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Abstract This paper deals with the detection and quantification of refractivity turbulence in the
troposphere from radiosonde and very high frequency (VHF) band radar data. Balloon data processing
methods based on Thorpe sorting and recently developed by Wilson et al. (2010, 2011, and 2013) can be
applied for a direct identification of turbulent layers from the in situ profiles. The VHF band mid and upper
atmosphere radar (MUR) can be operated in range-imaging mode for detecting and monitoring turbulent
layers at high time and range resolutions (of the order of 10 s and a few tens of meters, respectively). For cross
validating the techniques, concurrent MUR and RS92-SGP Vaisala radiosonde observations were made at the
Shigaraki Middle and Upper atmosphere (MU) observatory (34.85°N, 136.15°E; Japan) during a field campaign
of 3 weeks in September 2011. The radar signature, in terms of echo power and aspect ratio, of the turbulent
layers identified from balloon data analyses is investigated from case studies and statistics. The deep
(>~100m) layers are very often associated with echo power maxima and weak aspect ratios suggesting that
the same events of isotropic turbulence were detected by both instruments. Some others are associated with
relative minima of isotropic echo power, possibly indicating a later stage of turbulence. The ranges of
strong aspect ratios are generally not associated with turbulent events in the balloon data supporting the
hypothesis that anisotropic turbulence is not the cause of vertically enhanced radar echoes. Quantitative
comparisons are made between radar echo power and refractive index constant structure C2

n estimated from
temperature variance and additional parameters in the selected layers. Despite a large scatter between the radar
and balloon estimates, the results are statistically significant (correlation coefficients ~0.5–0.88) even when the
causes of systematic decrease with height of C2

n (humidity and density) are removed. Our studies therefore
demonstrate that radar and balloon observations of turbulence are consistent between each other and that new
insights on tropospheric turbulence can be obtained by the two techniques as stand-alone systems.

1. Introduction

Small-scale turbulence can have an impact on the mixing of passive tracers, the life cycle of clouds, larger scale
dynamics (e.g., waves, general circulation of the atmosphere through dissipation of kinetic energy), local
stratification through diffusion, and human activities (telecommunications, remote sensing, and air transport).
Turbulence in the troposphere can be generated by various instabilities resulting from wind shears, wave
breaking, nonlinear wave-wave interaction, thermal convection, latent heat release, and radiative effects. These
mechanisms can interact between each other giving rise to miscellaneous characteristics of the turbulent
regions from highly sporadic patches to long-lived layers with strongly varying depth and intensity.

Experimental studies on atmospheric turbulence can be made from balloon and radar observations.
Commonly used balloon-borne radiosondes now provide measurements of pressure, temperature, humidity,
and horizontal winds along the balloon path at a time resolution of ~1 s. Such a high resolution enables the
identification of unstable regions (or overturns) locally produced by turbulent stirring and instabilities into
potential temperature profiles. The identification method is based on Thorpe sorting of the potential density
profiles [Thorpe, 1977] and the practical application to atmospheric data was recently refined byWilson et al.
[2010, 2011] through the development of objective and robust methods for rejecting artificial overturns
produced by noise. In addition, VHF band stratosphere-troposphere (ST) radars can provide information on
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atmospheric turbulence through the measurements of received power and width of the Doppler spectrum.
Indeed, ST radar echoes are partly due to Bragg scatter from humidity and temperature irregularities caused
by turbulence in both clear air and cloudy conditions [e.g., Röttger, 1980]. Depending on their size, these
irregularities can be nearly isotropic if turbulence is weakly affected by the environmental stability of the
stratification or can be strongly anisotropic otherwise. Anisotropic turbulence at the Bragg scale (~3m for
VHF band radars) can potentially produce enhanced echoes at vertical incidence with respect to off-vertical
directions. The vertically enhanced echoes are said to be “aspect sensitive.” The humidity and temperature
irregularities can also be nearly one-dimensional along the vertical and can take the form of stable gradient
sheets. Partial reflection from stable gradient sheets is also a widely accepted mechanism for explaining
aspect sensitivity [e.g., Röttger and Liu, 1978; Luce et al., 1995].

Concurrent measurements with the VHF band mid and upper atmosphere radar (MUR) and 59 RS92-SGP
radiosondes were performed at the Shigaraki MU Observatory on 5–26 September 2011. MUR was
continuously operated in range-imaging mode [e.g., Luce et al., 2006] in order to retrieve power profiles at a
range sampling of 5m and a time resolution of ~12 s. Thirty-six radiosondes were launched during night
period (and thus 23 during daytime). The balloons were slightly under inflated in order to increase the
vertical resolution of the measurements by reducing their speed ascent. In addition, the raw balloon data
sampled at a rate of 1 Hz were used. It follows that profiles at a vertical resolution of 3–6m could be
obtained, instead of ~10m for standard soundings. The data collected during daytime were not used
because of contamination due to the solar heating of the sensors.

The present study is thus aimed at using radar and balloon data at unprecedented resolutions for detecting

and monitoring refractivity turbulence in the troposphere. Refractivity turbulence structure constants C2
n

estimated from balloon data within the selected layers were compared with the averaged values of radar
echo power measured in the altitude range of the layers. Comparing turbulence statistics retrieved from
radar and balloon data needs the hypothesis that the statistical properties of the turbulent irregularities are
identical in the radar volume and along the balloon path despite the balloon drift, up to a horizontal distance
from the launching site of 100 km typically at the tropopause during autumn jet stream conditions. We
assume that comparisons of statistics are justified if the turbulent layers, found to be detected by the two
instruments, are generated by the same source.

After a brief description of the methods used for analyzing the radar and balloon data in section 2, the results
of comparisons are presented in section 3. The conclusions of this work are given in section 4.

2. Data and Processing
2.1. Balloon Data
2.1.1. Principle of Overturn Detection
The detection of overturning regions from balloon data is based on the Thorpe sorting of vertical profiles of
conserved variables under dry conservative or moist conservative adiabatic processes [Wilson et al., 2013,
hereafter noted W13]. The Thorpe sorting is applied to a potential temperature θ*, which results from the

numerical integration of the Brünt-Vaïsälä frequency N, which takes its “dry” expression (i.e., N2ĝ dlnθ=dz,
where θ is the dry potential temperature and g is the acceleration of gravity) for nonsaturated air and a
“moist” expression for saturated air [e.g., Lalas and Einaudi, 1974; Durran and Klemp, 1982; Emanuel, 1994].
This procedure allowed a successful detection of turbulence in clouds [W13].

Turbulent stirring or convective instabilities giving rise to turbulent motions at high Reynolds numbers
produce local overturns (i.e., dry or moist superadiabatic lapse rates). The difference between the measured
and sorted profiles would make it possible to detect these overturns [e.g., Thorpe, 1977]. However,
instrumental noise can have a tremendous effect by generating artificial overturns.Wilson et al. [2010, 2011]
proposed an objective and robust method based on an optimal filtering and a statistical test for rejecting
these artificial overturns with a given statistical confidence. The minimum detectable depth of the overturns
primarily depends on both the instrumental noise level and the background stability of the stratification.

The Vaisala software delivers raw profiles of temperature, relative humidity with respect to liquid
condensation, pressure, and zonal and meridional winds at the vertical sampling rate of 1 Hz so that
temperature profiles can be retrieved at a vertical resolution of ~3–6m depending on the ascent speed of the
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balloons. Because the processing method of the raw data is described in detail by Wilson et al. [2011], the
main steps are only briefly described here. The effects of quantization noise of the pressure measurements
made at a resolution of 10 Pa is important. Consequently, the measured series of pressure is not strictly a
decreasing monotonic profile. To work around this issue, the pressure profile is first interpolated with a least
square cubic spline approximation before estimating the altitude using the hydrostatic equilibrium equation.
The profiles of temperature, pressure, and humidity are then resampled by linear interpolation at a regular
vertical step. The vertical sampling is an integer value close to the median of the measured (variable) vertical
step. The dry conservative and moist conservative potential temperature profiles are inferred from the
resampled profiles (see section 2.1.2).

The selection method requires the knowledge of the noise level of the potential temperatures. The instrumental
noise level of the temperature, pressure, and humidity is first estimated from the raw data. The noise level on θ,
found to be altitude dependent, is then deduced. The noise level on moist θ is supposed to be nearly equal.

A statistical hypothesis test allows the rejection of artificial (i.e., noise-induced) overturns. Before applying the test,
smoothing and undersampling are performed in order that the first differences in the potential temperature
profile are, in the average, significantly larger than the noise level [seeWilson et al., 2010 for more details].
2.1.2. Potential Temperature Profiles
The principle of calculation of the potential temperatures was described in W13. We just briefly recall the
fundamentals. For a subsaturated atmosphere, the potential temperature θ0 (K) at the altitude z0 is estimated
from the relation

θ0 ¼ θ z0ð Þ ¼ T0
1000
p0

� �2=7

(1)

where T0 is temperature (K) and p0 is pressure (hPa) at z0. The paramenter θi + 1 at zi+Δz is given by

θkþ1 ¼ θk 1þ N2 Δz
g

� �
(2)

For a moist saturated air, N2 was replaced by an expression valid for moist air [W13].

Using the same balloon data set as in the present study, W13 showed that the proportion of the troposphere
found to be turbulent can dramatically increase if saturation effects are taken into account. Indeed, static
stability is always smaller in saturated regions than in dry regions so that dynamic or convective instabilities,
and then turbulence, can more easily be generated. This result is also consistent with the fact that clouds are
generally turbulent [e.g., Houze, 1993]. In W13, the saturated regions were selected from the relative humidity
profiles using empirical criteria proposed by Zhang et al. [2010] specifically dedicated to RS92SGP Vaisala
radiosondes. The results of comparisons between radar and balloon data presented here will thus be based
on those obtained by W13 including saturation effects.
2.1.3. Estimates of C2

n From In Situ Measurements
Local superadiabatic lapse rates are not necessarily a direct signature of stirring from turbulence. For
example, the rolling up of stable density surfaces at the initial stage of Kelvin-Helmholtz instability is a typical
process which can give rise to overturns before possibly breaking into 3-D turbulence. Therefore, the
estimates of turbulence statistics from the sole detection of overturns from balloon data, i.e., without additional
information from other instruments, should be, in principle, treated with caution. The interpretation
(in a statistical sense) of the overturning regions as structures resulting from turbulent mixing
processes will be confirmed a posteriori from comparisons with radar data.

We first estimated the temperature structure constant C2
T , which is a measure of the temperature fluctuation

intensity for stationary, locally homogeneous, and isotropic turbulence in the inertial subrange. There are

different methods for estimating C2
T from temperature profiles collected from a single sensor. C2

T can be
estimated from the calculation of temperature spectra and temperature structure functions. However, these
methods do not provide accurate results for short samples (as is often the case here due to the shallow depth
of most layers) and, thus, were not used here. We rather used a method that relates the temperature variance
σ2T to the level of the temperature spectrum within the inertial subrange. In practice,σ2T is simply the unbiased
variance of temperature fluctuations obtained by subtracting a linear trend to the observed temperature
profile over the depth of the selected layer. There is therefore a single estimate of σ2T for each selected layer.
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The 1-D Kolmogorov-Obukhov-Corrsin temperature spectrum ST(k) has a universal shape and is given by

ST kð Þ ¼ 0:25C2
T k

�5=3 between the inner scale li and a cutoff scale Lc (defined later). For scales larger than Lc, the
turbulence properties are not universal, and for the sake of simplicity, a white spectrum is assumed. In addition,
it is assumed that Lc≫ li, which is a necessary condition for the existence of an inertial domain. The

variance σ2T is thus related to the temperature spectra by

σ2T ¼ ∫
kc

0
SW kð Þdk þ ∫

ki

kc
ST kð Þdk (3)

where SW kð Þ ¼ 0:25C2
T k

�5=3
c is the white spectrum and kc and ki are the wave numbers corresponding to Lc

and li, respectively. The integration of (3) with the condition kc≪ ki gives the following:

C2
T ¼ 8

5
σ2T k

2=3
c (4a)

Any other realistic spectrum for k< kc would produce a relation close to (4a), i.e.,

C2
T ¼ a

8
5
σ2T k

2=3
c (4b)

where a is of the order of unity.

For stratified turbulence, the cutoff wave number kc should be related to an outer scale of turbulence such as the
buoyancy or the Ozmidov scale. Various studies [Dillon, 1982; Smyth et al., 2001] suggested that the Thorpe scale

defined as LT ¼ l2
� �1=2

h (where l are the vertical displacements and <> h is the average over the depth h of the

layer) is closely related to these scales for fully developed turbulence, i.e., kc∝ 1/LT. For our purpose, it is
enough to assume that kc = 1/LT. Because any other choice wouldmodify the constant parameter a only, it does

not affect the comparisons between C2
n and radar echo power made in relative levels. Therefore, we obtain

C2
T ¼ a

8
5
σ2T L

�2=3
T (5)

Then, the structure constant C2
n for dry air, which is a measure of refractivity turbulence, is deduced from

[Tatarski, 1961]

C2
n dry½ � ¼ 0:776�10�6p

T2

� �2

C2
T (6a)

where p is pressure (Pa) and T is temperature (K).C2
n formoist but nonsaturated air is given by [e.g., Luce et al., 1996]:

C2
n moist½ � ¼ M2

h

M2
d

� �
C2
n dry½ � (6b)

where Md and Mh are the dry and humid vertical gradient of potential refractive index. They are given by

Mh ¼ �0:776 � 10�6 P

T2
1þ 15600

q
T

� � dT
dz

þ Γa � 7800
1þ 15600q=T

dq
dz

� �
(7)

and

Md ¼ �0:776 � 10�6 p

T2
dT
dz

þ Γa

� �
; (8)

respectively. The paramenter q is the specific humidity (g/g) and Γa=� 9.8 × 10� 3 Km� 1 is the dry
adiabatic lapse rate.

For a saturated air,Mh should be replaced by a saturated potential refractive index gradientMs. An expression
of Ms was proposed by Vaughan and Worthington [2000, their expression (15)] following the approach given
by Ottersten [1969] for a subsaturated air. It assumes displacements of air parcels along the moist adiabatic
lapse rate rather than the dry adiabatic. This model is a limit case where partial pressure of humidity
instantaneously equilibrates with temperature fluctuations and assumes no heat diffusion between
condensed particles and air. Because Ms can tend to zero for some cases, the use of Ms can yield a strong

underestimate of C2
n for some saturated layers. We found that this is the case in the height range 7–11 km

where the sign ofMs changes and thus whereMs passes through zero (see Appendix A). Consequently, even if the
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expression for unsaturated air (7) should produce slight overestimates for nearly saturated and saturated airs and
to slight underestimates for dry air according to Vaughan andWorthington [2000], it was used for the comparisons
for all the selected layers. To the authors’ knowledge, such a problem was not addressed in any previous paper—
except in Vaughan and Worthington [2000]—describing comparison results between profiles of the power of
radar echoes received at vertical incidence andM2, the latter parameter being always estimated for a nonsaturated
atmosphere. Despite this, the comparison results were always considered as relatively good, at least in a statistical
sense, at a range resolution of 150m [e.g., Tsuda et al., 1988; May et al., 1991].

2.2. Radar Data
2.2.1. Radar Data Processing
MUR is a Doppler-pulsed radar operating at 46.5MHz (6.45m radar wavelength, 3.5 MHz bandwidth, and
1 MW peak output power) [e.g., Fukao et al., 1990]. The radar can be operated in range-imaging mode using
frequency diversity, also called FII technique by Luce et al. [2001]. The technique consists in transmitting
several closely spaced frequencies switched pulse to pulse. The collected data at the various frequencies are
processed using the adaptive Capon processing method. During the campaign, the radar was operated with
five frequencies from 46.0MHz to 47.0MHz with a constant frequency spacing of 0.25MHz. The radar
antenna beam was steered into three directions (one vertical and two oblique directions at 10° off zenith
toward North, East). The number of coherent integrations was set equal to 32. The acquisition time of the
time series for retrieving a vertical profile was ~24 s, but the effective time resolution was ~12 s due to
Hanning windowing of the time series before fast Fourier transform. In addition, data processing was
performed every ~6 s for a better time continuity. A 16 bit optimal code was used for the transmitted pulse.
The subpulse duration was 1μs. This duration corresponds to a range resolution of 150m before application
of the range-imaging technique. In range-imaging mode, the vertical sampling was arbitrarily set to 5m (this
is not the range resolution, since it depends on SNR) from the altitudes of 1.245 km to 20.445 km above sea
level (asl). The output of the Capon filter is the “Capon power.” It is the sum of the atmospheric signal and
noise powers. For each vertical profile, a value of the noise power was estimated from Doppler spectra
calculated at altitudes where atmospheric echoes were negligible in order to avoid possible contamination of
the noise power from atmospheric signals. This value (in dB) was subtracted from each point of the Capon
power (dB) profile to get the power profile (in dB, relative units) used in the present study.
2.2.2. Reconstruction of Mean Profiles of Echo Power
Among other difficulties inherent in the comparison between radar and balloon data, a single radar
profile acquired in a few tens of seconds or even in a few seconds is very likely not representative of
instantaneous measurements made by radiosondes along the balloon path for the time necessary for the
balloons to reach the tropopause, i.e., ~1 h. The statistical representativeness of the structures detected by
radar can be improved in some way by time averaging. It is usual to average the radar profiles over a period
corresponding to the balloon flight time [e.g., Tsuda et al., 1988]. Therefore, a first set of radar profiles used for
the comparisons were obtained by averaging radar profiles collected for 60min after the balloon launches.
Such a time averaging can, however, smooth out more sporadic but intense events. We propose to use a
second set of radar profiles built as follows. As shown by Luce et al. [2007], who compared N2 profiles from
radar and balloon data at stratospheric heights at a vertical resolution of 50m, taking account for the advection
of the air parcels by the horizontal wind may improve the results of comparisons if the turbulent irregularities can
be considered as frozenly advected. The positive or negative time lag Δt for which the air parcels met by the
balloons that passed closest to the radar was estimated at the height of the vertical sampling of the radar profiles.
We thus selected the radar data around the time t of the balloonmeasurementsminus the time lagΔt (i.e., around
the time t ’= t�Δt). We finally constructed composite profiles of the radar echo power by averaging the radar
profiles in the range t ’± δ/2 where δ was set to 2 to 60min in order to study the effects of time averaging
(see example Figure 4 for δ= 10 min). Arbitrarily, δ= 10min was the time-averaging reference for some
results presented here. As we shall see, statistical results do not significantly differ when using composite
profiles averaged over 10 min rather than the 60 min averaged profiles.

3. Results
3.1. Balloon Data

Figure 1a shows the mean ascent speed of the 36 balloons (top panel), the tropical (thermal) tropopause height
(middle panel) and the horizontal distance between the balloons and MUR at the tropopause height, i.e., the
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maximum distance Dmax for the data used in the present study (bottom panel). The mean ascent speed was from
5.3ms�1 down to 2.9ms�1 because the balloons were significantly underinflated after 22 September. The
tropical tropopause height defined from the temperature profiles ranged between ~14km and 18km.

Before 21 September 2011, summer anticyclonic conditions with weak tropospheric winds, positive temperature
anomaly, and high relative humidity were met over Japan. On 21 September 2011, typhoon n°15 (Roke) passed
over Japan close to the radar site during daytime. Just after its passage, the tropospheric jet stream, initially
running at higher latitudes, drifted southward. Autumnal weather conditions started from 22 September with
negative temperature anomaly at tropospheric heights and the passage of several upper level frontal zones
over Japan.

Figure 1b shows the horizontal trajectories of the balloons up to the tropical tropopause height. As shown in
the bottom panel of Figure 1a, Dmax did not exceed 150 km toward North-East and did not exceed ~70 km
during the summer conditions before 21 September 2011. Such balloon drifts are not extremely large—these
values are quite usual at midlatitudes—but they can be a serious drawback for our purpose. As already
discussed in section 1, it must be assumed that the statistical (spectral) properties of the turbulent
irregularities measured by the radiosondes are consistent with those detected by the radar at the Bragg scale
over horizontal distances of the order of 101–102 km for quantitative comparisons. The relevance of this
hypothesis should strongly depend on the nature of the instabilities generating turbulence. It might be
reasonable for turbulence in the sheared regions of synoptic scale fronts so that the source of turbulence
detected by radar and balloon can be the same, but surely not, for example, at the top of fair weather cumuli
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for which turbulence is generated by cloud
top entrainment at the aerologic scale
(~1.0 km). Consequently, horizontal
inhomogeneity can be an important source
of errors when performing comparisons. In
addition, instabilities associated with
inertia-gravity waves, for example, should
closely follow tilted isentropic surfaces.
Therefore, even though thin layers of
turbulence are detected by both
instruments, these layers would be
observed at different altitudes, possibly
resulting in significant errors when
comparing radar and balloon data.

3.2. Depth and Mean Altitude of the
Selected Turbulent Layers

For the 36 soundings, a total of 854
overturns were ascribed to atmospheric
turbulent layers with the criteria described
in sections 2.1.1 and 2.1.2 and used by W13,
and 886 were attributed to noise. Fifty-five
selected layers were found below the first

altitude sampled by MUR and, thus, were not used when comparing with radar data. Among the 854 layers,
235 (27.5%) were found in saturated air and 619 (72.5%) in dry air.

Figure 2 (top) reveals a relatively homogeneous frequency distribution of the mean altitude of the 854
selected layers up to the altitude of 13 km. The decreasing distribution beyond this altitude is likely not
significant because it is partly due to the variations of the tropopause height (Figure 1a). The peak of
distribution near the ground (384m asl) may reasonably be ascribed to turbulence in the planetary boundary
layer. Figure 2 (bottom) shows the corresponding frequency distribution of the depth. The minimum and
maximum values are 12m and 6579m, respectively. The largest values are related to the presence of clouds
extending throughout the troposphere. The distribution has a narrow peak around 30–40m. However, the
low occurrence of overturns at smaller size is likely an artifact due to limitations in resolution. The mean and
median values are 222.5m and 81.0m, respectively. 33.3% (57.7%) of the selected layers are thinner than
50m (100m) and 10.2% are deeper than 500m. The selected layers fill 34.2% of the total depth of the
troposphere. In addition, 84.5% (96.0%) of the rejected layers are thinner than 50m (100m).

3.3. Examples of Comparisons

An example of time-height cross section of radar echo power corrected for the range attenuation effects,
i.e., PV× r 2, hereafter noted PrV for brevity, for the vertical beam after doing the Capon imaging in the
height range 1.245–15km from 17 September 2011 at 17:00 LT to 18 September 2011 at 04:00 LT is shown in
Figure 3. Four balloons were launched at 17:34 LT, 20:35 LT, 23:41 LT, and 02:38 LT. The radar echoes exhibit a
complex pattern with more or less long-lived multilayer echoing structures. Rounded echoes of shorter span of
time, likely related to convective dynamics, can be noted around 18:50 LT and 02:00 LT. The solid and dashed
black curves show the time where the air parcels passed closest to the radar, as explained in section 2.2.2.

Figures 4a–4c show vertical profiles of PrV (dB) and PrNorth (dB) (black and gray curves, respectively). Results
from the east direction are similar to those obtained from the north direction. They are not shown for brevity
and clarity of the figures even if azimuth dependence is sometimes not negligible, e.g., Worthington et al.
[1999]. The superscript of the symbols refers to time averaging. The left panel shows 60min averaged profiles
ofPr60V andPr60North, during the balloon flights, and the middle panel shows 10 min averaged profiles ofPr10V and

Pr10North around the instants described by the thick line in Figure 3 for soundings 10–13. The 10 min and 60min
averaged profiles do not show significant differences but, as expected, the 60 min averaged profiles appear
to be smoother than the 10 min averaged profiles especially above the altitude of 9.0 km in Figure 4a and
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logically reveals a larger time variability, as indicated by the standard deviations (shown by horizontal lines).

Aspect ratio profiles AR60 ¼ Pr60v =Pr60North (dB) and AR10 ¼ Pr10V =Pr10North (dB) are given in dotted lines. In the
Figure 4a (right), pale gray vertical rectangles indicate the altitude range of the selected layers and their
corresponding Thorpe lengths.

The main features revealed by Figures 4a–4c are as follows:

1. In Figures 4a and 4b, the selected layers are generally associated with both maxima of echo powers and
weak aspect ratios (i.e., AR60 and AR10 ~0 dB), as stressed by a black circle on the left panels of the figures.
This is the case in Figure 4a for the layers of ~280m, 440m, and 480m in depth at the altitudes of 6.7 km,
7.3 km, and 8.6 km, respectively. These coincidences occur when the horizontal distance between the
radar and the balloon is about 20–40 km. This is also the case in Figure 4b at the altitudes of 1.8 km where
the selected layer depth is ~160m, 2.2 km for profiles Pr10 (~100m), 6.5 km (~230m in total), 7.0 km
(~190m), and in the range 9.7–11.0 km (~1300m in total). The balloon drifted up to ~60 km at the altitude
of 11.0 km. The depths of these turbulent layers are qualitatively consistent with the vertical extent of the
radar echo power peaks. Several consecutive overturns should constitute a single turbulent layer around
6.5 km and in the range 9.7–11.0 km in Figure 4b. On the contrary, some of the deepest layers, also
associated with weak aspect ratios, are associated with minima of echo power: in Figure 4a, around
13.8 km (for Pr10) and in Figure 4c at the altitudes of 6.1 km and 16.0 km, and around 11.5 km where
several consecutive thin overturns are detected (they are indicated by “asterisks”).

Given that the horizontal distance between the radar and the balloons is a rough estimate of the hori-
zontal extent of the turbulent layers detected by both instruments (ignoring wind advection effects),
turbulent layers of 102–103m in depth can extend over 101–102 km along the horizontal. The ratio of
depth to horizontal extent can then be 100 typically or more, consistent with other observations [e.g.,
Vinnichenko et al., 1980]. In Figure 4b, two thin turbulent layers within the range 12.3–12.5 km (also indicated
by “asterisks”) are associated with a maximum of echo in the profiles of Pr10V and Pr10North and a minimum in
the profiles of Pr60V and Pr60North. This case illustrates the limits of such a deterministic comparison.

2. On the other hand, turbulent layers are not detected in altitude ranges with strong aspect sensitivity or, if any,
they are very thin. Approximately, in Figure 4a, in the altitude range 9–13km; in Figure 4b, 4.3–6.1 km,
7.0–9.0 km, and 12.5–14.5 km; and in Figure 4c, 2.8–5.5 km, 7.0–11.0 km, and 11.5–16.0 km. The altitude ranges
of significant aspect sensitivity are delineated by the vertical gray rectangles in Figures 4a–4c. The only
deep turbulent layers associated with significant radar aspect sensitivity are below the altitudes of 6.0 km in
Figure 4a and around 7.8 km in Figure 4b where AR10≈5 to 10 dB (they are indicated by “crosses”).

3. Some thin turbulent layers are found near the edges of narrow echo power maxima: in Figure 4a, at the
altitudes of 1.7 km and 3.0 km and in Figure 4b, at the altitudes of 2.8, 3.2 km and 4.2 km. (they are
indicated by “open diamonds”).

The attempt of classification given by (1), (2), and (3) indicates that the detected turbulent layers from balloon
measurements do not always correspond to the maxima of radar echo power. Besides the fact that

Figure 3. Time-height cross section of MUR echo power (dB) corrected for the range effects (i.e., PrV) for 11 h around launching
time of balloons 10 to 13 (corresponding to balloons 4 to 7 in Figure 1). The height of the balloons versus time is given by the
(slanted) thick gray curves. The curves in thick solid line indicate the instants versus height when air parcels passed closest to the
vertical of the radar. The thin dashed lines represent the time interval (here, 10min) used for time averaging.
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observations are not collocated, it should be noted that the radar echo power depends on the local
stratification (throughM2) and that the in situ detected layers may occur within weakly stratified regions. We
thus need to further compare quantitatively the refractivity turbulence intensity inferred from both
observations. On the other hand, nearly isotropic radar echoes which are not associated with detected layers
from the in situ profiles can be noted, in Figure 4a, around 4.5 km, for example. Other cases are found in
Figure 4b, around 2.5 km and in Figure 4c, in the ranges 2.0–2.4 km, 5.6–5.9 km, and 6.4–7.0 km even if this
selection is slightly subjective since it depends on the time averaging. This nondetection is likely indicative of
the limit of comparisons from case studies.

The remaining selected layers are difficult to categorize due to the absence of clear signature in the radar
echoes. For the thinnest regions, say ~<50–100m, as those reported in Figure 4c, the quality of the
correspondences is very difficult to evaluate for the reasons discussed in section 2.1.2. The differences
between the altitudes of the selected layers and radar peaks with weak aspect ratios noted in Figure 4c could
be due to layer tilts, but this assertion, even if plausible due to some apparent slanted echo layers in the echo
power images (Figure 3), is rather speculative.

However, as a whole, the correspondences are relatively meaningful, keeping in mind the high vertical
resolutions of the radar and balloon data and the (variable) horizontal distance between both kinds of
measurements. Any additional interpretation of the results for individual case would likely be subjective.
Consequently, the results will now be described in a statistical sense.

3.4. Statistical Analyses
3.4.1. Radar Aspect Ratio in the Selected Layers
The selected cases in Figures 4a–4c showed that the radar echoes are often weakly aspect sensitive in the
range of the selected layers. This is confirmed from a statistical study. Figure 5a (top) shows an asymmetric
distribution of AR10 around ~0dB. This asymmetry is obviously due to aspect sensitivity in some ranges of the
troposphere (see examples in Figures 4a–4c). Similar distributions are obtained for different averaging times
(not shown). Figure 5a (bottom) shows the frequency distribution of AR10 in the selected layers. It clearly
confirms the observations described in section 3.3, i.e., the distribution is very narrow and is nearly symmetric
around ~0dB and follows a lognormal distribution, except around the distribution tails. Weak values of |AR10|
are consistent with the dominant mechanism of radar backscattering from isotropic turbulence, and a fortiori
with the turbulent nature of the selected layers in a statistical sense. Table 1 indicates quantitative results for
radar time averaging of 10min and 60min.

Aspect-sensitive radar echoes, as those emphasized by the vertical and narrow gray rectangles in Figures 4a–4c,
do not generally coincide with the selected turbulent layers: Aspect ratios >5dB are found in ~5–7% of the
selected layers only (Table 1). Because anisotropic turbulence would produce overturns in the same
way as isotropic turbulence in potential temperature profiles, this observation provides further
argument in favor of partial reflection from stable gradient sheets for explaining aspect sensitivity.
Nonetheless, if anisotropic turbulence remains the main cause of aspect sensitivity, it must occur in
thinner layers, not detected because of processing method limitations due to balloon data resolution
and instrumental noise effects.

Figure 5b shows aspect ratios AR10 as a function of the layer depth up to 500m for legibility of the figure. The
distribution is centered around 0 dB, but large values of AR10 are clearly observed for layers thinner than
~100m. Of the selected layers, 83.4% is associated with AR10> 5 dB (i.e., 114 among 140) are thinner than
100m. Even though anisotropic turbulence at the Bragg scale might bemore easily met in thin layers due to a
stronger sensitivity to the background stability, it is more likely that differences in the altitudes and/or the

Figure 4. (a) (left) Vertical profiles of Prv
60 (black line), PrNorth

60 (gray line), and AR60 (dotted black line) up to the thermal
tropopause averaged during the flight of balloon 37 (i.e., flight 20 in Figure 1). The superscript indicates the averaging time
(here, 60min). The solid bars indicate the standard deviation every 150m (not every 5m, for legibility of the figure) during
the averaging time. The symbols and rectangles in the left panels are described in the text. (middle) The corresponding
profiles for an averaging time of 10min, selecting the instants when the air masses were the closest to the radar (as shown
in Figure 3). (right) Range and depth of the selected layers (pale gray vertical rectangles extending in the left and middle
panels). The length of the rectangles shows the corresponding Thorpe length. (b) Same as Figure 4a for balloon 50 (flight 30
in Figure 1). (c) Same as Figure 4a for balloon 44 (flight 24 in Figure 1).
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limited horizontal extent and life span of
the thin layers are the cause of
this observation. Consequently,
comparisons may not be relevant for most
thin layers and additional statistical results
will also be shown after rejecting layers
thinner than 100m.
3.4.2. Temperature and Refractivity
Constant Structures
Figure 6 displays all the values of (dry)

squared Brunt-Vaïsälä frequency N2
d¼ g=θ

dθ=dz (in log10 scale) (a), C
2
T (b), dry C

2
n (c),

and moist C2
n (d) in dB versus height

estimated from balloon data in the
selected layers using relations (2) to (4).
A third-order polynomial fit has been
applied to each distribution (gray curve).

The distribution of N2
d is shown in order

to interpret the dependence of C2
T with

height. Indeed, C2
T does not significantly

vary with height up to the altitude of
12.0 km but increases above this altitude
(Figure 6b). It is clearly related to the
increase of the background stability N2

(Figure 6a). DryC2
n shows a slow decrease

of�1 dB km�1 up to 12 km which can be
strictly explained by the decrease of air
density with height (Figure 6c). The

distribution of moist C2
n is much more

scattered than C2
T and shows a higher

dependence with height up to ~13 km
(Figure 6d). The polynomial fit decreases
at a rate of ~�2.5 dB km�1. Naström et al.
[1986] reported a similar trend (decrease
≤ � 2 dB km�1) in the troposphere from

monthly averaged profiles of C2
n

measured with the Poker Flat and
Flatville VHF radars. Naström and Eaton
[1997] showed a decrease of
�3.5 dB km�1 for seasonal profiles from
measurements with the 50MHz White
Sand Missile Range radar. As discussed by

these authors and others, C2
n in the

troposphere is dominated by the humidity
contribution, which decreases with height
and is strongly variable.
3.4.3. Comparisons Between Moist C2

n

and Radar Echo Power

Direct comparisons between moist C2
n

estimated in the selected layers and
radar echo power in the same altitude
ranges can be justified for the
following reasons:

Table 1. Percentage of High Aspect Ratios (i.e., Arbitrarily, Stronger
Than 5 dB) and Weak Aspect Ratios (i.e., Arbitrarily, Weaker Than 3 dB)
in the Troposphere (Column 2) and in the Altitude Range of the
Selected Layers (Column 3) for Averaging Times of 10min and 60min

Aspect Ratio AR (dB) All (%) In the Selected Layers (%)

AR10> 5 28.8 6.8
|AR10|< 3 57.4 83.2
AR60> 5 27.8 4.9
|AR60|< 3 60.4 88.6
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Figure 5. (a) Frequency distributions of radar aspect ratio AR10 for the 36
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and the results are shown by the black curves. (b) Mean radar aspect ratio
AR10 versus depth of the selected layers.
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1. If the radar is sensitive to Kolmogorov turbulence in an inertial subrange, the relationship between the
radar echo power P and C2

n is given by
C2
n ¼ K P � r2 (9)

where K is a function of the radar operating system parameters. Since K is not established for MUR, the
comparisons will be made in relative levels.

2. From a statistical point of view, the radar echoes associated with the selected layers are not aspect
sensitive (Figure 5a). This is a necessary condition, consistent with the mechanism of backscattering
from isotropic turbulence.

3. The knowledge of the fraction of the radar volume which is turbulent (discussed by, e.g., Van Zandt
et al. [1978]) is less a problem here because the range resolution is greatly improved by the range-
imaging technique despite the finite radar beam width (two-way half-power half beam
width = 1.32°). This is a crucial advantage with respect to previous studies based on radar data at a
coarser range resolution.
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On the basis of items 1–3 above, direct comparisons betweenC2
n estimated from balloon data and radar echo

power taken with either the vertically or obliquely directed antenna can be made.

Figure 7 shows the scatterplot of radar echo powerPr10North versus moistC2
n estimated from expressions (4)–(6).

Nine aberrant values of C2
n have been rejected (they do not appear in Figure 6d). The scatterplot shows a

large spread (over 40 dB), but both statistics show similar dynamics (of about 50 dB). The slope of the
curve obtained from a linear regression is ~1.06 (i.e., close to 1) indicating that the radar echo power corrected

for the range attenuation effects is indeed statistically proportional to C2
n (expression (9)). This result

gives credence to the interpretation of the radar echoes in terms of pure turbulent scattering. It also
upholds the interpretation of the selected layers from balloon data in terms of turbulent layers. The
large spread of the scatterplot suggests, however, that these conclusions are only relevant in a statistical
sense and are not representative of each selected layer independently for all the aforementioned—
practical and conceptual—reasons.

The scatterplots versus height of C2
n dBð Þ � C2

n dBð Þ� �
and Pr10North dBð Þ � Pr10North dBð Þ� �

are shown in Figure 8a.

As with the distribution ofC2
n, a third-degree polynomial fitting was also applied to the distribution ofPr10North

(black curve). The two polynomial trends are almost identical (except a difference of a few dB below
~2 km and above 16 km) in accordance with the linear relationship between the two statistics shown in

Figure 7. The scatter of C2
n (dB) versus height is very similar to the scatter observed for Pr10North (dB). A

maximum of scatter is found in the height range of 4.0–6.0 km as quantified by twice the standard
deviations in Figure 8b. It slowly decreases above the altitude of 6.0 km, very likely due to decreasing water
vapor content. Below 3.0 km, the height variations of relative humidity, often close to saturation were
smaller than above (not shown), consistent with smaller scatter. Figure 8b shows the distributions versus

height of the detrended distributions of C2
n and Pr10North. The values averaged over segments of 2.0 km are

close to 0 dB, indicating that the polynomial detrend correctly removed the systematic height variations of
both statistics.
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Figure 9a takes together all the estimates of C2
n � C2

n

� �
and Pr10North � Pr10North

� �
(i.e., 799) for the 36 balloons

in consecutive and chronological orders. The plots are divided into two panels for legibility. The sawtooth
shape of the plots results from the systematic decreasing tendency with height. The cross-correlation
coefficient is ~0.818 with a 95% interval confidence of ±0.023. The fact that the dynamics of both signals is
nearly identical gives us extra credence that the quantities are effectively related.

However, such a high correlation is mainly due to the systematic decrease and large dynamics (~40 dB) of C2
n

and Pr10North with height. Therefore, it is not representative of the quality of the model to reconstruct
the specific events occurring in each profile. For this, the use of the detrended profiles (Figure 9b) is required.
A cross-correlation coefficient of ~0.482 ± 0.054 is found. It corresponds to the “degree of resemblance”
between the radar- and balloon-derived values deviating from the “general trend” given by the
polynomial fit.

Cross-correlation coefficients using the original and detrended profiles (1) for radar time averages over
2, 10, 30, and 60min, (2) when using vertical and oblique radar beams, (3) for all the selected layers, and
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(4) for layers deeper than 100m are listed in Table 2 (for legibility, the interval confidences are not
given). We show the following:

1. The cross-correlation coefficients are generally very slightly better when using the northward beam likely
due to a residual, but not totally negligible, effect of aspect sensitivity when using the data collected from
vertical beam.

2. The cross-correlation coefficients slightly increase with time averaging of the radar profiles by ~0.05
between 2 and 60min. Indeed, longer time averaging should produce more statistically representative
radar profiles.

3. The cross-correlation coefficients also increase by ~0.05 and exceed 0.88 when selecting the layers deeper
than 100m. This improvement may mainly be ascribed to the large horizontal extent and life span of
these layers compared to thinner layers as discussed in section 3.4.1.

4. The cross-correlation coefficients obtained from radar profiles averaged from the start of the balloon
flights are equivalent to those obtained when wind advection is taken into account. This result contradicts
a similar analysis made by Luce et al. [2007] who emphasized the importance to take account for wind
advection when comparing N2 estimates at a vertical resolution of 50m from balloon and MUR data at stra-
tospheric heights (e.g., their Figure A2). In the present case, it appears that the main features of radar echo
power during the balloon flights were not very different from those observed at the instants when air parcels
passed closest to the vertical of the radar. In summary, Table 2 shows that the radar integration time, the
direction of radar beam, and the advection by the wind are not crucial parameters for such comparisons.

In order to better understand the significance of the estimated cross-correlation coefficients, we performed
tests consisting of rearranging randomly the order of the 36 soundings. For this purpose, 20 realizations were
made. The correlation coefficients are ~0.61–0.67 without detrend (not shown). These high values can be

explained by the systematic decrease of C2
n with height. Nevertheless, it is significantly smaller than the

normal values (~0.77–0.88). The fact that the dynamics of both balloon C2
n and radar echo power are similar

offers a mean to calibrate radar measurements of refractivity on balloon estimates. After detrending, the
correlation coefficient is ~0 (not shown). We thus suitably removed the contributions of the “universal”

decrease of C2
n with height. Cross-correlation coefficients of ~0.38–0.56 from detrended profiles are thus

significant values and demonstrate that our statistics are also representative of the specific turbulent events
detected during each sounding.

4. Summary and Conclusions

The present work aimed to demonstrate the relevance of recently developed radar and balloon data
processing techniques for studying turbulence in the troposphere. First, processing methods based on
Thorpe sorting and optimized by Wilson et al. [2010, 2011] were applied to dry and moist potential
temperature profiles estimated from radiosonde data for detecting overturns presumably produced by
turbulence. Second, concurrent measurements with a VHF band radar (MUR) in range-imaging mode were
performed for detecting and monitoring turbulent events in great detail [e.g., Luce et al., 2006]. Comparisons

Table 2. Cross-Correlation Coefficients Between C2
n and Pr for Different Averaging Times, When Using the Vertical and

Northward Beams, for All Selected Layers With and Without Polynomial Detrend and for Layers Deeper Than 100m

Integration
Time (min)

Radar
Beam

All Layers
No Detrend

Depth >100m
No Detrend

All Layers
With Detrend

Depth >100m
With Detrend

2 V 0.776 0.839 0.384 0.441
N 0.795 0.835 0.449 0.470

10 V 0.793 0.853 0.410 0.480
N 0.818 0.861 0.482 0.516

30 V 0.812 0.867 0.444 0.517
N 0.829 0.876 0.498 0.549

60 V 0.826/0.834a 0.875/0.878a 0.473/0.492a 0.533/0.540a

N 0.838/0.844a 0.881/0.881a 0.516/0.531a 0.561/0.558a

aFor 60min, the cross-correlation coefficients are also given when selecting radar profiles during the balloon flight
from the launch time.

Radio Science 10.1002/2013RS005355

LUCE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1120



weremade from a data set of 36 soundings collected at night during ameasurement campaign in September
2011 at the Shigaraki MU observatory (Japan).

A first issue was whether the processed radar and balloon data identified at some occasions the same
turbulent events in the same height ranges. It was found that the deepest layers (typically >100m in
depth) selected from balloon data very often showed clear signatures in the radar echo power profiles.
The horizontal drift of the balloons (typically a few tens of kilometers) suggests that the horizontal
extent of most turbulent layers of a few hundreds of meters in depth should exceed several tens of
kilometers (i.e., about 100 times the layer depth). Isotropic peaks of echo power were very frequently
observed in the height range of the turbulent layers identified from balloon data. This is the most
expected contribution of turbulence to the radar echoes. In contrast, some events were associated
with (relative) minima of echo power but still isotropic. Even if the different stages of turbulence for a
single event could not be identified from our data set, this observation may reveal a later stage of
turbulence (homogenization due to turbulent mixing). This characteristic may support the widespread
idea that echo power is not always representative of the dynamic turbulence but should be more
surely quantified by spectral width of Doppler spectra [e.g., Hooper and Thomas, 1998; Fritts et al.,
2011]. Finally, turbulent layers were very rarely found in the height ranges of zenith aspect-sensitive
(vertically enhanced) radar echoes. This result indicates that a radar backscatter mechanism like partial
reflection from gradient sheets is more likely to explain the vertically enhanced radar echoes than
scattering from anisotropic turbulence [Röttger and Liu, 1978; Hooper and Thomas, 1998].

Another issue was to study the relevance of models for retrieving statistics that quantify the intensity of
turbulence from radar and balloon data. First, a theoretical basis for estimating the temperature structure

constantC2
T from temperature variance and Thorpe length was proposed (expression (5)). Then, C2

T estimated

for each selected layer was converted into the refractive index structure constant C2
n by including humidity

contribution from expression (6). The C2
n values thus obtained were compared with the radar echo power

values corrected for range attenuation effects averaged in the height range of the selected layers. Several
comparisons were performed by applying various integration times of the radar data (from 2 to 60min)
during the balloon flights, by taking account for the advection of the air parcels by the horizontal wind and by
considering the layers deeper than 100m only. The two statistics were found to be proportional for all
comparisons and high correlation coefficients (0.77–0.88) were obtained. However, these high correlation
coefficients hide a wide dispersion of the scatterplot (over about 40 dB), which may explain the weak
sensitivity of the results to the comparison method. It was shown that the obtained correlation coefficients

weremostly caused by the systematic decrease ofC2
nwith height up to 13 km due to the decrease of humidity

and density. Detrended values still showed significant positive correlation coefficients (~0.5) and were
representative of the degree of resemblance between the values deviating from the systematic dependence

with height of C2
n. Therefore, by rejecting aspect-sensitive echoes and assuming that all the nonaspect-

sensitive echoes result from backscatter from isotropic turbulence, it follows that time-height cross sections

of C2
n at high resolutions can be obtained from MUR measurements based on the assumption that C2

T

estimated from balloons are relevant. Further studies already started by Wilson et al. [2014] will provide
additional insights to the characteristics of turbulent layers identified from concurrent radar and balloon
observations (energetics and turbulence length scales).

Appendix A: Ice Saturated Potential Refractive Index Gradient

Vaughan and Worthington [2000] established the expression of the saturated refractive index gradient Ms for
saturation vapor pressure over water (their formula (15)). Note that a factor 2 is missing in the third term of the
first bracket of their expression.Ms can be obtained for negative temperatures from the empirical expression (7)
for the saturation vapor pressure over ice or by using the Clausius-Clapeyron equation for dei/dT. It follows that

Ms≈� A
p
T

1þ B
ri
T
� C

ri
T2

� �
1
T

dT
dz

þ Γm

� �
(A1)

where A=0.776 × 10�6, B = 15,466.24 and C= 9.502 × 107. The parameter ri is the saturation mixing ratio over
ice (g/g), Γm is the saturated lapse rate (for negative temperature), p is in Pa and T in Kelvin. If ri→ 0, Γs→Γa,
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and Ms→Md. Ms= 0 when the first term in brackets vanishes. Since ri depends on pressure and
temperature, Figure A1 shows T ¼ 20log10 1þ B ri

T � C ri
T2

� �
for � 80< T< 0°C and 50 < p < 1000 hPa

(converted into altitudes assuming a “standard atmosphere”). Superimposed are the temperature profiles
obtained during the 36 soundings.

The term T produces small values of Ms (and thus weak echo power if the model is relevant) in the height
range 7–11 km. Its contribution is small on both sides of this range for realistic temperatures. Figure A2 shows

the results of comparison between Pr10North dBð Þ � Pr10North dBð Þ� �
and C2

n dBð Þ � C2
n dBð Þ� �

when replacing Mh by

Ms in expression (6) for saturated regions (expression (A1) for negative temperatures and its equivalent expression

for positive temperatures). Some values of C2
n seem to be underestimated (due to the properties of Ms) by

~10–20dB in the height range 7–11kmwith respect to radar estimates (if we assume that the empirical calibration
of MUR is correct).
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Figure A2. Same as Figure 8a (i.e., Pr10North dBð Þ � Pr10North dBð Þ� �
and C2

n dBð Þ � C2
n dBð Þ� �

versus height) when usingMs instead of
Mh for saturated layers. The altitude range where it is strongly underestimated is emphasized by the ellipse.

Figure A1. Plot of20 log10 1þ B ri
T � C ri

T2

� �
versus temperature and altitude. The solid curves show the temperature profiles

measured during the experiment.
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