An Experimental and Modeling Study of Propene Oxidation. Part 1: Speciation Measurements in Jet-Stirred and Flow Reactors.

Sinéad M. Burke^a, Wayne Metcalfe^a, Olivier Herbinet^b, Frédérique Battin-Leclerc^b, Francis M. Haas^c, Jeffrey Santner^c, Frederick L. Dryer^c, Henry J. Curran^a

aCombustion Chemistry Centre, National University of Ireland, Galway, Ireland. bLaboratoire Ractions et Gnie des Proces, Nancy Universit, CNRS UPR 3349, BP 20451, 1 rue Grandville, 54001 Nancy, France

^cDepartment of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, United States

Contents

List of tables
Jet-stirred reactor data
Flow reactor data
Princeton Variable pressure flow reactor data
High Pressure Laminar Flow Reactor data14
Princeton Variable pressure flow reactor additional plots17
Mechanism validation25
Literature data
Jet-stirred reactor
Dagaut et al.[4]26
Le Cong et al.[5]
Shock tube46
Hidaka et al.[6]46
Qin et al.[7]53
Flow reactor
Davis et al.[3]57
Targets from Part I and II of this study75
JSR75
VPFR
Shock Tube
NUI Galway
TAMU121
RPI
Stanford129
KAUST
Performance of AramcoMech 2.0 on C ₁ –C ₂ Targets
Methane

List of tables

Table 1 Experimental data from Nancy JSR: 1.65% C ₃ H ₆ 11.60% O2 86.75% He, ϕ =0.64, <i>p</i> =1.05 atm,
τ=2.0 s
Table 2 Experimental data from Nancy JSR: 1.62% C ₃ H ₆ 6.81% O ₂ 91.57% He, φ=1.07, <i>p</i> =1.05 atm,
τ=2.0 s
Table 3 Experimental data from Nancy JSR: 1.68% C ₃ H ₆ 4.50% O ₂ 93.82% He, φ=1.68, <i>p</i> =1.05 atm,
τ=2.0 s6
Table 4 Experimental data from Nancy JSR: 1.68% C ₃ H ₆ 4.50% O ₂ 93.82% He, φ=1.68, <i>p</i> =1.05 atm,
τ=2.0 s
Table 5 VPFR Experimental data: 0.33% C ₃ H ₆ 2.10% O ₂ 97.57% N ₂ , φ=0.71, <i>p</i> =6 atm
Table 6 VPFR Experimental data: 0.33% C ₃ H ₆ 1.48% O ₂ 98.19% N ₂ , φ=1.00, <i>p</i> =6 atm8
Table 7 VPFR Experimental data: 0.33% C ₃ H ₆ 2.14% O ₂ 97.53% N ₂ , φ=0.71, <i>p</i> =8 atm
Table 8 VPFR Experimental data: 0.31% C ₃ H ₆ 1.49% O ₂ 98.20% N ₂ , φ=0.94, <i>p</i> =8 atm
Table 9 VPFR Experimental data: 0.33% C ₃ H ₆ 1.13% O ₂ 98.54% N ₂ , φ=1.31 <i>p</i> =8 atm 10
Table 10 VPFR Experimental data: 0.33% C ₃ H ₆ 2.14% O ₂ 97.53% N ₂ , φ=0.70 <i>p</i> =10 atm 10
Table 11 VPFR Experimental data: 0.33% C ₃ H ₆ 1.49% O ₂ 98.18% N ₂ , φ=1.00 <i>p</i> =10 atm 11
Table 12 VPFR Experimental data: 0.34% C ₃ H ₆ 1.10% O ₂ 98.56% N ₂ , φ=1.37 <i>p</i> =10 atm 11
Table 13 VPFR Experimental data: 0.33% C ₃ H ₆ 2.10% O ₂ 97.57% N ₂ , φ=0.71 <i>p</i> =12.5 atm 12
Table 14 VPFR Experimental data: 0.33% C ₃ H ₆ 1.49% O ₂ 98.18% N ₂ , φ=1.00 <i>p</i> =12.5 atm 12
Table 15 VPFR Experimental data: 0.33% C ₃ H ₆ 1.15% O ₂ 98.52% N ₂ , φ=1.29 <i>p</i> =12.5 atm 13
Table 16 HPLFR Experimental data: 0.40% C ₃ H ₆ 5.14% O2 94.45% N2, φ=0.35 p=15 atm, 800 K 14
Table 17 HPLFR Experimental data: 0.45% C ₃ H ₆ 4.05% O ₂ 95.50% N ₂ , φ=0.50, <i>p</i> =15 atm, 800 K 15
Table 18 HPLFR Experimental data: 0.50% C ₃ H ₆ 2.50% O ₂ 97.25% N ₂ , φ=1.0, <i>p</i> =15 atm, 800 K 15
Table 19 HPLFR Experimental data: 0.62% C ₃ H ₆ 2.25% O ₂ 91.13% N ₂ , φ=1.25, <i>p</i> =15 atm, 800 K 16

Jet-stirred reactor data

Table 1 Experimental data from Nancy JSR: 1.65% C₃H₆ 11.60% O2 86.75% He, φ =0.64, *p*=1.05 atm, τ =2.0 s.

	Mole Fraction												
Т, К	O ₂	СО	CO ₂	CH ₄	C ₂ H ₄	C ₂ H ₂	C ₂ H ₆	C ₃ H ₆	CH ₃ CHO				
800	1.16E-01			1.79E-05	3.12E-05			1.65E-02	1.25E-05				
825	1.18E-01	3.93E-05		1.85E-05	2.90E-05			1.63E-02	1.69E-05				
850	1.14E-01	1.19E-04	8.19E-05	2.16E-05	6.37E-05			1.64E-02	4.82E-05				
875	1.12E-01	9.35E-04	1.36E-04	1.47E-04	4.63E-04		3.63E-06	1.55E-02	2.07E-04				
900	9.65E-02	1.23E-02	1.26E-03	1.25E-03	3.31E-03		6.47E-05	6.92E-03	4.18E-04				
950	7.98E-02	2.28E-02	3.88E-03	1.60E-03	3.75E-03		8.88E-05	3.28E-03	2.95E-04				
925	8.64E-02	2.08E-02	2.56E-03	1.55E-03	3.39E-03		8.35E-05	2.07E-03	2.07E-04				
975	7.23E-02	5.83E-03	1.79E-02	9.25E-04	1.47E-03	2.99E-06	5.15E-05	5.84E-04	6.86E-05				
1000	6.35E-02	2.68E-03	2.61E-02	4.35E-04	1.14E-03	1.55E-05	4.13E-05	6.01E-04	1.37E-04				
1025	5.52E-02	2.86E-03	3.15E-02	4.11E-04	1.06E-03	1.99E-05	4.59E-05	1.83E-03	2.44E-05				
1050	4.31E-02	5.28E-03	3.55E-02	1.56E-04	3.12E-04	1.96E-05	1.75E-05	3.05E-04	2.24E-05				
1075	3.81E-02	2.98E-03	4.15E-02	1.15E-04	2.32E-04	1.40E-05	1.55E-05	2.90E-04					
1085		8.58E-05		9.79E-05	2.03E-04		1.31E-05	2.49E-04					
Т, К	C ₄ H ₈	C ₄ H ₆	C ₃ H ₆ O1-2	C ₂ H ₃ CHO	C ₂ H ₅ CHO	CH ₃ COCH ₃	C ₆ H ₁₀	C ₆ H ₆					
800	2.88E-06			4.55E-06	3.30E-06	5.78E-06	3.54E-06	1.01E-05					
825	3.86E-06		6.93E-06	1.49E-05		8.12E-06	1.36E-05	1.13E-05					
850	1.55E-05	2.61E-06	1.12E-05	2.43E-05	1.52E-05	5.78E-06	2.30E-05	1.24E-05					
875	1.00E-04	1.35E-05	3.53E-05	1.41E-04	6.30E-05	2.44E-05	5.42E-05	1.38E-05					
900	1.81E-04	4.41E-05	7.62E-05	3.06E-04	8.38E-05	6.73E-05	2.18E-05	1.71E-05					
950	9.50E-05	2.66E-05	2.55E-05	1.87E-04	3.96E-05	6.31E-05	7.62E-06	1.52E-05					
925	5.97E-05	1.72E-05	2.87E-05	1.11E-04	2.54E-05	3.63E-05	2.58E-06	1.23E-05					
975	1.69E-05	4.34E-06	1.47E-05	2.71E-05	5.61E-06	4.62E-05							
1000	1.64E-05	4.38E-06	5.61E-06	2.67E-05	5.45E-06	1.19E-05		9.10E-06					
1025	1.61E-05	7.12E-06		1.46E-05		6.93E-06		8.58E-06					
1050	1.61E-05	7.99E-06											
1075				1.47E-05		5.28E-06		1.09E-05					
1085	1.47E-05	7.99E-06		1.22E-05		1.62E-05		9.74E-06					

	Mole Fraction													
Т, К	O ₂	CO	CO ₂	CH4	C ₂ H ₄	C ₂ H ₂	C2H6	C3H6	СН3СНО					
800	6.81E-02							1.62E-02						
825	6.79E-02	2.15E-05			6.74E-06			1.63E-02	7.92E-06					
850	6.73E-02	4.13E-05		1.05E-05	2.12E-05			1.61E-02	1.65E-05					
875	6.69E-02	1.26E-04		3.56E-05	8.32E-05			1.60E-02	4.36E-05					
900	6.80E-02	5.37E-04	2.70E-04	1.26E-04	3.15E-04			1.53E-02	9.64E-05					
925	5.01E-02	1.28E-02	1.26E-03	1.58E-03	3.69E-03		9.93E-05	5.89E-03	3.48E-04					
950	4.07E-02	1.87E-02	2.80E-03	2.01E-03	4.18E-03	4.62E-06	1.31E-04	3.57E-03	2.61E-04					
975	3.72E-02	2.12E-02	4.01E-03	2.22E-03	4.05E-03	8.43E-06	1.47E-04	2.27E-03	1.38E-04					
1000	3.53E-02	2.25E-02	4.55E-03	2.36E-03	3.74E-03	9.25E-06	1.59E-04	1.52E-03	8.91E-05					
1025	3.19E-02	2.36E-02	5.17E-03	2.32E-03	3.10E-03	1.14E-05	1.55E-04	9.84E-04	1.03E-04					
Т, К	C4H8	C ₄ H ₆	C ₃ H ₆ O1-2	C ₂ H ₃ CHO	C ₂ H ₅ CHO	CH ₃ COCH ₃	C ₆ H ₁₀	C ₆ H ₆						
800			6.01E-06	6.32E-06		3.30E-06	3.32E-06	1.07E-05						
825	1.86E-06		3.30E-06	6.95E-06		3.30E-06	4.67E-06	8.67E-06						
850	4.23E-06		3.63E-06	1.39E-05	4.29E-06		1.17E-05	7.84E-06						
875	2.10E-05	2.95E-06	6.27E-06	3.03E-05	1.29E-05	4.95E-06	2.41E-05	8.32E-06						
900	8.39E-05	1.13E-05	1.02E-05	1.00E-04	4.36E-05	1.39E-05	3.92E-05	1.05E-05						
925	2.11E-04	5.25E-05	3.37E-05	3.05E-04	7.36E-05	6.24E-05	1.18E-05	1.66E-05						
950	1.39E-04	4.12E-05	1.49E-05	1.12E-04	4.42E-05	5.28E-05	3.93E-06	1.44E-05						
975	8.97E-05	3.18E-05	3.30E-06	1.71E-04	2.77E-05	3.86E-05		1.25E-05						
1000	6.11E-05	2.48E-05		5.97E-05	1.82E-05	2.41E-05		1.01E-05						
1025	3.91E-05	1.84E-05		3.16E-05	1.02E-05	4.29E-06	1.23E-06	1.01E-05						

Table 2 Experimental data from Nancy JSR: 1.62% C₃H₆ 6.81% O₂ 91.57% He, φ =1.07, *p*=1.05 atm, τ =2.0 s.

	Mole Fraction												
T, K	O ₂	CO	CO ₂	CH4	C ₂ H ₄	C ₂ H ₂	C ₂ H ₆	C3H6	СН3СНО				
800	4.50E-02	1.77E-05						1.68E-02					
850	4.21E-02	2.69E-05			1.11E-05			1.73E-02	9.24E-06				
875	4.36E-02	6.40E-05		1.85E-05	3.71E-05			1.63E-02	2.11E-05				
900	4.03E-02	1.79E-04		5.05E-05	9.80E-05			1.58E-02	3.52E-05				
925	3.88E-02	4.94E-04		1.52E-04	3.21E-04			1.57E-02	1.07E-04				
950	3.64E-02	1.65E-03	1.33E-04	4.44E-04	9.21E-04	2.99E-06	8.12E-06	1.37E-02	3.01E-04				
975	2.90E-02	7.98E-03	4.16E-04	1.91E-03	3.51E-03	1.55E-05	9.11E-05	7.99E-03	3.01E-04				
1000	2.81E-02	1.10E-02	1.09E-03	2.75E-03	4.52E-03	1.99E-05	1.44E-04	6.21E-03	2.83E-04				
1025	2.31E-02	1.18E-02	1.35E-03	3.61E-03	5.14E-03	1.96E-05	1.86E-04	5.04E-03	2.18E-04				
1050	2.17E-02	1.54E-02	2.07E-03	4.44E-03	5.55E-03	1.40E-05	2.44E-04	3.17E-03	1.59E-04				
1075	1.85E-02	1.64E-02	2.31E-03	5.51E-03	5.90E-03		2.84E-04	2.54E-03	1.23E-04				
1100	1.50E-02	1.80E-02	2.24E-03	6.18E-03	5.47E-03	3.78E-05	2.93E-04	1.51E-03	8.05E-05				
T, K	C ₃ H ₄ -a	С ₃ Н ₄ -р	C ₄ H ₈	C ₄ H ₆	C ₂ H ₃ CHO	C ₂ H ₅ CHO	CH ₃ COCH ₃	C ₆ H ₁₀	C ₆ H ₆				
800			0.00E+00		8.68E-06		6.93E-06	1.47E-06					
850			2.88E-06		1.18E-05		5.12E-06	7.50E-06					
875			1.07E-05	2.43E-06	1.29E-05	7.59E-06	8.91E-06	1.70E-05	9.98E-06				
900			2.95E-05	4.86E-06	3.27E-05	1.06E-05	9.90E-06	1.97E-05	9.98E-06				
925	4.00E-06		1.03E-04	1.61E-05	7.82E-05	3.85E-05	1.62E-05	2.97E-05	1.14E-05				
950	9.69E-06		2.37E-04	4.97E-05	1.85E-04	7.00E-05	3.07E-05	2.54E-05	1.46E-05				
975	1.06E-05	6.64E-06	3.72E-04	1.43E-04	2.80E-04	9.24E-05	6.45E-05	9.43E-06	1.85E-05				
1000	1.49E-05	1.11E-05	3.28E-04	1.60E-04	2.37E-04	7.23E-05	6.57E-05	7.50E-06	1.82E-05				

Table 3 Experimental data from Nancy JSR: 1.68% C₃H₆ 4.50% O₂ 93.82% He, φ =1.68, *p*=1.05 atm, τ =2.0 s.

	Mole Fraction												
T, K	O ₂	СО	CO ₂	CH4	C ₂ H ₄	C ₂ H ₂	C2H6	C3H6	СН3СНО				
800	3.41E-02	1.59E-05						1.64E-02					
825	3.33E-02							1.62E-02	7.66E-06				
850	3.40E-02	2.09E-05			7.08E-06			1.63E-02	1.39E-05				
875	3.34E-02	5.43E-05		1.60E-05	2.66E-05			1.62E-02	6.80E-06				
900	3.31E-02	8.78E-05		3.88E-05	7.11E-05			1.60E-02	2.66E-05				
925	3.41E-02	3.63E-04		9.98E-05	2.03E-04			1.49E-02	5.74E-05				
950	3.17E-02	9.43E-04		2.91E-04	5.81E-04		2.74E-05	1.47E-02	1.14E-04				
975	3.08E-02	3.07E-03	3.95E-04	9.41E-04	1.78E-03			1.19E-02	2.13E-04				
1000	2.50E-02	6.33E-03	4.37E-04	2.01E-03	3.35E-03	3.54E-06	8.05E-05	8.56E-03	2.45E-04				
1025	2.25E-02	8.84E-03	9.24E-04	3.02E-03	4.45E-03	4.62E-06	1.35E-04	6.87E-03	2.20E-04				
1050	2.00E-02	1.14E-02	1.61E-03	4.19E-03	5.39E-03	1.77E-05	2.12E-04	4.44E-03	1.72E-04				
1085	1.67E-02	1.56E-02	2.47E-03	5.56E-03	5.68E-03	1.03E-05	2.85E-04	2.37E-03	9.70E-05				
1100	1.43E-02	1.72E-02	2.59E-03	6.24E-03	5.54E-03	9.10E-05	2.97E-04	1.68E-03	7.26E-05				
Т, К	C ₃ H ₄ -a	С ₃ Н ₄ -р	C ₄ H ₈	C ₄ H ₆	C ₂ H ₃ CHO	C ₂ H ₅ CHO	CH ₃ COCH ₃	C ₆ H ₁₀	C ₆ H ₆				
800					6.74E-06		1.98E-05	1.84E-06	1.03E-05				
825			1.69E-06		6.60E-06		4.95E-06	5.04E-06	1.03E-05				
850			1.93E-06		8.68E-06		6.60E-06	1.16E-05	9.38E-06				
875			7.11E-06	1.82E-06	1.34E-05	4.62E-06	3.86E-06	1.76E-05	8.20E-06				
900			2.17E-05	4.86E-06	2.54E-05	6.93E-06	8.15E-06	2.15E-05	9.15E-06				
925			6.90E-05	1.01E-05	5.91E-05	2.24E-05	1.22E-05		1.06E-05				
950	8.46E-06		1.76E-04	3.23E-05	1.45E-04	4.75E-05	1.78E-05	2.37E-05	1.23E-05				
975	2.00E-05		3.58E-04	1.09E-04	2.81E-04	8.12E-05	4.39E-05	1.63E-05	9.27E-06				
1000	2.33E-05	3.61E-06	3.81E-04	1.76E-04	2.67E-04	7.59E-05	7.59E-05	8.48E-06	2.50E-05				
1025	3.20E-05	5.36E-06	3.31E-04	1.99E-04	2.06E-04	5.68E-05	3.80E-05	4.55E-06	3.80E-05				
1050	3.80E-05	1.36E-05	2.14E-04	1.63E-04	1.21E-04	3.29E-05	2.57E-05	1.97E-06	4.62E-05				
1085	4.02E-05	3.07E-05	1.04E-04	9.95E-05	5.18E-05	1.39E-05	1.19E-05		5.02E-05				
1100	3.77E-05	3.44E-05	7.04E-05	7.45E-05	3.47E-05	6.27E-06	9.24E-06		5.29E-05				

Table 4 Experimental data from Nancy JSR: 1.68% C₃H₆ 4.50% O₂ 93.82% He, φ =1.68, *p*=1.05 atm, τ =2.0 s.

Flow reactor data

Princeton Variable pressure flow reactor data

Table 5 VPFR Experiment	l data: (0.33%	C ₃ H ₆ 2.10%	O2 97	'.57% N ₂ , (φ=0.71,	<i>p</i> =6 atm
--------------------------------	-----------	-------	-------------------------------------	-------	--------------------------	---------	-----------------

	Mole Fraction												
Time, s	T, K	O ₂	CO ₂	СО	C ₃ H ₆	H ₂ O	CH4	C ₂ H ₄	CH ₂ O				
4.32E-02	9.70E+02	2.08E-02	3.60E-05	1.34E-04	3.19E-03	2.46E-04	3.66E-06	4.01E-05	3.03E-05				
9.92E-02	9.66E+02	2.05E-02	5.56E-05	2.22E-04	3.04E-03	3.68E-04	3.90E-05	6.33E-05	5.23E-05				
1.38E-01	9.67E+02	2.05E-02	5.60E-05	2.80E-04	2.95E-03	4.15E-04	5.65E-05	8.52E-05	6.80E-05				
1.81E-01	9.67E+02	2.04E-02	6.37E-05	3.45E-04	2.86E-03	5.21E-04	6.67E-05	1.16E-04	8.32E-05				
2.28E-01	9.68E+02	2.02E-02	6.76E-05	4.77E-04	2.71E-03	6.45E-04	8.58E-05	1.60E-04	1.10E-04				
2.74E-01	9.70E+02	2.00E-02	7.70E-05	6.22E-04	2.57E-03	7.71E-04	1.26E-04	2.48E-04	1.33E-04				
3.21E-01	9.72E+02	1.97E-02	8.90E-05	8.87E-04	2.32E-03	9.52E-04	2.04E-04	4.05E-04	1.67E-04				
3.68E-01	9.75E+02	1.92E-02	1.12E-04	1.28E-03	2.04E-03	1.17E-03	2.93E-04	5.61E-04	2.01E-04				
4.15E-01	9.84E+02	1.82E-02	1.87E-04	2.10E-03	1.57E-03	2.37E-03	4.09E-04	6.96E-04	2.34E-04				
4.61E-01	1.00E+03	1.69E-02	3.30E-04	3.29E-03	1.06E-03	3.56E-03	5.21E-04	7.83E-04	2.44E-04				
5.06E-01	1.02E+03	1.50E-02	6.59E-04	4.71E-03	5.48E-04	5.19E-03	6.12E-04	7.27E-04	2.02E-04				
5.51E-01	1.04E+03	1.36E-02	1.01E-03	5.67E-03	2.73E-04	6.62E-03	6.11E-04	5.63E-04	1.51E-04				
5.96E-01	1.06E+03	1.18E-02	1.72E-03	6.33E-03	9.90E-05	7.63E-03	5.42E-04	4.29E-04	8.24E-05				

Table 6 VPFR Experimental data: 0.33% C₃H₆ 1.48% O₂ 98.19% N₂, φ=1.00, *p*=6 atm.

	Mole Fraction												
Time, s	T, K	O ₂	CO ₂	СО	C ₃ H ₆	H ₂ O	CH4	C ₂ H ₄	CH ₂ O				
2.30E-02	1.02E+03	1.45E-02	7.08E-05	1.60E-04	3.36E-03	3.34E-04	0.00E+00	5.09E-05	2.86E-05				
6.35E-02	1.02E+03	1.42E-02	1.23E-04	2.70E-04	3.25E-03	4.77E-04	5.95E-05	9.03E-05	4.99E-05				
1.30E-01	1.02E+03	1.40E-02	1.33E-04	4.16E-04	3.05E-03	6.41E-04	9.97E-05	1.66E-04	8.04E-05				
2.16E-01	1.02E+03	1.37E-02	1.49E-04	6.13E-04	2.73E-03	8.01E-04	1.42E-04	2.45E-04	1.17E-04				
2.60E-01	1.02E+03	1.36E-02	1.51E-04	7.33E-04	2.59E-03	8.89E-04	1.85E-04	3.24E-04	1.40E-04				
3.05E-01	1.02E+03	1.33E-02	1.81E-04	9.18E-04	2.44E-03	9.64E-04	2.34E-04	4.05E-04	1.59E-04				
3.49E-01	1.02E+03	1.31E-02	1.63E-04	1.11E-03	2.21E-03	1.11E-03	2.72E-04	4.88E-04	1.81E-04				
3.94E-01	1.03E+03	1.26E-02	1.83E-04	1.56E-03	1.78E-03	1.40E-03	4.00E-04	6.79E-04	2.12E-04				
4.38E-01	1.03E+03	1.21E-02	2.12E-04	2.01E-03	1.48E-03	1.89E-03	4.74E-04	8.19E-04	2.34E-04				
4.83E-01	1.04E+03	1.13E-02	2.76E-04	2.80E-03	1.06E-03	2.50E-03	6.16E-04	9.61E-04	2.45E-04				
5.27E-01	1.05E+03	9.96E-03	4.47E-04	3.91E-03	6.00E-04	3.64E-03	7.40E-04	1.03E-03	2.21E-04				
5.70E-01	1.06E+03	8.75E-03	6.88E-04	4.77E-03	4.31E-04	4.72E-03	7.65E-04	9.90E-04	1.84E-04				
6.14E-01	1.08E+03	6.65E-03	1.57E-03	5.55E-03	1.79E-04	6.17E-03	5.96E-04	6.15E-04	1.09E-04				

	Mole Fraction												
Time, s	Т, К	O ₂	CO ₂	СО	C ₃ H ₆	H ₂ O	CH4	C ₂ H ₄	CH ₂ O				
1.50E-02	9.15E+02	2.08E-02	3.65E-05	7.81E-05	3.36E-03	1.70E-04	0.00E+00	0.00E+00	1.71E-05				
3.52E-02	9.17E+02	2.07E-02	4.10E-05	9.06E-05	3.33E-03	1.98E-04	0.00E+00	0.00E+00	2.09E-05				
6.09E-02	9.15E+02	2.07E-02	3.79E-05	1.08E-04	3.28E-03	2.17E-04	0.00E+00	0.00E+00	2.58E-05				
9.54E-02	9.16E+02	2.06E-02	4.96E-05	1.40E-04	3.19E-03	2.62E-04	0.00E+00	3.25E-05	3.38E-05				
1.40E-01	9.16E+02	2.06E-02	5.43E-05	1.70E-04	3.17E-03	3.10E-04	0.00E+00	4.53E-05	4.32E-05				
1.94E-01	9.16E+02	2.05E-02	6.64E-05	2.16E-04	3.16E-03	3.75E-04	0.00E+00	5.65E-05	5.41E-05				
2.55E-01	9.20E+02	2.06E-02	5.77E-05	2.81E-04	3.02E-03	4.56E-04	5.01E-05	8.32E-05	7.40E-05				
3.20E-01	9.22E+02	2.03E-02	7.01E-05	4.39E-04	2.83E-03	6.30E-04	5.97E-05	1.16E-04	1.06E-04				
3.86E-01	9.22E+02	2.02E-02	7.90E-05	5.70E-04	2.66E-03	7.61E-04	8.75E-05	1.83E-04	1.32E-04				
4.51E-01	9.30E+02	1.92E-02	9.75E-05	8.25E-04	2.42E-03	9.40E-04	1.14E-04	2.62E-04	1.68E-04				
5.16E-01	9.40E+02	1.70E-02	3.07E-04	1.60E-03	1.98E-03	2.02E-03	2.12E-04	4.81E-04	2.36E-04				
5.79E-01	9.54E+02	1.50E-02	6.00E-04	3.29E-03	1.38E-03	3.08E-03	3.00E-04	6.98E-04	2.09E-04				
7.06E-01	9.82E+02	1.38E-02	8.75E-04	5.38E-03	4.12E-04	6.10E-03	4.53E-04	7.11E-04	1.60E-04				
, ,			• 41	1 4 0 3 1	0/ C TT 1 40	0/ 00 00		1 0 4					

Table 7 VPFR Experimental data: 0.33% C₃H₆ 2.14% O₂ 97.53% N₂, φ=0.71, *p*=8 atm.

Table 8 VPFR Experimental data: 0.31% C₃H₆ 1.49% O₂ 98.20% N₂, φ=0.94, *p*=8 atm.

	Mole Fraction												
Time, s	T, K	O ₂	CO ₂	СО	C ₃ H ₆	H ₂ O	CH4	C ₂ H ₄	CH ₂ O				
1.41E-02	9.54E+02	1.49E-02	5.08E-05	1.08E-04	3.00E-03	2.18E-04	3.66E-06	1.20E-05	1.80E-05				
5.71E-02	9.56E+02	1.47E-02	9.17E-05	2.00E-04	2.99E-03	3.77E-04	3.66E-06	3.77E-05	2.95E-05				
1.31E-01	9.55E+02	1.46E-02	1.09E-04	2.88E-04	2.85E-03	4.84E-04	4.25E-05	6.79E-05	4.89E-05				
2.39E-01	9.58E+02	1.43E-02	1.26E-04	4.80E-04	2.57E-03	6.83E-04	8.00E-05	1.57E-04	9.09E-05				
3.62E-01	9.64E+02	1.38E-02	1.61E-04	9.36E-04	2.20E-03	1.02E-03	1.53E-04	3.28E-04	1.47E-04				
4.23E-01	9.66E+02	1.31E-02	1.95E-04	1.47E-03	1.85E-03	1.46E-03	2.40E-04	4.87E-04	1.85E-04				
4.84E-01	9.77E+02	1.17E-02	3.30E-04	2.75E-03	1.24E-03	2.53E-03	4.21E-04	7.42E-04	2.12E-04				
5.45E-01	9.93E+02	9.92E-03	5.80E-04	4.29E-03	6.56E-04	3.93E-03	4.85E-04	7.95E-04	1.93E-04				
6.04E-01	1.02E+03	8.27E-03	9.47E-04	5.47E-03	3.01E-04	5.28E-03	5.69E-04	7.62E-04	1.33E-04				
6.62E-01	1.03E+03	6.68E-03	1.48E-03	6.20E-03	1.06E-04	5.97E-03	5.76E-04	5.21E-04	6.75E-05				
7.20E-01	1.04E+03	5.95E-03	1.85E-03	6.45E-03	4.50E-05	6.06E-03	5.32E-04	3.66E-04	4.58E-05				
7.78E-01	1.04E+03	5.11E-03	2.35E-03	6.47E-03	1.86E-05	6.39E-03	3.87E-04	1.45E-04	2.92E-05				
8.36E-01	1.06E+03	4.22E-03	3.19E-03	6.12E-03	1.09E-05	6.56E-03	1.89E-04	3.82E-05	1.62E-05				

	Mole Fraction										
Time, s	Т, К	O ₂	CO ₂	СО	C ₃ H ₆	H ₂ O	C ₂ H ₄	CH4	CH ₂ O		
1.37E-02	9.88E+02	1.11E-02	5.25E-05	1.40E-04	3.16E-03	2.51E-04	3.82E-05	3.66E-06	2.57E-05		
5.54E-02	9.87E+02	1.09E-02	6.97E-05	2.31E-04	3.07E-03	3.74E-04	6.07E-05	4.17E-05	4.27E-05		
1.28E-01	9.82E+02	1.07E-02	9.84E-05	3.48E-04	2.89E-03	5.35E-04	1.07E-04	6.29E-05	6.52E-05		
2.33E-01	9.83E+02	1.06E-02	1.13E-04	4.83E-04	2.71E-03	6.68E-04	1.65E-04	9.73E-05	9.23E-05		
3.53E-01	9.87E+02	1.02E-02	1.29E-04	7.73E-04	2.40E-03	8.50E-04	3.20E-04	1.80E-04	1.38E-04		
4.13E-01	9.86E+02	9.95E-03	1.40E-04	9.80E-04	2.21E-03	9.46E-04	3.91E-04	2.18E-04	1.60E-04		
4.74E-01	9.90E+02	9.49E-03	1.58E-04	1.37E-03	1.86E-03	1.24E-03	5.24E-04	2.91E-04	1.93E-04		
5.34E-01	9.94E+02	9.10E-03	1.96E-04	1.73E-03	1.62E-03	1.51E-03	7.35E-04	4.27E-04	2.11E-04		
5.94E-01	1.00E+03	8.27E-03	2.28E-04	2.49E-03	1.19E-03	2.31E-03	9.03E-04	5.61E-04	2.32E-04		
6.53E-01	1.01E+03	7.14E-03	3.35E-04	3.48E-03	7.55E-04	3.23E-03	1.06E-03	6.77E-04	2.27E-04		
7.13E-01	1.02E+03	6.18E-03	4.38E-04	4.31E-03	4.55E-04	4.10E-03	1.13E-03	8.47E-04	2.06E-04		
7.71E-01	1.03E+03	4.92E-03	6.52E-04	5.40E-03	1.88E-04	5.38E-03	1.07E-03	9.34E-04	1.51E-04		
8.30E-01	1.04E+03	3.91E-03	8.36E-04	6.15E-03	9.04E-05	5.95E-03	7.39E-04	7.41E-04	1.05E-04		

Table 9 VPFR Experimental data: 0.33% C₃H₆ 1.13% O₂ 98.54% N₂, φ=1.31 *p*=8 atm.

Table 10 VPFR Experimental data: 0.33% C₃H₆ 2.14% O₂ 97.53% N₂, φ=0.70 *p*=10 atm.

				M	ole Fraction				
Time, s	Т, К	O ₂	CO ₂	СО	C ₃ H ₆	H ₂ O	CH4	C ₂ H ₄	CH ₂ O
1.92E-02	8.76E+02	2.07E-02	3.10E-05	5.46E-05	3.32E-03	1.10E-04	3.66E-06	1.20E-05	1.12E-05
7.75E-02	8.74E+02	2.06E-02	4.87E-05	1.03E-04	3.27E-03	1.99E-04	3.66E-06	1.20E-05	2.17E-05
1.78E-01	8.70E+02	2.07E-02	7.26E-05	1.68E-04	3.20E-03	3.04E-04	3.66E-06	1.20E-05	3.39E-05
3.26E-01	8.71E+02	2.06E-02	7.99E-05	2.32E-04	3.13E-03	3.89E-04	3.66E-06	5.18E-05	5.39E-05
4.93E-01	8.72E+02	2.05E-02	8.50E-05	3.25E-04	2.99E-03	5.12E-04	4.05E-05	8.41E-05	8.58E-05
5.78E-01	8.72E+02	2.04E-02	8.96E-05	3.91E-04	2.92E-03	5.91E-04	5.79E-05	1.28E-04	1.04E-04
7.46E-01	8.85E+02	1.89E-02	1.95E-04	1.78E-03	2.38E-03	1.75E-03	1.63E-04	3.62E-04	1.97E-04
8.28E-01	9.06E+02	1.67E-02	4.95E-04	3.67E-03	1.79E-03	3.04E-03	2.82E-04	5.87E-04	3.04E-04
9.09E-01	9.26E+02	1.46E-02	7.73E-04	5.11E-03	1.08E-03	4.80E-03	3.91E-04	6.38E-04	2.07E-04
9.89E-01	9.50E+02	1.33E-02	1.02E-03	6.04E-03	4.05E-04	6.29E-03	5.21E-04	6.40E-04	1.18E-04
1.07E+00	9.66E+02	1.21E-02	1.36E-03	6.83E-03	1.72E-04	7.46E-03	5.47E-04	5.94E-04	1.00E-04
1.15E+00	9.82E+02	1.06E-02	2.05E-03	7.36E-03	3.48E-05	7.69E-03	3.93E-04	2.93E-04	7.18E-05
1.22E+00	9.89E+02	1.01E-02	2.27E-03	7.40E-03	2.44E-05	7.83E-03	1.96E-04	1.83E-04	4.89E-05

				M	ole Fraction				
Time, s	Т, К	C ₃ H ₆	CO ₂	CO2	CO	H ₂ O	C ₂ H ₄	CH4	CH ₂ O
1.86E-02	9.12E+02	3.33E-03	1.44E-02	1.10E-04	1.43E-04	2.91E-04	3.66E-05	0.00E+00	2.85E-05
7.49E-02	9.12E+02	3.19E-03	1.46E-02	1.40E-04	2.41E-04	4.34E-04	4.71E-05	0.00E+00	4.52E-05
1.72E-01	9.09E+02	2.95E-03	1.41E-02	1.57E-04	4.84E-04	6.91E-04	1.32E-04	6.63E-05	8.18E-05
3.14E-01	9.14E+02	2.53E-03	1.41E-02	2.04E-04	9.90E-04	1.11E-03	2.44E-04	1.28E-04	1.32E-04
4.73E-01	9.32E+02	1.56E-03	1.23E-02	3.78E-04	2.57E-03	2.73E-03	4.65E-04	2.71E-04	1.95E-04
6.29E-01	9.55E+02	7.12E-04	1.03E-02	7.65E-04	4.55E-03	5.93E-03	6.26E-04	5.27E-04	1.21E-04
7.06E-01	9.73E+02	2.51E-04	8.42E-03	1.29E-03	5.93E-03	6.45E-03	5.16E-04	5.54E-04	1.00E-04
7.82E-01	9.91E+02	8.37E-05	7.25E-03	1.72E-03	6.53E-03	6.61E-03	3.98E-04	5.39E-04	7.70E-05
8.57E-01	1.00E+03	1.51E-05	6.33E-03	2.32E-03	6.64E-03	6.91E-03	2.17E-04	5.00E-04	5.15E-05
9.31E-01	1.01E+03	1.26E-05	5.95E-03	2.48E-03	6.67E-03	7.21E-03	1.33E-04	4.50E-04	3.47E-05
1.01E+00	1.02E+03	8.50E-06	5.51E-03	2.69E-03	6.61E-03	7.69E-03	1.14E-04	4.33E-04	2.57E-05
1.08E+00	1.02E+03	4.70E-06	5.40E-03	3.05E-03	6.42E-03	8.02E-03	5.38E-05	3.93E-04	2.00E-05
1.16E+00	1.02E+03	4.00E-06	5.06E-03	3.34E-03	6.20E-03	8.10E-03	3.91E-05	3.48E-04	1.60E-05

Table 11 VPFR Experimental data: 0.33% C₃H₆ 1.49% O₂ 98.18% N₂, φ=1.00 *p*=10 atm.

Table 12 VPFR Experimental data: $0.34\% C_3H_6 1.10\% O_2 98.56\% N_2$, $\varphi=1.37 p=10$ atm.

				M	ole Fraction				
Time, s	Т, К	O ₂	CO ₂	СО	C ₃ H ₆	H ₂ O	CH4	C ₂ H ₄	CH ₂ O
1.79E-02	9.44E+02	1.08E-02	1.25E-04	2.23E-04	3.35E-03	4.03E-04	3.66E-06	4.15E-05	3.36E-05
7.26E-02	9.43E+02	1.06E-02	1.64E-04	3.79E-04	3.21E-03	6.20E-04	5.58E-05	9.62E-05	5.44E-05
1.67E-01	9.42E+02	1.03E-02	2.24E-04	6.50E-04	3.02E-03	8.78E-04	1.01E-04	1.78E-04	8.99E-05
2.31E-01	9.43E+02	1.00E-02	2.51E-04	8.09E-04	2.71E-03	1.00E-03	1.31E-04	2.35E-04	1.10E-04
3.05E-01	9.48E+02	9.36E-03	3.09E-04	1.36E-03	2.26E-03	1.45E-03	2.49E-04	4.19E-04	1.48E-04
3.81E-01	9.56E+02	8.49E-03	3.77E-04	2.13E-03	1.99E-03	2.21E-03	2.95E-04	5.40E-04	1.82E-04
4.59E-01	9.63E+02	7.43E-03	4.73E-04	3.05E-03	1.42E-03	3.16E-03	4.42E-04	7.23E-04	2.00E-04
5.35E-01	9.78E+02	5.94E-03	6.78E-04	4.34E-03	5.85E-04	4.09E-03	6.26E-04	8.82E-04	1.84E-04
6.11E-01	9.85E+02	4.97E-03	8.54E-04	5.14E-03	3.53E-04	5.01E-03	7.00E-04	8.51E-04	1.53E-04
6.87E-01	9.98E+02	3.78E-03	1.15E-03	5.96E-03	1.77E-04	5.51E-03	7.67E-04	7.44E-04	9.74E-05
7.61E-01	1.01E+03	2.83E-03	1.46E-03	6.49E-03	9.52E-05	5.74E-03	7.78E-04	5.92E-04	6.16E-05
8.35E-01	1.01E+03	2.14E-03	1.81E-03	6.69E-03	4.74E-05	6.00E-03	7.42E-04	3.29E-04	3.94E-05
9.10E-01	1.02E+03	1.84E-03	1.97E-03	6.77E-03	4.74E-05	6.14E-03	6.83E-04	2.20E-04	2.95E-05

				Μ	ole Fraction				
Time, s	Т, К	O ₂	CO ₂	СО	C ₃ H ₆	H ₂ O	CH4	C ₂ H ₄	CH ₂ O
2.49E-02	8.42E+02	2.12E-02	5.39E-05	1.00E-04	3.12E-03	3.66E-04	3.66E-06	1.20E-05	2.01E-05
5.81E-02	8.44E+02	2.12E-02	6.43E-05	1.35E-04	3.12E-03	3.32E-04	3.66E-06	1.20E-05	2.52E-05
1.00E-01	8.43E+02	2.10E-02	7.78E-05	1.73E-04	3.06E-03	3.81E-04	3.66E-06	1.20E-05	3.08E-05
1.57E-01	8.43E+02	2.10E-02	8.64E-05	1.89E-04	3.09E-03	3.97E-04	3.66E-06	3.20E-05	3.42E-05
2.31E-01	8.42E+02	2.08E-02	1.14E-04	2.78E-04	3.01E-03	4.98E-04	3.66E-06	3.97E-05	5.26E-05
3.20E-01	8.46E+02	2.05E-02	1.48E-04	5.54E-04	2.81E-03	7.14E-04	3.66E-06	6.81E-05	8.37E-05
4.21E-01	8.52E+02	1.95E-02	2.13E-04	1.20E-03	2.34E-03	1.25E-03	6.61E-05	1.32E-04	1.37E-04
5.26E-01	8.68E+02	1.85E-02	3.29E-04	1.81E-03	1.95E-03	1.96E-03	1.55E-04	2.41E-04	1.63E-04
6.31E-01	8.79E+02	1.63E-02	5.96E-04	3.32E-03	1.20E-03	3.62E-03	2.01E-04	3.40E-04	1.46E-04
7.36E-01	8.98E+02	1.48E-02	8.52E-04	4.38E-03	8.18E-04	5.56E-03	2.90E-04	4.28E-04	1.28E-04
8.39E-01	9.17E+02	1.33E-02	1.32E-03	5.48E-03	4.33E-04	7.62E-03	4.25E-04	3.72E-04	8.65E-05
9.39E-01	9.31E+02	1.16E-02	1.92E-03	6.28E-03	1.35E-04	7.74E-03	4.39E-04	3.02E-04	5.07E-05
1.04E+00	9.42E+02	1.05E-02	2.63E-03	6.43E-03	2.50E-05	7.85E-03	3.82E-04	1.62E-04	4.22E-05

Table 13 VPFR Experimental data: 0.33% C₃H₆ 2.10% O₂ 97.57% N₂, φ =0.71 *p*=12.5 atm.

Table 14 VPFR Experimental data: 0.33% C₃H₆ 1.49% O₂ 98.18% N₂, φ=1.00 *p*=12.5 atm.

				M	ole Fraction				
Time, s	Т, К	O ₂	CO ₂	СО	C ₃ H ₆	H ₂ O	CH4	C ₂ H ₄	CH ₂ O
2.45E-02	8.58E+02	1.47E-02	6.16E-05	1.02E-04	3.18E-03	7.91E-04	3.66E-06	1.20E-05	2.23E-05
9.89E-02	8.63E+02	1.47E-02	7.36E-05	1.32E-04	3.21E-03	6.66E-04	3.66E-06	1.20E-05	2.57E-05
2.27E-01	8.58E+02	1.44E-02	1.27E-04	2.61E-04	3.11E-03	6.17E-04	3.66E-06	3.71E-05	3.97E-05
4.16E-01	8.61E+02	1.44E-02	1.23E-04	3.27E-04	3.02E-03	6.13E-04	3.66E-06	5.30E-05	6.60E-05
6.29E-01	8.60E+02	1.41E-02	1.51E-04	5.14E-04	2.81E-03	7.46E-04	4.14E-05	8.43E-05	1.01E-04
7.36E-01	8.61E+02	1.37E-02	1.78E-04	8.21E-04	2.57E-03	9.64E-04	8.75E-05	1.83E-04	1.29E-04
8.44E-01	8.69E+02	1.27E-02	2.54E-04	1.58E-03	2.14E-03	1.56E-03	1.83E-04	3.42E-04	1.68E-04
9.48E-01	9.10E+02	8.93E-03	8.38E-04	4.57E-03	9.10E-04	3.84E-03	3.86E-04	5.64E-04	1.61E-04
1.05E+00	9.45E+02	5.48E-03	1.82E-03	6.59E-03	1.65E-04	5.07E-03	5.05E-04	3.91E-04	8.12E-05
1.24E+00	9.55E+02	4.24E-03	2.47E-03	6.85E-03	1.75E-05	7.47E-03	5.24E-04	2.81E-04	2.62E-05
1.34E+00	9.54E+02	3.98E-03	2.66E-03	6.84E-03	1.53E-05	7.74E-03	4.92E-04	1.94E-04	2.03E-05
1.54E+00	9.56E+02	3.65E-03	3.01E-03	6.65E-03	8.20E-06	7.88E-03	4.17E-04	1.36E-04	1.87E-05
1.64E+00	9.64E+02	3.51E-03	3.34E-03	6.69E-03	6.50E-06	7.96E-03	3.82E-04	6.99E-05	1.64E-05

				M	ole Fraction				
Time, s	Т, К	O 2	CO ₂	СО	C ₃ H ₆	H ₂ O	CH4	C ₂ H ₄	CH ₂ O
2.41E-02	8.80E+02	1.13E-02	5.25E-05	8.63E-05	3.18E-03	3.05E-04	3.66E-06	1.20E-05	1.80E-05
9.72E-02	8.79E+02	1.12E-02	6.44E-05	1.12E-04	3.21E-03	3.09E-04	3.66E-06	1.20E-05	2.19E-05
2.24E-01	8.75E+02	1.10E-02	9.56E-05	2.06E-04	3.16E-03	4.20E-04	3.66E-06	3.38E-05	3.50E-05
4.09E-01	8.78E+02	1.08E-02	1.21E-04	3.01E-04	3.03E-03	5.57E-04	3.66E-06	5.92E-05	5.41E-05
6.19E-01	8.75E+02	1.07E-02	1.29E-04	3.37E-04	2.99E-03	6.15E-04	3.66E-06	6.73E-05	6.63E-05
7.25E-01	8.74E+02	1.06E-02	1.33E-04	3.83E-04	2.89E-03	6.56E-04	6.16E-05	1.16E-04	7.94E-05
8.32E-01	8.75E+02	1.05E-02	1.39E-04	5.06E-04	2.73E-03	7.76E-04	6.03E-05	1.87E-04	1.06E-04
9.38E-01	8.85E+02	9.71E-03	1.65E-04	1.03E-03	2.32E-03	1.13E-03	1.44E-04	3.97E-04	1.57E-04
1.04E+00	9.14E+02	7.44E-03	3.72E-04	3.00E-03	1.41E-03	2.86E-03	4.57E-04	6.31E-04	2.01E-04
1.14E+00	9.33E+02	4.39E-03	8.00E-04	5.46E-03	4.09E-04	4.65E-03	6.12E-04	7.43E-04	1.17E-04
1.24E+00	9.44E+02	3.21E-03	1.11E-03	6.33E-03	1.91E-04	5.93E-03	7.04E-04	7.74E-04	8.72E-05
1.34E+00	9.57E+02	2.94E-03	1.33E-03	6.52E-03	1.16E-04	6.19E-03	7.11E-04	6.04E-04	6.79E-05
1.44E+00	9.60E+02	2.38E-03	1.53E-03	6.84E-03	6.41E-05	6.22E-03	7.16E-04	4.90E-04	5.38E-05

Table 15 VPFR Experimental data: $0.33\% C_3H_6 1.15\% O_2 98.52\% N_2$, $\varphi=1.29 p=12.5$ atm.

High Pressure Laminar Flow Reactor data

Table 16 HPLFR Experimental data: 0.40% C₃H₆ 5.14% O2 94.45% N2, φ =0.35 p=15 atm, 800 K.

		PPM			T Pr	ofile
Time, s	O ₂	C ₃ H ₆	СО	CO ₂	Time, s	<i>Т</i> , К
3.67E-01	5.19E+04	3.99E+03			1.22E-01	802
4.90E-01	5.17E+04	3.99E+03			2.45E-01	806
6.12E-01	5.18E+04	3.94E+03			3.67E-01	808
7.35E-01	5.17E+04	3.98E+03			4.90E-01	807
8.57E-01	5.18E+04	3.93E+03			6.12E-01	806
9.79E-01	5.18E+04	3.88E+03			7.35E-01	803
1.10E+00	5.17E+04	3.85E+03			8.57E-01	802
1.22E+00	5.18E+04	3.78E+03			9.79E-01	800
1.35E+00	5.13E+04	3.71E+03			1.10E+00	800
1.47E+00	5.13E+04	3.56E+03		1.02E+01	1.22E+00	800
1.59E+00	5.08E+04	3.35E+03	1.90E+02	2.84E+01	1.35E+00	802
1.71E+00	5.00E+04	3.07E+03	4.56E+02	4.98E+01	1.47E+00	804
1.84E+00	4.91E+04	2.57E+03	9.89E+02	8.41E+01	1.59E+00	807
					1.71E+00	810
					1.84E+00	813
					1.96E+00	815
					2.08E+00	816
					2.20E+00	815
					2.45E+00	808

		T Pro	ofile			
Time, s	O ₂	C_3H_6	СО	CO ₂	Time, s	<i>Т</i> , К
3.67E-01	4.07E+04	4.51E+03			1.22E-01	802
4.90E-01	4.06E+04	4.52E+03			2.45E-01	805
6.12E-01	4.06E+04	4.49E+03			3.67E-01	806
7.35E-01	4.07E+04	4.47E+03			4.90E-01	806
8.57E-01	4.07E+04	4.44E+03			6.12E-01	804
9.79E-01	4.06E+04	4.46E+03			7.35E-01	802
1.10E+00	4.07E+04	4.39E+03			8.57E-01	800
1.22E+00	4.03E+04	4.42E+03			9.79E-01	799
1.35E+00	4.04E+04	4.35E+03			1.10E+00	799
1.47E+00	4.01E+04	4.28E+03			1.22E+00	799
1.59E+00	3.99E+04	4.20E+03			1.35E+00	800
1.71E+00	3.99E+04	4.07E+03			1.47E+00	802
1.84E+00	3.94E+04	3.85E+03	1.14E+02	2.52E+01	1.59E+00	804
					1.71E+00	808
					1.84E+00	811
					1.96E+00	815
					2.08E+00	818
					2.20E+00	820
					2.33E+00	818
					2.45E+00	817

Table 17 HPLFR Experimental data: 0.45% C₃H₆ 4.05% O₂ 95.50% N₂, φ=0.50, *p*=15 atm, 800 K.

Table 18 HPLFR Experimental data: 0.50% C₃H₆ 2.50% O₂ 97.25% N₂, φ =1.0, *p*=15 atm, 800 K.

		PI	PM		T Pro	ofile	
Time, s	02	C ₃ H ₆	СО	CO ₂	H ₂ O	Time, s	<i>Т</i> , К
4.90E-01	2.25E+04	4.98E+03				2.45E-01	804
7.35E-01	2.26E+04	5.01E+03				4.90E-01	804
9.80E-01	2.26E+04	5.00E+03				7.35E-01	802
1.22E+00	2.26E+04	5.01E+03				9.80E-01	800
1.47E+00	2.25E+04	4.95E+03				1.22E+00	800
1.71E+00	2.25E+04	4.92E+03				1.47E+00	801
1.96E+00	2.24E+04	4.84E+03			1.15E+02	1.71E+00	802
2.20E+00	2.23E+04	4.73E+03	0.00E+00	5.36E+00	1.63E+02	1.96E+00	803
2.45E+00	2.22E+04	4.65E+03	1.45E+02	1.07E+01	2.50E+02	2.20E+00	802
						2.45E+00	797

		PI	PM			T Profile	
Time, s	O ₂	C ₃ H ₆	СО	CO ₂	H ₂ O	Time, s	<i>Т</i> , К
4.90E-01	2.26E+04	6.32E+03				2.45E-01	805
7.35E-01	2.25E+04	6.27E+03				4.90E-01	805
9.80E-01	2.25E+04	6.27E+03				7.35E-01	803
1.22E+00	2.25E+04	6.27E+03				9.80E-01	800
1.47E+00	2.25E+04	6.20E+03				1.22E+00	799
1.71E+00	2.24E+04	6.16E+03				1.47E+00	799
1.96E+00	2.23E+04	6.09E+03			1.38E+02	1.71E+00	798
2.08E+00	2.22E+04	6.05E+03		3.22E+00	1.59E+02	1.84E+00	798
2.20E+00	2.22E+04	6.00E+03		6.97E+00	1.76E+02	1.96E+00	798
2.33E+00	2.21E+04	5.92E+03		1.13E+01	2.39E+02	2.08E+00	798
2.45E+00	2.20E+04	5.82E+03	1.09E+02	1.45E+01	2.99E+02	2.20E+00	797
						2.45E+00	794

Table 19 HPLFR Experimental data: 0.62% C₃H₆ 2.25% O₂ 91.13% N₂, φ=1.25, *p*=15 atm, 800 K.

Princeton Variable pressure flow reactor additional plots

Figure 1: VPFR: 0.33% C₃H₆ 2.10% O₂ 97.57% N₂, φ=0.71, p=6 atm, time shift: -0.32s

Figure 2: VPFR: 0.33% C₃H₆ 1.48% O₂ 98.19% N₂, φ=1.00, p=6 atm, time shift: -0.20s.

Figure 3: VPFR: 0.33% C₃H₆ 2.14% O₂ 97.53% N₂, φ=0.71, p=8 atm, time shift: -0.26s.

Figure 4: VPFR: 0.33% C₃H₆ 1.13% O₂ 98.54% N₂, φ=1.31 p=8 atm, time shift: -0.37s.

Figure 5: VPFR: 0.33% C₃H₆ 2.14% O₂ 97.53% N₂, φ=0.70 p=10 atm, time shift: -0.15s.

Figure 6: VPFR: 0.33% C₃H₆ 1.49% O₂ 98.18% N₂, φ=1.00 p=10 atm, time shift: -0.45s.

Figure 7: VPFR: 0.33% C₃H₆ 1.49% O₂ 98.18% N₂, φ=1.00 p=12.5 atm, time shift: - 0.42s.

Figure 8: VPFR: 0.33% C₃H₆ 1.15% O₂ 98.52% N₂, ϕ =1.29 p=12.5 atm, time shift: - 0.01s.

Mechanism validation

The mechanism presented in this study and other mechanisms [1-3] from the literature are compared with selected experimental data from the literature [3,7].

Throughout the supplementary material symbols represent experimental data and lines represent model predictions. The lines are set out as follows: — AramcoMech 2.0 as presented in this work, – — AramcoMech 1.3 [1], - - Heyberger et al. [2] · · · USC II[3]. Not all of these mechanisms are validated against all of the conditions studied and are **included for comparative purposes**.

Literature data Jet-stirred reactor Dagaut et al.[4]

Figure 9 Jet-stirred reactor of propene/O₂/N₂. Symbols are experimental data [4] lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - Heyberger et al. [2] · · · USC II[3].

Figure 10 Jet-stirred reactor of propene/O₂/N₂. Symbols are experimental data [4] lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - Heyberger et al. [2], • • • USC II[3].

Figure 11 Jet-stirred reactor of propene/O₂/N₂. Symbols are experimental data [5] lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - Heyberger et al. [2], • • • USC II[3].

Figure 12 Jet-stirred reactor of propene/O₂/N₂. Symbols are experimental data [5] lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - - Heyberger et al. [2], • • • USC II[3].

Figure 13 Jet-stirred reactor of propene/O₂/N₂. Symbols are experimental data [5] lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - Heyberger et al. [2], • • • USC II[3].

Shock tube Hidaka et al.[6]

Figure 14 Shock tube, propene/Ar. Symbols are experimental data [6] lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - - Heyberger et al. [2], • • • USC II[3].

Figure 15 Shock tube, propene/Ar. Symbols are experimental data [6] lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - - Heyberger et al. [2], • • • USC II[3].

1.6% C₃H₆, 7.2% O₂, 91.2% Ar, $\Phi = 1.0$, $p_{av} = 1.9$ atm

1.6% C₃H₆, 7.2% O₂, 91.2% Ar, $\Phi = 1.0$, $p_{av} = 4.2$ atm

1.6% C₃H₆, 3.6% O₂, 94.8% Ar, $\Phi = 2.0$, $p_{av} = 4.1$ atm

3.2% C₃H₆, 7.8% O₂, 89.0% Ar, $\Phi = 1.8$, $p_{av} = 3.9$ atm

Figure 16 Shock tube ignition delay times of propene/O₂/Ar. Symbols are experimental data [7] lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - -

- Heyberger et al. [2], ••• USC II[3].

0.30% C₃H₆ 1.33% O₂ in N₂, $\Phi = 1.00$, p = 1.0 atm, T = 1181 K

Figure 17 Flow reactor of propene/O₂/N₂. Symbols are experimental data [3] lines are model predictions, time shifted to match 50% fuel consumed. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - Heyberger et al. [2], ••• USC II[3].

Figure 18 Flow times of propene/O₂/N₂. Symbols are experimental data [3] lines are model predictions, time shifted to match 50% fuel consumed. — AramcoMech 2.0, — AramcoMech 1.3 [1], -- Heyberger et al. [2], •• • USC II[3].

Figure 19 Flow times of propene/O₂/N₂. Symbols are experimental data [3] lines are model predictions, time shifted to match 50% fuel consumed. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - Heyberger et al. [2], ••• USC II[3].

Figure 20 Jet-stirred reactor of propene/O₂/He. Symbols are experimental data (this study) lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - Heyberger et al. [2], • • • USC II[3].

Figure 21 Jet-stirred reactor of propene/O₂/He. Symbols are experimental data (this study) lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], --- Heyberger et al. [2], ••• USC II[3].

Figure 22 Jet-stirred reactor of propene/O₂/He. Symbols are experimental data (this study) lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - Heyberger et al. [2], • • • USC II[3].

Figure 23 Jet-stirred reactor of propene/O₂/He. Symbols are experimental data (this study) lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - Heyberger et al. [2], • • • USC II[3].

Figure 24 Flow reactor of propene/O₂/N₂. Symbols are experimental data (this study) lines are model predictions, time shifted to match 50% fuel consumed. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - Heyberger et al. [2], ••• USC II[3].

Figure 25 Flow reactor of propene/O₂/N₂. Symbols are experimental data (this study) lines are model predictions, time shifted to match 50% fuel consumed. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - - Heyberger et al. [2], ••• USC II[3].

Figure 26 Flow reactor of propene/O₂/N₂. Symbols are experimental data (this study) lines are model predictions, time shifted to match 50% fuel consumed. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - - Heyberger et al. [2], ••• USC II[3].

Shock Tube NUI Galway

4.46% C₃H₆, in Air, $\Phi = 1.0$, $p_{av} = 10$ atm

Figure 27 Shock tube ignition delay times of propene/O₂/Ar. Symbols are experimental data (this study) lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], --- Heyberger et al. [2], ••• USC II[3].

2.67% C₃H₆, 12.00% O₂ in Ar, $\Phi = 1.0$, $p_{av} = 2$ atm

121

1.78% C₃H₆, 4.00% O₂ in Ar, $\Phi = 2.0$, $p_{av} = 2$ atm

2.67% C₃H₆, 12.00% O₂ in Ar, $\Phi = 1.0$, $p_{av} = 10$ atm

Figure 28 Shock tube ignition delay times of propene/O₂/Ar. Symbols are experimental data (this study) lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - - Heyberger et al. [2], • • • USC II[3].

2.281% C₃H₆, in Air, $\Phi = 0.5$, $p_{av} = 40$ atm

Figure 29 Shock tube ignition delay times of propene/Air. Symbols are experimental data (this study) lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], --- Heyberger et al. [2], ••• USC II[3].

0.88% C₃H₆, 4.00%O₂ 95.12% Ar, $\Phi = 1.0$, $p_{av} = 2.07$ atm

0.88% C₃H₆, 4.00%O₂ 95.12% Ar, $\Phi = 1.0$, $p_{av} = 4.50$ atm

Figure 30 Shock tube ignition delay times of propene/O₂/Ar. Symbols are experimental data (this study) lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], - - Heyberger et al. [2], ••• USC II[3].

132

Figure 31 Shock tube ignition delay times of propene/Air. Symbols are experimental data (this study) lines are model predictions. — AramcoMech 2.0, — AramcoMech 1.3 [1], --- Heyberger et al. [2], ••• USC II[3].

Performance of AramcoMech 2.0 on C1-C2 Targets

Mechanism performance against C₁–C₂ targets has changed very little from the performance of AramcoMech1.3 [1] as shown against selected targets below. Mechanism performance against ethylene targets has altered when compared to AramcoMech 1.3. The change in performance against the ethylene targets is due to the inclusion of the rate constant of $C_{3}H_{6}+\dot{H}\Leftrightarrow C_{2}H_{4}+\dot{C}H_{3}$ from Miller and Klippenstein [8], this is discussed in detail below.

20.0% CH₄, 13.3% O₂ 66.7% Ar, Φ = 3.0, p = 40.0 atm

Figure 32 Shock tube ignition delay times of methane/oxygen/argon mixtures. Symbols are experimental data [9] lines are model predictions — current model — AramcoMech1.3.

Figure 33 Jet-stirred reactor species profiles of methane/oxygen/nitrogen mixtures. Symbols are experimental data [10] lines are model predictions — current model — AramcoMech 1.3.

Ethane Shock tube

Figure 34 Shock tube ignition delay times of ethane/oxygen/argon mixtures. Symbols are experimental data [11] lines are model predictions — current model — AramcoMech 1.3.

Figure 35 Jet-stirred reactor species profiles of ethane/oxygen/nitrogen mixtures. Symbols are experimental data [12] lines are model predictions — current model — AramcoMech 1.3.

Ethylene Shock tube

Figure 36 Shock tube ignition delay times of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [19] lines are model predictions.— current model — AramcoMech 1.3.

Figure 37 Jet-stirred reactor species profiles of ethylene/oxygen/nitrogen mixtures. Symbols are experimental data [13] lines are model predictions — current model — AramcoMech

0.5% C₂H₂, 1.25% O₂, 98.25% Ar, $\Phi = 1.0, p_{\rm av} = 1.85$ atm

0.5% C₂H₂, 2.54% O₂, 96.96% Ar, Φ = 0.49, $p_{\rm av}$ = 1.85 atm

Figure 38 Shock tube ignition delay times of acetylene/oxygen/argon mixtures. Symbols are experimental data [14] lines are model predictions.— current model — AramcoMech 1.3.

Flow reactor

Figure 39 Flow reactor species profiles of acetylene/oxygen/water/nitrogen mixtures. Symbols are experimental data [15] lines are model predictions — current model — AramcoMech 1.3.

5.56% CH₄, 1.85% C₂H₆, 17.59% O₂, 75.0% Ar, Φ = 1.0, p = 1.0 atm

1.11% CH₄, 0.37% C₂H₆, 3.52% O₂, 95.0% Ar, $\Phi = 1.0, p = 10.0$ atm

Figure 40 Shock tube ignition delay times of methane/ethane/oxygen/argon mixtures. Symbols are experimental data [16] lines are model predictions.— current model — AramcoMech 1.3.

Figure 41 Jet-stirred reactor species profiles of methane/ethane//oxygen/nitrogen mixtures. Symbols are experimental data [16] lines are model predictions — current model —AramcoMech
Ethylene

Kopp et al. [18]

Penyazkov et al. [19]

Figure 43 Shock tube ignition delay times of ethylene/Air at p = 14 atm. Symbols are experimental data [19] with 20% error bars, lines are model predictions.

Figure 44 Jet-stirred reactor for 5 % C₂H₄/ in N₂, ϕ = 3.0, *p* = 1.0 atm. Symbols are experimental data [20] lines are model predictions.

Inclusion of the Miller and Klippenstein rate constants resulted in a reduction in reactivity as shown in Figs. 42–44. Predicted ignition delay times for fuel in air mixtures at $\phi = 1$ at pressures of 1 and 10 atm were significantly slower using the Miller and Klippenstein recommendation than the experimental measurements from Kopp et al. (dashed line Fig. 42). In order to improve the mechanism performance an alteration to the branching ratio of the reaction of the vinyl radical with molecular oxygen. In AramcoMech 1.3 the crossover over temperature between chain-branching and chain-propagating occurred at approximately 1000K, in the current mechanism the cross over occurs at approximately 900K, Fig 45. The current mechanism shows relatively good agreement with ethylene targets across a range of conditions and shows improved performance in comparison to AramcoMech 1.3 against the ignition delay times of Penyazkov et al. [19], Fig. 43.

Figure 45: Branching ratio of $\dot{C}_2H_3+O_2 \leftrightarrow$ Products.

References

[1] W. K. Metcalfe, S. M. Burke, S. S. Ahmed, H. J. Curran, Int. J. Chem. Kinet. 45 (2013) 638–675.

[2] B. Heyberger, F. Battin-Leclerc, V. Warth, R. Fournet, G. Come, G. Scacchi, Combust. Flame 126 (2001) 1780–1802.

[3] S. G. Davis, C. K. Law, H. Wang, Combust. Flame 119 (1999) 375–399.

[4] P. Dagaut, M. Cathonnet, and J. C. Boettner, J. Phys. Chem. 92 (1988) 661–671.

[5] T. Le Cong, E. Bedjanian, and P. Dagaut, Combust. Sci. Technol. 182 (2010) 333–349.

[6] Y. Hidaka, T. Nakamura, H. Tanaka, A. Jinno, H. Kawano, T. Higashihara, Int. J. Chem. Kinet. 24 (1992) 761-780.

[7] Z. Qin, H. Yang, W. C. Gardiner, Combust. Flame 124 (2001) 246–254.

[8] J. A. Miller, S. J. Klippenstein, J. Phys. Chem. A 117 (2013) 2718–2727.

[9] E.L. Petersen, D.F. Davidson, R.K. Hanson, J. Prop. Power 15 (1999) 82-91.

[10] P. Dagaut, J.C. Boettner, M. Cathonnet, Comb. Sci. Tech. 77 (1-3) (1991) 127-148.

[11] J. de Vries, J.M. Hall, S.L. Simmons, M.J.A. Rickard, D.M. Kalitan, E.L. Petersen, Combust. Flame 150 (2007) 137-150.

[12] P. Dagaut, M. Cathonnet, J. C. Boettner, Int. J. Chem. Kinet. 23 (5) (1991) 437-455.

[13] P. Dagaut, J.C. Boettner and M. Cathonnet, Int. J. Chem. Kinet. 22 (6) (1990) 641-664.

[14] Y. Hidaka, K. Hattori, T. Okuno, K. Inami, T. Abe, T. Koike, Combust. Flame 107 (1996) 401-417.

[15] J.G. Lopez, C.L. Rasmussen, M.U. Alzueta, Y. Gao, P. Marshall, P. Glarborg, Proc. Combust. Inst. 32 (2009) 367-375.

[16] C. J. Aul, W. K. Metcalfe, S. M. Burke, H. J. Curran, E. L. Petersen, Combust. Flame, 160 (2013) 1153–1167.

[17] P. Dagaut, G. Dayma, Int. J. Hydrogen Energy 31 (2006) 505-515.

[18] M. M. Kopp, E. L Petersen, W. K. Metcalfe, S. M. Burke, H. J. Curran, J. Propul. Power (2013) Accepted

[19] O. G. Penyazkov, K. L. Sevrouk. V. Tangirala, N. Joshi. Proc. Combust. Inst. 32 (2009) 2421–2428

[20] S. Jallais, L. Bonneau, M. Auzanneau, V. Naudet, S. Bockel-Macal, Ind. Eng. Chem. Res. 41 (2002) 5659-5667.