an invariant nondegenerate symmetric

bilinear form on g0. The most obvious examples of such algebras are the semi-

simple algebras (endowed with the Killing form), the commutative algebras

(endowed with any symmetric nondegenerate bilinear form) or more generally

the reductive Lie algebras. But there exist more sophisticated examples. In

general a quadratic Lie algebra, which is not a direct sum of two orthogonal

ideals, is shown to be obtained by a finite number of so-called double extensions

by either a simple Lie algebra or a one dimensional Lie algebra. For details see

[7].

Let (g0, B0) be a quadratic Lie algebra. Let (ρ, V ) be a finite dimensional

representation of g0. Let (ρ∗, V ∗) be the contragredient representation. We

will often just denote these modules by (g0, V ) and (g0, V
∗). Similarly, for

U ∈ g0,X ∈ V, Y ∈ V ∗ we will often write U.X and U.Y instead of ρ(U)X and

ρ∗(U)Y . Put g−1 = V ∗ and g1 = V . Define also

Γ(g0, B0, ρ) = g−1 ⊕ g0 ⊕ g1 = V ∗ ⊕ g0 ⊕ V.

Our aim is now to define a structure of local Lie algebra on Γ(g0, B0, ρ), such

that for U ∈ g0,X ∈ g1, Y ∈ g−1, we have [U,X] = U.X and [U, Y ] = U.Y .

Theorem 3.1.1.

Let (g0, B0) be a a quadratic Lie algebra g0 and let (ρ, V ) be a finite dimensional

representation of g0. As before we set:

Γ(g0, B0, ρ) = g−1 ⊕ g0 ⊕ g1 = V ∗ ⊕ g0 ⊕ V.

For U ∈ g0,X ∈ g1, Y ∈ g−1 define an anticommutative bracket by
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a) [U,X] = U.X, [U, Y ] = U.Y

b) The element [X,Y ] is the unique element of g0 such that for all U ∈ g0 the

following identity holds:

B0([X,Y ], U) = Y (U.X) = −(U.Y )(X).

(The last equality is just the definition of the contragredient representation).

The preceding bracket defines a structure of a local Lie algebra on Γ(g0, B0, ρ).

Proof. We must prove that the Jacobi identity is verified each times the brackets

make sense. This means that we have to prove the following identities.

α) ∀U1, U2 ∈ g0, ∀X ∈ g1, [X, [U1, U2]] = [[X,U1], U2] + [U1, [X,U2]].

β) ∀U1, U2 ∈ g0, ∀Y ∈ g−1, [Y, [U1, U2]] = [[Y,U1], U2] + [U1, [Y,U2]].

γ) ∀X ∈ g1, ∀Y ∈ g−1, ∀Z ∈ g0, [Z, [X,Y ]] = [[Z,X], Y ] + [X, [Z, Y ]].

We have:

[X, [U1, U2]] = −[[U1, U2],X] = −[U1, U2].X = −U1.(U2.X) + U2.(U1.X).

On the other hand we have:

[[X,U1], U2] = [U2, [U1,X]] = U2.(U1.X) and [U1, [X,U2]] = −[U1, [U2,X]] =

−U1.(U2.X). This proves α). The proof of the identity β) is similar.

Let us now consider the identity γ). We set L = [Z, [X,Y ]], R1 = [[Z,X], Y ],

R2 = [X, [Z, Y ]], and R = R1 +R2. As L,R1, R2, R ∈ g0, in order to prove γ)

it will be enough to show that for all U ∈ g0, we have B0(L,U) = B0(R,U).

Using the invariance of B0 and definition b) we get:

B0(L,U) = B0([Z, [X,Y ]], U) = −B0([[X,Y ], Z], U) = −B0([X,Y ], [Z,U ])

= −Y ([Z,U ].X)

= −Y (Z.(U.X) − U.(Z.X)).

On the other hand, using again definition b), we have also:

B0(R1, U) = B0([[Z,X], Y ], U) = Y (U.[Z,X]) = Y (U.(Z.X))

and B0(R2, U) = B0([X, [Z, Y ]], U) = [Z, Y ](U.X) = Z.Y (U.X) = −Y (Z.(U.X)).

Hence B0(R,U) = Y (U.(Z.X) − Z.(U.X)) = B0(L,U).

�

Hence we have associated a local Lie algebra to the data g0, B0, (ρ, V ).

Notation 3.1.2. For convenience we will sometimes denote this local algebra

by Γ(g0, B0, V ) instead of Γ(g0, B0, ρ).

3.2. Isomorphisms of the local parts and dependence on (B0, ρ).

We will first determine necessary and sufficient conditions on the data (gi0, B
i
0, ρi)

(i = 1, 2) for the corresponding local Lie algebras to be isomorphic.
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Let Ψ : Γ(g10, B
1
0 , ρ1) −→ Γ(g20, B

2
0 , ρ2) be an graded isomorphism between the

two underlying vector spaces. Set A = Ψ|
g1
0

: g10 −→ g20, γ = Ψ|V1 : V1 −→ V2

and γ̃ = Ψ|V ∗
1

: V ∗
1 −→ V ∗

2 . With these notations we will set Ψ = (γ̃, A, γ).

Our aim is to determine under which conditions on γ̃, A, γ, the map Ψ is an

isomorphism of local Lie algebras. An obvious condition is of course that A is

an isomorphism of Lie algebras.

Proposition 3.2.1.

Let γ̃ : V ∗
1 −→ V ∗

2 and γ : V1 −→ V2 be two isomorphisms of vector spaces and

let A : g10 −→ g20 be an isomorphism of Lie algebras. Then

Ψ = (γ̃, A, γ) : Γ(g10, B
1
0 , ρ1) −→ Γ(g20, B

2
0 , ρ2)

is an isomorphism of local Lie algebras if and only the following three conditions

hold (for all U1 ∈ g10,X1 ∈ V1, Y1 ∈ V ∗
1 ) :

1) ρ2(A(U1)) ◦ γ = γ ◦ ρ1(U1),

2) ρ∗2(A(U1)) ◦ γ̃ = γ̃ ◦ ρ∗1(U1),

3) B2
0(A([X1, Y1]), A(U1)) = B1

0([
tγ̃ ◦ γ(X1), Y1], U1).

Proof.

Ψ = (γ̃, A, γ) is an isomorphism if and only if the following three conditions

hold for all U1 ∈ g10,X1 ∈ V1, Y1 ∈ V ∗
1 :

1′) γ([U1,X1]) = [A(U1), γ(X1)],

2′) γ̃([U1, Y1]) = [A(U1), γ̃(Y1)],

3′) A([X1, Y1] = [γ(X1), γ̃(Y1)].

But from the definition of the brackets in Γ(g10, B
1
0 , ρ1) and Γ(g20, B

1
0 , ρ2), con-

ditions 1′) and 2′) are equivalent to conditions 1) and 2) respectively.

Consider now condition 3′). Again from the définition of the brackets it is

equivalent to

B2
0(A(X1, Y1]), U2) = B2

0([γ(X1), γ̃(Y1)], U2)

for all X1 ∈ V1, Y1 ∈ V ∗
1 , U2 ∈ g20. Set U2 = A(U1). Then

B2
0(A(X1, Y1]), A(U1)) = B2

0([γ(X1), γ̃(Y1)], A(U1))

= γ̃(Y1)(ρ2(A(U1))(γ(X1))) = Y1(
tγ̃ ◦ ρ2(A(U1)) ◦ γ(X1))

But from condition 2) it is easily seen that

tγ̃ ◦ ρ2(A(U1)) = ρ1(U1) ◦t γ̃ (∗)

Therefore

B2
0(A(X1, Y1]), A(U1)) = Y1(ρ1(U1) ◦t γ̃ ◦ γ(X1)) = B1

0([
tγ̃ ◦ γ(X1), Y1], U1),
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which is condition 3).

Conversely suppose that Ψ = (γ̃, A, γ) satisfies conditions 1), 2) and 3). Obvi-

ously 1) ⇔ 1′) and 2) ⇔ 2′). It remains to prove that 3′) holds.

We have then:

B1
0([

tγ̃ ◦ γ(X1), Y1], U1) = Y1(ρ1(U1)(
tγ̃ ◦ γ(X1)))

= Y1(
tγ̃ρ2(A(U1)γ(X1))) (from (*))

= γ̃(Y1)(ρ2(A(U1)γ(X1))

= B2
0([γ(X1), γ̃(Y1)], A(U1)).

And as 3) holds, we obtain that, for all X1 ∈ V1, Y1 ∈ V ∗
1 , U1 ∈ g10, we have:

B2
0(A([X1, Y1]), A(U1)) = B2

0([γ(X1), γ̃(Y1)], A(U1)).

Therefore we obtain condition 3′): A([X1, Y1] = [γ(X1), γ̃(Y1)].

�

Now we give a specific criterion in the case where the representation ρ1 is

irreducible.

Proposition 3.2.2.

Suppose that the representation (g10, ρ1, V1) is irreducible.

Let γ̃ : V ∗
1 −→ V ∗

2 and γ : V1 −→ V2 be two isomorphisms of vector spaces and

let A : g10 −→ g20 be an isomorphism of Lie algebras. Then

Ψ = (γ̃, A, γ) : Γ(g10, B
1
0 , ρ1) −→ Γ(g20, B

2
0 , ρ2)

is an isomorphism of local Lie algebras if and only the following two conditions

hold (for all U1 ∈ g10,X1 ∈ V1, Y1 ∈ V ∗
1 ) :

1) ρ2(A(U1)) ◦ γ = γ ◦ ρ1(U1),

2) There exists c ∈ C
∗ such that:

a) γ̃ = c t(γ−1)

b) B2
0(A([X1, Y1]), A(U1) = cB1

0([X1, Y1], U1).

Proof. We have already remarked that if Ψ = (γ̃, A, γ) is an isomorphism of

local Lie algebras, then condition 1) and the identity

ρ∗2(A(U1)) ◦ γ̃ = γ̃ ◦ ρ∗1(U1)

hold (this is just condition 2) in Proposition 3.2.1), and this again implies that

tγ̃ ◦ ρ2(A(U1)) = ρ1(U1) ◦t γ̃.

Composing on the right by γ one gets:

tγ̃ ◦ ρ2(A(U1)) ◦ γ = ρ1(U1) ◦t γ̃ ◦ γ.
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Now, using condition 1) we obtain

tγ̃ ◦ γ ◦ ρ1(U1) = ρ1(U1) ◦t γ̃ ◦ γ,

and hence tγ̃ ◦ γ is an intertwining operator for the irreducible representation

ρ1. By Schur’s lemma we obtain now tγ̃ ◦ γ = cIdV1 , with c ∈ C
∗. As tγ̃ and

γ are invertible, this is condition 2)a). From Proposition 3.2.1, we have also

B2
0(A([X1, Y1]), A(U1) = B1

0([
tγ̃ ◦γ(X1), Y1], U1), and hence we obtain condition

2)b), namely

B2
0(A([X1, Y1]), A(U1) = cB1

0([X1, Y1], U1).

Conversely suppose that conditions 1) and 2) hold. Let us start with condition

1) multiplied by the constant −c:

−cρ2(A(U1)) ◦ γ = −cγ ◦ ρ1(U1).

Multiplying left and right by γ−1 we get

−cγ−1 ◦ ρ2(A(U1) = −ρ1(U1) ◦ cγ−1.

And hence

−tρ2(A(U1)) ◦ ct(γ−1) = ct(γ−1) ◦ −tρ1(U1),

which gives, using condition 2)a)

ρ∗2(A(U1)) ◦ γ̃ = γ̃ ◦ ρ∗1(U1).

This is condition 2) in Proposition 3.2.1.

Condition 2)b), namely B2
0(A([X1, Y1]), A(U1) = cB1

0([X1, Y1], U1), can be writ-

ten by using condition 2)a) as

B2
0(A([X1, Y1]), A(U1)) = B1

0([
tγ̃ ◦ γ(X1), Y1], U1),

which is condition 3) in Proposition 3.2.1. Therefore Ψ is an isomorphism of

the corresponding local Lie algebras.

�

Definition 3.2.3.

We call the triplet (g0, B0, (ρ, V )) a fundamental triplet. It consists of the fol-

lowing ingredients:

a) a quadratic Lie algebra (g0, B0)

b) a finite dimensional representation (ρ, V ) of g0 on the space V .

In order to simplify the notation, we will will sometimes denote the triplet by

(g0, B0, ρ) or (g0, B0, V ).
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Definition 3.2.4.

Let (g10, B
1
0 , ρ1) and (g20, B

2
0 , ρ2) be two fundamental triplets. Let A ∈ Hom(g10, g

2
0)

is a isomorphism of Lie algebras and let γ ∈ Hom(V1, V2) be an isomorphism

of vector spaces. We say that the pair (A, γ) is an isomorphism of fundamental

triplets if

a)

∀U, ∀V ∈ g10, B2
0(A(U), A(V )) = B1

0(U, V )

b)

∀U ∈ g10, ρ2(A(U)) ◦ γ = γ ◦ ρ1(U)

Remark 3.2.5. In the definition above, condition a) coincides with the notion

of isometric isomorphism, or i-isomorphism of quadratic Lie algebras introduced

in [1]. This notion of i-isomorphism was already implicit in [7].

Theorem 3.2.6.

Any isomorphism of fundamental triplets

(A, γ) : (g10, B
1
0 , ρ1) −→ (g20, B

2
0 , ρ2)

extends to an isomorphism of local Lie algebras

Ψ(A,γ) : Γ(g
1
0, B

1
0 , ρ1) −→ Γ(g20, B

2
0 , ρ2).

Moreover, if the space 〈ρ1(g10).V1〉 generated by the vectors ρ1(U)X (X ∈ V1, U ∈
g10) is equal to V1, then the preceding extension is unique.

Proof.

Note first that condition a) in Definition 3.2.4 is exactly condition 1) in Propo-

sition 3.2.1. Define γ̃ : V ∗
1 −→ V ∗

2 by γ̃ =tγ−1 where t stands for the transposed

map. Then it is easy to check that

∀U ∈ g10, ρ∗2(A(U)) ◦ γ̃ = γ̃ ◦ ρ∗1(U)

and this is exactly condition 2) in Proposition 3.2.1.

As tγ̃ ◦ γ = Id|V1 , condition b) in Definition 3.2.4 is exactly condition 3) in

Proposition 3.2.1. This Proposition implies then that Ψ(A,γ) = (γ̃, A, γ) is an

isomorphism of the corresponding local Lie algebras.

It remains to prove the uniqueness of the extension under the condition 〈ρ1(g10).V1〉 =
V1 . But if

Ψ : Γ(g10, B
1
0 , V1) −→ Γ(g20, B

2
0 , V2)
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is an isomorphism of local Lie algebras such that Ψ|g0 = A, Ψ|V1 = γ and

Ψ|V ∗
1
= γ̃ : V ∗

1 −→ V ∗
2 , then for X1 ∈ V1, Y1 ∈ V ∗

1 , A([X1, Y1]) = [γ(X1), γ̃(Y1)].

Therefore

B2
0(A([X1, Y1]), U2) = B2

0([γ(X1), γ̃(Y1)], U2),

for all U2 ∈ g20, X1 ∈ V1, Y1 ∈ V ∗
1 . Then for U2 = A(U1), U1 ∈ V1,

B2
0(A([X1, Y1]), A(U1)) = B1

0([X1, Y1], U1) = Y1(ρ1(U1)X1)

= B2
0([γ(X1), γ̃(Y1)], A(U1)) = γ̃(Y1)(ρ2(A(U1)) ◦ γ(X1)) = Y (tγ̃ ◦ ρ2(A(U1)) ◦ γ(X1))

= Y1(
tγ̃ ◦ γ ◦ ρ1(U1)X1)

Then from Y1(ρ1(U1)X1) = Y1(
tγ̃ ◦ γ ◦ ρ1(U1)X1), we obtain that tγ̃ ◦ γ is the

identity on the space 〈ρ1(g10).V1〉 = V1. Therefore γ̃ = tγ−1.

�

Notation 3.2.7. The local Lie algebra Γ(g0, B0, ρ) described in Theorem 3.1.1

depends on B0 and on ρ (see Proposition 3.2.8, Proposition 3.2.9 and Example

3.3.7 below). If necessary, we will denote by [ , ]B0 or [ , ]B0,ρ the bracket in

Γ(g0, B0, ρ).

We will now investigate the dependance of the local Lie algebra Γ(g0, B0, ρ) ,

under a change of the invariant form B0 on g0. We make the following assump-

tions:

There exist quadratic Lie algebras (Li, B0,i) i = 1, . . . , k such that

– g0 = L1 ⊕ L2 ⊕ · · · ⊕ Lk (direct sum of ideals)

– the invariant bilinear form B0 on g0 is given by B0 = B0,1⊕B0,2⊕ · · · ⊕B0,k.

Then for λ = (λ1, . . . , λk) ∈ (C∗)k we set

λ.B0 = λ1B0,1 ⊕ · · · ⊕ λkB0,k

and for u = u1 + · · ·+ uk ∈ g0 (ui ∈ Li) we set

λ.u = λ1u1 + · · ·+ λkuk.

Proposition 3.2.8.

1) Using the preceding notations, we have for X ∈ V = g1 and for Y ∈ V ∗ =

g−1:

λ.[X,Y ]λ.B0 = [X,Y ]B0

2) For µ ∈ C
∗, the local Lie algebras Γ(g0, B0, ρ) and Γ(g0, µB0, ρ) attached

respectively to B0 and µB0 are isomorphic (here µB0 stands for the ordinary

scalar multiplication).
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Proof.

1) From the definition [X,Y ]λ.B0 is the unique element in g0 such that

λ.B0([X,Y ]λ.B0 , U) = Y (U.X) for any U ∈ g0. It is easy to see that from the def-

initions we have λ.B0([X,Y ]λ.B0 , U) = B0(λ.[X,Y ]λ.B0 , U). Hence λ.[X,Y ]λ.B0 =

[X,Y ]B0 .

2) Choose a square root
√
µ of µ. Define ϕµ : Γ(g0, B0, ρ) −→ Γ(g0, µB0, ρ) by

∀X ∈ V, ϕµ(X) =
√
µX, ∀Y ∈ V ∗, ϕµ(Y ) =

√
µY, ∀U ∈ g0, ϕµ(U) = U.

A direct computation or the use of the criterion of Proposition 3.2.1 shows

easily that ϕµ is an isomorphism of local Lie algebras.

�

We will also investigate the modification of the bracket in Γ(g0, B0, ρ) under a

slight change of ρ.

Suppose that g0 = Z⊕L is a quadratic Lie algebra where Z is a central ideal and

L is an ideal. For γ ∈ C
∗ we denote by γ�ρ the representation of g0 on V given

by γ�ρ(z+u) = γρ(z)+ρ(u), for z ∈ Z and u ∈ L. If U = z+u ∈ g0, and if we

set γ�U = γz + u, we have γ�ρ(U) = ρ(γ�U). If B0 = B0,Z +B0,L where B0,Z

and B0,L are forms on Z and L respectively, we define γ�B0 = γB0,Z +B0,L.

Of course in the notations of Proposition 3.2.8 γ�B0 = (γ, 1).B0 and γ�U =

(γ, 1).U

The next proposition indicates the dependance of the local Lie algebra Γ(g0, B0, ρ)

if we change ρ into γ�ρ.

Proposition 3.2.9.

1) Let us denote by [ , ]B0,ρ the bracket on Γ(g0, B0, V ) given by Theorem 3.1.1.

Then, using the notations defined above, we have:

[X,Y ]B0,γ�ρ = γ�[X,Y ]B0,ρ

[U,X]B0,γ�ρ = γ�ρ(U)X, [U, Y ]B0,γ�ρ = −γ�ρ∗(U)Y

2) Suppose that λ, µ, α, β ∈ C
∗ verify the condition µ2

λ
= β2

α
. Then the local Lie

algebras Γ(g0, λ�B0, µ�ρ) and Γ(g0, α�B0, β�ρ) are isomorphic. In particular

Γ(g0, λ�B0, ρ) and Γ(g0, B0,
1√
λ

�ρ) are isomorphic.

Proof.

1) The element [X,Y ]B0,γ�ρ is by definition the unique element of g0 such

that, for all U ∈ g0, B0([X,Y ]B0,γ�ρ, U) = Y (γ�ρ(U)X) = Y (ρ(γ�U)X) =

B0([X,Y ]B0,ρ, γ�U) = B0(γ�[X,Y ]B0,ρ, U). Hence [X,Y ]B0,γ�ρ = γ�[X,Y ]B0,ρ.

The other two identities are just the definitions of [U,X]B,γ�ρ and [U, Y ]B,γ�ρ.
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2) Define ϕ : Γ(g0, λ�B0, µ�ρ) −→ Γ(g0, α�B0, β�ρ) by

ϕ(U) = µ
β

�U, for all U ∈ g0

ϕ(X) = X for all X ∈ V

ϕ(Y ) = Y for all Y ∈ V ∗

Again a direct computation or the criterion of Proposition 3.2.1 shows that ϕ

is an isomorphism of local Lie algebras.

�

Remark 3.2.10. (inverse isomorphism)

Let (g0, B0) be a quadratic Lie algebra. Consider a finite dimensional represen-

tation (ρ, V ) of g0. Set g10 = g20 = g0, g
1
1 = V , g1−1 = V ∗, g21 = V ∗, g2−1 = V .

Hence Γ(g10, B0, ρ) = V ∗ ⊕ g10 ⊕ V and Γ(g20, B0, ρ
∗) = V ⊕ g20 ⊕ V ∗. The map

θ : Γ(g0, B0, ρ) −→ Γ(g0, B0, ρ
∗)

defined by θ(U) = U for all U ∈ g10 = g20 = g0, θ(X) = X for all X ∈ g11 = V

and θ(Y ) = Y for all Y ∈ g20 = V ∗, is a non graded isomorphism of local Lie

algebras (it sends g11 onto g2−1 and g1−1 onto g21). Of course the isomorphism

θ extends uniquely to an non graded isomorphism, still denoted θ, between

gmax(Γ(g0, B0, ρ)) and gmax(Γ(g0, B0, ρ
∗)).

3.3. Graded Lie algebras with local part Γ(g0, B0, ρ).

Let us now translate the result of Kac (Theorem 2.1.4) in the context of Theo-

rem 3.1.1:

Theorem 3.3.1.

Let (g0, B0, ρ) be a fundamental triplet. Let Γ(g0, B0, ρ) be the local Lie algebra

constructed in Theorem 3.1.1.

1) There exists a unique graded Lie algebra gmax(Γ(g0, B0, ρ)) whose local part

is Γ(g0, B0, ρ) and which satisfies the following universal property.

Any morphism of local Lie algebras Γ(g0, B0, ρ) → Γ(g) from Γ(g0, B0, ρ) into

the local part Γ(g) of a graded Lie algebra g extends uniquely to a morphism of

graded Lie algebras gmax(Γ(g0, B0, ρ)) → g. (And hence any graded Lie algebra

whose local part is isomorphic to Γ(g0, B0, ρ), is a quotient of gmax(Γ(g0, B0, ρ))).

Moreover we have

gmax(Γ(g0, B0, ρ)) = F (V ∗)⊕ g0 ⊕ F (V ),

where F (V ∗) (resp. F (V )) is the free Lie algebra generated by V ∗ (resp. V ).

2) There exists a unique graded Lie algebra gmin(Γ(g0, B0, ρ)) whose local part

is Γ(g0, B0, ρ) and which satisfies the following universal property.
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Any surjective morphism of local Lie algebras Γ(g) → Γ(g0, B0, ρ) from the

local part of a graded Lie algebra g into Γ(g0, B0, ρ) extends uniquely to a

(surjective) morphism of graded Lie algebras g → gmin(Γ(g0, B0, ρ)). (And

hence gmin(Γ(g0, B0, ρ)) is a quotient of any graded Lie algebra whose local part

is isomorphic to Γ(g0, B0, ρ)).

Remark 3.3.2. Let (g0, B0) be a quadratic Lie algebra. Suppose that g0 =

g10 ⊕ g20 is an orthogonal decomposition into ideals. Define B1
0 = B0|

g10×g10

and

B2
0 = B0|

g20×g20

. Suppose also that the representation (g, ρ, V ) is a direct sum

(g10⊕g20, ρ1⊕ρ2, V1⊕V2). Then from the definitions we obtain that Γ(g0, B0, V ) =

Γ(g10, B
1
0 , V1)⊕ Γ(g20, B

2
0 , V2), and therefore

gmax(Γ(g0, B0, ρ)) ≃ gmax(Γ(g
1
0, B

1
0 , ρ1))⊕ gmax(Γ(g

2
0, B

2
0 , ρ2))

and

gmin(Γ(g0, B0, ρ)) ≃ gmin(Γ(g
1
0, B

1
0 , ρ1))⊕ gmin(Γ(g

2
0, B

2
0 , ρ2)).

As an example let us show that graded reductive (finite dimensional) Lie alge-

bras are always minimal graded Lie algebras.

Proposition 3.3.3.

Let g be a reductive (finite dimensional ) Lie algebra. Suppose that we are

given a Z-grading g = ⊕n
i=−ngi such that g is generated by its local part Γ(g) =

g−1⊕g0⊕g1 (in other words g is a graded Lie algebra in the sense of Definition

2.1.1). Let BΓ(g) be a nondegenerate invariant symmetric bilinear form on

Γ(g) such that BΓ(g)(gi, gj) = 0 when |i + j| 6= 0. Then, using BΓ(g), the

contragredient representation (g0, g
∗
1) can be identified with (g0, g−1). If B0

denotes the restriction of BΓ(g) to g0, then we have:

g ≃ gmin(Γ(g)) ≃ gmin(Γ(g0, B0, g1))

Proof.

From the definition we can identify g∗1 with g−1 by using BΓ(g). Then for U ∈ g0,

Y ∈ g−1 and X ∈ g1 we have, from the invariance of BΓ(g):

BΓ(g)(U.Y,X) = −BΓ(g)(Y, [U,X]) = BΓ(g)([U, Y ],X)

and hence [U, Y ] = U.Y (here U.Y stands for the contragredient action of U ∈ g0

on g−1 ≃ g∗1).

Similarly, we have also:

B0([X,Y ], U) = BΓ(g)([X,Y ], U) = BΓ(g)(Y, [U,X]) = Y (U.X).
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Hence the original bracket in Γ(g) is the bracket constructed in Theorem 3.1.1.

Therefore gmin(Γ(g)) ≃ gmin(Γ(g0, B0, g1)).

From the universal property of gmin(Γ(g)) there exists a graded ideal I ⊂ g

such that g/I ≃ gmin(Γ(g)). As g is reductive there exists an ideal U ⊂ g such

that g = U ⊕ I. Hence U ≃ gmin(Γ(g)). But then the local part of U is Γ(g),

and this contradicts the fact that g is generated by Γ(g) unless I = {0}.
�

Remark 3.3.4.

It must be noticed that if g = ⊕n
i=−ngi is an arbitrary Z-grading of a semi-

simple Lie algebra g then g is in general not generated by its local part, and

is therefore not a graded Lie algebra in the sense of Definition 2.1.1. Let us

explain this briefly. It is well known that there exists always a grading element,

that is an element H ∈ g such that gi = {X ∈ g | [H,X] = iX}. Let h be Cartan

subalgebra of g0 (which is also a Cartan subalgebra of g), containing H. Let Ψ

be a set of simple roots of the root system Σ(g, h) such that α(H) ∈ N (such a

set of simple roots always exists). Hence we have associated a ”weighted Dynkin

diagram” to a grading . The subdiagram of roots of weight 0 corresponds to

the semi-simple part of the Levi subalgebra g0. But if the weighted Dynkin

diagram has weights equal to 1 and to n > 1, then it is easy to see that g

cannot be generated by the local part g−1 ⊕ g0 ⊕ g1.

Example 3.3.5. (Prehomogeneous vector spaces of parabolic type)

Let g be a semi-simple complex Lie algebra. Let h be Cartan subalgebra.

Denote as before by Σ(g, h) the set of roots of the pair (g, h). Let Ψ be a set

of simple roots for Σ(g, h). Let θ ⊂ Ψ be a subset and let < θ > denote the

subset of roots which are linear combinations of elements of θ. Let g0 = lθ

be the Levi subalgebra corresponding to θ. That is g0 = h ⊕ (⊕α∈<θ>g
α)

where gα is the root space corresponding to α. Let H0 be the unique element

in h such that α(H0) = 0 if α ∈ θ and α(H0) = 1 if α ∈ Ψ \ θ. Define then

gi = {X ∈ g | [H0,X] = iX} (this definition of g0 is coherent with the preceding

one). One obtains this way a grading g⊕n
i=−n gi. The representations (g0, g1)

are prehomogeneous vector spaces called prehomogeneous spaces of parabolic

type. It is easy to see that they correspond to gradings whose weights in the

sense of the the preceding Remark are only 0 and 1. From Proposition 3.3.3

we obtain that in this case g = gmin(Γ(g0, B0, g1)) where B0 is the restriction

of the Kiling form of g to g0.

Example 3.3.6. (Principal gradings of symmetrizable Lie algebras)
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We adopt here the same definitions and notations as in [6]. Let A = (ai,j) be

a n × n matrix with complex coefficients. Let (h,Π, Π̌) be a realization of A.

The Lie algebra g̃(A) is the Lie algebra with generators h, ei, fi (i = 1, . . . , n)

and the relations:

[ei, fj ] = δi,jα̌i, [h, ei] = αi(h)ei, [h, fi] = −αi(h)fi [h, h′] = 0, (h, h′ ∈ h).

Then the Lie algebra g(A) is defined by g̃(A)/r where r is the maximal ideal

intersecting h trivially. Then g(A) =
⊕

i∈Z gi where gi =
⊕

ht(α)=i gα (if α =∑n
i=1miαi,ht(α) =

∑
imi). This is the principal grading of g(A). We have

g−1 = ⊕n
i=1Cfi, g0 = h, g1 = ⊕n

i=1Cei, and it is easy to see that g(A) =

gmin(Γ(A)) where Γ(A) = g−1 ⊕ g0 ⊕ g1.

We suppose further that the matrix A is symmetrizable. This means that

there exist a symmetric matrix B = (bi,j) and an invertible diagonal matrix

D = diag(ǫ1, . . . , ǫn) such that A = DB. The Lie algebra is then called a

symmetrizable Lie Algebra. Then, according to Theorem 2.2. of [6], there

exists a non-degenerate invariant symmetric bilinear form (., .) on g(A) such

that the restriction of this form to h is non-degenerate and (gi, gj) = 0 if

i+ j 6= 0. Therefore g−i can be identified to g∗i and the representation (g0, g−1)

is the contragredient representation of (g0, g1). Let ρ denote the representation

(g0, g1) and let B0 be the restriction of the form (., .) to g0 = h. Then, in the

notations of section 3.3 we have

g(A) = gmin(Γ(g0, B0, ρ)).

Example 3.3.7. We will now examine the case of sl2n(C) which will be consid-

ered both as a graded Lie algebra and a local Lie algebra. This will show that

the local Lie algebras Γ(g0, B0, ρ) and the corresponding minimal Lie algebra

gmin(Γ(g0, B0, ρ)) depend strongly on the choice of B0.

Consider first the classical 3-grading of sl2n(C) defined by:

g−1 = V ∗ = {
(
0 0

Y 0

)
, Y ∈ Mn(C)}

g0 = {
(
A 0

0 B

)
, A,B ∈ Mn(C), T r(A+B) = 0}

g1 = V = {
(
0 X

0 0

)
,X ∈ Mn(C)}
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We will use the letter U for elements in g0 and the letters X,Y for elements

in g1 and g−1 respectively. And in order to simplify notations we will set

X =

(
0 X

0 0

)
and Y =

(
0 0

Y 0

)
.

As an invariant form on sl2n(C) we will take B(α, β) = Tr(αβ), (α, β ∈ sl2n(C)).

This is just a multiple of the Killing form. Let us call B0 the restriction of B

to g0. The form B0 is of course nondegenerate. The representation (g0, ρ, V ) is

defined by the bracket. Therefore if U =

(
A 0

0 B

)
, we have ρ(U)X = [U,X] =

(
0 AX −XB

0 0

)
= AX −XB.

If we consider sl2n(C) as the local Lie algebra Γ(g0, B0, ρ) we now from Propo-

sition 3.3.3 that gmin(Γ(g0, B0, ρ)) = sl2n(C).

Next we will modify the form B0 in the following manner. Let λ = (λ1, λ2) ∈

(C∗)2 and set Bλ
0 (

(
A 0

0 B

)
,

(
A′ 0

0 B′

)
) = λ1Tr(AA

′)+λ2Tr(BB′) (remember

that B0(

(
A 0

0 B

)
,

(
A′ 0

0 B′

)
) = Tr(AA′) + Tr(BB′)).

We will decompose the form Bλ
0 according to the decomposition of g0 into ideals.

Obviously

g0 = CH0 ⊕ a1 ⊕ a2 (∗)

where H0 =

(
Idn 0

0 -Idn

)
and where a1 = {

(
A 0

0 0

)
, A ∈ sln(C)} and a2 =

{
(
0 0

0 B

)
, B ∈ sln(C)}.

The decomposition of [Y,X]B0 according to (∗) is as follows:

[Y,X]B0 = − 1
n
Tr(Y X)

(
Idn 0

0 −Idn

)

+

(
−XY + 1

n
Tr(Y X)Idn 0

0 0

)
+

(
0 0

0 Y X − 1
n
Tr(Y X)Idn

)

An easy computation shows that Bλ
0 = λ1+λ2

2 B0|CH0
+λ1B0|a1

+λ2B0|a2
(hence

the form Bλ
0 is nondegenerate if and only if λ1 6= 0, λ2 6= 0, λ1 + λ2 6= 0).

Therefore Bλ
0 = µ.B0, where µ = (λ1+λ2

2 , λ1, λ2) (and with the definition of

µ.B0 given just before Proposition 3.2.8). From Proposition 3.2.8 we obtain

that
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[Y,X]Bλ
0
= − 2

n(λ1+λ2)
Tr(Y X)

(
Idn 0

0 −Idn

)

+

(
1
λ1
(−XY + 1

n
Tr(Y X)Idn) 0

0 1
λ2
(Y X − 1

n
Tr(Y X)Idn)

)

=

(−1
λ1

XY + λ2−λ1
n(λ1+λ2)λ1

Tr(Y X)Idn 0

0 1
λ2
Y X + λ2−λ1

n(λ1+λ2)λ2
Tr(Y X)Idn

)
(∗∗)

Suppose now that the local Lie algebras Γ(g0, B0, ρ) and Γ(g0, B
λ
0 , ρ) are iso-

morphic. Then as Γ(g0, B0, ρ) = gmin(Γ(g0, B0, ρ)) ≃ sl2n(C), we should have

that gmin(Γ(g0, B
λ
0 , ρ)) ≃ sl2n(C), and hence for Y ∈ V ∗ and X,X ′ ∈ V we

have [Y, [X,X ′]Bλ
0
]Bλ

0
= 0. And then from the Jacobi identity the following

identity should hold in Γ(g0, B
λ
0 , ρ):

[[Y,X]Bλ
0
,X ′]Bλ

0
+ [X, [Y,X ′]Bλ

0
]Bλ

0
= 0 (∗ ∗ ∗)

(This is just the identity P2 = 0 seen in section 2.2).

A calculation, using (∗∗) shows that the left member of (∗ ∗ ∗) is equal to

(
1

λ2
− 1

λ1
)
(
(XY X ′ −X ′Y X) +

λ2 − λ1

n(λ1 + λ2)
(Tr(Y X ′)X − Tr(Y X)X ′)

)

(in the simplified notation explained at the beginning of the example).

It is easy to see that if λ1 6= λ2 this element is not equal to zero for general

Y,X,X ′ ∈ Mn(C). Therefore the local Lie algebra gmin(Γ(g0, B
λ
0 , ρ)) cannot

be isomorphic to gmin(Γ(g0, B0, ρ)) ≃ sl2n(C). In fact, using Proposition 3.4.6

below, one can prove that actually gmin(Γ(g0, B
λ
0 , ρ)) is infinite dimensional if

λ1 6= λ2.

3.4. Transitivity.

Let us also recall the notion of transitivity introduced by V. Kac.

Definition 3.4.1. (Kac [4], Definition 2)

Let g (resp. Γ) be a graded Lie algebra (resp. a local Lie algebra). Then g (resp.

Γ) is said to be transitive if

- for x ∈ gi, i ≥ 0, [x, g−1] = {0} ⇒ x = 0

- for x ∈ gi, i ≤ 0, [x, g1] = {0} ⇒ x = 0.

In particular if g (or Γ) is transitive, then the modules (g0, g−1) and (g0, g1) are

faithful.
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Remark 3.4.2.

It is easy to see that if if a graded Lie algebra g is transitive then its center

Z(g) is trivial.

If A is a subset of a vector space V , we denote by 〈A〉 the subspace of V

generated by A.

Proposition 3.4.3.

Let (g0, B0, (ρ, V )) be a fundamental triplet.

1) The local Lie algebra Γ(g0, B0, ρ) (or the minimal algebra gmin(Γ(g0, B0, ρ)))

is transitive if an only if (ρ, V ) is faithful and 〈g0.V 〉 = V and 〈g0.V ∗〉 = V ∗.

2) If the representation (ρ, V ) is completely reducible, then the local Lie algebra

Γ(g0, B0, ρ) (or the minimal algebra gmin(Γ(g0, B0, ρ))) is transitive if an only

if (ρ, V ) is faithful and V does not contain the trivial module.

Proof.

As a minimal graded Lie algebra with a transitive local part is transitive ([4],

Prop. 5 page 1278), it is enough to prove the proposition for the local part.

1) Suppose that Γ(g0, B0, ρ) is transitive. We have already remarked that then

the representation (ρ, V ) is faithful (and hence (ρ∗, V ∗) is faithful too). If

〈g0.V 〉 6= V , then there exists Y ∈ V ∗, Y 6= 0 such that Y (g0.V ) = 0. From the

definition of the bracket we obtain that B0([V, Y ], g0) = 0. Hence [Y, V ] = {0}.
This contradicts the transitivity. Similarly one proves that transitivity implies

〈g0.V ∗〉 = V ∗. Conversely suppose that (ρ, V ) is faithful and 〈g0.V 〉 = V and

〈g0.V ∗〉 = V ∗. The first of these assumptions is one of the conditions needed

for the transitivity. Suppose also that [X,V ∗] = {0} for an X ∈ V . Then

B0([X,Y ], U) = 0 for all U ∈ g0 and all Y ∈ V ∗. Hence Y (U.X) = −U.Y (X) =

0. Therefore, as 〈g0.V ∗〉 = V ∗, we have V ∗(X) = 0 and hence X = 0. The same

proof, using the identity 〈g0.V 〉 = V , shows that [Y, V ] = {0} implies Y = 0.

Hence Γ(g0, B0, ρ) is transitive.

2) Let V = ⊕k
i=1Vi be a decomposition of V into irreducibles. If Vi is not

the trivial module we have of course 〈g0.Vi〉 = Vi. It is then easy to see that

the preceding condition ”〈g0.V 〉 = V and 〈g0.V ∗〉 = V ∗” is equivalent to the

condition ”V does not contain the trivial module”.

�

Remark 3.4.4.

1) Suppose that there exists an element H ∈ g0 such that H.X = X for all X ∈
V . Such an element is called grading element. Then obviously the conditions
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〈g0.V 〉 = V and 〈g0.V ∗〉 = V ∗ are satisfied. In this case the local Lie algebra

Γ(g0, B0, V ) is transitive if an only if (ρ, V ) is faithful.

2) Suppose that the representation (ρ, V ) is faithful and completely reducible.

Let V = ⊕k
i=1Vi be a decomposition of V into irreducibles. Then by Schur’s

Lemma we obtain that dimZ(g0) ≤ k (Z(g0) denotes the center of g0). Hence if

the local Lie algebra Γ(g0, B0, ρ) is transitive, then dimZ(g0) ≤ k. In particular

if V is irreducible, then dimZ(g0) ≤ 1.

The next proposition describes the structure of the algebra gmin(Γ(g0, B0, ρ))

in the non transitive case, under some assumptions.

Proposition 3.4.5. (see Notation 3.1.2)

Let g0 be a reductive Lie algebra, and let B0 be a non degenerate invariant

symmetric bilinear for on g0. Let (ρ, V ) be a finite dimensional completely

reducible representation. Denote by gk0 the kernel of the representation. We

suppose also that the restriction of B0 to Z(gk0) = Z(g0)∩gk0 is non-degenerate.

Then if we denote by g
f
0 the ideal of g0 orthogonal to gk0 we have g0 = gk0 ⊕ g

f
0 .

Denote also by V0 the isotypic component of the trivial module in V and by V1

the g0-invariant supplementary subspace to V0 (V = V1 ⊕ V0).

Then:

1) a)

gmax(Γ(g0, B0, V )) ≃ gmax(Γ(g
f
0 , B0|

g
f
0

V ))⊕ gk0 and

b)

gmin(Γ(g0, B0, V )) ≃ gmin(Γ(g
f
0 , B0|

g
f
0

V ))⊕ gk0.

2) Moreover

gmin(Γ(g0, B0, V )) ≃ gmin(Γ(g
f
0 , B0|

g
f
0

V1))⊕ (V0 ⊕ V ∗
0 )⊕ gk0

where gmin(Γ(g
f
0 , B0|

g
f
0

, V1)) is transitive and where the non defined brackets in

(gmin(Γ(g
f
0 , B0|

g
f
0

, V1))⊕ (V0 ⊕ V ∗
0 )) are given by

[V0, V
∗
0 ] = [gmin(Γ(g

f
0 , B0|

g
f
0

, V1)), V0] = [gmin(Γ(g
f
0 , B0|

g
f
0

, V1)), V
∗
0 ] = {0} ,

and [V0, V0] = [V ∗
0 , V

∗
0 ] = {0} .

3)

Z(gmin(Γ(g0, B0, V ))) = V0 ⊕ V ∗
0 ⊕ Z(gk0)

Proof.

1) Define Z(gf0) = (Z(gk0))
⊥ ∩ Z(g0). From the assumptions we obtain that

Z(g0) = Z(gk0)⊕ Z(gf0)
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and

g
f
0 = Z(gf0)⊕ (g′0)

f

(where (g′0)
f = g′0 ∩ g

f
0 is a product of some of the simple ideals of g′0).

Let X ∈ V , Y ∈ V ∗, U ∈ gk0 . The bracket [X,Y ] in Γ(g0, B0, V ) verifies the

identity B0([X,Y ], U) = Y (U.X) = 0. Hence [X,Y ] ∈ g
f
0 . This shows that the

bracket of X and Y is the same in Γ(g0, B0, V ) and in Γ(gf0 , B0|
g
f
0

, V ). This

proves that we have the following isomorphism of local Lie algebras:

Γ(g0, B0, V ) ≃ Γ(gf0 , B0|
g
f
0

, V )⊕ gk0 .

But then, from Theorem 2.1.4, we have

gmax(Γ(g
f
0 , B0|

g
f
0

, V )⊕ gk0) = gmax(Γ(g
f
0 , B0|

g
f
0

V ))⊕ gk0 and

gmin(Γ(g
f
0 , B0|

g
f
0

, V )⊕ gk0) = gmin(Γ(g
f
0 , B0|

g
f
0

V ))⊕ gk0.

This proves a) and b).

2) As the representation (gf0 , V1) is faithful and as V1 does not contain the trivial

module, Proposition 3.4.3 implies that gmin(Γ(g
f
0 , B0|

g
f
0

, V1)) is transitive.

Let X ∈ V0, Y ∈ V ∗
0 . Then the bracket of X and Y in Γ(g0, B0, V ) is the unique

element [X,Y ] ∈ g0, such that for any U ∈ g0, B0([X,Y ], U) = Y (U.X) = 0.

Hence [X,Y ] = 0.

This proves that, with the given brackets, (gmin(Γ(g
f
0 , B0|

g
f
0

V1))⊕(V0⊕V ∗
0 )⊕gk0

becomes a graded Lie algebra, whose local part is

Γ(g0, B0, V ) = Γ(gf0 , B0|
g
f
0

V1)⊕ (V0 ⊕ V ∗
0 )⊕ gk0.

This is a direct sum of local Lie algebras where V0 ⊕ V ∗
0 and gk0 are already Lie

algebras. This proves that

gmin(Γ(g0, B0, V )) ≃ gmin(Γ(g
f
0 , B0|

g
f
0

V1))⊕ (V0 ⊕ V ∗
0 )⊕ gk0.

3) As the center of gmin(Γ(g0, B0, V )) is trivial (Remark 3.4.2), the third asser-

tion is now clear.

�

Proposition 3.4.6.

Let (g0, B0, ρ) be a fundamental triplet where g0 is reductive and where ρ is

completely reducible. Suppose that the local Lie algebra Γ(g0, B0, ρ) is transitive

(see Proposition 3.4.3 above). Then if dim(gmin(Γ(g0, B0, ρ))) is finite, the Lie

algebra gmin(Γ(g0, B0, ρ)) is semi-simple.
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Proof.

It suffices to prove that if Γ(g0, B0, ρ) cannot be decomposed as in Remark

3.3.2, then gmin(Γ(g0, B0, ρ)) is simple. We know from [4] (Prop. 5, p.1278)

that gmin(Γ(g0, B0, ρ)) is transitive. Denote by gmin(Γ(g0, B0, ρ)) = ⊕i∈Zgi the

grading. Let a be a non zero ideal of gmin(Γ(g0, B0, ρ)). Let a ∈ a, a 6= 0.

Let a = a−i + a−i+1 + · · · + aj be the decomposition of a according to the

grading of gmin(Γ(g0, B0, ρ)), where either −i ≤ 0 and a−i 6= 0, or j ≥ 0, and

aj 6= 0. Suppose for example that −i ≤ 0 and a−i 6= 0. From the transitivity

of gmin(Γ(g0, B0, ρ)), we know that there exists xi1 ∈ g1 such that [a−i, x
i
1] 6= 0.

Then [a, xi1] = [a−i, x
i
1] + · · · + [aj , x

i
1] ∈ a therefore there exists an element

a′ ∈ a, such that a′ = a′−i+1+ · · ·+a′j+1 (a′k ∈ gk) and a′−i+1 6= 0. By induction

we prove that there exists an element x = x0+x1+ · · · ∈ a such that x0 6= 0 and

also an element y = y1 + · · · ∈ a such that y1 6= 0. Let Tk = ⊕n≥kgi (k ≥ 0).

Denote by ã0 (resp. ã1) the projection of a ∩ T0 on g0 (resp. the projection of

a ∩ T1 on g1).

The preceding considerations show that ã0 6= {0} and ã1 6= {0}. As a is an ideal,

ã0 is an ideal of g0 and ã1 is a sub-g0-module of g1 = V . Let b̃0 be the orthogonal

of ã0 in g0 with respect to B0, and let b̃1 be a g0-invariant supplementary space

to ã1 in g1. That is g1 = ã1 ⊕ b̃1. As a is an ideal we obtain [ã0, b̃1] = {0}.
Let now B be the extended form as defined in Proposition 3.5.2 below. Then,

as [ã1, g−1] ⊂ ã0, we have for all Y ∈ g−1, B([b̃0, ã1], Y ) = B(b̃0, [ã1, Y ]) = {0}.
This shows that [b̃0, ã1] is orthogonal to g−1. Therefore [b̃0, ã1] = {0}. Let

x ∈ ã0 ∩ b̃0. Then [x, ã1 + b̃1] = [x, g1] = {0}. As Γ(g0, B0, ρ) is transitive we

obtain that x = 0. Hence g0 = ã0 ⊕ b̃0.

We have supposed that Γ(g0, B0, ρ) is not decomposable in the sense of Remark

3.3.2. Then b̃0 = {0} and b̃1 = {0}, and g0 = ã0 and g1 = ã1.

As gmin(Γ(g0, B0, ρ)) is finite dimensional we can write gmin(Γ(g0, B0, ρ)) =

⊕n
i=−ngi. As gmin(Γ(g0, B0, ρ)) is generated by its local part, we obtain that

anyXn ∈ gn is a linear combination of elements of the form [. . . [X1
1 ,X

2
1 ] . . . ]X

n
1 ]

where X1
1 , . . . ,X

n
1 ∈ g1. But as g1 = ã1, we obtain that Xn ∈ gn ∩ a, and hence

gn ∩ a = gn

From the transitivity, we know that there exist Y 1
1 , . . . , Y

n
1 ∈ g−1 such that

[Y n
1 , [Y n−1

1 , . . . [Y 1
1 ,Xn] . . . ] 6= 0. This proves that a1 = a ∩ g1 6= {0} and

a0 = a ∩ g0 6= {0}. Then the same reasoning as above shows that a0 = g0 and

a1 = g1. As [g0, g−1] = g1 (this is again the transitivity condition), we have

also that a−1 = a ∩ g−1 = g−1.

Finally we have proved that Γ(g0, B0, ρ) ⊂ a. Hence gmin(Γ(g0, B0, ρ)) = a.
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�

Corollary 3.4.7.

Suppose that g0 is reductive and that (ρ, V ) is a faithful completely reducible

g0-module which does not contain the trivial module.

Let k denote the number of irreducible components of V .

If dimZ(g0) < k, then dim gmin(Γ(g0, B0, ρ)) = +∞.

Proof.

First remember from Remark 3.4.4 2) that, as the representation is faithful, we

have dimZ(g0) ≤ k.

From Proposition 3.4.6 we know that if dim gmin(Γ(g0, B0, ρ)) < +∞ then

the Lie algebra gmin(Γ(g0, B0, ρ)) is semi-simple. Then, if gmin(Γ(g0, B0, ρ)) =

⊕i=n
i=−ngi is a grading, the Lie algebra g0 is a Levi sub-algebra of gmin(Γ(g0, B0, ρ))

(see Remark 3.3.4 and Remark 3.3.5). But then dimZ(g0) = k (see for example

Proposition 4.4.2 d) in [9]).

�

3.5. Invariant bilinear forms.

Consider again a general quadratic Lie algebra g0 with a non degenerate symet-

ric bilinear form B0. We will first show that B0 extends to an invariant form

on the local Lie algebra Γ(g0, B0, ρ).

Define a symmetric bilinear form B on Γ(g0, B0, ρ) by setting:

− ∀u, v ∈ g0, B(u, v) = B0(u, v)

− ∀u ∈ g0,∀X ∈ g1 = V, ∀Y ∈ g−1 = V ∗

B(u,X) = B(X,u) = B(u, Y ) = B(Y, u) = 0 (∗)

− ∀X ⊂ g1 = V, ∀Y ⊂ g−1 = V ∗, B(X,Y ) = B(Y,X) = Y (X) (∗∗)

Lemma 3.5.1.

a) The form B is a non degenerate invariant form on Γ(g0, B0, ρ) (the definition

of an invariant form on a local Lie algebra is analogous to the Lie algebra case).

b) Suppose that there exists a grading element in Γ(g0, B0, ρ), that is an element

H0 ∈ g0 such that [H0, x] = ix for x ∈ gi, i = −1, 0, 1, then the preceding form

B is the only invariant extension of B0 to Γ(g0, B0, ρ).

Proof.

a) Of course as B|g0×g0
= B0, the invariance is verified on g0. Let X ∈

g1, Y ∈ g−1, u, v ∈ g0. From the definition of [X,Y ] (see Theorem 3.1.1),

we have B([X,Y ], u) = Y (u.X). On the other hand we have B(X, [Y, u]) =
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B(X,−u.Y ) = −u.Y (X) = Y (u.X). Hence B([X,Y ], u) = B(X, [Y, u]). We

have also B([u, v],X) = 0 = B(u, v.X) = B(u, [v,X]). Similarly B([u, v], Y ) =

B(u, [v, Y ]) = 0.

b) Suppose that x ∈ gi and y ∈ gj with i + j 6= 0. Then B([H0, x], y) =

B(ix, y) = iB(x, y) = −B(x, [H0, y]) = −jB(x, y). Therefore (i+j)B(x, y) = 0,

and hence B(x, y) = 0. We also have for X ∈ V = g1 and Y ∈ V ∗ = g−1:

B([X,Y ],H0) = Y (X) = B(X, [Y,H0]) = B(X,Y ). Hence conditions (∗) and

(∗∗) are satisfied.

�

Proposition 3.5.2.

1) Let (ρ, V ) be a representation of the quadratic Lie algebra g0. The bilinear

form B on Γ(g0, B0, ρ) defined in Lemma 3.5.1 extends uniquely to a invariant

symmetric bilinear form (still denoted B) such that B(gi, gj) = 0 if i 6= −j on

any graded Lie algebra whose local part is Γ(g0, B0, ρ) .

2) Moreover if Γ(g0, B0, ρ) is transitive, then the extended form B on

gmin(Γ(g0, B0, ρ)) is non-degenerate.

3) The extended form B on gmin(Γ(g0, B0, ρ)) is also non-degenerate in the

case where g0 is reductive, the representation V is completely reducible, and the

restriction of B0 to Z(g0) ∩ gk0 is non degenerate.

Proof.

1) is due to V. Kac: see Proposition 7 p. 1279 of [4].

2) Suppose now that Γ(g0, B0, ρ) is transitive. Let us denote the grading by

gmin(Γ(g0, B0, V )) = ⊕i∈Zgi. We must prove that if X ∈ gi is such that

B(X,Y ) = 0 for all Y ∈ g−i, then X = 0. We will first prove the result

by induction for i ≥ 0.

From the definition of B on Γ(g0, B0, ρ) we see that the result is true for i = 0

and i = 1. Suppose now that the result is true for i < k. Let xk ∈ gk

such that B(xk, g−k) = 0. Then for all x−1 ∈ g−1 and all x−k+1 ∈ g−k+1 we

have B(xk, [x−1, x−k+1]) = 0. And hence B([xk, x−1], x−k+1) = 0. From the

induction hypothesis we get [xk, x−1] = 0 for all x−1 ∈ g−1. But we know from

[4] (Prop. 5, p. 1278) that a minimal graded Lie algebra with a transitive local

part is transitive. This implies that xk = 0. The same proof works for i ≤ 0.

3) This is a consequence of 2) and the explicit form of gmin(Γ(g0, B0, ρ)) given

in this case in Proposition 3.4.5 2).

�

Corollary 3.5.3.
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Let (g0, B0) be a quadratic algebra where g0 is reductive. Suppose also that

the restriction of B0 to Z(g0) ∩ gk0 is non degenerate. Let (ρ, V ) be a com-

pletely reducible representation of g0. Recall that we denote the grading in

gmin(Γ(g0, B0, ρ)) by gmin(Γ(g0, B0, ρ)) = ⊕i∈Zgi. Then

a) dim gi = dim g−i for all i ∈ Z.

b) dim gmin(Γ(g0, B0, ρ)) < +∞ if and only if there exists an integer n ≥ 2

such that the identity Pn(Y1, . . . , Yn−1,X1, . . . ,Xn) holds in the local Lie algebra

Γ(g0, B0, ρ), where Pn is the Lie polynomial defined in Proposition 2.2.1. More

precisely in that case gi = {0} for |i| ≥ n.

Proof.

a) From Proposition 3.5.2 3) we know that the extended form B defines a

non-degenerate duality between gi and gi. Hence dim gi = dim g−i.

b) We already know from Theorem 2.2.4 that the identity

Pn(Y1, . . . , Yn−1,X1, . . . ,Xn) = 0

implies gi = {0} for i ≥ n. Then the result follows from a).

�

Definition 3.5.4.

1) A quadratic graded Lie algebra is a pair (g, B) where g = ⊕i∈Zgi is a graded

Lie algebra, and where B is a non-degenerate symmetric invariant bilinear form

on g such that B(gi, gj) = 0 if i 6= −j.

2) Let (g1, B1) and (g2, B2) be two quadratic graded Lie algebras. An isomor-

phism from (g1, B1) onto (g2, B2) is an isomorphism of graded Lie algebras

Ψ : g1 −→ g2 such that:

∀x, y ∈ g1, B2(Ψ(x),Ψ(y)) = B1(x, y).

Theorem 3.5.5.

Let T be the set of equivalence classes of fundamental triplets such that the rep-

resentation (ρ, V ) is faithful and such that 〈g0.V 〉 = V and 〈g0.V ∗〉 = V ∗. Let

G be the set of isomorphism classes of transitive quadratic graded Lie algebras.

The map

τ : T −→ G
defined by τ((g0, B0, ρ)) = (gmin(Γ(g0, B0, ρ)), B) is a bijection (here B is the

form defined in Proposition 3.5.2 and the ”overline” denotes the equivalence

class).

Proof.
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If T is a fundamental triplet satisfying the given assumptions, then its local part

Γ(T ) is transitive from Proposition 3.4.3. And hence gmin(Γ(T )) is transitive

from [4], Prop. 5 b), p. 1278. Moreover, with the form B defined in Proposition

3.5.2, the Lie algebra gmin(Γ(T )) becomes a quadratic graded Lie algebra.

Let T1 and T2 be two fundamental triplets and let Γ(T1) and Γ(T2) be the

corresponding local Lie algebras. Suppose that T1 ≃ T2. Then from Theorem

3.2.6, we have Γ(T1) ≃ Γ(T2), and hence gmin(T1) ≃ gmin(T2) (isomorphism of

graded Lie algebras).

Let T1 = Γ(g10, B
1
0 , ρ1), and T2 = Γ(g20, B

2
0 , ρ2) the explicit triplets we consider.

Let Ψ : gmin(Γ(g
1
0, B

1
0 , ρ1)) −→ gmin(Γ(g

2
0, B

2
0 , ρ2)) be the preceding isomor-

phism. We will prove that Ψ is in fact an isomorphism of quadratic graded Lie

algebras. Therefore we must prove that if x ∈ gmin(Γ(g
1
0, B

1
0 , ρ1))i (i ≥ 0)) and

y ∈ gmin(Γ(g
1
0, B

1
0 , ρ1))−i, then

B2(Ψ(x),Ψ(y)) = B1(x, y) (∗)

where B1 and B2 are the extended forms defined in Proposition 3.5.2. We will

prove (∗) by induction on i. It is clear that (∗) is true for i = 0 (see condition

a) in definition 3.2.4). We need also to prove this for i = 1. Set Ψ|V1 = γ.

Then from the proof of Theorem 3.2.6 we have Ψ|V−1
=tγ−1. Therefore for

x ∈ V1, y ∈ V ∗
1 , we have:

B2(Ψ(x),Ψ(y)) = B2(γ(x),tγ−1(y)) =tγ−1(y)(γ(x)) = y(x) = B1(x, y)

This proves (∗) for i = 1.

Suppose now that (∗) is true for 0 ≤ i < k. In the rest of the proof the elements

xi or yi belong always to gmin(Γ(g
1
0, B

1
0 , ρ1))i. Any x ∈ gmin(Γ(g

1
0, B

1
0 , ρ1))k is a

linear combination of elements of the form [xk−1, x1] and any y ∈ gmin(Γ(g
1
0, B

1
0 , ρ1))−k

is a linear combination of elements of the form [y−k+1, y−1]. Then from the proof

of Proposition 7 p. 1279 of [4] the extended form is defined inductively by

B1([xk−1, x1], [y−k+1, y−1]) = B1([[xk−1, x1], y−k+1], y−1)

and the same is true for B2.

Therefore

B2(Ψ([xk−1, x1]),Ψ([y−k+1, y−1]) = B2([Ψ(xk−1),Ψ(x1)], [Ψ(y−k+1),Ψ(y−1)])

= B2([[Ψ(xk−1),Ψ(x1)],Ψ(y−k+1)],Ψ(y−1))

= B2(Ψ([[xk−1, x1], y−k+1]),Ψ(y−1))

(by induction:) = B1([[xk−1, x1], y−k+1], y−1)

= B1([xk−1, x1], [y−k, y−1])
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Therefore (∗) is proved. Hence if T1 ≃ T2, then the algebras gmin(T1)and

gmin(T2) are isomorphic as quadratic graded Lie algebras. In other words the

map τ is well defined.

Let (g,B) be a transitive quadratic graded Lie algebra, whith local part Γ(g) =

g−1⊕g0⊕g1. As a transitive graded algebra is minimal ([4], Prop. 5 a), p. 1278)

and has of course a transitive local part, we have g = gmin(Γ(g)). Moreover the

properties of B imply immediately that if V = g1 denotes the corresponding

g0-module then g−1 = V ∗, the dual g0-module. And then, from the transitivity

we obtain that the representation (ρ, V ) is faithful and that 〈g0.V 〉 = V and

〈g0.V ∗〉 = V ∗ (Proposition 3.4.3). This proves that the map τ is surjective.

Suppose now that Ψ : gmin(Γ(g
1
0, B

1
0 , ρ1)) −→ gmin(Γ(g

2
0, B

2
0 , ρ2)) is now an

isomorphism of quadratic graded Lie algebra. Set Ψ|
g00

= A and Ψ|
g10

= γ. Then

A is a Lie algebra isomorphism from g10 onto g20 and γ is an isomorphism fron

g11 onto g21 which satisfy:

– ∀U, V ∈ g10, B
2(A(U), A(V )) = B1(U, V ) and

– ∀U,∈ g10 and X ∈ g11, Ψ([U,X]) = [Ψ(U),Ψ(X)] = [A(U), γ(X)] and this

means exactly, that in the usual notations, γ ◦ ρ1(U)X = ρ2(A(U)) ◦ γ(X).

Hence (A, γ) is an isomorphism of fundamental triplets (see Definition 3.2.4).

This proves that the map τ is injective.

�

4. sl2-triples

Let us consider the following assumption on the fundamental triplet (g0, B0, (ρ, V )).

Assumption (H):

a) The Lie algebra g0 is reductive with a one dimensional center: g0 = Z(g0)⊕g′0
where g′0 = [g0, g0] and dimZ(g0) = 1.

b) We suppose also that Z(g0) acts by a non trivial character (i.e. ρ(Z(g0)) =

CIdV ).

Then there exists H0 ∈ Z(g0) such that ρ(H0) = 2IdV (and ρ∗(H0) = −2IdV ∗).

Recall also that in a Lie algebra, or in a local Lie algebra, a triple of elements

(y,h,x) is called an sl2-triple if [h, x] = 2x, [h, y] = −2y and [y, x] = h.

4.1. Associated sl2-triple.

Definition 4.1.1. Let (g0, B0, ρ) be a fundamental triplet satisfying assumption

(H). We say that the local Lie algebra Γ(g0, B0, ρ), or the graded Lie algebra
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gmin(Γ(g0, B0, ρ)), is associated to an sl2-triple if there exists X ∈ V \ {0},
Y ∈ V ∗ \ {0} such that (Y,H0,X) is an sl2-triple.

Theorem 4.1.2.

Let (g0, B0, ρ) be a fundamental triplet satisfying assumption (H). Then Γ(g0, B0, ρ)

is associated to an sl2-triple if and only if there exists X ∈ V such that X /∈ g′0.X

where g′0.X = {U.X, U ∈ g′0}. The set {X ∈ V, X /∈ g′0.X} is exactly the set of

elements in V which belong to an associated sl2-triple.

Proof.

Recall from Lemma 3.5.1 that the form B0 extends to an invariant form B on

Γ(g0, B0, ρ).

Suppose that Γ(g0, B0, ρ) has an associated sl2-triple (Y,H0,X). Then Y (g′0.X) =

B(Y, g′0.X) = B(Y, [g′0,X]) = B([Y,X], g′0) = B(H0, g
′
0) = {0}. Hence the form

Y is zero on g′0.X. On the other hand B(Y,X) = Y (X) = 1
2B(Y, [H0,X]) =

−1
2B([Y,X],H0) = −1

2B(H0,H0) = −1
2B0(H0,H0) 6= 0. Therefore X /∈ g′0.X.

Conversely suppose that X /∈ g′0.X. We choose Y ∈ V ∗ such that Y (g′0.X) =

{0} and Y (X) 6= 0. Then B([Y,X], g′0) = B(Y, g′0.X) = Y (g′0.X) = {0}. There-
fore [Y,X] ∈ (g′0)

⊥ = CH0. Set [Y,X] = λH0. We have also Y (X) = B(Y,X) =
1
2B(Y, [H0,X]) = −1

2B([Y,X],H0) = −1
2B(λH0,H0) = −1

2λB(H0,H0) 6= 0.

Hence λ 6= 0. Define Ỹ = 1
λ
Y . Then (Ỹ ,H0,X) is an sl2-triple.

�

Corollary 4.1.3.

a) Let (g0, B0, ρ) be a fundamental triplet satisfying assumption (H). The ex-

istence of a sl2-triple associated to the local Lie algebra Γ(g0, B0, ρ) does not de-

pend on the invariant form B0 on g0, but only on the representation (g′0, ρ|g
0′
, V ).

b) Suppose that the module (ρ, V ) satisfies the following property (P):

(P) There exists X ∈ V such that X /∈ g′0.X.

Then the dual module (ρ∗, V ∗) satisfies the same property.

Proof.

Assertion a) is an immediate consequence of Theorem 4.1.2. For assertion

b) it is enough to remark that for a given representation (ρ, V ) of a semi-

simple Lie algebra g′0, one can add a one dimensional center CH0, with an

obvious action on V , such that the fundamental triplet (g0 = CH0 ⊕ g′0, ρ, V )

satisfies assumption (H). Hence there exists an associate sl2-triple, and this is

a symmetric condition.

�
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4.2. Property (P), relative invariants and sl2-triples.

In this section we will assume that the fundamental triplet (g0, B0, (ρ, V )) sat-

isfies assumption (H). (But of course any finite dimensional representation

(ρ, V ) of g′0 can be extended to a fundamental triplet (g0, B0, (ρ, V )) satisfying

assumption (H)).

We will also suppose that the representation (ρ, V ) of g0 lifts to a representation

π of a connected algebraic group G0 whose Lie algebra is g0 (in other words ρ

is the derived representation dπ).

Definition 4.2.1. Let (G0, π, V ) be a finite dimensional representation of a

connected complex algebraic group G0. Let X ∈ V and consider its G0-orbit

OX = G0.X. Then OX is open in its closure OX which is an irreducible affine

variety. Let R be an element of the field C(OX) of rational functions on OX .

The function R is called a relative invariant on OX if there exists a rational

character χ of G0 such that

∀x ∈ OX , R(π(g)x) = χ(g)R(x) (4− 2− 1)

For convenience we will often write g.x (g ∈ G0, x ∈ V ) instead of π(g)x and

also A.x (A ∈ g0, x ∈ V ) instead of ρ(A)x.

We will now prove that for a fundamental triplet satisfying assumption (H) the

existence of an associated sl2-triple (X,H0, Y ) is equivalent to the existence of

a non-trivial relative invariant on the G0-orbit of X.

It will be easier to specialize the property (P) at a point x. For x ∈ V , the

property (P)x is defined as follows:

(P)x : x /∈ g′0.x

Lemma 4.2.2. (M. Brion) 1

Let (g0, B0, (ρ, V )) be a fundamental triplet satisfying assumption (H), and

let G0 be a connected reductive group whose Lie algebra is g0 on which the

representation ρ lifts to π. Let G′
0 = [G0, G0] be the commutator subgroup of

G0. Then:

non(P)x ⇐⇒ the G′
0-orbit G

′
0.x is stable under scalar multiplication. (∗)

or equivalently:

non(P)x ⇐⇒ G′
0.x = G0.x (∗∗)

1This lemma was communicated to me by Michel Brion
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Proof.

Let us consider the property

non(P)x : x ∈ g′0.x.

Let Nx = {g ∈ G′
0, π(g)(Cx) ⊂ Cx} be the normalizer of the line Cx in G′

0.

Condition non(P)x means that there exists z in the Lie algebra nx of Nx such

that z.x = x, and hence there exists z ∈ nx such that z.x = tx, for any t ∈ C

(just by replacing z by tz). Therefore non(P)x is equivalent to: for any t ∈ C
∗,

there exists g ∈ G′
0 such that g.x = tx. So (∗) is proved. But as the one

dimensional center of G0 acts by a surjective character (assumption (H)), the

equivalence of (∗) and (∗∗) is clear.
�

Theorem 4.2.3.

Let (ρ, V ) be a finite dimensional representation of a semi-simple Lie algebra

g′0. Extend this representation to a fundamental triplet (g0, B0, ρ) satisfying

assumption (H), and let G0 be a connected reductive group whose Lie algebra

is g0, on which the representation ρ lifts.

Let X ∈ V . The following three conditions are equivalent:

1) (P)X : X /∈ g′0.X.

2) There exists a non trivial relative invariant on the G0-orbit OX = G0.X.

3) X belongs to an associated sl2-triple (X,H0, Y ) ∈ gmin(Γ(g0, B0, ρ)).

Proof.

The equivalence of 1) and 3) has already been proved in Theorem 4.1.2.

Assume that condition 2) holds. Let R a non trivial relative invariant on OX .

Let t1 = R(X) and t2 be two distinct values taken by R. Define Oi = {x ∈
OX |R(x) = ti} for i = 1, 2. Then O1 and O2 are two G′

0-stable subsets of

OX such that O1 ∩ O2 = ∅. Hence G′
0.X 6= G0.X. From Lemma 4.2.2 (∗∗) we

obtain that 2) =⇒ 1).

Conversely, let us assume that (P)X holds. Then from Lemma 4.2.2 we know

that the G0-orbit OX splits into several G′
0-orbits.

Suppose that one of these, say G′
0.v, is open in OX . Denote by G0v be the

stabilizer of v in G0 and by G′
0v = G0v ∩ G′

0 the stabilizer of v in G′
0. Then

the subgroup G′
0.G0v is open in G0 as the inverse image of G′

0.v under the

orbital map g 7−→ g.v. As G0 is connected we have G0 = G′
0.G0v . Then

OX = G0.v = G′
0.G0v .v = G′

0.v and this is not possible as we should have

several G′
0-orbits in OX . Hence if we assume that (P)X holds, there is no open
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G′
0-orbits in OX . In particular dimOX − dimG′

0.X > 0. Therefore

dimOX − dimG′
0.X = dimG0 − dimG0X − dimG′

0.X

= dimG0 − dimG0X − dimG′
0 + dimG′

0X

= dim(G0/G
′
0)− dim(G0X/G

′
0X

)

= 1− dim(G0X/G
′
0X

) > 0

This implies that dim(G0X/G
′
0X

) = 0 (hence at the Lie algebra level we have

g0X = g′0X ). Then det(π(G0X ) is a finite group. Therefore there exists p ∈
N such that detp(π(G0X )) = 1, but from assumption (H) we know that the

character g 7−→ detp(π(g)) is non trivial. Then the function R : OX −→ C

defined by

∀g ∈ G0 , R(π(g)X) = detp(π(g))

is a non-trivial relative invariant on OX , and this is condition 2).

�

Remark 4.2.4. It is known that for irreducible prehomogeneous vector spaces

of parabolic type the existence of a relative invariant on the open orbit is equiv-

alent to the existence of an associated sl2-triple (see [10] or [9]). But in the pre-

ceding Theorem the representation does not need to be irreducible and there is

no assumption of prehomogeneity. It works for any representation of g′0.

Corollary 4.2.5.

Consider the particular case where g = ⊕i=n
i=−ngi is a grading of a semi-simple

(finite dimensional) Lie algebra g (see example 3.3.5) such that the represen-

tation (g0, g1) is irreducible. Then the representation (G0, g1) is known to be

prehomogeneous. Denote by Ω its open orbit. Let x ∈ g1.

If the prehomogeneous vector space is regular, then

x ∈ g′0.x = [g′0, x] ⇐⇒ x /∈ Ω (∗)

If the prehomogeneous vector space is not regular, then for each x ∈ g1, we have

x ∈ [g′0, x]. Moreover except for the open orbit in the regular case, all G0-orbits

are G′
0-orbits.

Proof.

Suppose that x ∈ g′0.x = [g′0, x]. This means that property non(P)x holds.

According to Theorem 4.2.3, this is equivalent to the fact that x does not belong

to an associated sl2-triple. From [10] (Corollaire 4.3.3 p. 134), or from[9], the

only elements which belong to an associated sl2-triple are those in the open

orbit in the regular vase. This proves the two first assertions. If x ∈ g1 is not

an element of the open orbit in the regular case, then x does not belong to an
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associated sl2-triple, and therefore x ∈ g′0.x = [g′0, x] (Theorem 4.2.3). Then,

from Lemma 4.2.2, we obtain G′
0.x = G0.x. �

Remark 4.2.6. The equivalence (∗) in Corollary 4.2.5 was first proved in the

the particular case of so-called ”Heisenberg gradings” of a simple Lie-algebra

(over any field) by M. Slupinski and R. Stanton (see [11], Lemma 3.3 p. 164).

These gradings are special gradings of length 5. It is worth noticing that it is

also possible to prove (∗) by combining results of V. Kac [5] (more specially

Lemma 1.1 p.193) and of the author ([10] or [9]).

Let X ∈ g1 = V satisfying condition (P)X : X /∈ g′0.X. Then any element x

belonging to the orbitOX = G0.X satisfies condition (P)x and therefore belongs

to an associated sl2-triple. Let Tx = g0.x = [g0, x] denote the tangent space at

x to OX . Using the canonical isomorphism T ∗
x ≃ V ∗/(Tx)

⊥, any element of T ∗
x

can be considered as a class modulo (Tx)
⊥ in V ∗ = g−1.

Proposition 4.2.7. (notations as before).

Define, for x ∈ OX :

ϕ(x) = {y ∈ g−1, (y,H0, x) is a sl2-triple}.

Then

a) ϕ(x) is a class modulo (Tx)
⊥ in V ∗ = g−1. Hence the map

x 7−→ ϕ(x) ∈ V ∗/(Tx)
⊥ ≃ T ∗

x

is a section of the cotangent bundle T ∗(OX).

b) The preceding section is equivariant:

∀g ∈ G0, ϕ(π(g).x) = π∗(g)ϕ(x)

Proof.

a) Let y0 ∈ ϕ(x) and let z ∈ (Tx)
⊥. Then for u ∈ g0, we have B0([z, x], u) =

−z([u, x]) = 0, as [u, x] ∈ Tx. Hence y0 + (Tx)
⊥ ⊂ ϕ(x).

Conversely let y ∈ ϕ(x). Then [y− y0, x] = 0, and therefore B0([y− y0, x], u) =

−(y − y0)([u, x]) = 0 for all u ∈ g0. Hence y ∈ y0 + (Tx)
⊥.

b) Suppose that (y,H0, x) is a sl2-triple. Then for u ∈ g0:

B0([π
∗(g)y, π(g)x], u) = −π∗(g)y(u.π(g)x)

= −y(π(g−1)u.π(g)x)) = −y((Ad g−1u).x)

= B0([y, x],Ad g
−1u) = B0(H0, u).
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Hence [π∗(g)y, π(g)x] = H0. Therefore π∗(g)y ∈ ϕ(π(g)x) or equivalently

π∗(g)ϕ(x) ⊂ ϕ(π(g)x) . As π∗(g)(Tx)
⊥ = (Tπ(g)x))

⊥ and ϕ(π(g)x) is a class

modulo (Tx)
⊥, we obtain π∗(g)ϕ(x) = ϕ(π(g).x).

�

Let X ∈ V = g1 which belongs to an associated sl2-triple. Then the orbit

G0.X = OX has a non trivial relative invariant R by Theorem 4.2.3. The next

proposition shows how one can built an associated sl2-triple containing x ∈ OX

from the knowledge of R.

For this we will now consider the ” logarithmic differential” (or ”gradlog”)

of R given by ϕR(x) =
dR(x)

R(x)
∈ T ∗

x as a class in V ∗/(Tx)
⊥. In particular

ϕR(x) =
dR(x)

R(x)
is a subset of V ∗.

Proposition 4.2.8.

Let (ρ, V ) be a finite dimensional representation of a semi-simple Lie algebra

g′0. Extend this representation to a fundamental triplet (g0, B0, ρ) satisfying

assumption (H), and let G0 be a connected reductive group whose Lie algebra

is g0, on which the representation ρ lifts.

Suppose that the orbit OX = G0.X has a non trivial relative invariant R. Let

x ∈ OX . Then, for any element y in the class ϕR(x), (x,H0,−
B(H0,H0)

dχ(H0)
y)

is an associated sl2-triple. Therefore, in the notation of Proposition 4.2.3, we

have ϕ(x) = −B(H0,H0)

dχ(H0)
ϕR(x)

Proof.

For A ∈ g0 and x ∈ OX , let us derive the identity R(π(exp tA)x) = χ(exp tA)R(x)

with respect to t, at t = 0. We obtain

dR(x)dπ(A)x = dR(x)ρ(A)x = dχ(A)R(x).

Using the extended formB defined in Proposition 3.5.2, we observe that B(y, [A, x])

does only depend on the class ϕR(x) of y. Therefore the preceding equation

can be written:

B(
dR(x)

R(x)
, ρ(A)x) = B(ϕR(x), [A, x]) = dχ(A).

And as B is invariant we obtain:

∀A ∈ g0, −B([ϕR(x), x], A) = dχ(A).
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As B is non-degenerate and as dχ(g′0) = 0, [ϕR(x), x] is a fixed vector (as x

varies) orthogonal to g′0. Hence [ϕR(x), x] = cH0 (c ∈ C). If A = H0, one

obtains −B([ϕR(x), x],H0) = dχ(H0) 6= 0 (because χ is non trivial). Therefore

−cB(H0,H0) = dχ(H0) and c = − dχ(H0)

B(H0,H0)
6= 0.

Then (−B(H0,H0)

dχ(H0)
ϕR(x),H0, x) is an sl2-triple (this means that for y in the

class of −B(H0,H0)

dχ(H0)
ϕR(x) in V ∗/(Tx)

⊥, (y,H0, x) is an associated sl2-triple).

�

Remark 4.2.9.

It is worth noticing that from the preceding result, the ”gradlog” section x 7−→
dR(x)

R(x)
= ϕR(x) satisfies the same equivariance property as ϕ:

ϕR(π(g)x) = π∗(g)(ϕR(x)).

5. Lie algebras of symplectic type and dual pairs

5.1. Lie algebras of symplectic type.

In this section we will deal with a particular kind of minimal graded Lie algebras

of the form gmin(Γ(g0, B0, ρ)).

Definition 5.1.1.

Let W be a finite dimensional vector space over C, and let gl(W ) be the Lie alge-

bra of endomorphisms of W . Let also C
p[W ] be the vector space of homogeneous

polynomials of degree p on W . We set g0 = gl(W ) and V = C
p[W ]. For λ ∈ C

∗

we define the representation ρλ of gl(W ) on C
p[W ] by saying that ρλ|sl(W )

is the

natural representation of sl(W ) on C
p[W ] and ρλ(Idgl(W )) = λIdCp[W ]. Let B0

be a non degenerate bilinear symmetric form on gl(W ). With these notations,

the Lie algebra of symplectic type spp(W,B0) is defined by

spp(W,B0, λ) = gmin(Γ(g0, B0, ρλ)).

Remark 5.1.2.

1) Note that from Proposition 3.2.9, we have spp(W,B0, λ) ≃ spp(W,µ�B0,
λ√
µ
).

2) Note from Lemma 3.5.1 and Proposition 3.5.2 that the form B0 extends

uniquely to a non-degenerate invariant form B on spp(W,B0, λ) such that

B(gi, gj) = 0 if i+ j 6= 0.
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3) Remember also that g−1 = (Cp[W ])∗ ≃ C
p[W ∗]. Let Q ∈ C

p[W ∗]. Define a

differential operator Q(∂) on W by setting:

Q(∂)e〈x,y〉 = Q(y)e〈x,y〉 for all x ∈ W and y ∈ W ∗.

Then the isomorphism between C
p[W ∗] and (Cp[W ])∗ sends Q on the linear

form P 7−→ Q(∂)P (0) = Q(∂)P .

Proposition 5.1.3.

Up to isomorphism the only finite dimensional Lie algebras of symplectic type

are:

1) sl(n+1,C) ≃ sp1(Cn, B0, n), where, up to a multiplicative constant, B0(U, V ) =

tr(U) tr(V ) + tr(UV ) (U, V ∈ gl(Cn)), and where the grading of sl(n + 1,C) is

defined by the diagram:

t

0
t

0
p p p p p p p p p t

0
t

0
t

0
p p p p p p p p p t

0
t

1
An

(see Remark 3.3.4 for the definition of the corresponding grading).

2) sp(n,C) ≃ sp2(Cn, B0, 2), where, up to a multiplicative constant, B0(U, V ) =

tr(UV ), (U, V ∈ gl(Cn)), and where the grading of sp(n,C) is defined by the

diagram:

t

0
t

0
t

0
p p p p p p p p p t

0
t

0
< t

1
Cn

3) G2 ≃ sp3(C2, B0, 1) where, up to a multiplicative constant, B0(U, V ) =

3 tr(UV ) − tr(U) tr(V ) (U, V ∈ gl(C2)) and where the grading of G2 is defined

by the diagram:

t

0
< t

1
G2

Proof.

We know from proposition 3.4.6 that if dim(spp(W,B0)) < +∞, then spp(W,B0)

is semi-simple. Hence the grading of dim(spp(W,B0)) is defined by a weighted

Dynkin diagram with weights equal to 0 or 1, see Remark 3.3.4. As the rep-

resentation is irreducible there must be only one 1 among the weights (see

Example 3.3.5). Remember also from Example 3.3.5 that g′0 corresponds to

the sub-diagram of roots of weight 0. As in our case g′0 = sl(W ), we are look-

ing here for a connected Dynkin diagram whith dimW vertices, and where the

subdiagram of vertices of weight 0 is of type A(dimW )−1. Hence the weighted

Dynkin diagram of spp(W,B0, λ) must be of the following type:

t

0
t

0
p p p p p p p p p t

0
t

0
t

0
p p p p p p p p p t

0
t

1
AdimW
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where the boldface edge stands for one of the standard allowed edges (possibly

with an arrow) in the Dynkin diagram.

Let us denote by ω the fundamental weight corresponding to the ”last root

on the right” in the sub-diagram of type A(dimW )−1, which is the last root on

the right with weight 0. Then the representation (g′0, V ) = (sl(W ),Cp[W ]) has

lowest weight −pω. This implies that the boldface edge in the diagram above

consists of p lines. (for the general calculation of the lowest weight of (g′0, V )

from the Dynkin diagram in prehomogeneous vector spaces of parabolic type

we refer to [10] p. 135). From the list of the Dynkin diagrams we obtain exactly

the three cases in the Proposition.

We must now determine a possible representation ρλ and a possible form B0

which correspond through an isomorphism to the graded algebras sl(n+ 1,C),

sp(n,C) and G2 (remember that we have always several choices due to the

isomorphisms (spp(W,B0, λ) ≃ spp(W,µ�B0,
λ√
µ
)). For the two first cases the

usual matrix realizations of sl(n + 1,C) and sp(n,C) lead to the indicated B0

and λ.

For the G2 case one can proceed as follows. Let KG2 (resp. Kg′0
) be the

Killing form of G2 (resp. g′0). We know from Proposition 3.3.3 that G2 ≃
gmin(Γ(g0,KG2 , g1)). If α is the simple root of weight zero in G2, then one shows

easily that KG2(Hα,Hα) = 48 and Kg′0
(Hα,Hα) = 8. Hence KG2 |g′0×g′0

= 6Kg′0
.

Let H0 be the grading element in G2 for the grading corresponding to the given

diagram (see Remark 3.3.4 and Example 3.3.5). As dim g1 = 4 and dim g2 = 1,

we have KG2(H0,H0) = 16. Due to the choice ”λ = 1” we have made in the

proposition, the grading element in sp3(C2, B0, 1) is the identity matrix Id2.

Now if Ψ : sp3(C2, B0, 1) −→ G2 is a graded isomorphism, it is easy to see that

Ψ(Id2) = H0. Moreover, as we can choose B0 up to a constant, and as in both

algebras we have [g−1, g1] = g0, Proposition 3.2.2 implies that we can suppose

KG2(Ψ(U),Ψ(V )) = B0(U, V ), for all U, V ∈ gl(2).

If U = U ′ + λId2 and V = V ′ + µId2, with U ′, V ′ ∈ sl(2), and if Ksl(2) denotes

the Killing form on sl2, we obtain

B0(U, V ) = KG2(Ψ(U),Ψ(V ))

= KG2(Ψ(U ′),Ψ(V ′)) + λµKG2(H0,H0)

= 6Kg0′
(Ψ(U ′),Ψ(V ′)) + 16λµ

= 6Ksl(2)(U
′, V ′) + 16λµ

(Because the pullback of the Killing form by an isomorphism is the Killing

form). As U ′ = U − 1
2 tr(U)Id2, λ = 1

2 tr(U), V ′ = V − 1
2 tr(V )Id2 and µ =
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1
2 tr(V ), and as Ksl(2)( . , . ) = 4 tr( . , . ) we obtain finally that

B0 = 24 tr(UV )− 8 tr(U) tr(V ).

As the algebra spp(W,B0, λ) ≃ spp(W, ǫB0, λ) for ǫ 6= 0 (Proposition 3.2.8, 2)),

we can take for B0 the form given in the Proposition.

�

Theorem 5.1.4.

Let dimW > 1. Then, except for the case p = 1, all graded Lie algebras of

symplectic type spp(W,B0, λ) are associated to an sl2-triple.

Proof.

Remember from Theorem 4.1.2, that there exists an associated sl2-triple if and

only if there exists X ∈ V \ {0} such that X /∈ g′0.X. We identify W with C
n,

where n = dimW . Define P ∈ C
p[Cn] by

P (x) = xp1 + xp2 + · · · + xpn.

By the natural representation, sl(n) acts on C
p[Cn] by the classical vector fields:

U = (ai,j) 7−→
∑

i,j

ai,jxi
∂

∂xj
.

If U.P = P , for some U ∈ sl(n):

(
∑

i,j

ai,jxi
∂

∂xj
)P (x) = (

∑

i,j

ai,jxi
∂

∂xj
)(
∑

k

xpk)

=
∑

i,j,k

ai,jxi(
∂

∂xj
xpk) =

∑

i,j,k

ai,jxipx
p−1
k δj,k

=
∑

i,j

ai,jxipx
p−1
j =

∑

k

xpk.

For p > 1, this implies that ai,i =
1
p
for i = 1, . . . , n, and then U cannot be in

sl(n). Therefore the Lie algebras of symplectic type spp(W,B0, λ) are associated

to an sl2-triple for p > 1.

Suppose now p = 1. From Corollary 4.1.3 b) it is enough to prove that for any

X ∈ C
n \ {0}, there exists U ∈ sl(n) such that U.X = X. But as Cn \ {0} is a

single orbit under the group SL(n,C), the map U 7−→ U.X from sl(n) to C
n is

surjective.

�
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5.2. Prehomogeneous vector spaces and dual pairs.

In Theorem 5.1.4 we have shown that if n = dimW > 1 and p > 1, then

the polynomial X = xp1 + · · · + xpn is the nil-positive element of an sl(2)-triple

associated to the algebra spp(W,B0, λ). We will now show that, under some

assumptions, if W is the space of an irreducible regular prehomogeneous vector

space, and if P is the corresponding fundamental invariant, then if p = ∂◦(P ),

the nil-positive element of an associated sl(2)-triple of spp(W,B0, λ) can also

be taken to be P .

Proposition 5.2.1.

Let W be a finite dimensional vector space over C. Let A ⊂ GL(W ) be a

connected reductive algebraic group with a one dimensional center. Denote by

a its Lie algebra. Suppose that (A,W ) is an irreducible regular prehomogeneous

vector space. Let P be the corresponding fundamental invariant. Let p = ∂◦(P ).

We also make the following assumption

a = {U ∈ gl(W ) |U.P = µ(U)P, µ ∈ a∗}
or equivalently

a′ = {U ∈ gl(W ) |U.P = 0}
(5− 2− 1)

Then, for any B0, P is the nil-positive element of an associated sl(2)-triple in

spp(W,B0, λ) .

Proof.

Suppose that there exists U ∈ sl(W ), such that U.P = P . Then, if H =
1

λ
IdW

is the grading element we would have (H − U).P = 0. Then from (5 − 2− 1),

we obtain that (H − U) ∈ a′ and therefore H ∈ a′ ⊂ sl(W ). This is not true.

Then the proposition is a consequence of Theorem 4.1.2.

�

Remark 5.2.2.

Condition (5− 2− 1) is allways satisfied if A is the structure group of a simple

Jordan algebra W over C. See [2], Chapter VIII, exercise 5 p. 160-161. This

case corresponds to the so-called prehomogeneous vector spaces of commutative

parabolic type (see [10], ch. 5 or [8]).

But it is also satisfied for many others prehomogeneous vector spaces.

Definition 5.2.3.

Let g be Lie algebra. A pair (g1, g2) of Lie subalgebras of g is called a dual pair

if g1 is the centralizer of g2 in g and vice versa.
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Let P ∗ be the fundamental invariant of the dual prehomogeneous vector space

(A,W ∗). Of course P ∗ is only defined up to a multiplicative constant.

Theorem 5.2.4.

The notations are as in Proposition 5.2.1, and we suppose λ 6= 0 and that

condition (5− 2− 1) is satisfied.

Let b̃ = Zspp(W,B0,λ)(a
′) be the centralizer of a′ in spp(W,B0, λ).

1) One can choose P ∗ such that (P ∗,H0 =
2
λ
IdW , P ) is an sl(2)-triple (associated

to the graded Lie algebra spp(W,B0, λ)). Then, if b is the Lie subalgebra of

spp(W,B0, λ) isomorphic to sl(2) generated by this triple, we have

b = b̃ ∩ Γ(spp(W,B0, λ))

2) Moreover (a′, b̃) is a dual pair in spp(W,B0, λ).

Proof.

1) As b̃ = Zspp(W,B0,λ)(a
′) and as a′ ⊂ gl(W ) = g0, we see that b̃ is a graded

subalgebra of spp(W,B0, λ).

Hence

b̃ ∩ Γ(spp(W,B0, λ)) = b̃ ∩ g−1 ⊕ b̃ ∩ g0 ⊕ b̃ ∩ g1.

But as W is irreducible under a, we obtain that

b̃ ∩ g1 = C.P and b̃ ∩ g−1 = C.P ∗.

From the Schur Lemma we get also

b̃ ∩ g0 = {U ∈ gl(W ), [U, a′] = 0} = C.IdW .

As [P ∗, P ] ∈ b̃ ∩ g0, we have [P ∗, P ] = γIdW , γ ∈ C.

Suppose that [P ∗, P ] = 0. Let B be the non-degenerate invariant bilinear form

which extends B (see section 3.4). Then

0 = B([P ∗, P ], IdW ) = B(P ∗, [P, IdW ]) = −λB(P ∗, P ) = −λP ∗(∂)P (0)

But it is well known from the theory of prehomogeneous space that P ∗(∂)P (0) 6=
0 (see for example the computation on p. 19 in [10]). Hence ( 2

λγ
P ∗, 2

λ
IdW , P )

is an sl(2)-triple and b = b̃ ∩ Γ(spp(W,B0, λ)).

2) For the second assertion, we have just to prove that Zspp(W,B0,λ)(b̃) ⊂ a′. As

b = b̃ ∩ Γ(spp(W,B0, λ)), we have

Zspp(W,B0,λ)(b̃) ⊂ Zspp(W,B0,λ)(b) ⊂ Zspp(W,B0,λ)(
2

λ
IdW ) = gl(W ).

Therefore Zspp(W,B0,λ)(b̃) ⊂ Zgl(W )(P ) = a′ (condition (5− 2− 1)).

�
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Example 5.2.5. The dual pair (o(n), sl(2))

Let O(n) be the orthogonal group over C of size n and let o(n) be its Lie algebra.

Define A = C∗ × O(n) and W = Cn. The natural representation (A,W ) is an

irreducible regular prehomogeneous vector space whose fundamental relative

invariant can be chosen to be the quadratic form P (x) = x21+· · ·+x2n. Condition

(5− 2− 1) is satisfied as A is the structure group of the Jordan algebra C
n (cf.

Remark 5.2.2). Consider the trace form on gl(n) defined by B0(U, V ) = tr(UV ).

Then, in the preceding notations, the algebra sp2(W, tr,−2) is the ordinary

symplectic algebra sp(n,C) with the grading defined as follows (here Sn(C)

stands for the n× n symmetric matrices):

V ∗ ≃ C
2[(Cn)∗] ≃ Sn(C) ≃ g−1 = {

(
0 0

Y 0

)
, Y ∈ Sn(C)}

gl(n) ≃ g0 = {
(
A 0

0 −tA

)
, A ∈ gl(n)}

V ≃ C
2[Cn] ≃ Sn(C ≃ g1 = {

(
0 X

0 0

)
,X ∈ Sn(C)}

Here the quadratic form P can be identified with the matrix

(
0 Idn

0 0

)
∈ g1. In

this case, keeping the preceding notations, we obtain the dual pair (a′, b̃) where

a′ = {
(
A 0

0 A

)
, A ∈ o(n)} ≃ o(n), and where b̃ = b = {

(
aIdn bIdn

cIdn −aIdn

)
, a, b, c ∈

C}. This is the archetype of a dual pair in sp(n,C) (see [3], p. 556).

Through our construction this pair appears to be associated to the prehomoge-

neous vector space (O(n)× C
∗,Cn).

Remark 5.2.6. In the notations of the preceding example, we could now take

(g0, g1) as the starting prehomogeneous space (a,W ), and do the same construc-

tion as in Theorem 5.2.4. But then, as the degree of the fundamental relative

invariant (the determinant of the symmetric matrices) is of degree n, we are led

to the algebras spn(gl(n(n+1)
2 ), B0, λ) , which are of infinite dimension, according

to Proposition 5.1.3.
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