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Global Robot Ego-localization Combining Image Retrieval and

HMM-based Filtering

Cédric Le Barz1, Nicolas Thome2, Matthieu Cord2, Stéphane Herbin3 and Martial Sanfourche3

Abstract— This paper addresses the problem of global visual
ego-localization of a robot equipped with a monocular camera
that has to navigate autonomously in an urban environment.
The robot has access to a database of geo-referenced images
of its environment and to the outputs of an odometric system
(Inertial Measurement Unit or visual odometry). We suppose
that no GPS information is available. The goal of the approach
described and evaluated in this paper is to exploit a Hidden
Markov Model (HMM) to combine the localization estimates
provided by the odometric system and the visual similarities
between acquired images and the geo-localized image database.
It is shown that the use of spatial and temporal constraints
reduces the mean localization error from 16 m to 4 m over a
11 km path evaluated on the Google Pittsburgh dataset when
compared to an image based method alone.

I. INTRODUCTION

The problem tackled in this paper is the visual autonomous

navigation of a robot operating in an urban environment [1].

A typical target application could be the delivery of goods

using unmanned ground or aerial vehicles where the robot

trajectory has been defined before hand on a given map,

and must be followed to reach its final destination (Fig. 1).

Absolute localization system like GPS may be shadowed or

completely unavailable in several areas of the trajectory and

substitute localization means must be used.

Visual information is an appealing alternative because

cameras and densely sampled geo-referenced images are now

commonly available. Nevertheless, the localization of a robot

exploiting only image content is challenging because two

images of the same place acquired at different times and with

different cameras may show huge appearance differences

due to illumination and colorimetry variations (e.g. sunny

or cloudy days), camera viewpoints changes, scene modi-

fications (e.g. seasonal changes, building construction) and

occlusions (e.g. by cars) (Fig. 2). Standard image retrieval

(IR) methods such as k Nearest Neighbour (kNN) votes or

Bag Of Visual Words (BoVW) [2] produce noisy results that

necessitate filtering to be robustly exploited as primary global

localization information source.

Odometric systems, IMU based or visually based, provide

localization information at low cost: however this informa-

tion is only relative to a given position and suffers from
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Fig. 1. Visual ego-localization system: Our system aims at matching
a sequence of images with geo-referenced database images in order to
determine accurate geo-localization from noisy odometric information.

drift especially on complex trajectories. It can only be used

reliably on small portions of the followed route and can’t be

the only source of measurement for absolute localization.

The main contribution of this paper is to describe a

general framework enabling to combine these two sources

of noisy localization information: local odometry and visual

similarity. More precisely, the solution we propose uses an

IR algorithm applied to a database of geo-referenced images

integrated into a Hidden Markov Model (HMM) accounting

for odometry uncertainty. The role of the HMM is to exploit

spatio-temporal constraints in order to filter out erroneous IR

results.

The effectiveness of our approach has been evaluated over

a 11 km path using two kinds of images: Google Streetview

images [4] simulating images acquired online by the robot

camera and Google Pittsburgh image dataset [3] as geo-

referenced image database.

II. RELATED WORK

Visual place recognition problems have been addressed

recently thanks to the availability of image databases. Most

of them rely on the extraction of 2D and/or 3D features,

that are compared to a geo-referenced feature database.

Unlike [5] [6] that are loop closure algorithms developed for

Simultaneous Localization and Mapping (SLAM) systems,

we focus on position tracking.

Zamir et al. propose in [7] a hierarchical method to

localize a group of images. SIFT descriptors from database

images are indexed using a tree. A nearest neighbour tree

search is then done for each SIFT query image feature.

Weak votes are removed and each reliable feature votes for



Fig. 2. Google Streetview images (a) and Robot images (b). Note the
impact of different focal lenses, weather conditions, viewpoint changes and
the presence/absence of cars in the scene.

a location. All accumulated spatial votes are then filtered

by a Gaussian kernel. The geo-referenced image with the

highest number of votes determines the location. In [8], the

method described in [7] is improved by interpreting the 2D

map votes as a likelihood. This likelihood is then used in

a Bayesian tracking filter to estimate the temporal evolution

based on the previous state. Both solutions are dedicated to

web video annotation, and localization is not realized on the

fly which makes it useless for navigation.

In [9], the vehicle localization algorithm uses simple

visual features and 3D features. The solution requires in

a preliminary phase to build a compact map described as

a graph. Nodes include vehicle position at fixed distance

interval and visual and 3D features. At runtime, a Bayesian

filter is used to estimate the probability of the vehicle

position by matching features extracted from sensors with

database features. Their solution uses two lateral cameras

and two lateral LIDARs. Same sensors are used during the

map building step and the localization step. In contrast,

our solution is monocular and uses different cameras for

acquisition and reference database.

The solution proposed in [10] is based on the match of

visual odometric measurements with a 2D road-map. The

map is represented by a directed graph and a probabilistic

approach is defined in order to navigate within this graph.

They are able to localize themselves after a few seconds

of driving with an accuracy of 3 m on a 18 km2 map

containing 2150 km of roads. Our navigation solution does

not use any 2D road-map. It uses only visual features

from images along the specified trajectory combined with

odometric information.

In [11], the localization is achieved by recognizing tempo-

ral coherent sequences of local best matches. These local best

matches are based on a Sum of Absolute Difference (SAD)

on resolution-reduced and patch-normalized images between

last acquire image and M previous images. They make the

assumption that the robot velocity is constant between all

image sub-sequences. The proposed solution is robust to

extreme perceptual changes, but sensitive to point of view.

In [12], authors work on visual similarity for UAV ego-

localization. They propose to generate artificial views of the

scene in order to overcome the large view-point differences.

Nevertheless, spatio-temporal constraint is not taken into

account.

Another type of approach is to cast the problem as a clas-

sification task, as in [13]. A classifier for each image in the

database is trained using per-exemplar SVM approach. The

main contribution of the mentioned paper is the calibration

of all SVM classifiers using mainly negative examples in

order to be able to compare all classifiers scores.

As in [7] [8] [9] [11], our solution uses spatio-temporal

coherency. Along with this, our solution uses a HMM

enabling to take into account in a more flexible way robot

dynamics. No assumption is done concerning the constant

velocity of the robot, but as in [14] we consider coarse

position estimates provided by an odometric sensor and their

uncertainties. Furthermore, in contrast to [7] [8] [9], the latest

part of the trajectory is re-estimated for each new acquisition.

III. PROPOSED SOLUTION

Preliminary experiments made clear that IR approaches

are not selective enough for urban areas because the same

features tend to be shared by several neighbour images

and produce erroneous matches (Fig. 4). That is why we

propose to exploit the spatio-temporal coherency in order

to filter out the wrong matches provided by standard IR

algorithms. This is achieved by combining the similarities

supplied by an IR algorithm with a HMM where hidden

states represent places. The idea is to find the trajectory

that best explains the M past observations and therefore the

current position. The definition of a HMM for each new

image acquired by the robot will enable to re-estimate the

latest part of the trajectory so that past errors are corrected

on a long term basis. Furthermore, taking into account

odometric information reduces online the number of database

images used in the IR task.

A. General principle

At each time t the robot acquires an image Ok and receives

an estimate of its current position S̃k from the odometric

system. The goal of the global localization algorithm is to

produce a better estimate Ŝk of the current robot position

from the past observations and odometric estimate (Fig. 3).

The estimator is a function of the M past observations Ok =
{Ok−M+1, . . . Ok} (i.e. the current location estimate exploits

a set of observations in a sliding window based approach of

length M ) and the estimated position S̃k.

Estimation is realized in a classical random variable setting

where the robot location at time t is considered as a random

variable qt taking values in a discrete set of possible location

Sj j ∈ {1 . . . N}. The main modeling hypothesis is that its

random behaviour is represented by a HMM.



Fig. 3. System overview: for each new observation Ok , an odometric

sensor provides a rough position estimate S̃k that is corrected thanks to a
new HMM λ combining visual information and spatio-temporal constraints.

This corrected position is noted Ŝk .

Using the classical notations of [18], the use of a

HMM requires the definition of the adequate model λ =
{N,M,Π, A,B} where N is the number of states, M is the

number of observations, Π is the prior on the initial state, A
is the transition probability matrix between the states and B
is the observation probability matrix given some states.

The HMM approach provides a standard way to estimate

the most likely state sequence Ŝk, i.e the M successive

places, explaining the sequence of observations Ok =
{Ok−M+1, ..., Ok−1, Ok} (Viterbi algorithm):

Ŝk = argmax
S

P (S|Ok, λ) (1)

The question is now to design the HMM adapted to the

global estimate of the robot location. This will be detailed

in two steps: construction of the state transition matrix A
and initial state vector, and computation of the conditional

observation matrix B.

B. State transition matrix and initial state vector

The state transition matrix A and initial state vector are

built from knowledge of the odometric system behaviour,

robot kinematics and quality of the available database of geo-

referenced images.

From the robot kinematics, images are approximately

acquired every D meters with an odometric uncertainty of ∆
meters. The image database consists of overlapping images

acquired every D
′

meters with D
′

≤ D. In this setting, the

database is therefore assumed to have a bigger sampling rate

than the online image acquisition rate.

Each possible state location Sj is uniquely defined by a

geo-referenced database image Ij .

The filtering capacity of the HMM depends on the number

M of past observations. This control parameter is free and

its influence will be studied in the experiments.

One critical parameter is the localization uncertainty U
which defines the area where the robot is supposed to be.

Fig. 5. Relation between states to consider and localization uncertainty.

This localization uncertainty can be for example the initial

position uncertainty when the robot starts its mission.

The number of states N , i.e. the number of potentially

matching images in the database, the initial state probability

Π and the state transition probability matrix A depend on U ,

D, ∆ and M . They are defined the following way:

• N : Given the putative position of the robot S̃k = Sj , the

localization uncertainty U , the approximative displace-

ment D, and the observation number M , the potential

states, i.e. the set of database images considered for

matching is defined according to the schema on Fig. 5.

• Π: Π = {πj}
j=N
j=1 where πj = P [q1 = Sj ]. It depends

on initial position estimate (i.e. estimated position by

previous HMM) and localization uncertainty U . We use

uniform uncertainty on interval of size F = 1 + 2 ·
⌈U/D

′

⌉.

• A: A = {aij} where aij = P [qt+1 = Sj |qt =
Si], 1 ≤ i, j ≤ N : To take into account odometric

uncertainty for a displacement D, we defined A as

aij =
D

′

∆
rect∆/D′ (j − i− (D/D

′

)). 1

C. Observation matrix

The observation matrix B is computed from visual simi-

larity between the M observations and the set of potentially

matching database images as shown in Fig 5.

Visual similarity measurement is based on a state of the art

IR solution. During the navigation phase, SIFT descriptors

for all interest points detected by a SIFT detector [15] are

extracted in a similar way as during the off-line phase.

A kNN voting algorithm is then performed: 1) For each

descriptor of a query image the k nearest neighbours are

found from a subset of database descriptors, i.e. those that are

near to the putative robot position. This subset is determined

thanks to the estimated robot position S̃k, D, U , ∆ and

M . 2) As noisy interest points are usually detected in an

image, a filtering process based on the ratio of the distance

between the query descriptor and the first and second nearest

neighbours is used [15]. 3) Query descriptors that match

with multiple database descriptors are removed, and finally

4) Outliers are rejected through a geometric verification, i.e. a

1The function rectα(x) is the rectangular function defined by
rectα(x) = 1 if |x| ≤ α and else rectα(x) = 0.



Fig. 4. Top images: Sequential database images considered for IR task - Bottom images: Sequential query images acquired by the robot - (a) Latest query
image, (b) image returned by an IR algorithm only and (c) by an IR algorithm combined with a HMM.

RANSAC [16] 4-point algorithm [17] (homography). Hence,

we get the number of descriptor correspondences between

the descriptors of the query image Ok acquired by the robot

and the descriptors of the database image Ij . This is our

similarity measure, noted f(Ok, Ij) .

The observation matrix B = {bj(k)}, where bj(k) =
P [Ok at t|qt = Sj ], 1 ≤ j ≤ N and 1 ≤ k ≤ M is the

probability of observing Ok when location is Sj . We propose

to compute this probability from the similarity measure using

the following formula:

bj(k) = P [Ok at t|qt = Sj ] =
α

1 + exp(a · (f(Ok, Ij) + b))
(2)

where a and b are two constants, f(Ok, Ij) is the visual

similarity measure and α is a normalization constant to

impose
∑j=N

j=1
bj(k) = 1.

A summary of the general estimation scheme is presented

in algorithm 1.

Given λ = {N,M,Π, A,B}, (3) can be solved.

Ŝk = argmax
S

P (Ok|S, λ) · P (S, λ)

= argmax
S

(

k=M
∏

k=1

P (Ok|S, λ)

)

·

(

π1 ·

k=M
∏

k=2

ak−1,k

)

(3)

The first term of (3) refers to visual similarities between

observations and the image database, whereas the second

term refers to the dynamics of the robot and models spatio-

temporal constraints. We study in section IV the achieved

performances by mixing these two complementary aspects.

IV. EXPERIMENTAL RESULTS

To evaluate our solution in a realistic situation, we con-

ducted our experiments on a 11 km trajectory. The dataset

Algorithm 1: Vision based global localization from

odometric estimates

Input: Estimated robot position S̃k, Localization

uncertainty U , Estimated displacement D with

odometric uncertainty ∆, M last past

observations, Geo-referenced image features

database.

Output: Corrected robot position Ŝk.

HMM initialization (A and Π) from D, U , ∆ and M as1

explained in section III-B;

Select relevant database images from estimated position2

S̃k, D, U , ∆, and M (Fig. 5);

Compute similarities between the M past observations3

and relevant database images as explained in

section III-C;

Compute B from similarities with (2);4

Apply Viterbi algorithm to solve (3) to estimate the5

latest state Ŝk;

used has been acquired at different times (more than one

year between acquisitions) and with different camera fields of

view resulting in visual changes for the same scenes (Fig. 2).

A. Image datasets and settings

We performed experiments on the Google Pittsburgh

dataset as image database [3], and Google Streetview images

as query images [4]. Pittsburgh dataset images have been

resized to 640x480, so that their resolutions match the query

image resolution. About 1160 SIFT descriptors are extracted

and stored per image. From the original corpus, we keep

one image every D
′

= 5 m and remove non-informative

images (e.g. images acquired in tunnels) resulting in a corpus



of 2215 images. Query images are downloaded from the

Internet via a HTTP request with the following settings: a

resolution of 640x480, a field of view of 100o and a camera

tilt of 5o. We requested one image every D = 10 m resulting

in 1105 query images. For (2), a was set to 1 and b was set

to -4.

B. Results

First, we compared our method (noted IR-HMM) to a

state of the art IR algorithm based on visual similarities

only (noted IR-Only). The meaningful metrics used are mean

localization error and recall rate2. The recall rate increases

from 36% to 84%, and the mean error localization decreases

from to 16 m to 4 m (Tab. I). This considerable improvement

confirms that exploiting the spatio-temporal constraint is

essential. Our solution corrects ambiguous image matches

(Fig. 4) thanks to spatio-temporal constraints imposed via

the A matrix.

TABLE I

MEAN ERROR DISTANCE AND RECALL RATE FOR AN IR ALGORITHM

BASED ON VISUAL SIMILARITIES ONLY (IR-ONLY), FOR AN IR

ALGORITHM FOLLOWED BY A SPATIAL-TEMPORAL FILTER (IR-ST) AND

FOR THE SAME IR ALGORITHM COMBINED WITH A HMM (IR-HMM)

ON PITTSBURGH DATASET FOR M = 15 AND U = 50 M.

IR-Only IR-ST IR-HMM

Mean error distance 15.8m 7.7m 3.9m

Recall 36.1% 71.2% 84.0%

Fig. 6. Mean localization error distance vs. Localization uncertainty U .
Spatio-temporal constraints reduce significantly false match that may appear
with an IR algorithm, improving the mean error localization distance.

Then, we compared our solution with a method similar to

the one described in [7] and reminded in section II: a Gaus-

sian spatial filter is applied on putative positions obtained

by query descriptor votes. Like ours, this method (noted

IR-ST) takes into account spatio-temporal information. We

2True positive images are defined as geo-referenced images whose
distance with ground truth image is less than 5 m.

Fig. 7. Mean localization error distance vs. observation number M . When
localization uncertainty increases, M must be also increased to guarantee a
given mean localization error.

noticed that for a localization uncertainty of 50 m, the use

of the HMM enables to decrease the mean localization error

from 8 m to 4 m (Fig. 6). Furthermore, when localization

uncertainty increases, performance differences between both

solutions increase. The trajectory estimate with a HMM is

more precise than with a spatio-temporal filter that tends to

smooth the trajectory. HMM removes impossible matches,

whereas in a spatio-temporal filter false matches are used

for position estimates.

Finally, we studied the sensitivity of our solution to

the number of past observations M used, according the

localization uncertainty U (Fig. 7). The higher U , the more

observations number have to be considered to keep the mean

error localization under a threshold. As M approaches 0,

only dynamics included in the A matrix is significant (3).

In this case, our definition of A (possible transitions have

equal probabilities) and Π (possible initial states have equal

probabilities) implies equal probabilities for different states

(3). The random selection performed among possible states

explains the mean error localization increase.

Therefore, using dynamics only, or using visual similarity

only, are insufficient in our context. Combining both im-

proves significantly results.

V. CONCLUSION

We have proposed a general approach for global ego-

localization able to combine noisy location estimates pro-

vided by an odometric system and visual place recognition.

No GPS information is used. The solution exploits a Hidden

Markov Model whose structure is adaptively defined from

knowledge of the odometric system behaviour. Each new

image acquisition by the robot allows a complete re-estimate

of the M past observation locations ensuring odometric error

correction on a long term basis.

The approach has been evaluated on the Pittsburgh Google

dataset. We demonstrated the benefits of combining simple

visual similarities and dynamics modelling: the proposed



solution improves significantly the mean error localization

which decreases from 16 m to 4 m for a localization

uncertainty of 50 m.

Improved image retrieval solutions can be easily integrated

in the system without substantial structural modifications:

this is the avenue of future work.
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[1] J. Ibañez-Guzmán, C. Laugier, J. Yoder, and S. Thrun, “Autonomous
driving: Context and state-of-the-art,” in Handbook of Intelligent

Vehicles, ser. Springer Reference, A. Eskandarian, Ed. Springer, Mar
2012, pp. 1271–1310.

[2] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in International Conference on Computer

Vision, vol. 2. IEEE, 2003, pp. 1470–1477.

[3] (2011) Pittsburgh dataset website (provided by google for research
purposes). [Online]. Available: http://www.icmla-conference.org/
icmla11/challenge.html

[4] (2014) Google street view API website. [Online]. Available:
http://developers.google.com/maps/documentation/streetview

[5] M. Cummins and P. Newman, “Appearance-only slam at large scale
with fab-map 2.0,” International Journal of Robotics Research, vol. 30,
pp. 1100–1123, August 2011.

[6] W. Maddern, M. Milford, and G. Wyeth, “Cat-slam: probabilistic lo-
calisation and mapping using continuous appearance-based trajectory,”
International Journal of Robotics Research, vol. 31, no. 4, pp. 429–
451, April 2012.

[7] A. Zamir and M. Shah, “Accurate image localization based on google
maps street view,” in Proceedings of the European Conference on

Computer Vision. IEEE, 2010, pp. 255–268.

[8] G. Vaca-Castano, A. Zamir, and M. Shah, “City scale geo-spatial
trajectory estimation of a moving camera,” in Proceedings of the

Computer Vision and Pattern Recognition conference. IEEE, 2012,
pp. 1186–1193.

[9] H. Badino, D. Huber, and T. Kanade, “Real-time topometric localiza-
tion,” in Proceedings of the International Conference on Robotics and

Automation. IEEE, 2012, pp. 1635–1642.

[10] M. Brubacker, A. Geiger, and R. Urtasun, “Lost! leveraging the
crowd for probabilistic visual self-localization,” in Proceedings of the

Computer Vision and Pattern Recognition conference. IEEE, 2013,
pp. 3057–3064.

[11] M. Milford and G. Wyeth, “Seqslam: Visual route-based navigation
for sunny summer days and stormy winter nights,” in International

Conference on Robotics and Automation. IEEE, 2012, pp. 1643–
1649.

[12] A. Majdik, Y. Albers-Schoenberg, and D. Scaramuzza, “Mav urban
localization from google street view data,” in Proceedings of the

International Conference on Intelligent Robots and Systems. IEEE,
2013, pp. 3979–3986.

[13] P. Gronat, G. Obozinski, J. Sivic, and T. Pajdla, “Learning and
calibrating per-location classifiers for visual place recognition,” in Pro-

ceedings of the Computer Vision and Pattern Recognition conference.
IEEE, 2013, pp. 907–914.

[14] J. Zhang, A. Hallquist, E. Liang, and A. Zakhor, “Location-based
image retrieval for urban environments,” in Proceedings of the Interna-

tional Conference on Image Processing. IEEE, 2011, pp. 3677–3680.

[15] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91–110,
November 2004.

[16] M. Fischler and R. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, pp. 381–395,
1981.

[17] A. Hartley and A. Zisserman, Multiple view geometry in computer

vision, 2nd ed. New York, NY, USA: Cambridge University Press,
ISBN 978-0-521-54051-3, 2006.

[18] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” in Proceedings of the IEEE,
vol. 77, 1989, pp. 257–286.


