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GRADED LIE ALGEBRAS ASSOCIATED TO A

REPRESENTATION OF A QUADRATIC ALGEBRA

HUBERT RUBENTHALER

Preliminary version

Abstract. Let (g0, B0) be a quadratic Lie algebra (i.e. a Lie algebra

g0 with a non degenerate symmetric invariant bilinear form B0)

and let (g0, ρ, V ) be a finite dimensional representation of g0. We

define on Γ(g0, B0, V ) = V ∗
⊕ g0 ⊕ V a structure of local Lie algebra

in the sense of Kac ([2]). This implies the existence of two Z-

graded Lie algebras gmax(Γ(g0, B0, V )) and gmin(Γ(g0, B0, V )) whose

local part is Γ(g0, B0, V ). We investigate these graded Lie algebras,

more specifically in the case where g0 is reductive.

AMS classification: 17B70(17B20)
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1. Introduction

In this paper all gradings are Z-gradings. If g = ⊕n
i=−ngi is a grading of a

complex semi-simple Lie algebra, then it is well known that if B denotes the

Killing form of g, then B(gi, gj) = 0 if i + j 6= 0. This allows to identify

g−1 with the dual g∗1. Moreover as B is invariant the bracket representation

(g0, g−1) can be identified with the dual representation (g0, g
∗
1). It is then a

natural question to ask if any finite dimensional representation (g0, V ) can be

embedded in a graded Lie algebra g = ⊕n
i=−ngi such that (g0, g1) ≃ (g0, V ) and

(g0, g−1) ≃ (g0, V
∗). The first result of this paper is to prove that the answer

is ”yes” for any representation of a quadratic Lie algebra.

A quadratic Lie algebra is a pair (g0, B0) where g0 is a Lie algebra and B0 a non-

degenerate invariant symmetric bilinear form on g0. We use a result of V. Kac

([2]) which asserts that in order to construct a graded Lie algebra g = ⊕i∈Zgi it

suffices to construct the local part g−1⊕g0⊕g1, which has to be endowed with a

partial Lie bracket (see section 2 for details). Therefore once we have build the

partial bracket on the local part Γ(g0, B0, V ) = V ∗⊕g0⊕V (see Theorem 3.1.1)

the existence of the ”global” Lie algebra is just an application of the result of

Kac (see Theorem 3.2.1). In fact Kac theory provides us with two such graded

Lie algebras: a maximal one (denoted here gmax(Γ(g0, B0, V ))) and a minimal

one (denoted gmin(Γ(g0, B0, V ))). Any graded Lie algebra with a given local
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part is a quotient of the maximal algebra, and has a quotient isomorphic to the

minimal one. Of course, in general, these algebras are infinite dimensional.

Lets us now give a more precise description of the paper.

In section 2 we give a brief account of the results of Kac that we will use.

The main result of section 3.1 is Theorem 3.1.1 where we construct the local

Lie algebra structure on Γ(g0, B0, V ) = V ∗ ⊕ g0 ⊕ V . In this section we define

the equivalence of the fundamental triplets (g0, B0, V ) and we also investigate

the dependance on B0 and on the representation (g0, V ) of the local Lie algebra

structure of Γ(g0, B0, V ) = V ∗ ⊕ g0 ⊕ V . This dependance may be strong.

In section 3.2 we apply Kac Theorem to obtain the minimal and maximal

Lie algebras associated to the local data Γ(g0, B0, V ) = V ∗ ⊕ g0 ⊕ V . We also

prove, that under some conditions, the reductive graded Lie algebras are always

minimal graded Lie algebras (Proposition 3.2.3). We also explore in some detail

the case of the usual ”central” grading of sl2n(C), viewed as a local Lie algebra,

when the form B0 varies.

Section 3.3 deals with another important notion for graded Lie algebras due to

Kac, namely the transitivity (see Definition 3.3.1). We give a necessary and

sufficient condition for the local Lie algebra Γ(g0, B0, V ) (or the minimal Lie al-

gebra gmin(Γ(g0, B0, V ))) to be transitive (Proposition 3.3.2 and Remark 3.3.3).

We also prove that if g0 is reductive, then under some conditions including the

transitivity of Γ(g0, B0, V )), the fact that gminΓ(g0, B0, V )) is finite dimensional

implies that gminΓ(g0, B0, V )) is semi-simple (see Proposition 3.3.5).

In section 3.4 we show that the form B0 extends uniquely to an invariant sym-

metric bilinear form B on gmin(Γ(g0, B0, V )). Moreover if the local part is

transitive then the form B is nondegenerate (Proposition 3.4.2). This allows

us to show that there exists a bijection between some equivalence classes of

fundamental triplets and the equivalence classes of transitive graded Lie al-

gebras endowed with a non-degenerate symmetric bilinear form B such that

B(gi, gj) = 0 if i 6= −j (Theorem 3.4.3).

In section 4 we prove a strong relationship between relative invariants and the

existence of certain sl2-triples. A rational function R on V is said to be a

relative invariant if there exists a connected complex Lie group G0 with Lie

algebra g0 such that the representation (g0, V ) lifts to a representation of G0

on V , and such that R(g.x) = χ(g)R(x), where χ is a character of G0. We

prove, under some assumptions, that if V is irreducible, then the existence of
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a non-trivial relative invariant implies that there exists in gmin(Γ(g0, B0, V )))

an sl2-triple (Y,H0,X), where y ∈ g−1,X ∈ g1 and where H0 is the grading

element (i.e. gi = {x ∈ gmin(Γ(g0, B0, V ))) | H0,X] = ix}).

Remark: This paper is a preliminary version. Forthcoming versions will in-

clude more examples and applications.

2. Graded Lie algebras and local Lie algebras

In this paper all the algebras are defined over the field C of complex numbers.

Let us first recall various definitions and results from [2].

Definition 2.1.

A Lie algebra g is said to be graded if:

1) g is a direct sum of subspaces: g = ⊕i∈Z gi, such that dim gi < +∞ and such

that [gi, gj ] ⊂ gi+j, for all i, j ∈ Z.

2) g is generated by g−1 ⊕ g0 ⊕ g1.

If g is a graded Lie algebra, the subspace ĝ = g−1 ⊕ g0 ⊕ g1 is called the local

part of g.

Definition 2.2.

1) A local Lie algebra is a direct sum Γ = Γ−1 ⊕ Γ0 ⊕ Γ1 of finite dimen-

sional subspaces such that if |i + j| ≤ 1 there exists a bilinear anticommuta-

tive operation Γi × Γj → Γi+j((x, y) → [x, y]) such that the Jacobi identity

[x, [y, z]] = [[x, y], z] + [y, [x, z]] holds each time the three terms of the identity

are defined.

2) A symmetric bilinear form BΓ on a local Lie algebra Γ is said to be invariant

if the identity

BΓ([x, y], z) = BΓ(x, [y, z])

holds for x, y, z ∈ Γ each time that the brackets are defined.

Of course the local part ĝ of a graded Lie algebra g, endowed with the bracket

of g is a local Lie algebra. A natural question is to know if, for a given local Lie

algebra Γ, there exists a graded Lie algebra whose local part is Γ. The answer

is ”yes”. More precisely we have:

Theorem 2.3. (Kac, [2], Proposition 4)

Let Γ = Γ−1 ⊕ Γ0 ⊕ Γ1 be a local Lie algebra.

1)There exists a unique graded Lie algebra gmax(Γ) whose local part is Γ and

which satisfies the following universal property.
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Any morphism of local Lie algebras Γ → ĝ from Γ into the local part ĝ of

a graded Lie algebra g extends uniquely to a morphism of graded Lie algebras

gmax(Γ) → g. (And hence any graded Lie algebra whose local part is isomorphic

to Γ, is a quotient of gmax(Γ)). Moreover we have

gmax(Γ) = F (g−1)⊕ g0 ⊕ F (g1),

where F (g−1) (resp. F (g1)) is the free Lie algebra generated by g−1 (resp. g1).

2) There exists a unique graded Lie algebra gmin(Γ) whose local part is Γ and

which satisfies the following universal property.

Any surjective morphism of local Lie algebras ĝ → Γ from the local part of

a graded Lie algebra g into Γ extends uniquely to a (surjective) morphism of

graded Lie algebras g → gmin(Γ). (And hence gmin(Γ) is a quotient of any

graded Lie algebra whose local part is isomorphic to Γ).

3. Local and graded Lie algebras associated to (g0, B0, V )

3.1. The local Lie algebra Γ(g0, B0, V ).

Remind that a quadratic Lie algebra is a finite dimensional Lie algebra endowed

with an invariant nondegenerate symmetric bilinear form. The most obvious ex-

amples of such algebras are the semi-simple algebras (endowed with the Killing

form), the commutative algebras (endowed with any symmetric nondegenerate

bilinear form) or more generally the reductive Lie algebras. But there exist

more sophisticated examples. General quadratic Lie algebras are obtained by

a finite number of so-called double extensions of either a simple Lie algebra or

a commutative Lie algebra. See [3].

Let g0 be a quadratic Lie algebra. Let (g0, ρ, V ) be a finite dimensional rep-

resentation of g0. Let (g0, ρ
∗, V ∗) be the contragredient representation. We

will often just denote these modules by (g0, V ) and (g0, V
∗). Similarly, for

U ∈ g0,X ∈ V, Y ∈ V ∗ we will often write U.X and U.Y instead of ρ(U)X and

ρ∗(U)Y . Put g−1 = V ∗ and g1 = V . Define also

Γ(g0, B0, V ) = g−1 ⊕ g0 ⊕ g1 = V ∗ ⊕ g0 ⊕ V.

Our aim is now to define a structure of local Lie algebra on Γ(g0, B0, V ), such

that for U ∈ g0,X ∈ g1, Y ∈ g−1, we have [U,X] = U.X and [U, Y ] = U.Y .

Theorem 3.1.1.

Let (g0, V ) be a finite dimensional representation of a quadratic Lie algebra g0.

Let us denote by B0 a symmetric invariant nondegenerate bilinear form which
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is given on g0. As before we set:

Γ(g0, B0, V ) = g−1 ⊕ g0 ⊕ g1 = V ∗ ⊕ g0 ⊕ V.

For U ∈ g0,X ∈ g1, Y ∈ g−1 define an anticommutative bracket by

a) [U,X] = U.X, [U, Y ] = U.Y

b) The element [X,Y ] is the unique element of g0 such that for all U ∈ g0 the

following identity holds:

B0([X,Y ], U) = Y (U.X) = −(U.Y )(X).

(The last equality is just the definition of the contragredient representation).

The preceding bracket defines a structure of a local Lie algebra on Γ(g0, B0, V ).

Proof. We must prove that the Jacobi identity is verified each times the brackets

make sense. This means that we have to prove the following identities.

α) ∀U1, U2 ∈ g0, ∀X ∈ g1, [X, [U1, U2]] = [[X,U1], U2] + [U1, [X,U2]].

β) ∀U1, U2 ∈ g0, ∀Y ∈ g−1, [Y, [U1, U2]] = [[Y,U1], U2] + [U1, [Y,U2]].

γ) ∀X ∈ g1, ∀Y ∈ g−1, ∀Z ∈ g0, [Z, [X,Y ]] = [[Z,X], Y ] + [X, [Z, Y ]].

We have:

[X, [U1, U2]] = −[[U1, U2],X] = −[U1, U2].X = −U1.(U2.X) + U2.(U1.X).

On the other hand we have:

[[X,U1], U2] = [U2, [U1,X]] = U2.(U1.X) and [U1, [X,U2]] = −[U1, [U2,X]] =

−U1.(U2.X). This proves α). The proof of the identity β) is similar.

Let us now consider the identity γ). We set L = [Z, [X,Y ]], R1 = [[Z,X], Y ],

R2 = [X, [Z, Y ]], and R = R1 +R2. As L,R1, R2, R ∈ g0, in order to prove γ)

it will be enough to show that for all U ∈ g0, we have B0(L,U) = B0(R,U).

Using the invariance of B0 and definition b) we get:

B0(L,U) = B0([Z, [X,Y ]], U) = −B0([[X,Y ], Z], U) = −B0([X,Y ], [Z,U ])

= −Y ([Z,U ].X)

= −Y (Z.(U.X) − U.(Z.X)).

On the other hand, using again definition b), we have also:

B0(R1, U) = B0([[Z,X], Y ], U) = Y (U.[Z,X]) = Y (U.(Z.X))

and B0(R2, U) = B0([X, [Z, Y ]], U) = [Z, Y ](U.X) = Z.Y (U.X) = −Y (Z.(U.X)).

Hence B0(R,U) = Y (U.(Z.X) − Z.(U.X)) = B0(L,U).

�

Notation 3.1.2. It must be noted that the local Lie algebra described in Theo-

rem 3.1.1 depends on B0 and on ρ (see Proposition 3.1.7 and Proposition 3.1.8

below). In order to avoid confusion we will sometimes denote by Γ(g0, B0, ρ)
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this local Lie algebra. Also, if necessary, we will denote by [ , ]B0
or [ , ]B0,ρ

the bracket in Γ(g0, B0, ρ).

Definition 3.1.3. We call the triplet (g0, B0, V ) a fundamental triplet. It con-

sists of the following ingredients:

a) a quadratic Lie algebra g0

b) a non degenerate symmetric invariant bilinear form B0 on g0

c) a finite dimensional representation (ρ, V ) of g0 on the space V .

Definition 3.1.4. Let (g10, B
1
0 , V1) and (g20, B

2
0 , V2) be two fundamental triplets.

Let A ∈ Hom(g10, g
2
0) is a isomorphism of Lie algebras and let γ ∈ Hom(V1, V2)

be an isomorphism of vector spaces. We say that the pair (A, γ) is an isomor-

phism of fundamental triplets if

a) We have

∀U, ∀V ∈ g10, B2
0(A(U), A(V )) = B1

0(U, V ) (3− 1− 1)

b) The map γ intertwines the representations (ρ1, V1) and (ρ2 ◦A,V1) of g0, in

other words

∀U ∈ g10, ρ2(A(U)) ◦ γ = γ ◦ ρ1(U) (3− 1− 2)

Remark 3.1.5. In the definition above, condition a) coincides with the notion

of isometric isomorphism, or i-isomorphism of quadratic Lie algebras introduced

in [1]. This notion of i-isomorphism was already implicit in [3].

Theorem 3.1.6.

Any isomorphism of fundamental triplets

(A, γ) : (g10, B
1
0 , V1) −→ (g20, B

2
0 , V2)

extends uniquely to an isomorphism of local Lie algebras

Ψ(A,γ) : Γ(g
1
0, B

1
0 , V1) −→ Γ(g20, B

2
0 , V2).

Proof. Define γ∗ : V ∗
1 −→ V ∗

2 by γ∗ =tγ−1 where t stands for the transposed

map. Then it is easy to check that

∀U ∈ g10, ρ∗2(A(U)) ◦ γ∗ = γ∗ ◦ ρ∗1(U) (3− 1− 3)

Define now Ψ(A,γ) by setting:

∀U ∈ g10 : Ψ(A,γ)(U) = A(U)

∀X ∈ V1 : Ψ(A,γ)(X) = γ(X)

∀Y ∈ V ∗
1 : Ψ(A,γ)(Y ) = γ∗(Y )

It remains to prove that Ψ(A,γ) is an homomorphism of local Lie algebras.
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Let X ∈ V1 and Y ∈ V ∗
1 . Let us denote by [ , ]1 (resp. [ , ]2) the bracket in

Γ(g10, B
1
0 , V1) (resp. Γ(g

2
0, B

2
0 , V2)). From the definition, we see that the identity

∀X ∈ V1, Y ∈ V2, Ψ(A,γ)([X,Y ]1 = [Ψ(A,γ)(X),Ψ(A,γ)(Y )]2 (3− 1− 4)

is the same as

∀X ∈ V1, Y ∈ V2, A([X,Y ]1) = [γ(X), γ∗(Y )]2 (3− 1− 5)

For all U ∈ g20 we have:

B2
0(A([X,Y ]1), U) = B2

0(A([X,Y ]1), AA
−1(U))

= B1
0([X,Y ]1, A

−1(U)) (using (3− 1− 1))

= Y (ρ1(A
−1(U)(X)) (from Theorem 3.1.1)

= Y (γ−1ρ2(U)γ(X)) (using (3− 1− 2))

= γ∗(Y )(ρ2(U)γ(X))

= B2
0([γ(X), γ∗(Y )]2, U) (from Theorem 3.1.1)

This proves (3− 1− 5). We must also prove:

a) ∀U ∈ g10,∀X ∈ V1 Ψ(A,γ)([U,X]1) = [Ψ(A,γ)(U),Ψ(A,γ)(X)]2 and

b) ∀U ∈ g10,∀Y ∈ V ∗
1 Ψ(A,γ)([U, Y ]1) = [Ψ(A,γ)(U),Ψ(A,γ)(Y )]2

From the definition of Ψ(A,γ), a) is equivalent to γ(ρ1(U)X) = ρ2(A(U))γ(X)

and this is nothing else but (3− 1− 2). Similarly b) is just (3− 1− 3).

It remains to prove the uniqueness of the extension. But if

Ψ : Γ(g10, B
1
0 , V1) −→ Γ(g20, B

2
0 , V2)

is an isomorphism of local Lie algebras such that Ψ|g0 = A, Ψ|V = γ and

Ψ|V ∗ = γ̃ : V ∗ −→ V ∗, then for X ∈ V, Y ∈ V ∗, A([X,Y ]1) = [γ(X), γ̃(Y )]2.

Therefore B2
0(A([X,Y ]1), U) = B2

0([γ(X), γ̃(Y )]2, U), for all U ∈ g0. And then

the computation above proves that γ̃ = γ∗.

�

We will now investigate the dependance of the local Lie algebra Γ(g0, B0, ρ) ,

under a change of the invariant form B0 on g0. We make the following assump-

tions:

– g0 = L1 ⊕ L2 ⊕ · · · ⊕ Lk, where the Li’s are quadratic ideals.

– we denote by B0,i a nondegenerate invariant bilinear form on Li (i = 1, . . . , k).

– the invariant bilinear form B0 on g0 is given by B = B0,1 ⊕B0,2 ⊕ · · · ⊕B0,k.

– for λ = (λ1, . . . , λk) ∈ (C∗)k we set

λ.B0 = λ1B0,1 ⊕ · · · ⊕ λkB0,k

and for u = u1 + · · ·+ uk ∈ g0 (ui ∈ Li) we set
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λ.u = λ1u1 + · · ·+ λkuk.

Proposition 3.1.7.

1) Using the preceding notations, we have for X ∈ V = g1 and for Y ∈ V ∗ =

g−1:

λ.[X,Y ]λ.B0
= [X,Y ]B0

2) For µ ∈ C
∗, the local Lie algebras Γ(g0, B0, ρ) and Γ(g0, µB0, ρ) attached

respectively to B0 and µB0 are isomorphic (here µB0 stands for the ordinary

scalar multiplication).

Proof.

1) From the definition [X,Y ]λ.B0
is the unique element in g0 such that

λ.B0([X,Y ]λ.B0
, U) = Y (U.X) for any U ∈ g0. It is easy to see that from the def-

initions we have λ.B0([X,Y ]λ.B0
, U) = B0(λ.[X,Y ]λ.B0

, U). Hence λ.[X,Y ]λ.B0
=

[X,Y ]B0
.

2) Choose a square root
√
µ of µ. Define ϕµ : Γ(g0, B0, ρ) −→ Γ(g0, µB0, ρ) by

∀X ∈ V, ϕµ(X) =
√
µX, ∀Y ∈ V ∗, ϕµ(Y ) =

√
µY, ∀U ∈ g0, ϕµ(U) = U.

Then [ϕµ(X), ϕµ(Y )]µB0
= [

√
µX,

√
µY ]µB0

= µ[X,Y ]µB0
= [X,Y ]B0

(this

is the particular case of 1) where g0 = L1). Hence [ϕµ(X), ϕµ(Y )]µB0
=

ϕµ([X,Y ]B0
).

As [U,X]µB0
= [U,X]B0

= U.X and [U, Y ]µB0
= [U, Y ]B0

= U.Y for all X ∈ V ,

Y ∈ V ∗ and U ∈ g0, we have also ϕµ([U,X]B0
) = [ϕµ(U), ϕµ(X)]µB0

and

ϕµ([U, Y ]B0
) = [ϕµ(U), ϕµ(Y )]µB0

. Therefore ϕµ is an isomorphism of local Lie

algebras.

�

We will also investigate the modification of the bracket in Γ(g0, B0, ρ) under a

slight change of ρ.

Suppose that g0 = Z ⊕ L is a quadratic Lie algebra where Z is a central ideal

and L is an ideal. For γ ∈ C
∗ we denote by γ�ρ the representation of g0 on V

given by γ�ρ(z+u) = γρ(z)+ρ(u), for z ∈ Z and u ∈ L. If U = z+u ∈ g0, and

if we set γ�U = γz + u, we have γ�ρ(U) = ρ(γ�U). Of course in the notations

of Proposition 3.1.7 γ�B0 = (γ, 0).B0 and γ�U = (γ, 0).U

If B0 = B0,Z + B0,L where B0,Z and B0,L are forms on Z and L respectively,

we define γ�B0 = γB0,Z +B0,L.
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The next proposition indicates the dependance of the local Lie algebra Γ(g0, B0, V )

if we change ρ into γ�ρ.

Proposition 3.1.8.

1) Let us denote by [ , ]B0,ρ the bracket on Γ(g0, B0, V ) given by Theorem 3.1.1.

Then, using the notations defined above, we have:

[X,Y ]B0,γ�ρ = γ�[X,Y ]B0,ρ

[U,X]B0,γ�ρ = γ�ρ(U)X, [U, Y ]B0,γ�ρ = −γ�ρ∗(U)Y

2) Suppose that λ, µ, α, β ∈ C
∗ verify the condition µ2

λ
= β2

α
. Then the local Lie

algebras Γ(g0, λ�B0, µ�ρ) and Γ(g0, α�B0, β�ρ) are isomorphic. In particular

Γ(g0, λ�B0, ρ) and Γ(g0, B0,
1√
λ

�ρ) are isomorphic.

Proof.

1) The element [X,Y ]B0,γ�ρ is by definition the unique element of g0 such

that, for all U ∈ g0, B0([X,Y ]B0,γ�ρ, U) = Y (γ�ρ(U)X) = Y (ρ(γ�U)X) =

B0([X,Y ]B0,ρ, γ�U) = B0(γ�[X,Y ]B0,ρ, U). Hence [X,Y ]B0,γ�ρ = γ�[X,Y ]B0,ρ.

The other two identities are just the definitions of , [U,X]B,γ�ρ and , [U, Y ]B,γ�ρ.

2) Define ϕ : Γ(g0, λ�B0, µ�ρ) −→ Γ(g0, α�B0, β�ρ) by

ϕ(U) = µ
β

�U, for all U ∈ g0

ϕ(X) = X for all X ∈ V

ϕ(Y ) = Y for all Y ∈ V ∗

We have ϕ([U,X]λ�B0,µ�ρ) = µ�ρ(U)X = ρ(µ�U)X and [ϕ(U), ϕ(X)]α�B0,β�ρ =

[µ
β

�U,X]α�B0,β�ρ = β�ρ(µ
β

�U)X = ρ(µ�U)X.

Hence ϕ([U,X]λ�B0,µ�ρ) = [ϕ(U), ϕ(X)]α�B0,β�ρ. Similarly one can prove that

ϕ([U, Y ]λ�B0,µ�ρ) = [ϕ(U), ϕ(Y )]α�B0,β�ρ.

We have also ϕ([X,Y ]λ�B0,µ�ρ) =
µ
β

�[X,Y ]λ�B0,µ�ρ = µ2

β
�[X,Y ]λ�B0,ρ (use 1))

= µ2

λβ
�[X,Y ]B0,ρ (use Proposition 3.1.7).

On the other hand we have [ϕ(X), ϕ(Y )]α�B0,β�ρ = [X,Y ]α�B0,β�ρ

= 1
α

�[X,Y ]B0,β�ρ (use Proposition 3.1.7) = β
α

�[X,Y ]B0,ρ (use 1)). As µ2

λ
=

β2

α
we obtain that ϕ([X,Y ]λ�B0,µ�ρ) = [ϕ(X), ϕ(Y )]α�B0,β�ρ. Finally we have

proved that ϕ is an isomorphism of local Lie algebras.

�

3.2. Graded Lie algebras with local part Γ(g0, B0, V ).

Let us now translate the result of Kac (Theorem 2.3) in the context of Theorem

3.1.1:
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Theorem 3.2.1. Let (g0, ρ, V ) be a finite dimensional representation of a qua-

dratic Lie algebra g0. Let Γ(g0, ρ, V ) be the local Lie algebra constructed in

Theorem 3.1.1.

1) There exists a unique graded Lie algebra gmax(Γ(g0, B0, V )) whose local part

is Γ(g0, B0, V ) and which satisfies the following universal property.

Any morphism of local Lie algebras Γ(g0, B0, V ) → ĝ from Γ into the local part ĝ

of a graded Lie algebra g extends uniquely to a morphism of graded Lie algebras

gmax(Γ(g0, B0, V )) → g. (And hence any graded Lie algebra whose local part is

isomorphic to Γ(g0, B0, V ), is a quotient of gmax(Γ(g0, B0, V ))). Moreover we

have

gmax(Γ(g0, B0, V )) = F (V ∗)⊕ g0 ⊕ F (V ),

where F (V ∗) (resp. F (V )) is the free Lie algebra generated by V ∗ (resp. V ).

2) There exists a unique graded Lie algebra gmin(Γ(g0, B0, V )) whose local part

is Γ(g0, B0, V ) and which satisfies the following universal property.

Any surjective morphism of local Lie algebras ĝ → Γ(g0, B0, V ) from the local

part of a graded Lie algebra g into Γ(g0, B0, V ) extends uniquely to a (surjective)

morphism of graded Lie algebras g → gmin(Γ(g0, B0, V )). (And hence gmin(Γ(g0, B0, V ))

is a quotient of any graded Lie algebra whose local part is isomorphic to Γ(g0, B0, V )).

Remark 3.2.2. Let (g0, B0) be a quadratic Lie algebra. Suppose that g0 =

g10 ⊕ g20 is an orthogonal decomposition into ideals. Define B1
0 = B0|

g
1
0
×g

1
0

and

B2
0 = B0|

g
2
0
×g

2
0

. Suppose also that the representation (g, ρ, V ) is a direct sum

(g10⊕g20, ρ1⊕ρ2, V1⊕V2). Then from the definitions we obtain that Γ(g0, B0, V ) =

Γ(g10, B
1
0 , V1)⊕ Γ(g20, B

2
0 , V2), and therefore

gmax(Γ(g0, B0, V )) ≃ gmax(Γ(g
1
0, B

1
0 , V1))⊕ gmax(Γ(g

2
0, B

2
0 , V2))

and

gmin(Γ(g0, B0, V )) ≃ gmin(Γ(g
1
0, B

1
0 , V1))⊕ gmin(Γ(g

2
0, B

2
0 , V2)).

As an example let us show that graded reductive (finite dimensional) Lie alge-

bras are always minimal graded Lie algebras.

Proposition 3.2.3. Let g be a reductive (finite dimensional ) Lie algebra. Sup-

pose that we are given a Z-grading g = ⊕n
i=−ngi such that g is generated by its

local part Γ(g) = g−1 ⊕ g0 ⊕ g1 (in other words g is a graded Lie algebra in

the sense of Definition 2.1). Let BΓ(g) be a nondegenerate invariant symmetric

bilinear form on Γ(g) such that BΓ(g)(gi, gj) = 0 when |i + j| 6= 0. Then using
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BΓ(g), the contragredient representation (g0, g
∗
1) can be identified with (g0, g−1).

If B0 denotes the restriction of BΓ(g) to g0, then we have:

g ≃ gmin(Γ(g)) ≃ gmin(Γ(g0, B0, g1))

Proof.

From the definition we can identify g∗1 with g−1 by using BΓ(g). Then for U ∈ g0,

Y ∈ g−1 and X ∈ g1 we have, from the invariance of BΓ(g):

BΓ(g)(U.Y,X) = −BΓ(g)(Y, [U,X]) = BΓ(g)([U, Y ],X)

and hence [U, Y ] = U.Y (here U.Y stands for the contragredient action of U ∈ g0

on g−1 ≃ g∗1).

Similarly, we have also:

B0([X,Y ], U) = BΓ(g)([X,Y ], U) = BΓ(g)(Y, [U,X]) = Y (U.X).

Hence the original bracket in Γ(g) is the bracket constructed in Theorem 3.1.1.

Therefore gmin(Γ(g)) ≃ gmin(Γ(g0, B0, g1)).

From the universal property of gmin(Γ(g)) there exists a graded ideal I ⊂ g

such that g/I ≃ gmin(Γ(g)). As g is reductive there exists an ideal U ⊂ g such

that g = U ⊕ I. Hence U ≃ gmin(Γ(g)). But then the local part of U is Γ(g),

and this contradicts the fact that g is generated by Γ(g) unless I = {0}.
�

Remark 3.2.4.

It must be noticed that if g = ⊕n
i=−ngi is an arbitrary Z-grading of a semi-

simple Lie algebra g then g is in general not generated by its local part, and is

therefore not a graded Lie algebra in the sense of Definition 2.1. Let us explain

this briefly. It is well known that there exists always a grading element, that

is an element H ∈ g such that gi = {X ∈ g | [H,X] = iX}. Let h be Cartan

subalgebra of g0 (which is also a Cartan subalgebra of g), containing H. Let Ψ

be a set of simple roots of the root system Σ(g, h) such that α(H) ∈ N (such a

set of simple roots always exists). Hence we have associated a ”weighted Dynkin

diagram” to a grading . The subdiagram of roots of weight 0 corresponds to

the semi-simple part of the Levi subalgebra g0. But if the weighted Dynkin

diagram has weights equal to 1 and to n > 1, then it is easy to see that g

cannot be generated by the local part g−1 ⊕ g0 ⊕ g1.

Example 3.2.5. (Prehomogeneous spaces of parabolic type)

Let g be a simple complex Lie algebra. Let h be Cartan subalgebra. Denote as

before by Σ(g, h) the set of roots of the pair (g, h). Let Ψ be a set of simple roots
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for Σ(g, h). Let θ ⊂ Ψ be a subset and let < θ > denote the subset of roots which

are linear combinations of elements of θ. Let g0 = lθ be the Levi subalgebra

corresponding to θ. That is g0 = h ⊕ (⊕α∈<θ>g
α) where gα is the root space

corresponding to α. Let H0 be the unique element in h such that α(H0) = 0 if

α ∈ θ and α(H0) = 1 if α ∈ Ψ \ θ. Define then gi = {X ∈ g | [H0,X] = iX}
(this definition of g0 is coherent with the preceding one). One obtains this way

a grading g ⊕n
i=−n gi. The representations (g0, g1) are prehomogeneous vector

spaces called prehomogeneous spaces of parabolic type. It is easy to see that

they correspond to gradings whose weights in the sense of the the preceding

remark are only 0 and 1. From Proposition 3.2.3 we obtain that in this case

g = gmin(Γ(g0, B0, g1)) where B0 is the restriction of the Kiling form of g to g0.

Example 3.2.6.

We will now examine the case of sl2n(C) which will be considered both as a

graded Lie algebra and a local Lie algebra. This will show that the local Lie alge-

bras Γ(g0, B0, V ) and the corresponding minimal Lie algebra gmin(Γ(g0, B0, V ))

depend strongly on the choice of B0.

Consider first the classical 3-grading of sl2n(C) defined by:

g−1 = V ∗ = {
(
0 0

Y 0

)
, Y ∈ Mn(C)}

g0 = {
(
A 0

0 B

)
, A,B ∈ Mn(C), T r(A+B) = 0}

g1 = V = {
(
0 X

0 0

)
,X ∈ Mn(C)}

We will use the letter U for elements in g0 and the letters X,Y for elements

in g1 and g−1 respectively. And in order to simplify notations we will set

X =

(
0 X

0 0

)
and Y =

(
0 0

Y 0

)
.

As invariant form on sl2n(C) we will take B(α, β) = Tr(αβ), (α, β ∈ sl2n(C)).

This is just a multiple of the Killing form. Let us call B0 the restriction of B

to g0. The form B0 is of course nondegenerate. The representation (g0, ρ, V ) is

defined by the bracket. Therefore if U =

(
A 0

0 B

)
, we have ρ(U)X = [U,X] =

(
0 AX −XB

0 0

)
= AX −XB.

If we consider sl2n(C) as the local Lie algebra Γ(g0, B0, ρ) we now from Propo-

sition 3.2.3 that gmin(Γ(g0, B0, ρ)) = sl2n(C).
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Next we will modify the form B0 in the following manner. Let λ = (λ1, λ2) ∈

(C∗)2 and set Bλ
0 (

(
A 0

0 B

)
,

(
A′ 0

0 B′

)
) = λ1Tr(AA

′)+λ2Tr(BB′) (remember

that B0(

(
A 0

0 B

)
,

(
A′ 0

0 B′

)
) = Tr(AA′) + Tr(BB′)).

We will decompose the form Bλ
0 according to the decomposition of g0 into ideals.

Obviously

g0 = CH0 ⊕ a1 ⊕ a2 (∗)

where H0 =

(
Idn 0

0 -Idn

)
and where a1 = {

(
A 0

0 0

)
, A ∈ sln(C)} and a2 =

{
(
0 0

0 B

)
, B ∈ sln(C)}.

The decomposition of [Y,X]B0
according to (∗) is as follows:

[Y,X]B0
= − 1

n
Tr(Y X)

(
Idn 0

0 −Idn

)

+

(
−XY + 1

n
Tr(Y X)Idn 0

0 0

)
+

(
0 0

0 Y X − 1
n
Tr(Y X)Idn

)

An easy computation shows that Bλ
0 = λ1+λ2

2 B0|CH0

+λ1B0|a1
+λ2B0|a2

(hence

the form Bλ
0 is nondegenerate if and only if λ1 6= 0, λ2 6= 0, λ1 + λ2 6= 0).

Therefore Bλ
0 = µ.B0, where µ = (λ1+λ2

2 , λ1, λ2). From Proposition 3.1.7 we

obtain that

[Y,X]Bλ
0

= − 2
n(λ1+λ2)

Tr(Y X)

(
Idn 0

0 −Idn

)

+

(
1
λ1
(−XY + 1

n
Tr(Y X)Idn) 0

0 1
λ2
(Y X − 1

n
Tr(Y X)Idn)

)

=

(−1
λ1

XY + λ2−λ1

n(λ1+λ2)λ1
Tr(Y X)Idn 0

0 1
λ2
Y X + λ2−λ1

n(λ1+λ2)λ2
Tr(Y X)Idn

)
(∗∗)

Suppose now that the local Lie algebras Γ(g0, B0, ρ) and Γ(g0, B
λ
0 , ρ) are iso-

morphic. Then as Γ(g0, B0, ρ) = gmin(Γ(g0, B0, ρ)) ≃ sl2n(C), we should have

that gmin(Γ(g0, B
λ
0 , ρ)) ≃ sl2n(C), and hence for Y ∈ V ∗ and X,X ′ ∈ V we

have [Y, [X,X ′]Bλ
0

]Bλ
0

= 0. And then from the Jacobi identity the following

identity should hold in Γ(g0, B
λ
0 , ρ):

[[Y,X]Bλ
0

,X ′]Bλ
0

+ [X, [Y,X ′]Bλ
0

]Bλ
0

= 0 (∗ ∗ ∗)
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A calculation, using (∗∗) shows that the left member of (∗ ∗ ∗) is equal to

(
1

λ2
− 1

λ1
)
(
(XY X ′ −X ′Y X) +

λ2 − λ1

n(λ1 + λ2)
(Tr(Y X ′)X − Tr(Y X)X ′)

)

(in the simplified notation explained at the beginning of the example).

It is easy to see that if λ1 6= λ2 this element is not equal to zero for general

Y,X,X ′ ∈ Mn(C). Therefore the local Lie algebra gmin(Γ(g0, B
λ
0 , ρ)) cannot

be isomorphic to gmin(Γ(g0, B0, ρ)) ≃ sl2n(C).

3.3. Transitivity.

Let us also recall the notion of transitivity introduced by V. Kac.

Definition 3.3.1. (Kac [2], Definition 2)

Let g (resp. ĝ) be a graded Lie algebra (resp. a local Lie algebra). Then g (resp.

ĝ) is said to be transitive if

- for x ∈ gi, i ≥ 0, [x, g−1] = {0} ⇒ x = 0

- for x ∈ gi, i ≤ 0, [x, g1] = {0} ⇒ x = 0.

In particular if g (or ĝ) is transitive, then the modules (g0, g−1) and (g0, g1) are

faithful.

If A is a subset of a vector space V , we denote by 〈A〉 the subspace of V

generated by A.

Proposition 3.3.2.

1) Let (g0, V ) be a representation of the quadratic Lie algebra g0. The local Lie

algebra Γ(g0, B0, V ) is transitive if an only if (g0, V ) is faithful and 〈g0.V 〉 = V

and 〈g0.V ∗〉 = V ∗ .

2) If the representation (g0, V ) is completely reducible, then the local Lie algebra

Γ(g0, B0, V ) is transitive if an only if (g0, V ) is faithful and V does not contain

the trivial module.

Proof. 1) Suppose that Γ(g0, B0, V ) is transitive. We have already remarked

that then the representation (g0, V ) is faithful (and hence (g0, V
∗) is faithful

too). If 〈g0.V 〉 6= V , then there exists Y ∈ V ∗, Y 6= 0 such that Y (g0.V ) = 0.

From the definition of the bracket we obtain that B0([V, Y ], g0) = 0. Hence

[Y, V ] = {0}. This contradicts the transitivity. Similarly one proves that tran-

sitivity implies 〈g0.V ∗〉 = V ∗. Conversely suppose that (g0, V ) is faithful and

〈g0.V 〉 = V and 〈g0.V ∗〉 = V ∗. The first of these assumptions is one of the

conditions needed for the transitivity. Suppose also that [X,V ∗] = {0} for

an X ∈ V . Then B0([X,Y ], U) = 0 for all U ∈ g0 and all Y ∈ V ∗. Hence
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Y (U.X) = −U.Y (X) = 0. Therefore, as 〈g0.V ∗〉 = V ∗, we have V ∗(X) = 0

and hence X = 0. The same proof, using the identity 〈g0.V 〉 = V , shows that

[Y, V ] = {0} implies Y = 0. Hence Γ(g0, B0, V ) is transitive.

2) Let V = ⊕k
i=1Vi be a decomposition of V into irreducibles. If Vi is not

the trivial module we have of course 〈g0.Vi〉 = Vi. It is then easy to see that

the preceding condition ”〈g0.V 〉 = V and 〈g0.V ∗〉 = V ∗” is equivalent to the

condition ”V does not contain the trivial module”. �

Remark 3.3.3.

As a minimal graded Lie algebra with a transitive local part is transitive ([2],

Prop. 5 page 1278), the Proposition above gives also necessary and sufficient

conditions for the transitivity of gmin(Γ(g0, B0, V )).

Remark 3.3.4.

1) Suppose that there exists an element H ∈ g0 such that H.X = X for all X ∈
V . Such an element is called grading element. Then obviously the conditions

〈g0.V 〉 = V and 〈g0.V ∗〉 = V ∗ are satisfied. In this case the local Lie algebra

Γ(g0, B0, V ) is transitive if an only if (g0, V ) is faithful.

2) Suppose that g0 is reductive and that the representation (g0, V ) is not faith-

ful. Then g0 = g10 ⊕ g20, where gi0 are ideals and where g20 is the kernel of the

representation. Then from the universal property of gmax(Γ(g0, B0, V )) and

gmin(Γ(g0, B0, V )) (see Th.2.3) is is easy to see that

gmax(Γ(g0, B0, V )) ≃ gmax(Γ(g
1
0, B0|

g
1
0

V ))⊕ g20 and

gmin(Γ(g0, B0, V )) ≃ gmin(Γ(g
1
0, B0|

g
1
0

V ))⊕ g20.

3) Suppose that (g0, V ) is completely reducible and that the representation

(g0, V ) is faithful. Let V = ⊕k
i=1Vi be a decomposition of V into irreducibles.

Then by Schur’s Lemma we obtain that dimZ(g0) ≤ k (Z(g0) denotes the

center of g0). Hence if the local Lie algebra Γ(g0, B0, V ) is transitive, then

dimZ(g0) ≤ k. In particular if V is irreducible dimZ(g0) ≤ 1.

Proposition 3.3.5.

Let g0 be a reductive Lie algebra. Let B0 be a non-degenerate invariant sym-

metric bilinear form on g0 and let (ρ, V ) be a finite dimensional completely

reducible representation of g0. Suppose that the local Lie algebra Γ(g0, B0, V )

is transitive (see Proposition 3.3.2 above). Then if dim(gmin(Γ(g0, B0, V ))) is

finite, the Lie algebra gmin(Γ(g0, B0, V )) is semi-simple.

Proof.
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It suffices to prove that if Γ(g0, B0, V ) cannot be decomposed as in Remark

3.2.2, then gmin(Γ(g0, B0, V )) is simple. We know from [2] (Prop. 5, p.1278)

that gmin(Γ(g0, B0, V )) is transitive. Denote by gmin(Γ(g0, B0, V )) = ⊕i∈Zgi
the grading. Let a be a non zero ideal of gmin(Γ(g0, B0, V )). Let a ∈ a, a 6= 0.

Let a = a−i + a−i+1 + · · · + aj be the decomposition of a according to the

grading of gmin(Γ(g0, B0, V )), where either −i ≤ 0 and ai 6= 0, or j ≥ 0, and

aj 6= 0. Suppose for example that −i ≤ 0 and ai 6= 0. From the transitivity of

gmin(Γ(g0, B0, V )), we know that there exists xi1 ∈ g1 such that [a−i, x
i
1] 6= 0.

Then [a, xi1] = [ai, x
i
1]+ · · ·+[aj, x

i
1] ∈ a therefore there exists an element a′ ∈ a,

such that a′ = a′−i+1 + · · · + a′j+1 (a′k ∈ gk) and a′−i+1 6= 0. By induction we

prove that there exists an element x = x0 + x1 + · · · ∈ a such that x0 6= 0

and also an element y = y1 + · · · ∈ a such that y1 6= 0. Let Tk = ⊕n≥kgi

(k ≥ 0). Denote by ã0 (resp. ã1) the projection of a ∩ T0 on g0 (resp. the

projection of a ∩ T1 on g1). The preceding considerations show that ã0 6= {0}
and ã1 6= {0}. As a is an ideal, ã0 is an ideal of g0 and ã1 is a sub-g0-module

of g1 = V . Let b̃0 be the orthogonal of ã0 in g0 with respect to B0, and let b̃1

be a g0-invariant supplementary space to ã1 in g1. That is g1 = ã1 ⊕ b̃1. And,

as g0 is reductive, we have also g0 = ã0 ⊕ b̃0 and b̃0 is an ideal of g0. As a

is an ideal we obtain [ã0, b̃1] = {0}. Let now B the extended form as defined

in Proposition 3.4.2 below. Then, as [ã1, g−1] ⊂ ã0, we have for all Y ∈ g−1,

B([b̃0, ã1], Y ) = B(b̃0, [ã1, Y ]) = {0}. This shows that [b̃0, ã1] is orthogonal

to g−1. Therefore [b̃0, ã1] = {0}. We have supposed that Γ(g0, B0, V ) is not

decomposable in the sense of Remark 3.2.2. Then b̃0 = {0} and b̃1 = {0}, and
g0 = ã0 and g1 = ã1.

As gmin(Γ(g0, B0, V )) is finite dimensional we can write gmin(Γ(g0, B0, V )) =

⊕n
i=−ngi. As gmin(Γ(g0, B0, V )) is generated by its local part, we obtain that

anyXn ∈ gn is a linear combination of elements of the form [. . . [X1
1 ,X

2
1 ] . . . ]X

n
1 ]

where X1
1 , . . . ,X

n
1 ∈ g1. But as g1 = ã1, we obtain that Xn ∈ gn ∩ a, and hence

gn ∩ a = gn

From the transitivity, we know that there exist Y 1
1 , . . . , Y

n
1 ∈ g−1 such that

[Y n
1 , [Y n−1

1 , . . . [Y 1
1 ,Xn] . . . ] 6= 0. This proves that a1 = a ∩ g1 6= {0} and

a0 = a ∩ g0 6= {0}. Then the same reasoning as above shows that a0 = g0 and

a1 = g1. As [g0, g−1] = g1 (this is again the transitivity condition), we have

also that a−1 = a ∩ g−1 = g−1.

Finally we have proved that Γ(g0, B0, V ) ⊂ a. Hence gmin(Γ(g0, B0, V )) = a.

�

3.4. Invariant bilinear forms.
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Consider again a general quadratic Lie algebra g0 with a non degenerate symet-

ric bilinear form B0. We will first show that B0 extends to an invariant form

on the local Lie algebra Γ(g0, B0, V ).

Define a symmetric bilinear form B on Γ(g0, B0, V ) by setting:

− ∀u, v ∈ g0, B(u, v) = B0(u, v)

− ∀u ∈ g0,∀X ∈ g1 = V, ∀Y ∈ g−1 = V ∗

B(u,X) = B(X,u) = B(u, Y ) = B(Y, u) = 0 (∗)

− ∀X ⊂ g1 = V, ∀Y ⊂ g−1 = V ∗, B(X,Y ) = B(Y,X) = Y (X) (∗∗)

Lemma 3.4.1.

a) The form B is a non degenerate invariant form on Γ(g0, B0, V ) (the defini-

tion of an invariant form on a local Lie algebra is analogous to the Lie algebra

case).

b) Suppose that there exists a grading element in Γ(g0, B0, V ), that is an element

H0 ∈ g0 such that [H0, x] = ix for x ∈ gi, i = −1, 0, 1, then the preceding form

B is the only invariant extension of B0 to Γ(g0, B0, V ).

Proof.

a) Of course as B|g0×g0
= B0, the invariance is verified on g0. Let X ∈

g1, Y ∈ g−1, u, v ∈ g0. From the definition of [X,Y ] (see Theorem 3.1.1),

we have B([X,Y ], u) = Y (u.X). On the other hand we have B(X, [Y, u]) =

B(X,−u.Y ) = −u.Y (X) = Y (u.X). Hence B([X,Y ], u) = B(X, [Y, u]). We

have also B([u, v],X) = 0 = B(u, v.X) = B(u, [v,X]). Similarly B([u, v], Y ) =

B(u, [v, Y ]) = 0.

b) Suppose that x ∈ gi and y ∈ gj with i + j 6= 0. Then B([H0, x], y) =

B(ix, y) = iB(x, y) = −B(x, [H0, y]) = −jB(x, y). Therefore (i+j)B(x, y) = 0,

and hence B(x, y) = 0. We also have for X ∈ V = g1 and Y ∈ V ∗ = g−1:

B([X,Y ],H0) = Y (X) = B(X, [Y,H0]) = B(X,Y ). Hence conditions (∗) and

(∗∗) are satisfied.

�

Proposition 3.4.2.

1) Let (g0, V ) be a representation of the quadratic Lie algebra g0. The bilinear

form B on Γ(g0, B0, V ) defined in Lemma 3.4.1 extends uniquely to a invariant

symmetric bilinear form (still denoted B) such that B(gi, gj) = 0 if i 6= −j on

any graded Lie algebra whose local part is Γ(g0, B0, V ) .

2) Moreover if Γ(g0, B0, V ) is transitive, then the extended form B on

gmin(Γ(g0, B0, V )) is non-degenerate.
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Proof. 1) is due to V. Kac: see Proposition 7 p. 1279 of [2].

2) Suppose now that Γ(g0, B0, V ) is transitive. Let us denote the grading by

gmin(g0, V ) = ⊕i∈Zgi. We must prove that if X ∈ gi is such that B(X,Y ) = 0

for all Y ∈ g−i, then X = 0. We will first prove the result by induction for

i ≥ 0.

From the definition of B on Γ(g0, B0, V ) we see that the result is true for

i = 0 and i = 1. Suppose now that the result is true for i < k. Let xk ∈ gk

such that B(xk, g−k) = 0. Then for all x1 ∈ g−1 and all x−k+1 ∈ g−k+1 we

have B(xk, [x−1, x−k+1]) = 0. And hence B([xk, x−1], x−k+1) = 0. From the

induction hypothesis we get [xk, x−1] = 0 for all x−1 ∈ g−1. But we know from

[2] (Prop. 5, p. 1278) that a minimal graded Lie algebra with a transitive local

part is transitive. This implies that xk = 0. The same proof works for i ≤ 0.

�

Theorem 3.4.3.

Let T be the set of equivalence classes of fundamental triplets such that the rep-

resentation (g0, ρ, V ) is faithful and such that 〈ρ(g0)V 〉 = V and 〈ρ∗(g0)V ∗〉 =
V ∗. Let G be the set of equivalence classes of transitive graded Lie algebras

g = ⊕n∈Zgi which are endowed with a non-degenerate symmetric invariant bi-

linear form B such that B(gi, gj) = 0 if i 6= −j. The map

τ : T −→ G

defined by τ(g0, B0, V ) = gmin(Γ(g0, B0, V )) is a bijection.

Let T1 be the set of equivalence classes of fundamental triplets such that the

representation (g0, ρ, V ) is completely reducible and faithful and such that V

does not contain the trivial module.

Let G1 be the subset of G consisting of graded algebras where the representation

(g0, g1) is completely reducible.

By restriction the map τ defines also a bijection between T1 and G1.

Proof. This is a consequence of Theorem 3.1.6, Proposition 3.3.2, Proposition

3.4.2 and of the fact that a transitive graded Lie algebra is minimal ([2], Prop.

5 a), p. 1278). �

4. sl2-triples

In this section we will make the following assumptions. The Lie algebra g0 is

reductive with a one dimensional center: g0 = z ⊕ g′0 where g′0 = [g0, g0] and
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dim z = 1. Moreover V is an irreducible g0-module on which z acts non trivially.

Then there exists H0 ∈ z such that ρ(H0) = 2Id|V (and ρ∗(H0) = −2Id|V ∗ ).

Recall also that in a Lie algebra, or in a local Lie algebra, a triple of elements

(x,h,y) is called an sl2-triple if [h, x] = 2x, [h, y] = −2y and [y, x] = h.

4.1. Associated sl2-triple.

Definition 4.1.1. We say that the local Lie algebra Γ(g0, B0, V ), or the graded

Lie algebra gmin(Γ(g0, B0, V )), is associated to an sl2-triple if there exists X ∈
V \ {0}, Y ∈ V ∗ \ {0} and H0 ∈ Z such that (X,H0, Y ) is an sl2-triple.

Theorem 4.1.2. Let g0 ve a reductive Lie algebra with a one dimensional

center, and let V be an irreducible g0-module. We suppose that the center does

not act trivially on V . Then Γ(g0, B0, V ) is associated to an sl2-triple if and only

if there exists X ∈ V \ {0} such that X /∈ g′0.X where g′0.X = {U.X, U ∈ g′0}.
The set {X ∈ V, X /∈ g′0.X} is exactly the set of elements in V which belong to

an associated sl2-triple.

Proof.

Recall from Lemma 3.4.1 that the form B0 extends to an invariant form B on

Γ(g0, B0, V ).

Suppose that Γ(g0, B0, V ) has an associated sl2-triple (X,H0, Y ). Then Y (g′0.X) =

B(Y, g′0.X) = B(Y, [g′0,X]) = B([Y,X], g′0) = B(H0, g
′
0) = {0}. Hence the form

Y is zero on g′0.X. On the other hand B(Y,X) = Y (X) = 1
2B(Y, [H0,X]) =

−1
2B([Y,X],H0) = −1

2B(H0,H0) = −1
2B0(H0,H0) 6= 0. Therefore X /∈ g′0.X.

Conversely suppose that X /∈ g′0.X. We choose Y ∈ V ∗ such that Y (g′0.X) =

{0} and Y (X) 6= 0. Then B([Y,X], g′0) = B(Y, g′0.X) = Y (g′0.X) = {0}. There-
fore [Y,X] ∈ (g′0)

⊥ = CH0. Set [Y,X] = λH0. We have also Y (X) = B(Y,X) =
1
2B(Y, [H0,X]) = −1

2B([Y,X],H0) = −1
2B(λH0,H0) = −1

2λB(H0,H0) 6= 0.

Hence λ 6= 0. Define Ỹ = 1
λ
Y . Then (Ỹ ,H0,X) is an sl2-triple.

�

Corollary 4.1.3.

a) The existence of a sl2-triple associated to the local Lie algebra Γ(g0, B0, V )

does not depend on the invariant form B0 on g0, but only on the representation

(g0, V ).

b) If the irreducible module (g0, V ) has the property that there exists X ∈ V \{0}
such that X /∈ g′0.X, then the dual module (g0, V

∗) has the same property.
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4.2. Relative invariants and sl2-triples.

Definition 4.2.1. Let (G0, ρ, V ) be a finite dimensional representation of a

connected complex Lie group G0. We denote by dρ the corresponding derived

representation of the Lie algebra g0 of G0. Let R be a rational fraction on

V . The function R is called a relative invariant of (G0, ρ, V ) if there exists a

Zariski open subset Ω of V , which is G0-invariant, and a rational character χ

of G0 such that

∀g ∈ G0,∀X ∈ Ω, R(ρ(g)X) = χ(g)R(X) (4− 2− 1)

We will now prove that under some conditions, the existence of a relative in-

variant implies the existence of an associate sl2-triple.

Theorem 4.2.2.

Let (g0, dρ, V ) be a finite dimensional irreducible representation of a reductive

Lie algebra g0. We suppose that g0 has a one dimensional center z which acts

non trivially on V . Let H0 be the unique element of z such that dρ(H0)|gi =

2iIdgi (where the gi’s are the homogeneous components of gmin(Γ(g0, B0, V ))).

Let G0 be a connected complex Lie group such the representation dρ lifts to a

representation ρ of G0.

Then, if (G0, ρ, V ) has a relative invariant R with a non trivial character, there

exists an associated sl2-triple (Y,H0,X), (Y ∈ g−1,X ∈ g1).

Proof.

Let us first remark that as the center z acts by multiplication by a scalar, the

function R is homogeneous of degree k ∈ Z
∗.

If we derive equation (4− 2− 1) we obtain

dR(ρ(g)x) ◦ ρ(g) = ρ∗(g−1) ◦ dR(ρ(g)x) = χ(g)dR(x).

(Here dR : Ω −→ V ∗) Hence

dR(ρ(g)x)

R(ρ(g)x)
= ρ∗(g)

χ(g)dR(x)

R(ρ(g)x)
= ρ∗(g)

dR(x)

R(x)
.

Hence if we define ϕR(x) =
dR(x)
R(x) (ϕR : Ω −→ V ∗), we have:

ϕR(ρ(g)x) = ρ∗(g)ϕR(x)

For A ∈ g0 and x ∈ Ω, we will now derive the identity R(ρ(exp tA)x) =

χ(exp tA)R(x) with respect to t, at t = 0. We obtain

dR(x)dρ(A)x = dχ(A)R(x).



22 HUBERT RUBENTHALER

Using the extended form B defined in Proposition 3.4.2 this can be written

B(dR(x), dρ(A)x) = dχ(A)R(x)

Dividing by R(x) gives

∀A ∈ g0, B(ϕR(x), [A, x]) = dχ(A).

And as B is invariant we obtain:

∀A ∈ g0, −B([ϕR(x), x], A) = dχ(A).

As B is non-degenerate and as dχ(g′0) = 0, [ϕR(x), x] is a fixed vector or-

thogonal to g′0. Hence [ϕR(x), x] = cH0 (c ∈ C). If A = H0, one ob-

tains −B([ϕR(x), x],H0) = dχ(H0) 6= 0 (because χ is non trivial). Therefore

−cB(H0,H0) = dχ(H0) and c 6= 0. But from the Euler equation we get:

−B([ϕR(x), x],H0) = −cB(H0,H0) = B(ϕR(x), [H0, x]) = 2B(ϕR(x), x) = 2k

(remember that k is the homogeneity degree of R).

But then (−B(H0,H0)
2k ϕR(x),H0, x) is an sl2-triple.

�

Remark 4.2.3. It is known that for irreducible prehomogeneous vector spaces

of parabolic type the existence of a relative invariant implies the existence of

an associated sl2-triple (see[5] or [4]). But in the preceding Theorem there is

no assumption of prehomogeneity. It works for any irreducible representation.
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